Search results for: classification of patterns
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4883

Search results for: classification of patterns

4073 An Efficient Data Mining Technique for Online Stores

Authors: Mohammed Al-Shalabi, Alaa Obeidat

Abstract:

In any food stores, some items will be expired or destroyed because the demand on these items is infrequent, so we need a system that can help the decision maker to make an offer on such items to improve the demand on the items by putting them with some other frequent item and decrease the price to avoid losses. The system generates hundreds or thousands of patterns (offers) for each low demand item, then it uses the association rules (support, confidence) to find the interesting patterns (the best offer to achieve the lowest losses). In this paper, we propose a data mining method for determining the best offer by merging the data mining techniques with the e-commerce strategy. The task is to build a model to predict the best offer. The goal is to maximize the profits of a store and avoid the loss of products. The idea in this paper is the using of the association rules in marketing with a combination with e-commerce.

Keywords: data mining, association rules, confidence, online stores

Procedia PDF Downloads 410
4072 Automatic Classification of the Stand-to-Sit Phase in the TUG Test Using Machine Learning

Authors: Yasmine Abu Adla, Racha Soubra, Milana Kasab, Mohamad O. Diab, Aly Chkeir

Abstract:

Over the past several years, researchers have shown a great interest in assessing the mobility of elderly people to measure their functional status. Usually, such an assessment is done by conducting tests that require the subject to walk a certain distance, turn around, and finally sit back down. Consequently, this study aims to provide an at home monitoring system to assess the patient’s status continuously. Thus, we proposed a technique to automatically detect when a subject sits down while walking at home. In this study, we utilized a Doppler radar system to capture the motion of the subjects. More than 20 features were extracted from the radar signals, out of which 11 were chosen based on their intraclass correlation coefficient (ICC > 0.75). Accordingly, the sequential floating forward selection wrapper was applied to further narrow down the final feature vector. Finally, 5 features were introduced to the linear discriminant analysis classifier, and an accuracy of 93.75% was achieved as well as a precision and recall of 95% and 90%, respectively.

Keywords: Doppler radar system, stand-to-sit phase, TUG test, machine learning, classification

Procedia PDF Downloads 161
4071 Sourcing and Compiling a Maltese Traffic Dataset MalTra

Authors: Gabriele Borg, Alexei De Bono, Charlie Abela

Abstract:

There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale.

Keywords: Big Data, vehicular traffic, traffic management, mobile data patterns

Procedia PDF Downloads 109
4070 Face Sketch Recognition in Forensic Application Using Scale Invariant Feature Transform and Multiscale Local Binary Patterns Fusion

Authors: Gargi Phadke, Mugdha Joshi, Shamal Salunkhe

Abstract:

Facial sketches are used as a crucial clue by criminal investigators for identification of suspects when the description of eyewitness or victims are only available as evidence. A forensic artist develops a sketch as per the verbal description is given by an eyewitness that shows the facial look of the culprit. In this paper, the fusion of Scale Invariant Feature Transform (SIFT) and multiscale local binary patterns (MLBP) are proposed as a feature to recognize a forensic face sketch images from a gallery of mugshot photos. This work focuses on comparative analysis of proposed scheme with existing algorithms in different challenges like illumination change and rotation condition. Experimental results show that proposed scheme can lead to better performance for the defined problem.

Keywords: SIFT feature, MLBP, PCA, face sketch

Procedia PDF Downloads 336
4069 Using Machine Learning to Predict Answers to Big-Five Personality Questions

Authors: Aadityaa Singla

Abstract:

The big five personality traits are as follows: openness, conscientiousness, extraversion, agreeableness, and neuroticism. In order to get an insight into their personality, many flocks to these categories, which each have different meanings/characteristics. This information is important not only to individuals but also to career professionals and psychologists who can use this information for candidate assessment or job recruitment. The links between AI and psychology have been well studied in cognitive science, but it is still a rather novel development. It is possible for various AI classification models to accurately predict a personality question via ten input questions. This would contrast with the hundred questions that normal humans have to answer to gain a complete picture of their five personality traits. In order to approach this problem, various AI classification models were used on a dataset to predict what a user may answer. From there, the model's prediction was compared to its actual response. Normally, there are five answer choices (a 20% chance of correct guess), and the models exceed that value to different degrees, proving their significance. By utilizing an MLP classifier, decision tree, linear model, and K-nearest neighbors, they were able to obtain a test accuracy of 86.643, 54.625, 47.875, and 52.125, respectively. These approaches display that there is potential in the future for more nuanced predictions to be made regarding personality.

Keywords: machine learning, personally, big five personality traits, cognitive science

Procedia PDF Downloads 145
4068 Revolutions and Cyclic Patterns in Chinese Town Planning: The Case-Study of Shenzhen

Authors: Domenica Bona

Abstract:

Colin Chant and David Goodman argue that historians of Chinese pre-industrial cities tend to underestimate revolutions and overestimate cyclic patterns: periods of peace and prosperity in the earl part of each d nast , followed b peasants’ rebellions and upheavals. Boyd described these cyclic patterns as part of the background of Chinese town planning and architecture. Thus old ideals of city planning-square plan, southward orientation and a palace along the central axis - are revived again and again in the ascendant phases of several d nastic c cles (e.g. Chang’an, Kaifen, and Beijing). Along this line of thought, m paper questions the relationship between the “magic square rule” and modern Chinese urban- planning. As a matter of fact, the classical theme of “cosmic Taoist urbanism” is still a reference for planning cities and new urban developments, whenever there is the intention to express nationalist ideals and “cultural straightforwardness.” Besides, some case studies can be related to “modern d nasties”: the first Republic under the Kuo Min Tang, the red People’s Republic and the post-Maoist open country of Deng Xiao Ping. Considering the project for the new capital of Nanjing in the Thirties, Beijing’s Tianan Men area in the ifties, and Shenzhen’s utian CBD in late 20th century, I argue that cyclic patterns are still in place, though with deformations related to westernization, private interests and lack of spirituality. How far new Chinese cities are - or simply seem to be - westernized? Symbolism, invisible frameworks, repeating features and behavioural patterns make urban China just “superficiall” western. This can be well noticed in cities previousl occupied b foreigners, like Hong Kong, or in newly founded ones, like Shenzhen, where both Asians and non-Asian people can feel the gender-shift from New-York-like landscapes to something else. Current planning in main metropolitan areas shows a blurred relationship between public policies and private investments: two levels of decisions and actions, one addressing the larger scale and infrastructures, the other concerning the micro scale and development of single plots. While zoning is instrumental in this process, master plans are often laid out over a very poor cartography, so much that any relation between the formal characters of new cities and the centuries-old structure of the related territory gets lost.

Keywords: China, contemporary cities, cultural heritage, shenzhen, urban planning

Procedia PDF Downloads 361
4067 The Increasing of Unconfined Compression Strength of Clay Soils Stabilized with Cement

Authors: Ali̇ Si̇nan Soğanci

Abstract:

The cement stabilization is one of the ground improvement method applied worldwide to increase the strength of clayey soils. The using of cement has got lots of advantages compared to other stabilization methods. Cement stabilization can be done quickly, the cost is low and creates a more durable structure with the soil. Cement can be used in the treatment of a wide variety of soils. The best results of the cement stabilization were seen on silts as well as coarse-grained soils. In this study, blocks of clay were taken from the Apa-Hotamış conveyance channel route which is 125km long will be built in Konya that take the water with 70m3/sec from Mavi tunnel to Hotamış storage. Firstly, the index properties of clay samples were determined according to the Unified Soil Classification System. The experimental program was carried out on compacted soil specimens with 0%, 7 %, 15% and 30 % cement additives and the results of unconfined compression strength were discussed. The results of unconfined compression tests indicated an increase in strength with increasing cement content.

Keywords: cement stabilization, unconfined compression test, clayey soils, unified soil classification system.

Procedia PDF Downloads 422
4066 Classification of Health Information Needs of Hypertensive Patients in the Online Health Community Based on Content Analysis

Authors: Aijing Luo, Zirui Xin, Yifeng Yuan

Abstract:

Background: With the rapid development of the online health community, more and more patients or families are seeking health information on the Internet. Objective: This study aimed to discuss how to fully reveal the health information needs expressed by hypertensive patients in their questions in the online environment. Methods: This study randomly selected 1,000 text records from the question data of hypertensive patients from 2008 to 2018 collected from the website www.haodf.com and constructed a classification system through literature research and content analysis. This paper identified the background characteristics and questioning the intention of each hypertensive patient based on the patient’s question and used co-occurrence network analysis to explore the features of the health information needs of hypertensive patients. Results: The classification system for health information needs of patients with hypertension is composed of 9 parts: 355 kinds of drugs, 395 kinds of symptoms and signs, 545 kinds of tests and examinations , 526 kinds of demographic data, 80 kinds of diseases, 37 kinds of risk factors, 43 kinds of emotions, 6 kinds of lifestyles, 49 kinds of questions. The characteristics of the explored online health information needs of the hypertensive patients include: i)more than 49% of patients describe the features such as drugs, symptoms and signs, tests and examinations, demographic data, diseases, etc. ii) these groups are most concerned about treatment (77.8%), followed by diagnosis (32.3%); iii) 65.8% of hypertensive patients will ask doctors online several questions at the same time. 28.3% of the patients are very concerned about how to adjust the medication, and they will ask other treatment-related questions at the same time, including drug side effects, whether to take drugs, how to treat a disease, etc.; secondly, 17.6% of the patients will consult the doctors online about the causes of the clinical findings, including the relationship between the clinical findings and a disease, the treatment of a disease, medication, and examinations. Conclusion: In the online environment, the health information needs expressed by Chinese hypertensive patients to doctors are personalized; that is, patients with different background features express their questioning intentions to doctors. The classification system constructed in this study can guide health information service providers in the construction of online health resources, to help solve the problem of information asymmetry in communication between doctors and patients.

Keywords: online health community, health information needs, hypertensive patients, doctor-patient communication

Procedia PDF Downloads 119
4065 Influence of Urban Microclimates on Human Perceptions and Behavioral Patterns: A Relational Context of Human Parameters in Urban Design

Authors: Naveed Mazhar

Abstract:

Our cities are known to have significant modifying effects on the local climate. The nature of the modifications depends on a range of physical variables, usually assessed at a wide range of spatial scales. Physical spatial dimensions, such as measured parameters of microclimates and their significant influence on human sensations, are known to have far-reaching effects on human thermal comfort and by corollary a force that influences human perception. Less scholarship has thrown light on the subjective dimension and insufficiently demonstrates a relational approach between human behavior and how it is affected by the phenomenon of urban microclimates. Other than identifying gaps in the most recent scholarship and providing future research opportunities, the scope of this study will help improve urban design guidelines and raise framework standards of socially responsive urban design. This study will help equip future professionals to ameliorate the effects of urban microclimates on participant’s perceptions enabling more frequent usage of the outdoor urban spaces. However, it is informed that the physical parameters of an outdoor open space determine psychological human adaptations and is a measure of the degree to which people are willing to adapt to their surroundings. A large amount of research is available related to urban microclimates. However, very few studies are focused on the elucidation of the critical factors influencing human perceptions of the microclimates in urban spatial configurations. Based on the most recent scholarship, this study has evaluated the role urban microclimatic conditions have in the formation of human perceptions and, by extension, behavioral patterns formulating in outdoor open spaces. Furthermore, this study also defines, in the backdrop of the current scholarly literature, the socio-spatial interdependence of behavioral patterns with relationship to the built urban fabric and its resultant correlation with human perception. A comprehensive review and analysis of the recent research conducted within the scope of the study will help frame gaps, issues, current research methods and future research opportunities.

Keywords: urban design, urban microcliamate, human perception, human behavioral patterns

Procedia PDF Downloads 304
4064 Early-Warning Lights Classification Management System for Industrial Parks in Taiwan

Authors: Yu-Min Chang, Kuo-Sheng Tsai, Hung-Te Tsai, Chia-Hsin Li

Abstract:

This paper presents the early-warning lights classification management system for industrial parks promoted by the Taiwan Environmental Protection Administration (EPA) since 2011, including the definition of each early-warning light, objectives, action program and accomplishments. All of the 151 industrial parks in Taiwan were classified into four early-warning lights, including red, orange, yellow and green, for carrying out respective pollution management according to the monitoring data of soil and groundwater quality, regulatory compliance, and regulatory listing of control site or remediation site. The Taiwan EPA set up a priority list for high potential polluted industrial parks and investigated their soil and groundwater qualities based on the results of the light classification and pollution potential assessment. In 2011-2013, there were 44 industrial parks selected and carried out different investigation, such as the early warning groundwater well networks establishment and pollution investigation/verification for the red and orange-light industrial parks and the environmental background survey for the yellow-light industrial parks. Among them, 22 industrial parks were newly or continuously confirmed that the concentrations of pollutants exceeded those in soil or groundwater pollution control standards. Thus, the further investigation, groundwater use restriction, listing of pollution control site or remediation site, and pollutant isolation measures were implemented by the local environmental protection and industry competent authorities; the early warning lights of those industrial parks were proposed to adjust up to orange or red-light. Up to the present, the preliminary positive effect of the soil and groundwater quality management system for industrial parks has been noticed in several aspects, such as environmental background information collection, early warning of pollution risk, pollution investigation and control, information integration and application, and inter-agency collaboration. Finally, the work and goal of self-initiated quality management of industrial parks will be carried out on the basis of the inter-agency collaboration by the classified lights system of early warning and management as well as the regular announcement of the status of each industrial park.

Keywords: industrial park, soil and groundwater quality management, early-warning lights classification, SOP for reporting and treatment of monitored abnormal events

Procedia PDF Downloads 326
4063 An Online Corpus-Based Bilingual Collocations Dictionary for Second/Foreign Language Learners

Authors: Adriane Orenha-Ottaiano

Abstract:

Collocations are conventionalized, recurrent and arbitrary lexical combinations. Due to the fact that they are highly specific for a particular language and may be contextually restricted, collocations pose a problem to EFL/ESL learners with regard to production or encoding. Taking that into account, the compilation of monolingual and bilingual collocations dictionaries for the referred audience is highly crucial and significant. Thus, the aim of this paper is to discuss the importance of the compilation of an Online Corpus-based Bilingual Collocations Dictionary, in the English-Portuguese and Portuguese-English directions. On a first phase, with the use of WordSmith Tools, the collocations were extracted from a Translation Learner Corpus (TLC), a parallel corpus made up of university students’ translations in the Portuguese-English direction, with approximately 100,000 words. In a second stage, based on the keywords analyzed from the TLC, more collocational patterns were extracted using the Sketch Engine. In order to include more collocations as well as to ensure dictionary users will have access to more frequent and recurrent collocations, we also use the frequency list from The Corpus of Contemporary American English, with the purpose of extracting more patterns. The dictionary focuses on all types of collocations (verbal, noun, adjectival and adverbial collocations), in order to help the referred audience use them more accurately and productively – so far the dictionary has more than 330 entries, and more than 3,500 collocations extracted. The idea of having the proposed dictionary in online format may allow to incorporate more qualitatively and quantitatively collocational information. Besides, more examples may be included, different from conventional printed collocations dictionaries. Being the first bilingual collocations dictionary in the aforementioned directions, it is hoped to achieve the challenge of meeting learners’ collocational needs as the collocations have been selected according to learners’ difficulties regarding the use of collocations.

Keywords: Corpus-Based Collocations Dictionary, Collocations , Bilingual Collocations Dictionary, Collocational Patterns

Procedia PDF Downloads 309
4062 Contestation of Local and Non-Local Knowledge in Developing Bali Cattle at Barru Regency, Province of South Sulawesi, Indonesia

Authors: A. Amidah Amrawaty, M. Saleh S. Ali, Darmawan Salman

Abstract:

The aim of this study was to identify local and non local knowledge in Bali cattle development, to analyze the contestation between local and non-local knowledge. The paradigm used was constructivism paradigm with a qualitative approach. descriptive type of research using case study method. The study was conducted in four villages subjected to Agropolitan Program, i.e. Palakka, Tompo, Galung and Anabanua in Barru District, province of South Sulawesi. The results indicated that the local knowledge of the farmers were: a) knowledge of animal housing, b) knowledge of the prevention and control disease, c) knowledge of the feed, d) knowledge of breed selection, e) knowledge of sharing arrangement, f) knowledge of marketing, Generally, there are three patterns of knowledge contestation namely coexistence, ‘zero sum game’ and hybridization but in this research only coexistence and zero sum game patterns took place, while the pattern of hybridization did not occur.

Keywords: contestation, local knowledge, non-local knowledge, developing of Bali cattle

Procedia PDF Downloads 403
4061 Physical Activity Patterns and Status of Adolescent Learners from Low and Middle Socio-Economic Status Communities in Kwazulu-Natal Province

Authors: Patrick Mkhanyiseli Zimu

Abstract:

A sedentary lifestyle and insufficient physical activity (PA) increases the risk of developing chronic non-communicable diseases (NCDs). Knowing the PA levels and patterns of adolescents from different socio-economic backgrounds is important to direct programs at schools and in communities to prevent NCDs risk factors, which can have long-term effects on the health of the adolescents. The study aimed to investigate adolescent PA levels, patterns, and influencing factors (age, gender, socio-economic status). The 353 participants (203 females and 150 males) from eight low socio-economic (LSES) and middle socio-economic (MSES) public secondary schools completed a Physical Activity Questionnaire for Adolescents (PAQ-A). The PAQ-A is a seven day recall instrument that assesses general estimates of PA levels and patterns for high school learners in Grades 9-12 and provides a summary of physical activity scores derived from seven items, each scored on a 5-point Likert scale. The seven items were PA during spare time and five domains (during physical education, lunch break, after school, in the evenings, on the weekend) and selecting one statement that described participant’s physical activity behaviour. The PA Levels (x̄=2.61, SD=.74) were below the international PA cut-off points of x̄=2.75. Physical education (PE) showed the highest PA score (x̄=3.05, SD=1.21) and lunch break showed the lowest PA score (x̄=2.09, SD=1.14). Positive correlations occurred between PA levels and SES (r=.122, p=0.022), and PA and gender (r=.223, p= 0.0001). LSES participant’s PA score was significantly lower (x̄=2.52; SD=.73) than those from MSES (x̄=2.70; SD=.74, p=0.022). Adolescents from low and middle socio-economic status communities are not sufficiently active. Their average PA score of 2.61 is below the PAQ-A global criterion referenced cut-off points of 2.75, which is considered sufficiently physically active for adolescents to ensure both short- and long-term health benefits. As adolescents are not sufficiently active, collaborative school and community PA programs need to be implemented to supplement physical education in order to prevent short- and long-term health problems.

Keywords: adolescents, health promotion, physical activity, physical education

Procedia PDF Downloads 95
4060 Preparation on Sentimental Analysis on Social Media Comments with Bidirectional Long Short-Term Memory Gated Recurrent Unit and Model Glove in Portuguese

Authors: Leonardo Alfredo Mendoza, Cristian Munoz, Marco Aurelio Pacheco, Manoela Kohler, Evelyn Batista, Rodrigo Moura

Abstract:

Natural Language Processing (NLP) techniques are increasingly more powerful to be able to interpret the feelings and reactions of a person to a product or service. Sentiment analysis has become a fundamental tool for this interpretation but has few applications in languages other than English. This paper presents a classification of sentiment analysis in Portuguese with a base of comments from social networks in Portuguese. A word embedding's representation was used with a 50-Dimension GloVe pre-trained model, generated through a corpus completely in Portuguese. To generate this classification, the bidirectional long short-term memory and bidirectional Gated Recurrent Unit (GRU) models are used, reaching results of 99.1%.

Keywords: natural processing language, sentiment analysis, bidirectional long short-term memory, BI-LSTM, gated recurrent unit, GRU

Procedia PDF Downloads 159
4059 Classification of Digital Chest Radiographs Using Image Processing Techniques to Aid in Diagnosis of Pulmonary Tuberculosis

Authors: A. J. S. P. Nileema, S. Kulatunga , S. H. Palihawadana

Abstract:

Computer aided detection (CAD) system was developed for the diagnosis of pulmonary tuberculosis using digital chest X-rays with MATLAB image processing techniques using a statistical approach. The study comprised of 200 digital chest radiographs collected from the National Hospital for Respiratory Diseases - Welisara, Sri Lanka. Pre-processing was done to remove identification details. Lung fields were segmented and then divided into four quadrants; right upper quadrant, left upper quadrant, right lower quadrant, and left lower quadrant using the image processing techniques in MATLAB. Contrast, correlation, homogeneity, energy, entropy, and maximum probability texture features were extracted using the gray level co-occurrence matrix method. Descriptive statistics and normal distribution analysis were performed using SPSS. Depending on the radiologists’ interpretation, chest radiographs were classified manually into PTB - positive (PTBP) and PTB - negative (PTBN) classes. Features with standard normal distribution were analyzed using an independent sample T-test for PTBP and PTBN chest radiographs. Among the six features tested, contrast, correlation, energy, entropy, and maximum probability features showed a statistically significant difference between the two classes at 95% confidence interval; therefore, could be used in the classification of chest radiograph for PTB diagnosis. With the resulting value ranges of the five texture features with normal distribution, a classification algorithm was then defined to recognize and classify the quadrant images; if the texture feature values of the quadrant image being tested falls within the defined region, it will be identified as a PTBP – abnormal quadrant and will be labeled as ‘Abnormal’ in red color with its border being highlighted in red color whereas if the texture feature values of the quadrant image being tested falls outside of the defined value range, it will be identified as PTBN–normal and labeled as ‘Normal’ in blue color but there will be no changes to the image outline. The developed classification algorithm has shown a high sensitivity of 92% which makes it an efficient CAD system and with a modest specificity of 70%.

Keywords: chest radiographs, computer aided detection, image processing, pulmonary tuberculosis

Procedia PDF Downloads 126
4058 Study of Open Spaces in Urban Residential Clusters in India

Authors: Renuka G. Oka

Abstract:

From chowks to streets to verandahs to courtyards; residential open spaces are very significantly placed in traditional urban neighborhoods of India. At various levels of intersection, the open spaces with their attributes like juxtaposition with the built fabric, scale, climate sensitivity and response, multi-functionality, etc. reflect and respond to the patterns of human interactions. Also, these spaces tend to be quite well utilized. On the other hand, it is a common specter to see an imbalanced utilization of open spaces in newly/recently planned residential clusters. This is maybe due to lack of activity generators around or wrong locations or excess provisions or improper incorporation of aforementioned design attributes. These casual observations suggest the necessity for a systematic study of current residential open spaces. The exploratory study thus attempts to draw lessons through a structured inspection of residential open spaces to understand the effective environment as revealed through their use patterns. Here, residential open spaces are considered in a wider sense to incorporate all the un-built fabric around. These thus, include both use spaces and access space. For the study, open spaces in ten exemplary housing clusters/societies built during the last ten years across India are studied. A threefold inquiry is attempted in this direction. The first relates to identifying and determining the effects of various physical functions like space organization, size, hierarchy, thermal and optical comfort, etc. on the performance of residential open spaces. The second part sets out to understand socio-cultural variations in values, lifestyle, and beliefs which determine activity choices and behavioral preferences of users for respective residential open spaces. The third inquiry further observes the application of these research findings to the design process to derive meaningful and qualitative design advice. However, the study also emphasizes to develop a suitable framework of analysis and to carve out appropriate methods and approaches to probe into these aspects of the inquiry. Given this emphasis, a considerable portion of the research details out the conceptual framework for the study. This framework is supported by an in-depth search of available literature. The findings are worked out for design solutions which integrate the open space systems with the overall design process for residential clusters. The open spaces in residential areas present great complexities both in terms of their use patterns and determinants of their functional responses. The broad aim of the study is, therefore, to arrive at reconsideration of standards and qualitative parameters used by designers – on the basis of more substantial inquiry into the use patterns of open spaces in residential areas.

Keywords: open spaces, physical and social determinants, residential clusters, use patterns

Procedia PDF Downloads 148
4057 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record

Authors: Raghavi C. Janaswamy

Abstract:

In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.

Keywords: electronic health record, graph neural network, heterogeneous data, prediction

Procedia PDF Downloads 86
4056 Towards Real-Time Classification of Finger Movement Direction Using Encephalography Independent Components

Authors: Mohamed Mounir Tellache, Hiroyuki Kambara, Yasuharu Koike, Makoto Miyakoshi, Natsue Yoshimura

Abstract:

This study explores the practicality of using electroencephalographic (EEG) independent components to predict eight-direction finger movements in pseudo-real-time. Six healthy participants with individual-head MRI images performed finger movements in eight directions with two different arm configurations. The analysis was performed in two stages. The first stage consisted of using independent component analysis (ICA) to separate the signals representing brain activity from non-brain activity signals and to obtain the unmixing matrix. The resulting independent components (ICs) were checked, and those reflecting brain-activity were selected. Finally, the time series of the selected ICs were used to predict eight finger-movement directions using Sparse Logistic Regression (SLR). The second stage consisted of using the previously obtained unmixing matrix, the selected ICs, and the model obtained by applying SLR to classify a different EEG dataset. This method was applied to two different settings, namely the single-participant level and the group-level. For the single-participant level, the EEG dataset used in the first stage and the EEG dataset used in the second stage originated from the same participant. For the group-level, the EEG datasets used in the first stage were constructed by temporally concatenating each combination without repetition of the EEG datasets of five participants out of six, whereas the EEG dataset used in the second stage originated from the remaining participants. The average test classification results across datasets (mean ± S.D.) were 38.62 ± 8.36% for the single-participant, which was significantly higher than the chance level (12.50 ± 0.01%), and 27.26 ± 4.39% for the group-level which was also significantly higher than the chance level (12.49% ± 0.01%). The classification accuracy within [–45°, 45°] of the true direction is 70.03 ± 8.14% for single-participant and 62.63 ± 6.07% for group-level which may be promising for some real-life applications. Clustering and contribution analyses further revealed the brain regions involved in finger movement and the temporal aspect of their contribution to the classification. These results showed the possibility of using the ICA-based method in combination with other methods to build a real-time system to control prostheses.

Keywords: brain-computer interface, electroencephalography, finger motion decoding, independent component analysis, pseudo real-time motion decoding

Procedia PDF Downloads 138
4055 Supernatural Beliefs Impact Pattern Perception

Authors: Silvia Boschetti, Jakub Binter, Robin Kopecký, Lenka PříPlatová, Jaroslav Flegr

Abstract:

A strict dichotomy was present between religion and science, but recently, cognitive science focusses on the impact of supernatural beliefs on cognitive processes such as pattern recognition. It has been hypothesized that cognitive and perceptual processes have been under evolutionary pressures that ensured amplified perception of patterns, especially when in stressful and harsh conditions. The pattern detection in religious and non-religious individuals after induction of negative, anxious mood shall constitute a cornerstone of the general role of anxiety, cognitive bias, leading towards or against the by-product hypothesis, one of the main theories on the evolutionary studies of religion. The apophenia (tendencies to perceive connection and meaning on unrelated events) and perception of visual patterns (or pateidolia) are of utmost interest. To capture the impact of culture and upbringing, a comparative study of two European countries, the Czech Republic (low organized religion participation, high esoteric belief) and Italy (high organized religion participation, low esoteric belief), are currently in the data collection phase. Outcomes will be presented at the conference. A battery of standardized questionnaires followed by pattern recognition tasks (the patterns involve color, shape, and are of artificial and natural origin) using an experimental method involving the conditioning of (controlled, laboratory-induced) stress is taking place. We hypothesize to find a difference between organized religious belief and personal (esoteric) belief that will be alike in both of the cultural environments.

Keywords: culture, esoteric belief, pattern perception, religiosity

Procedia PDF Downloads 187
4054 An Application to Predict the Best Study Path for Information Technology Students in Learning Institutes

Authors: L. S. Chathurika

Abstract:

Early prediction of student performance is an important factor to be gained academic excellence. Whatever the study stream in secondary education, students lay the foundation for higher studies during the first year of their degree or diploma program in Sri Lanka. The information technology (IT) field has certain improvements in the education domain by selecting specialization areas to show the talents and skills of students. These specializations can be software engineering, network administration, database administration, multimedia design, etc. After completing the first-year, students attempt to select the best path by considering numerous factors. The purpose of this experiment is to predict the best study path using machine learning algorithms. Five classification algorithms: decision tree, support vector machine, artificial neural network, Naïve Bayes, and logistic regression are selected and tested. The support vector machine obtained the highest accuracy, 82.4%. Then affecting features are recognized to select the best study path.

Keywords: algorithm, classification, evaluation, features, testing, training

Procedia PDF Downloads 119
4053 Exploring the Spatial Characteristics of Mortality Map: A Statistical Area Perspective

Authors: Jung-Hong Hong, Jing-Cen Yang, Cai-Yu Ou

Abstract:

The analysis of geographic inequality heavily relies on the use of location-enabled statistical data and quantitative measures to present the spatial patterns of the selected phenomena and analyze their differences. To protect the privacy of individual instance and link to administrative units, point-based datasets are spatially aggregated to area-based statistical datasets, where only the overall status for the selected levels of spatial units is used for decision making. The partition of the spatial units thus has dominant influence on the outcomes of the analyzed results, well known as the Modifiable Areal Unit Problem (MAUP). A new spatial reference framework, the Taiwan Geographical Statistical Classification (TGSC), was recently introduced in Taiwan based on the spatial partition principles of homogeneous consideration of the number of population and households. Comparing to the outcomes of the traditional township units, TGSC provides additional levels of spatial units with finer granularity for presenting spatial phenomena and enables domain experts to select appropriate dissemination level for publishing statistical data. This paper compares the results of respectively using TGSC and township unit on the mortality data and examines the spatial characteristics of their outcomes. For the mortality data between the period of January 1st, 2008 and December 31st, 2010 of the Taitung County, the all-cause age-standardized death rate (ASDR) ranges from 571 to 1757 per 100,000 persons, whereas the 2nd dissemination area (TGSC) shows greater variation, ranged from 0 to 2222 per 100,000. The finer granularity of spatial units of TGSC clearly provides better outcomes for identifying and evaluating the geographic inequality and can be further analyzed with the statistical measures from other perspectives (e.g., population, area, environment.). The management and analysis of the statistical data referring to the TGSC in this research is strongly supported by the use of Geographic Information System (GIS) technology. An integrated workflow that consists of the tasks of the processing of death certificates, the geocoding of street address, the quality assurance of geocoded results, the automatic calculation of statistic measures, the standardized encoding of measures and the geo-visualization of statistical outcomes is developed. This paper also introduces a set of auxiliary measures from a geographic distribution perspective to further examine the hidden spatial characteristics of mortality data and justify the analyzed results. With the common statistical area framework like TGSC, the preliminary results demonstrate promising potential for developing a web-based statistical service that can effectively access domain statistical data and present the analyzed outcomes in meaningful ways to avoid wrong decision making.

Keywords: mortality map, spatial patterns, statistical area, variation

Procedia PDF Downloads 258
4052 Analysis, Evaluation and Optimization of Food Management: Minimization of Food Losses and Food Wastage along the Food Value Chain

Authors: G. Hafner

Abstract:

A method developed at the University of Stuttgart will be presented: ‘Analysis, Evaluation and Optimization of Food Management’. A major focus is represented by quantification of food losses and food waste as well as their classification and evaluation regarding a system optimization through waste prevention. For quantification and accounting of food, food losses and food waste along the food chain, a clear definition of core terms is required at the beginning. This includes their methodological classification and demarcation within sectors of the food value chain. The food chain is divided into agriculture, industry and crafts, trade and consumption (at home and out of home). For adjustment of core terms, the authors have cooperated with relevant stakeholders in Germany for achieving the goal of holistic and agreed definitions for the whole food chain. This includes modeling of sub systems within the food value chain, definition of terms, differentiation between food losses and food wastage as well as methodological approaches. ‘Food Losses’ and ‘Food Wastes’ are assigned to individual sectors of the food chain including a description of the respective methods. The method for analyzing, evaluation and optimization of food management systems consist of the following parts: Part I: Terms and Definitions. Part II: System Modeling. Part III: Procedure for Data Collection and Accounting Part. IV: Methodological Approaches for Classification and Evaluation of Results. Part V: Evaluation Parameters and Benchmarks. Part VI: Measures for Optimization. Part VII: Monitoring of Success The method will be demonstrated at the example of an invesigation of food losses and food wastage in the Federal State of Bavaria including an extrapolation of respective results to quantify food wastage in Germany.

Keywords: food losses, food waste, resource management, waste management, system analysis, waste minimization, resource efficiency

Procedia PDF Downloads 405
4051 Unequal Contributions of Parental Isolates in Somatic Recombination of the Stripe Rust Fungus

Authors: Xianming Chen, Yu Lei, Meinan Wang

Abstract:

The dikaryotic basidiomycete fungus, Puccinia striiformis, causes stripe rust, one of the most important diseases of wheat and barley worldwide. The pathogen is largely reproduced asexually, and asexual recombination has been hypothesized to be one of the mechanisms for the pathogen variations. To test the hypothesis and understand the genetic process of asexual recombination, somatic recombinant isolates were obtained under controlled conditions by inoculating susceptible host plants with a mixture of equal quantity of urediniospores of isolates with different virulence patterns and selecting through a series of inoculation on host plants with different genes for resistance to one of the parental isolates. The potential recombinant isolates were phenotypically characterized by virulence testing on the set of 18 wheat lines used to differentiate races of the wheat stripe rust pathogen, P. striiformis f. sp. tritici (Pst), for the combinations of Pst isolates; or on both sets of the wheat differentials and 12 barley differentials for identifying races of the barley stripe rust pathogen, P. striiformis f. sp. hordei (Psh) for combinations of a Pst isolate and a Psh isolate. The progeny and parental isolates were also genotypically characterized with 51 simple sequence repeat and 90 single-nucleotide polymorphism markers. From nine combinations of parental isolates, 68 potential recombinant isolates were obtained, of which 33 (48.5%) had similar virulence patterns to one of the parental isolates, and 35 (51.5%) had virulence patterns distinct from either of the parental isolates. Of the 35 isolates of distinct virulence patterns, 11 were identified as races that had been previously detected from natural collections and 24 were identified as new races. The molecular marker data confirmed 66 of the 68 isolates as recombinants. The percentages of parental marker alleles ranged from 0.9% to 98.9% and were significantly different from equal proportions in the recombinant isolates. Except for a couple of combinations, the greater or less contribution was not specific to any particular parental isolates as the same parental isolates contributed more to some of the progeny isolates but less to the other progeny isolates in the same combination. The unequal contributions by parental isolates appear to be a general role in somatic recombination for the stripe rust fungus, which may be used to distinguish asexual recombination from sexual recombination in studying the evolutionary mechanisms of the highly variable fungal pathogen.

Keywords: molecular markers, Puccinia striiformis, somatic recombination, stripe rust

Procedia PDF Downloads 243
4050 Study of Growth Patterns of the Built-Up Area in Tourism Destinations in Relation to Sustainable Development

Authors: Tagore Sai Priya Nunna, Ankhi Banerjee

Abstract:

The rapid growth of the tourism industry in India in the last few years after the economic crisis in 2009 has been one of the significant causes that led to the Land Use Land Cover change (LULC) of most tourism destinations. The tourist regions are subjected to significant increase in built-up due to increased construction activities for developing accommodation facilities further boosting tourism demand. This research attempts to analyse the changing LULC and the growth pattern of the built-up area within tourist destinations. Four popular tourist destinations, which promises various types of tourism activity and which are significantly dependent on tourism for economic growth, are selected for the study. The study uses remotely sensed data for analysis of land use change through supervised segmentation into five broad classes. Further, the landuse map is reclassified into binary classes to extract the built-up area. The growth patterns of the built-up are analysed in terms of size, shape, direction and form of growth, through a set of spatial metrics. Additionally, a detailed analysis of the existing development pattern corresponding to planned development zones was performed to identify unplanned growth spots in the study regions. The findings of the study provide insights into how tourism has contributed to significant changes in LULC around tourist sites. Also, the study highlights the growth pattern of built-up areas with respect to the type of tourism activity and geographical characteristics. The research attempts to address the need of integrating spatial metrics for the development of sustainable tourism plans as part of the goals of sustainable development.

Keywords: built-up, growth, patterns, tourism, sustainable

Procedia PDF Downloads 115
4049 Issues in Translating Hadith Terminologies into English: A Critical Approach

Authors: Mohammed Riyas Pp

Abstract:

This study aimed at investigating major issues in translating the Arabic Hadith terminologies into English, focusing on choosing the most appropriate translation for each, reviewing major Hadith works in English. This study is confined to twenty terminologies with regard to classification of Hadith based on authority, strength, number of transmitters and connections in Isnad. Almost all available translations are collected and analyzed to find the most proper translation based on linguistic and translational values. To the researcher, many translations lack precise understanding of either Hadith terminologies or English language and varieties of methodologies have influence on varieties of translations. This study provides a classification of translational and conceptual issues. Translational issues are related to translatability of these terminologies and their equivalence. Conceptual issues provide a list of misunderstandings due to wrong translations of terminologies. This study ends with a suggestion for unification in translating terminologies based on convention of Muslim scholars having good understanding of Hadith terminologies and English language.

Keywords: english language, hadith terminologies, equivalence in translation, problems in translation

Procedia PDF Downloads 188
4048 Direct Blind Separation Methods for Convolutive Images Mixtures

Authors: Ahmed Hammed, Wady Naanaa

Abstract:

In this paper, we propose a general approach to deal with the problem of a convolutive mixture of images. We use a direct blind source separation method by adding only one non-statistical justified constraint describing the relationships between different mixing matrix at the aim to make its resolution easy. This method can be applied, provided that this constraint is known, to degraded document affected by the overlapping of text-patterns and images. This is due to chemical and physical reactions of the materials (paper, inks,...) occurring during the documents aging, and other unpredictable causes such as humidity, microorganism infestation, human handling, etc. We will demonstrate that this problem corresponds to a convolutive mixture of images. Subsequently, we will show how the validation of our method through numerical examples. We can so obtain clear images from unreadable ones which can be caused by pages superposition, a phenomenon similar to that we find every often in archival documents.

Keywords: blind source separation, convoluted mixture, degraded documents, text-patterns overlapping

Procedia PDF Downloads 322
4047 Diversity in Finance Literature Revealed through the Lens of Machine Learning: A Topic Modeling Approach on Academic Papers

Authors: Oumaima Lahmar

Abstract:

This paper aims to define a structured topography for finance researchers seeking to navigate the body of knowledge in their extrapolation of finance phenomena. To make sense of the body of knowledge in finance, a probabilistic topic modeling approach is applied on 6000 abstracts of academic articles published in three top journals in finance between 1976 and 2020. This approach combines both machine learning techniques and natural language processing to statistically identify the conjunctions between research articles and their shared topics described each by relevant keywords. The topic modeling analysis reveals 35 coherent topics that can well depict finance literature and provide a comprehensive structure for the ongoing research themes. Comparing the extracted topics to the Journal of Economic Literature (JEL) classification system, a significant similarity was highlighted between the characterizing keywords. On the other hand, we identify other topics that do not match the JEL classification despite being relevant in the finance literature.

Keywords: finance literature, textual analysis, topic modeling, perplexity

Procedia PDF Downloads 170
4046 A Framework for Auditing Multilevel Models Using Explainability Methods

Authors: Debarati Bhaumik, Diptish Dey

Abstract:

Multilevel models, increasingly deployed in industries such as insurance, food production, and entertainment within functions such as marketing and supply chain management, need to be transparent and ethical. Applications usually result in binary classification within groups or hierarchies based on a set of input features. Using open-source datasets, we demonstrate that popular explainability methods, such as SHAP and LIME, consistently underperform inaccuracy when interpreting these models. They fail to predict the order of feature importance, the magnitudes, and occasionally even the nature of the feature contribution (negative versus positive contribution to the outcome). Besides accuracy, the computational intractability of SHAP for binomial classification is a cause of concern. For transparent and ethical applications of these hierarchical statistical models, sound audit frameworks need to be developed. In this paper, we propose an audit framework for technical assessment of multilevel regression models focusing on three aspects: (i) model assumptions & statistical properties, (ii) model transparency using different explainability methods, and (iii) discrimination assessment. To this end, we undertake a quantitative approach and compare intrinsic model methods with SHAP and LIME. The framework comprises a shortlist of KPIs, such as PoCE (Percentage of Correct Explanations) and MDG (Mean Discriminatory Gap) per feature, for each of these three aspects. A traffic light risk assessment method is furthermore coupled to these KPIs. The audit framework will assist regulatory bodies in performing conformity assessments of AI systems using multilevel binomial classification models at businesses. It will also benefit businesses deploying multilevel models to be future-proof and aligned with the European Commission’s proposed Regulation on Artificial Intelligence.

Keywords: audit, multilevel model, model transparency, model explainability, discrimination, ethics

Procedia PDF Downloads 94
4045 A New Tool for Global Optimization Problems: Cuttlefish Algorithm

Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman

Abstract:

This paper presents a new meta-heuristic bio-inspired optimization algorithm which is called Cuttlefish Algorithm (CFA). The algorithm mimics the mechanism of color changing behavior of the cuttlefish to solve numerical global optimization problems. The colors and patterns of the cuttlefish are produced by reflected light from three different layers of cells. The proposed algorithm considers mainly two processes: reflection and visibility. Reflection process simulates light reflection mechanism used by these layers, while visibility process simulates visibility of matching patterns of the cuttlefish. To show the effectiveness of the algorithm, it is tested with some other popular bio-inspired optimization algorithms such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO) and Bees Algorithm (BA) that have been previously proposed in the literature. Simulations and obtained results indicate that the proposed CFA is superior when compared with these algorithms.

Keywords: Cuttlefish Algorithm, bio-inspired algorithms, optimization, global optimization problems

Procedia PDF Downloads 564
4044 Large Neural Networks Learning From Scratch With Very Few Data and Without Explicit Regularization

Authors: Christoph Linse, Thomas Martinetz

Abstract:

Recent findings have shown that Neural Networks generalize also in over-parametrized regimes with zero training error. This is surprising, since it is completely against traditional machine learning wisdom. In our empirical study we fortify these findings in the domain of fine-grained image classification. We show that very large Convolutional Neural Networks with millions of weights do learn with only a handful of training samples and without image augmentation, explicit regularization or pretraining. We train the architectures ResNet018, ResNet101 and VGG19 on subsets of the difficult benchmark datasets Caltech101, CUB_200_2011, FGVCAircraft, Flowers102 and StanfordCars with 100 classes and more, perform a comprehensive comparative study and draw implications for the practical application of CNNs. Finally, we show that VGG19 with 140 million weights learns to distinguish airplanes and motorbikes with up to 95% accuracy using only 20 training samples per class.

Keywords: convolutional neural networks, fine-grained image classification, generalization, image recognition, over-parameterized, small data sets

Procedia PDF Downloads 88