Search results for: activated carbon-methanol pair
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1196

Search results for: activated carbon-methanol pair

386 Design and Preliminary Evaluation of Benzoxazolone-Based Agents for Targeting Mitochondrial-Located Translocator Protein

Authors: Nidhi Chadha, A. K. Tiwari, Marilyn D. Milton, Anil K. Mishra

Abstract:

Translocator protein (18 kDa) TSPO is highly expressed during microglia activation in neuroinflammation. Although a number of PET ligands have been developed for the visualization of activated microglia, one of the advantageous approaches is to develop potential optical imaging (OI) probe. Our study involves computational screening, synthesis and evaluation of TSPO ligand through various imaging modalities namely PET/SPECT/Optical. The initial computational screening involves pharmacophore modeling from the library designing having oxo-benzooxazol-3-yl-N-phenyl-acetamide groups and synthesis for visualization of efficacy of these compounds as multimodal imaging probes. Structure modeling of monomer, Ala147Thr mutated, parallel and anti-parallel TSPO dimers was performed and docking analysis was performed for distinct binding sites. Computational analysis showed pattern of variable binding profile of known diagnostic ligands and NBMP via interactions with conserved residues along with TSPO’s natural polymorphism of Ala147→Thr, which showed alteration in the binding affinity due to considerable changes in tertiary structure. Preliminary in vitro binding studies shows binding affinity in the range of 1-5 nm and selectivity was also certified by blocking studies. In summary, this skeleton was found to be potential probe for TSPO imaging due to ease in synthesis, appropriate lipophilicity and reach to specific region of brain.

Keywords: TSPO, molecular modeling, imaging, docking

Procedia PDF Downloads 462
385 The Effect of Speech-Shaped Noise and Speaker’s Voice Quality on First-Grade Children’s Speech Perception and Listening Comprehension

Authors: I. Schiller, D. Morsomme, A. Remacle

Abstract:

Children’s ability to process spoken language develops until the late teenage years. At school, where efficient spoken language processing is key to academic achievement, listening conditions are often unfavorable. High background noise and poor teacher’s voice represent typical sources of interference. It can be assumed that these factors particularly affect primary school children, because their language and literacy skills are still low. While it is generally accepted that background noise and impaired voice impede spoken language processing, there is an increasing need for analyzing impacts within specific linguistic areas. Against this background, the aim of the study was to investigate the effect of speech-shaped noise and imitated dysphonic voice on first-grade primary school children’s speech perception and sentence comprehension. Via headphones, 5 to 6-year-old children, recruited within the French-speaking community of Belgium, listened to and performed a minimal-pair discrimination task and a sentence-picture matching task. Stimuli were randomly presented according to four experimental conditions: (1) normal voice / no noise, (2) normal voice / noise, (3) impaired voice / no noise, and (4) impaired voice / noise. The primary outcome measure was task score. How did performance vary with respect to listening condition? Preliminary results will be presented with respect to speech perception and sentence comprehension and carefully interpreted in the light of past findings. This study helps to support our understanding of children’s language processing skills under adverse conditions. Results shall serve as a starting point for probing new measures to optimize children’s learning environment.

Keywords: impaired voice, sentence comprehension, speech perception, speech-shaped noise, spoken language processing

Procedia PDF Downloads 193
384 Development of Fluorescence Resonance Energy Transfer-Based Nanosensor for Measurement of Sialic Acid in vivo

Authors: Ruphi Naz, Altaf Ahmad, Mohammad Anis

Abstract:

Sialic acid (5-Acetylneuraminic acid, Neu5Ac) is a common sugar found as a terminal residue on glycoconjugates in many animals. Humans brain and the central nervous system contain the highest concentration of sialic acid (as N-acetylneuraminic acid) where these acids play an important role in neural transmission and ganglioside structure in synaptogenesis. Due to its important biological function, sialic acid is attracting increasing attention. To understand metabolic networks, fluxes and regulation, it is essential to be able to determine the cellular and subcellular levels of metabolites. Genetically-encoded fluorescence resonance energy transfer (FRET) sensors represent a promising technology for measuring metabolite levels and corresponding rate changes in live cells. Taking this, we developed a genetically encoded FRET (fluorescence resonance energy transfer) based nanosensor to analyse the sialic acid level in living cells. Sialic acid periplasmic binding protein (sia P) from Haemophilus influenzae was taken and ligated between the FRET pair, the cyan fluorescent protein (eCFP) and Venus. The chimeric sensor protein was expressed in E. coli BL21 (DE3) and purified by affinity chromatography. Conformational changes in the binding protein clearly confirmed the changes in FRET efficiency. So any change in the concentration of sialic acid is associated with the change in FRET ratio. This sensor is very specific to sialic acid and found stable with the different range of pH. This nanosensor successfully reported the intracellular level of sialic acid in bacterial cell. The data suggest that the nanosensors may be a versatile tool for studying the in vivo dynamics of sialic acid level non-invasively in living cells

Keywords: nanosensor, FRET, Haemophilus influenzae, metabolic networks

Procedia PDF Downloads 133
383 Exergy Analysis of a Vapor Absorption Refrigeration System Using Carbon Dioxide as Refrigerant

Authors: Samsher Gautam, Apoorva Roy, Bhuvan Aggarwal

Abstract:

Vapor absorption refrigeration systems can replace vapor compression systems in many applications as they can operate on a low-grade heat source and are environment-friendly. Widely used refrigerants such as CFCs and HFCs cause significant global warming. Natural refrigerants can be an alternative to them, among which carbon dioxide is promising for use in automotive air conditioning systems. Its inherent safety, ability to withstand high pressure and high heat transfer coefficient coupled with easy availability make it a likely choice for refrigerant. Various properties of the ionic liquid [bmim][PF₆], such as non-toxicity, stability over a wide temperature range and ability to dissolve gases like carbon dioxide, make it a suitable absorbent for a vapor absorption refrigeration system. In this paper, an absorption chiller consisting of a generator, condenser, evaporator and absorber was studied at an operating temperature of 70⁰C. A thermodynamic model was set up using the Peng-Robinson equations of state to predict the behavior of the refrigerant and absorbent pair at different points in the system. A MATLAB code was used to obtain the values of enthalpy and entropy at selected points in the system. The exergy destruction in each component and exergetic coefficient of performance (ECOP) of the system were calculated by performing an exergy analysis based on the second law of thermodynamics. Graphs were plotted between varying operating conditions and the ECOP obtained in each case. The effect of every component on the ECOP was examined. The exergetic coefficient of performance was found to be lesser than the coefficient of performance based on the first law of thermodynamics.

Keywords: [bmim][PF₆] as absorbent, carbon dioxide as refrigerant, exergy analysis, Peng-Robinson equations of state, vapor absorption refrigeration

Procedia PDF Downloads 289
382 Analytical Development of a Failure Limit and Iso-Uplift Curves for Eccentrically Loaded Shallow Foundations

Authors: N. Abbas, S. Lagomarsino, S. Cattari

Abstract:

Examining existing experimental results for shallow rigid foundations subjected to vertical centric load (N), accompanied or not with a bending moment (M), two main non-linear mechanisms governing the cyclic ‎response of the soil-foundation system can be distinguished: foundation uplift and soil yielding. A soil-foundation failure limit, is defined as a domain of resistance in the two dimensional (2D) load space (N, M) inside of which lie all the admissible combinations of loads; these latter correspond to a pure elastic, non-linear elastic or plastic behavior of the soil-foundation system, while the points lying on the failure limit correspond to a combination of loads leading to a failure of the soil-foundation system. In this study, the proposed resistance domain is constructed analytically based on mechanics. Original elastic limit, uplift initiation ‎limit and iso-uplift limits are constructed inside this domain. These limits give a prediction ‎of the mechanisms activated for each combination of loads applied to the ‎foundation. A comparison of the proposed failure limit with experimental tests existing in the literature shows interesting results. Also, the developed uplift initiation limit and iso-uplift curves are confronted with others already proposed in the literature and widely used due to the absence of other alternatives, and remarkable differences are noted, showing evident errors in the past proposals and relevant accuracy for those given in the present work.

Keywords: foundation uplift, iso-uplift curves, resistance domain, soil yield

Procedia PDF Downloads 384
381 Erythrophagocytic Role of Mast Cells in vitro and in vivo during Oxidative Stress

Authors: Priyanka Sharma, Niti Puri

Abstract:

Anemia develops when blood lacks enough healthy erythrocytes. Past studies indicated that anemia, inflammatory process, and oxidative stress are interconnected. Erythrocytes are continuously exposed to reactive oxygen species (ROS) during circulation, due to normal aerobic cellular metabolism and also pathology of inflammatory diseases. Systemic mastocytosis and genetic depletion of mast cells have been shown to affect anaemia. In the present study, we attempted to reveal whether mast cells have a direct role in clearance or erythrophagocytosis of normal or oxidatively damaged erythrocytes. Murine erythrocytes were treated with tert-butyl hydroperoxidase (t-BHP), an agent that induces oxidative damage and mimics in vivo oxidative stress. Normal and oxidatively damaged erythrocytes were labeled with carboxyfluorescein succinimidyl ester (CFSE) to track erythrophagocytosis. We show, for the first time, direct erythrophagocytosis of oxidatively damaged erythrocytes in vitro by RBL-2H3 mast cells as well as in vivo by murine peritoneal mast cells. Also, activated mast cells, as may be present in inflammatory conditions, showed a significant increase in the uptake of oxidatively damaged erythrocytes than resting mast cells. This suggests the involvement of mast cells in erythrocyte clearance during oxidative stress or inflammatory disorders. Partial inhibition of phagocytosis by various inhibitors indicated that this process may be controlled by several pathways. Hence, our study provides important evidence for involvement of mast cells in severe anemia due to inflammation and oxidative stress and might be helpful to circumvent the adverse anemic disorders.

Keywords: mast cells, anemia, erythrophagocytosis, oxidatively damaged erythrocytes

Procedia PDF Downloads 255
380 Combining in vitro Protein Expression with AlphaLISA Technology to Study Protein-Protein Interaction

Authors: Shayli Varasteh Moradi, Wayne A. Johnston, Dejan Gagoski, Kirill Alexandrov

Abstract:

The demand for a rapid and more efficient technique to identify protein-protein interaction particularly in the areas of therapeutics and diagnostics development is growing. The method described here is a rapid in vitro protein-protein interaction analysis approach based on AlphaLISA technology combined with Leishmania tarentolae cell-free protein production (LTE) system. Cell-free protein synthesis allows the rapid production of recombinant proteins in a multiplexed format. Among available in vitro expression systems, LTE offers several advantages over other eukaryotic cell-free systems. It is based on a fast growing fermentable organism that is inexpensive in cultivation and lysate production. High integrity of proteins produced in this system and the ability to co-express multiple proteins makes it a desirable method for screening protein interactions. Following the translation of protein pairs in LTE system, the physical interaction between proteins of interests is analysed by AlphaLISA assay. The assay is performed using unpurified in vitro translation reaction and therefore can be readily multiplexed. This approach can be used in various research applications such as epitope mapping, antigen-antibody analysis and protein interaction network mapping. The intra-viral protein interaction network of Zika virus was studied using the developed technique. The viral proteins were co-expressed pair-wise in LTE and all possible interactions among viral proteins were tested using AlphaLISA. The assay resulted to the identification of 54 intra-viral protein-protein interactions from which 19 binary interactions were found to be novel. The presented technique provides a powerful tool for rapid analysis of protein-protein interaction with high sensitivity and throughput.

Keywords: AlphaLISA technology, cell-free protein expression, epitope mapping, Leishmania tarentolae, protein-protein interaction

Procedia PDF Downloads 239
379 Experimental Characterization of Anti-Icing System and Accretion of Re-Emitted Droplets on Turbojet Engine Blades

Authors: Guillaume Linassier, Morgan Balland, Hugo Pervier, Marie Pervier, David Hammond

Abstract:

Atmospheric icing for turbojet is caused by ingestion of super-cooled water droplets. To prevent operability risks, manufacturer can implement ice protection systems. Thermal systems are commonly used for this purpose, but their activation can cause the formation of a water liquid film, that can freeze downstream the heated surface or even on other components. In the framework of STORM, a European project dedicated to icing physics in turbojet engines, a cascade rig representative of engine inlet blades was built and tested in an icing wind tunnel. This mock-up integrates two rows of blades, the upstream one being anti-iced using an electro-thermal device the downstream one being unheated. Under icing conditions, the anti-icing system is activated and set at power level to observe a liquid film on the surface and droplet re-emission at the trailing edge. These re-emitted droplets will impinge on the downstream row and contribute to ice accretion. A complete experimental database was generated, including the characterization of ice accretion shapes, and the characterization of electro-thermal anti-icing system (power limit for apparition of the runback water or ice accretion). These data will be used for validation of numerical tools for modeling thermal anti-icing systems in the scope of engine application, as well as validation of re-emission droplets model for stator parts.

Keywords: turbomachine, anti-icing, cascade rig, runback water

Procedia PDF Downloads 182
378 A Theoretical Analysis of Air Cooling System Using Thermal Ejector under Variable Generator Pressure

Authors: Mohamed Ouzzane, Mahmoud Bady

Abstract:

Due to energy and environment context, research is looking for the use of clean and energy efficient system in cooling industry. In this regard, the ejector represents one of the promising solutions. The thermal ejector is a passive component used for thermal compression in refrigeration and cooling systems, usually activated by heat either waste or solar. The present study introduces a theoretical analysis of the cooling system which uses a gas ejector thermal compression. A theoretical model is developed and applied for the design and simulation of the ejector, as well as the whole cooling system. Besides the conservation equations of mass, energy and momentum, the gas dynamic equations, state equations, isentropic relations as well as some appropriate assumptions are applied to simulate the flow and mixing in the ejector. This model coupled with the equations of the other components (condenser, evaporator, pump, and generator) is used to analyze profiles of pressure and velocity (Mach number), as well as evaluation of the cycle cooling capacity. A FORTRAN program is developed to carry out the investigation. Properties of refrigerant R134a are calculated using real gas equations. Among many parameters, it is thought that the generator pressure is the cornerstone in the cycle, and hence considered as the key parameter in this investigation. Results show that the generator pressure has a great effect on the ejector and on the whole cooling system. At high generator pressures, strong shock waves inside the ejector are created, which lead to significant condenser pressure at the ejector exit. Additionally, at higher generator pressures, the designed system can deliver cooling capacity for high condensing pressure (hot season).

Keywords: air cooling system, refrigeration, thermal ejector, thermal compression

Procedia PDF Downloads 160
377 Development of a Diagnostic Device to Predict Clinically Significant Inflammation Associated with Cardiac Surgery

Authors: Mohamed Majrashi, Patricia Connolly, Terry Gourlay

Abstract:

Cardiopulmonary bypass is known to cause inflammatory response during open heart surgery. It includes the initiation of different cascades such as coagulation, complement system and cytokines. Although the immune system is body’s key defense mechanism against external assault, when overexpressed, it can be injurious to the patient, particularly in a cohort of patients in which there is a heightened and uncontrolled response. The inflammatory response develops in these patients to an exaggerated level resulting in an autoimmune injury and may lead to poor postoperative outcomes (systemic inflammatory response syndrome and multi-organs failure). Previous studies by this group have suggested a correlation between the level of IL6 measured in patient’s blood before surgery and after polymeric activation and the observed inflammatory response during surgery. Based upon these findings, the present work is aimed at using this response to develop a test which can be used prior to the open heart surgery to identify the high-risk patients before their operation. The work will be accomplished via three main clinical phases including some pilot in-vitro studies, device development and clinical investigation. Current findings from studies using animal blood, employing DEHP and DEHP plasticized PVC materials as the activator, support the earlier results in patient samples. Having established this relationship, ongoing work will focus on developing an activated lateral flow strip technology as a screening device for heightened inflammatory propensity.

Keywords: cardiopulmonary bypass, cytokines, inflammatory response, overexpression

Procedia PDF Downloads 285
376 Can the Intervention of SCAMPER Bring about Changes of Neural Activation While Taking Creativity Tasks?

Authors: Yu-Chu Yeh, WeiChin Hsu, Chih-Yen Chang

Abstract:

Substitution, combination, modification, putting to other uses, elimination, and rearrangement (SCAMPER) has been regarded as an effective technique that provides a structured way to help people to produce creative ideas and solutions. Although some neuroscience studies regarding creativity training have been conducted, no study has focused on SCAMPER. This study therefore aimed at examining whether the learning of SCAMPER through video tutorials would result in alternations of neural activation. Thirty college students were randomly assigned to the experimental group or the control group. The experimental group was requested to watch SCAMPER videos, whereas the control group was asked to watch natural-scene videos which were regarded as neutral stimulating materials. Each participant was brain scanned in a Functional magnetic resonance imaging (fMRI) machine while undertaking a creativity test before and after watching the videos. Furthermore, a two-way ANOVA was used to analyze the interaction between groups (the experimental group; the control group) and tasks (C task; M task; X task). The results revealed that the left precuneus significantly activated in the interaction of groups and tasks, as well as in the main effect of group. Furthermore, compared with the control group, the experimental group had greater activation in the default mode network (left precuneus and left inferior parietal cortex) and the motor network (left postcentral gyrus and left supplementary area). The findings suggest that the SCAMPER training may facilitate creativity through the stimulation of the default mode network and the motor network.

Keywords: creativity, default mode network, neural activation, SCAMPER

Procedia PDF Downloads 101
375 Thermo-Physical Properties and Solubility of CO2 in Piperazine Activated Aqueous Solutions of β-Alanine

Authors: Ghulam Murshid

Abstract:

Carbon dioxide is one of the major greenhouse gas (GHG) contributors. It is an obligation of the industry to reduce the amount of carbon dioxide emission to the acceptable limits. Tremendous research and studies are reported in the past and still the quest to find the suitable and economical solution of this problem needed to be explored in order to develop the most plausible absorber for carbon dioxide removal. Amino acids are reported by the researchers as a potential solvent for absorption of carbon dioxide to replace alkanolamines due to its ability to resist oxidative degradation, low volatility due to its ionic structure and higher surface tension. In addition, the introduction of promoter-like piperazine to amino acid helps to further enhance the solubility. In this work, the effect of piperazine on thermophysical properties and solubility of β-Alanine aqueous solutions were studied for various concentrations. The measured physicochemical properties data was correlated as a function of temperature using least-squares method and the correlation parameters are reported together with it respective standard deviations. The effect of activator piperazine on the CO2 loading performance of selected amino acid under high-pressure conditions (1bar to 10bar) at temperature range of (30 to 60)oC was also studied. Solubility of CO2 decreases with increasing temperature and increases with increasing pressure. Quadratic representation of solubility using Response Surface Methodology (RSM) shows that the most important parameter to optimize solubility is system pressure. The addition of promoter increases the solubility effect of the solvent.

Keywords: amino acids, co2, global warming, solubility

Procedia PDF Downloads 415
374 Neuroinflammation in Late-Life Depression: The Role of Glial Cells

Authors: Chaomeng Liu, Li Li, Xiao Wang, Li Ren, Qinge Zhang

Abstract:

Late-life depression (LLD) is a prevalent mental disorder among the elderly, frequently accompanied by significant cognitive decline, and has emerged as a worldwide public health concern. Microglia, astrocytes, and peripheral immune cells play pivotal roles in regulating inflammatory responses within the central nervous system (CNS) across diverse cerebral disorders. This review commences with the clinical research findings and accentuates the recent advancements pertaining to microglia and astrocytes in the neuroinflammation process of LLD. The reciprocal communication network between the CNS and immune system is of paramount importance in the pathogenesis of depression and cognitive decline. Stress-induced downregulation of tight and gap junction proteins in the brain results in increased blood-brain barrier permeability and impaired astrocyte function. Concurrently, activated microglia release inflammatory mediators, initiating the kynurenine metabolic pathway and exacerbating the quinolinic acid/kynurenic acid imbalance. Moreover, the balance between Th17 and Treg cells is implicated in the preservation of immune homeostasis within the cerebral milieu of individuals suffering from LLD. The ultimate objective of this review is to present future strategies for the management and treatment of LLD, informed by the most recent advancements in research, with the aim of averting or postponing the onset of AD.

Keywords: neuroinflammation, late-life depression, microglia, astrocytes, central nervous system, blood-brain barrier, Kynurenine pathway

Procedia PDF Downloads 48
373 Gc-ms Data Integrated Chemometrics for the Authentication of Vegetable Oil Brands in Minna, Niger State, Nigeria

Authors: Rasaq Bolakale Salau, Maimuna Muhammad Abubakar, Jonathan Yisa, Muhammad Tauheed Bisiriyu, Jimoh Oladejo Tijani, Alexander Ifeanyi Ajai

Abstract:

Vegetables oils are widely consumed in Nigeria. This has led to competitive manufacture of various oil brands. This leads increasing tendencies for fraud, labelling misinformation and other unwholesome practices. A total of thirty samples including raw and corresponding branded samples of vegetable oils were collected. The Oils were extracted from raw ground nut, soya bean and oil palm fruits. The GC-MS data was subjected to chemometric techniques of PCA and HCA. The SOLO 8.7 version of the standalone chemometrics software developed by Eigenvector research incorporated and powered by PLS Toolbox was used. The GCMS fingerprint gave basis for discrimination as it reveals four predominant but unevenly distributed fatty acids: Hexadecanoic acid methyl ester (10.27- 45.21% PA), 9,12-octadecadienoic acid methyl ester (10.9 - 45.94% PA), 9-octadecenoic acid methyl ester (18.75 - 45.65%PA), and Eicosanoic acid methyl ester (1.19% - 6.29%PA). In PCA modelling, two PCs are retained at cumulative variance captured at 73.15%. The score plots indicated that palm oil brands are most aligned with raw palm oil. PCA loading plot reveals the signature retention times between 4.0 and 6.0 needed for quality assurance and authentication of the oils samples. They are of aromatic hydrocarbons, alcohols and aldehydes functional groups. HCA dendrogram which was modeled using Euclidian distance through Wards method, indicated co-equivalent samples. HCA revealed the pair of raw palm oil brand and palm oil brand in the closest neighbourhood (± 1.62 % A difference) based on variance weighted distance. It showed Palm olein brand to be most authentic. In conclusion, based on the GCMS data with chemometrics, the authenticity of the branded samples is ranked as: Palm oil > Soya oil > groundnut oil.

Keywords: vegetable oil, authenticity, chemometrics, PCA, HCA, GC-MS

Procedia PDF Downloads 35
372 Individual Differences and Paired Learning in Virtual Environments

Authors: Patricia M. Boechler, Heather M. Gautreau

Abstract:

In this research study, postsecondary students completed an information learning task in an avatar-based 3D virtual learning environment. Three factors were of interest in relation to learning; 1) the influence of collaborative vs. independent conditions, 2) the influence of the spatial arrangement of the virtual environment (linear, random and clustered), and 3) the relationship of individual differences such as spatial skill, general computer experience and video game experience to learning. Students completed pretest measures of prior computer experience and prior spatial skill. Following the premeasure administration, students were given instruction to move through the virtual environment and study all the material within 10 information stations. In the collaborative condition, students proceeded in randomly assigned pairs, while in the independent condition they proceeded alone. After this learning phase, all students individually completed a multiple choice test to determine information retention. The overall results indicated that students in pairs did not perform any better or worse than independent students. As far as individual differences, only spatial ability predicted the performance of students. General computer experience and video game experience did not. Taking a closer look at the pairs and spatial ability, comparisons were made on pairs high/matched spatial ability, pairs low/matched spatial ability and pairs that were mismatched on spatial ability. The results showed that both high/matched pairs and mismatched pairs outperformed low/matched pairs. That is, if a pair had even one individual with strong spatial ability they would perform better than pairs with only low spatial ability individuals. This suggests that, in virtual environments, the specific individuals that are paired together are important for performance outcomes. The paper also includes a discussion of trends within the data that have implications for virtual environment education.

Keywords: avatar-based, virtual environment, paired learning, individual differences

Procedia PDF Downloads 117
371 Electrospun NaMnPO₄/CNF as High-Performance Cathode Material for Sodium Ion Batteries

Authors: Concetta Busacca, Leone Frusteri, Orazio Di Blasi, Alessandra Di Blasi

Abstract:

The large-scale extension of renewable energy led, recently, to the development of efficient and low-cost electrochemical energy storage (EES) systems such as batteries. Although lithium-ion battery (LIB) technology is relatively mature, several issues regarding safety, cyclability, and high costs must be overcome. Thanks to the availability and low cost of sodium, sodium-ion batteries (NIB) have the potential to meet the energy storage needs of the large-scale grid, becoming a valid alternative to LIB in some energy sectors, such as the stationary one. However, important challenges such as low specific energy and short cyclic life due to the large radius of Na+ must be faced to introduce this technology into the market. As an important component of SIBs, cathode materials have a significant effect on the electrochemical performance of SIBs. Recently, sodium layer transition metal oxides, phosphates, and organic compounds have been investigated as cathode materials for SIBs. In particular, phosphate-based compounds such as NaₓMPO₄ (M= Fe, Co, Mn) have been extensively studied as cathodic polyanion materials due to their long cycle stability and appropriate operating voltage. Among these, an interesting cathode material is the NaMnPO₄ based one, thanks to the stability and the high redox potential of the Mn²⁺/Mn³⁺ ion pair (3÷4 V vs. Na+/Na), which allows reaching a high energy density. This work concerns with the synthesis of a composite material based on NaMnPO₄ and carbon nanofibers (NaMnPO₄-CNF) characterized by a mixed crystalline structure between the maricite and olivine phases and a self-standing manufacture obtained by electrospinning technique. The material was tested in a Na-ion battery coin cell in half cell configuration, and showed outstanding electrocatalytic performances with a specific discharge capacity of 125 mAhg⁻¹ and 101 mAhg⁻¹ at 0.3C and 0.6C, respectively, and a retention capacity of about 80% a 0.6C after 100 cycles.

Keywords: electrospinning, self standing materials, Na ion battery, cathode materials

Procedia PDF Downloads 71
370 Variational Explanation Generator: Generating Explanation for Natural Language Inference Using Variational Auto-Encoder

Authors: Zhen Cheng, Xinyu Dai, Shujian Huang, Jiajun Chen

Abstract:

Recently, explanatory natural language inference has attracted much attention for the interpretability of logic relationship prediction, which is also known as explanation generation for Natural Language Inference (NLI). Existing explanation generators based on discriminative Encoder-Decoder architecture have achieved noticeable results. However, we find that these discriminative generators usually generate explanations with correct evidence but incorrect logic semantic. It is due to that logic information is implicitly encoded in the premise-hypothesis pairs and difficult to model. Actually, logic information identically exists between premise-hypothesis pair and explanation. And it is easy to extract logic information that is explicitly contained in the target explanation. Hence we assume that there exists a latent space of logic information while generating explanations. Specifically, we propose a generative model called Variational Explanation Generator (VariationalEG) with a latent variable to model this space. Training with the guide of explicit logic information in target explanations, latent variable in VariationalEG could capture the implicit logic information in premise-hypothesis pairs effectively. Additionally, to tackle the problem of posterior collapse while training VariaztionalEG, we propose a simple yet effective approach called Logic Supervision on the latent variable to force it to encode logic information. Experiments on explanation generation benchmark—explanation-Stanford Natural Language Inference (e-SNLI) demonstrate that the proposed VariationalEG achieves significant improvement compared to previous studies and yields a state-of-the-art result. Furthermore, we perform the analysis of generated explanations to demonstrate the effect of the latent variable.

Keywords: natural language inference, explanation generation, variational auto-encoder, generative model

Procedia PDF Downloads 151
369 Graph Clustering Unveiled: ClusterSyn - A Machine Learning Framework for Predicting Anti-Cancer Drug Synergy Scores

Authors: Babak Bahri, Fatemeh Yassaee Meybodi, Changiz Eslahchi

Abstract:

In the pursuit of effective cancer therapies, the exploration of combinatorial drug regimens is crucial to leverage synergistic interactions between drugs, thereby improving treatment efficacy and overcoming drug resistance. However, identifying synergistic drug pairs poses challenges due to the vast combinatorial space and limitations of experimental approaches. This study introduces ClusterSyn, a machine learning (ML)-powered framework for classifying anti-cancer drug synergy scores. ClusterSyn employs a two-step approach involving drug clustering and synergy score prediction using a fully connected deep neural network. For each cell line in the training dataset, a drug graph is constructed, with nodes representing drugs and edge weights denoting synergy scores between drug pairs. Drugs are clustered using the Markov clustering (MCL) algorithm, and vectors representing the similarity of drug pairs to each cluster are input into the deep neural network for synergy score prediction (synergy or antagonism). Clustering results demonstrate effective grouping of drugs based on synergy scores, aligning similar synergy profiles. Subsequently, neural network predictions and synergy scores of the two drugs on others within their clusters are used to predict the synergy score of the considered drug pair. This approach facilitates comparative analysis with clustering and regression-based methods, revealing the superior performance of ClusterSyn over state-of-the-art methods like DeepSynergy and DeepDDS on diverse datasets such as Oniel and Almanac. The results highlight the remarkable potential of ClusterSyn as a versatile tool for predicting anti-cancer drug synergy scores.

Keywords: drug synergy, clustering, prediction, machine learning., deep learning

Procedia PDF Downloads 81
368 An Event-Related Potential Investigation of Speech-in-Noise Recognition in Native and Nonnative Speakers of English

Authors: Zahra Fotovatnia, Jeffery A. Jones, Alexandra Gottardo

Abstract:

Speech communication often occurs in environments where noise conceals part of a message. Listeners should compensate for the lack of auditory information by picking up distinct acoustic cues and using semantic and sentential context to recreate the speaker’s intended message. This situation seems to be more challenging in a nonnative than native language. On the other hand, early bilinguals are expected to show an advantage over the late bilingual and monolingual speakers of a language due to their better executive functioning components. In this study, English monolingual speakers were compared with early and late nonnative speakers of English to understand speech in noise processing (SIN) and the underlying neurobiological features of this phenomenon. Auditory mismatch negativities (MMNs) were recorded using a double-oddball paradigm in response to a minimal pair that differed in their middle vowel (beat/bit) at Wilfrid Laurier University in Ontario, Canada. The results did not show any significant structural and electroneural differences across groups. However, vocabulary knowledge correlated positively with performance on tests that measured SIN processing in participants who learned English after age 6. Moreover, their performance on the test negatively correlated with the integral area amplitudes in the left superior temporal gyrus (STG). In addition, the STG was engaged before the inferior frontal gyrus (IFG) in noise-free and low-noise test conditions in all groups. We infer that the pre-attentive processing of words engages temporal lobes earlier than the fronto-central areas and that vocabulary knowledge helps the nonnative perception of degraded speech.

Keywords: degraded speech perception, event-related brain potentials, mismatch negativities, brain regions

Procedia PDF Downloads 109
367 Emulsified Oil Removal in Produced Water by Graphite-Based Adsorbents Using Adsorption Coupled with Electrochemical Regeneration

Authors: Zohreh Fallah, Edward P. L. Roberts

Abstract:

One of the big challenges for produced water treatment is removing oil from water in the form of emulsified droplets which are not easily separated. An attractive approach is adsorption, as it is a simple and effective process. However, adsorbents must be regenerated in order to make the process cost effective. Several sorbents have been tested for treating oily wastewater. However, some issues such as high energy consumption for activated carbon thermal regeneration have been reported. Due to their significant electrical conductivity, Graphite Intercalation Compounds (GIC) were found to be suitable to be regenerated electrochemically. They are non-porous materials with low surface area and fast adsorptive capacity which are useful for removal of low concentration of organics. An innovative adsorption/regeneration process has been developed at the University of Manchester in which adsorption of organics are done by using a patented GIC adsorbent coupled with subsequent electrochemical regeneration. The oxidation of adsorbed organics enables 100% regeneration so that the adsorbent can be reused over multiple adsorption cycles. GIC adsorbents are capable of removing a wide range of organics and pollutants; however, no comparable report is available for removal of emulsified oil in produced water using abovementioned process. In this study the performance of this technology for the removal of emulsified oil in wastewater was evaluated. Batch experiments were carried out to determine the adsorption kinetics and equilibrium isotherm for both real produced water and model emulsions. The amount of oil in wastewater was measured by using the toluene extraction/fluorescence analysis before and after adsorption and electrochemical regeneration cycles. It was found that oil in water emulsion could be successfully treated by the treatment process and More than 70% of oil was removed.

Keywords: adsorption, electrochemical regeneration, emulsified oil, produced water

Procedia PDF Downloads 582
366 Aerobic Exercise Increases Circulating Hematopoietic Stem Cells and Endothelial Progenitor Cells

Authors: Khaled A. shady, Fagr B. Bazeed, Nashwa K. Abousamra, Ihab H. Elberawe, Ashraf E. shaalan, Mohamed A. Sobh

Abstract:

Physical activity activates a variety of adult stem cells which might be released into the circulation or might be activated in their organ-resident state. A variety of stimuli such as metabolic, mechanical, and hormonal stimuli might by responsible for the mobilization. This study was done to know the changes in hematopoietic stem cells and endothelial progenitor in athletes in the 24 hours following 30 min of aerobic exercise. Methods: Ten healthy male's athlete's (age 20.7± 0.61 y) performed moderate running with 30 min at 80% of velocity of The IAT. Blood samples taken pre-, and immediately, 30 min, 2h, 6h and 24h post-exercise were analyzed for hematopoietic stem cells (HSCs ), endothelial progenitor cells (EPCs(, vascular endothelial growth factor (VEGF), nitric oxide (NO), lactic acid (LA), and white blood cells . HSCs and EPCs were quantified by flow cytometry. Results: After 30min of aerobic exercise significant increases in HSCs, EPC, VEGF, NO, LA and WBCs (p ˂ 0.05). This increase will be at different rates according to the timing of taking blood sample and was in the maximum rate of increase after 30 min of aerobic exercise. HSCs, EPC, NO and WBCs were in the maximum rate of increase 2h post exercise. In addition, VEGF was in the maximum rate of increase immediately post exercise and LA concentration not affected after exercise. Conclusion: These data suggest that HSCs and EPCs increased after aerobic exercise due to increase of VEGF which play an important role in mobilization of stem cells and promotes NO increase which contributes to increase EPCs.

Keywords: physical activity, hematopoietic stem cells, mobilization, athletes

Procedia PDF Downloads 119
365 Iron Catalyst for Decomposition of Methane: Influence of Al/Si Ratio Support

Authors: A. S. Al-Fatesh, A. A. Ibrahim, A. M. AlSharekh, F. S. Alqahtani, S. O. Kasim, A. H. Fakeeha

Abstract:

Hydrogen is the expected future fuel since it produces energy without any pollution. It can be used as a fuel directly or through the fuel cell. It is also used in chemical and petrochemical industry as reducing agent or in hydrogenation processes. It is produced by different methods such as reforming of hydrocarbon, electrolytic method and methane decomposition. The objective of the present paper is to study the decomposition of methane reaction at 700°C and 800°C. The catalysts were prepared via impregnation method using 20%Fe and different proportions of combined alumina and silica support using the following ratios [100%, 90%, 80%, and 0% Al₂O₃/SiO₂]. The prepared catalysts were calcined and activated at 600 OC and 500 OC respectively. The reaction was carried out in fixed bed reactor at atmospheric pressure using 0.3g of catalyst and feed gas ratio of 1.5/1 CH₄/N₂ with a total flow rate 25 mL/min. Catalyst characterizations (TPR, TGA, BET, XRD, etc.) have been employed to study the behavior of catalysts before and after the reaction. Moreover, a brief description of the weight loss and the CH₄ conversions versus time on stream relating the different support ratios over 20%Fe/Al₂O₃/SiO₂ catalysts has been added as well. The results of TGA analysis provided higher weights losses for catalysts operated at 700°C than 800°C. For the 90% Al₂O₃/SiO₂, the activity decreases with the time on stream using 800°C reaction temperature from 73.9% initial CH₄ conversion to 46.3% for a period of 300min, whereas the activity for the same catalyst increases from 47.1% to 64.8% when 700°C reaction temperature is employed. Likewise, for 80% Al₂O₃/SiO₂ the trend of activity is similar to that of 90% Al₂O₃/SiO₂ but with a different rate of activity variation. It can be inferred from the activity results that the ratio of Al₂O₃ to SiO₂ is crucial and it is directly proportional with the activity. Whenever the Al/Si ratio decreases the activity declines. Indeed, the CH₄ conversion of 100% SiO₂ support was less than 5%.

Keywords: Al₂O₃, SiO₂, CH₄ decomposition, hydrogen, iron

Procedia PDF Downloads 180
364 Restored CO₂ from Flue Gas and Utilization by Converting to Methanol by 3 Step Processes: Steam Reforming, Reverse Water Gas Shift and Hydrogenation

Authors: Rujira Jitrwung, Kuntima Krekkeitsakul, Weerawat Patthaveekongka, Chiraphat Kumpidet, Jarukit Tepkeaw, Krissana Jaikengdee, Anantachai Wannajampa

Abstract:

Flue gas discharging from coal fired or gas combustion power plant contains around 12% Carbon dioxide (CO₂), 6% Oxygen (O₂), and 82% Nitrogen (N₂).CO₂ is a greenhouse gas which has been concerned to the global warming. Carbon Capture, Utilization, and Storage (CCUS) is a topic which is a tool to deal with this CO₂ realization. Flue gas is drawn down from the chimney and filtered, then it is compressed to build up the pressure until 8 bar. This compressed flue gas is sent to three stages Pressure Swing Adsorption (PSA), which is filled with activated carbon. Experiments were showed the optimum adsorption pressure at 7bar, which CO₂ can be adsorbed step by step in 1st, 2nd, and 3rd stage, obtaining CO₂ concentration 29.8, 66.4, and 96.7 %, respectively. The mixed gas concentration from the last step is composed of 96.7% CO₂,2.7% N₂, and 0.6%O₂. This mixed CO₂product gas obtained from 3 stages PSA contained high concentration CO₂, which is ready to use for methanol synthesis. The mixed CO₂ was experimented in 5 Liter/Day of methanol synthesis reactor skid by 3 step processes as followed steam reforming, reverse water gas shift, and then hydrogenation. The result showed that proportional of mixed CO₂ and CH₄ 70/30, 50/50, 30/70 % (v/v), and 10/90 yielded methanol 2.4, 4.3, 5.6, and 6.0 Liter/day and save CO₂ 40, 30, 20, and 5 % respectively. The optimum condition resulted both methanol yield and CO₂ consumption using CO₂/CH₄ ratio 43/57 % (v/v), which yielded 4.8 Liter/day methanol and save CO₂ 27% comparing with traditional methanol production from methane steam reforming (5 Liter/day)and absent CO₂ consumption.

Keywords: carbon capture utilization and storage, pressure swing adsorption, reforming, reverse water gas shift, methanol

Procedia PDF Downloads 187
363 Effects of Boron Compounds in Rabbits Fed High Protein and Energy Diet: A Metabolomic and Transcriptomic Approach

Authors: Nuri Başpınar, Abdullah Başoğlu, Özgür Özdemir, Çağlayan Özel, FundaTerzi, Özgür Yaman

Abstract:

Current research is targeting new molecular mechanisms that underlie non-alcoholic fatty liver disease (NAFLD) and associated metabolic disorders like nonalcoholic steatohepatitis (NASH). Forty New Zealand White rabbits have been used and fed a high protein (HP) and energy diet based on grains and containing 11.76 MJ/kg. Boron added to 3 experimental groups’ drinking waters (30 mg boron/L) as boron compounds. Biochemical analysis including boron levels, and nuclear magnetic resonance (NMR) based metabolomics evaluation, and mRNA expression of peroxisome proliferator-activated receptor (PPAR) family were performed. LDL-cholesterol concentrations alone were decreased in all the experimental groups. Boron levels in serum and feces were increased. Content of acetate was in about 2x higher for anhydrous borax group, at least 3x higher for boric acid group. PPARα mRNA expression was significantly decreased in boric acid group. Anhydrous borax attenuated mRNA levels of PPARα, which was further suppressed by boric acid. Boron supplementation decreased the degenerative alterations in hepatocytes. Except borax group other boron groups did not have a pronounced change in tubular epithels of kidney. In conclusion, high protein and energy diet leads hepatocytes’ degenerative changes which can be prevented by boron supplementation. Boric acid seems to precede in this effectiveness.

Keywords: high protein and energy diet, boron, metabolomics, transcriptomic

Procedia PDF Downloads 627
362 Molecular and Serological Diagnosis of Newcastle and Ornithobacterium rhinotracheale Broiler in Chicken in Fars Province, Iran

Authors: Mohammadjavad Mehrabanpour, Maryam Ranjbar Bushehri, Dorsa Mehrabanpour

Abstract:

Respiratory diseases are the most important problems in the country’s poultry industry, particularly when it comes to broiler flocks. Ornithobacterium rhinotracheale (ORT) is a species that causes poor performance in growth rate, egg production, and mortality. This pathogen causes a respiratory infection including pulmonary alveolar inflammation, and pneumonia of birds throughout the world. Newcastle disease (ND) is a highly contagious disease in poultry, and also, it causes considerable losses to the poultry industry. The aim of this study was to evaluate the simultaneous occurrence of ORT and ND and NDV isolation by inoculation in embryonated eggs and confirmed by RT-PCR in broiler chicken flocks in Fars province. In this study, 318 blood and 85 tissue samples (brain, trachea, liver, and cecal tonsils) were collected from 15 broiler chicken farms. Survey serum antibody titers against ORT by using a commercial enzyme-linked immunosorbent assay (ELISA) kit performed. Evaluation of antibody titer against ND virus is performed by hemagglutination inhibition test. Virus isolation with chick embryo eggs 9-11 and RT-PCR method were carried out. A total of 318 serum samples, 135 samples (42.5%) were positive for antibodies to ORT and titer of HI antibodies against NDV in 122 serum samples (38/4%) were 7-10 (log2) and 61 serum samples (19/2%) had occurrence antibody titer against Newcastle virus and ORT. Results of the present study indicated that 20 tissue samples were positive in embryonated egg and in rapid hemagglutination (HA) test. HI test with specific ND positive serum confirmed that 6 of 20 samples. PCR confirmed that all six samples were positive and PCR products of samples indicated 535-base pair fragments in electrophrosis. Due to the great economic importance of these two diseases in the poultry industry, it is necessary to design and implement a comprehensive plan for prevention and control of these diseases.

Keywords: ELISA, Ornithobacterium rhinotracheale, newcastle disease, seroprevalence

Procedia PDF Downloads 311
361 Visible-Light-Driven OVs-BiOCl Nanoplates with Enhanced Photocatalytic Activity toward NO Oxidation

Authors: Jiazhen Liao, Xiaolan Zeng

Abstract:

A series of BiOCl nanoplates with different oxygen vacancies (OVs) concentrations were successfully synthesized via a facile solvothermal method. The concentration of OVs of BiOCl can be tuned by the ratios of water/ethylene glycol. Such nanoplates containing oxygen vacancies served as an efficient visible-light-driven photocatalyst for NO oxidation. Compared with pure BiOCl, the enhanced photocatalytic performance was mainly attributed to the introduction of OVs, which greatly enhanced light absorption, promoted electron transfer, activated oxygen molecules. The present work could provide insights into the understanding of the role of OVs in photocatalysts for reference. Combined with characterization analysis, such as XRD(X-ray diffraction), XPS(X-ray photoelectron spectroscopy), TEM(Transmission Electron Microscopy), PL(Fluorescence Spectroscopy), and DFT (Density Functional Theory) calculations, the effect of vacancies on photoelectrochemical properties of BiOCl photocatalysts are shown. Furthermore, the possible reaction mechanisms of photocatalytic NO oxidation were also revealed. According to the results of in situ DRIFTS ( Diffused Reflectance Infrared Fourier Transform Spectroscopy), various intermediates were produced during different time intervals of NO photodegradation. The possible pathways are summarized below. First, visible light irradiation induces electron-hole pairs on the surface of OV-BOC (BiOCl with oxygen vacancies). Second, photogenerated electrons form superoxide radical with the contacted oxygen. Then, the NO molecules adsorbed on the surface of OV-BOC are attacked by superoxide radical and form nitrate instead of NO₂ (by-products). Oxygen vacancies greatly improve the photocatalytic oxidation activity of NO and effectively inhibit the production of harmful by-products during the oxidation of NO.

Keywords: OVs-BiOCl nanoplate, oxygen vacancies, NO oxidation, photocatalysis

Procedia PDF Downloads 133
360 Programmed Cell Death in Datura and Defensive Plant Response toward Tomato Mosaic Virus

Authors: Asma Alhuqail, Nagwa Aref

Abstract:

Programmed cell death resembles a real nature active defense in Datura metel against TMV after three days of virus infection. Physiological plant response was assessed for asymptomatic healthy and symptomatic infected detached leaves. The results indicated H2O2 and Chlorophyll-a as the most potential parameters. Chlorophyll-a was considered the only significant predictor variant for the H2O2 dependent variant with a P value of 0.001 and R-square of 0.900. The plant immune response was measured within three days of virus infection using the cutoff value of H2O2 (61.095 lmol/100 mg) and (63.201 units) for the tail moment in the Comet Assay. Their percentage changes were 255.12% and 522.40% respectively which reflects the stress of virus infection in the plant. Moreover, H2O2 showed 100% specificity and sensitivity in the symptomatic infected group using the receiver-operating characteristic (ROC). All tested parameters in the symptomatic infected group had significant correlations with twenty-five positive and thirty-one negative correlations where the P value was <0.05 and 0.01. Chlorophyll-a parameter had a crucial role of highly significant correlation between total protein and salicylic acid. Contrarily, this correlation with tail moment unit was (r = _0.930, P <0.01) where the P value was < 0.01. The strongest significant negative correlation was between Chlorophyll-a and H2O2 at P < 0.01, while moderate negative significant correlation was seen for Chlorophyll-b where the P value < 0.05. The present study discloses the secret of the three days of rapid transient production of activated oxygen species (AOS) that was enough for having potential quantitative physiological parameters for defensive plant response toward the virus.

Keywords: programmed cell death, plant–adaptive immune response, hydrogen peroxide (H2O2), physiological parameters

Procedia PDF Downloads 248
359 Eco-Friendly Control of Bacterial Speck on Solanum lycopersicum by Azadirachta indica Extract

Authors: Navodit Goel, Prabir K. Paul

Abstract:

Tomato (Solanum lycopersicum) is attacked by Pseudomonas syringae pv. tomato causing speck lesions on the leaves leading to severe economic casualty. In the present study, aqueous fruit extracts of Azadirachta indica (neem) were sprayed on a single node of tomato plants grown under controlled contamination-free conditions. The treatment of plants was performed with neem fruit extract either alone or along with the pathogen. The parameters of observation were activities of polyphenol oxidase (PPO) and lysozyme, and isoform analysis of PPO; both at the treated leaves as well as untreated leaves away from the site of extract application. Polyphenol oxidase initiates phenylpropanoid pathway resulting in the synthesis of quinines from cytoplasmic phenols and production of reactive oxygen species toxic to broad spectrum microbes. Lysozyme is responsible for the breakdown of bacterial cell wall. The results indicate the upregulation of PPO and lysozyme activities in both the treated and untreated leaves along with de novo expression of newer PPO isoenzymes (which were absent in control samples). The appearance of additional PPO isoenzymes in bioelicitor-treated plants indicates that either the isoenzymes were expressed after bioelicitor application or the already expressed but inactive isoenzymes were activated by it. Lysozyme activity was significantly increased in the plants when treated with the bioelicitor or the pathogen alone. However, no new isoenzymes of lysozyme were expressed upon application of the extract. Induction of resistance by neem fruit extract could be a potent weapon in eco-friendly plant protection strategies.

Keywords: Azadirachta indica, lysozyme, polyphenol oxidase, Solanum lycopersicum

Procedia PDF Downloads 289
358 The Triad Experience: Benefits and Drawbacks of the Paired Placement of Student Teachers in Physical Education

Authors: Todd Pennington, Carol Wilkinson, Keven Prusak

Abstract:

Traditional models of student teaching practices typically involve the placement of a student teacher with an experienced mentor teacher. However, due to the ever-decreasing number of quality placements, an alternative triad approach is the paired placement of student teachers with one mentor teacher in a community of practice. This study examined the paired-placement of student teachers in physical education to determine the benefits and drawbacks after a 14-week student teaching experience. PETE students (N = 22) at a university in the United States were assigned to work in a triad with a student teaching partner and a mentor teacher, making up eleven triads for the semester. The one exception was a pair that worked for seven weeks at an elementary school and then for seven weeks at a junior high school, thus having two mentor teachers and participating in two triads. A total of 12 mentor teachers participated in the study. All student teachers and mentor teachers volunteered and agreed to participate. The student teaching experience was structured so that students engaged in: (a) individual teaching (one teaching the lesson with the other observing), (b) co-planning, and (c) peer coaching. All students and mentor teachers were interviewed at the conclusion of the experience. Using interview data, field notes, and email response data, the qualitative data was analyzed using the constant comparative method. The benefits of the paired placement experience emerged into three categories (a) quality feedback, (b) support, and (c) collaboration. The drawbacks emerged into four categories (a) unrealistic experience, (b) laziness in preparation, (c) lack of quality feedback, and (d) personality mismatch. Recommendations include: providing in-service training prior to student teaching to optimize the triad experience, ongoing seminars throughout the experience specifically designed for triads, and a hybrid model of paired placement for the first half of student teaching followed by solo student teaching for the second half of the experience.

Keywords: community of practice, paired placement, physical education, student teaching

Procedia PDF Downloads 402
357 TNF Receptor-Associated Factor 6 (TRAF6) Mediating the Angiotensin-Induced Non-Canonical TGFβ Pathway Activation and Differentiation of c-kit+ Cardiac Stem Cells

Authors: Qing Cao, Fei Wang, Yu-Qiang Wang, Li-Ya Huang, Tian-Tian Sang, Shu-Yan Chen

Abstract:

Aims: TNF Receptor-Associated Factor 6 (TRAF6) acts as a multifunctional regulator of the Transforming Growth Factor (TGF)-β signaling pathway, and mediates Smad-independent JNK and p38 activation via TGF-β. This study was performed to test the hypothesis that TGF-β/TRAF6 is essential for angiotensin-II (Ang II)-induced differentiation of rat c-kit+ Cardiac Stem Cells (CSCs). Methods and Results: c-kit+ CSCs were isolated from neonatal Sprague Dawley (SD) rats, and their c-kit status was confirmed with immunofluorescence staining. A TGF-β type I receptor inhibitor (SB431542) or the small interfering RNA (siRNA)-mediated knockdown of TRAF6 were used to investigate the role of TRAF6 in TGF-β signaling. Rescue of TRAF6 siRNA transfected cells with a 3'UTR deleted siRNA insensitive construct was conducted to rule out the off target effects of the siRNA. TRAF6 dominant negative (TRAF6DN) vector was constructed and used to infect c-kit+ CSCs, and western blotting was used to assess the expression of TRAF6, JNK, p38, cardiac-specific proteins, and Wnt signaling proteins. Physical interactions between TRAF6 and TGFβ receptors were studied by coimmunoprecipitation. Cardiac differentiation was suppressed in the absence of TRAF6. Forced expression of TRAF6 enhanced the expression of TGF-β-activated kinase1 (TAK1), and inhibited Wnt signaling. Furthermore, TRAF6 increased the expression of cardiac-specific proteins (cTnT and Cx-43) but inhibited the expression of Wnt3a. Conclusions: Our data suggest that TRAF6 plays an important role in Ang II induced differentiation of c-kit+ CSCs via the non-canonical signaling pathway.

Keywords: cardiac stem cells, differentiation, TGF-β, TRAF6, ubiquitination, Wnt

Procedia PDF Downloads 403