Search results for: Microsoft Azure Cloud
76 IT-Based Global Healthcare Delivery System: An Alternative Global Healthcare Delivery System
Authors: Arvind Aggarwal
Abstract:
We have developed a comprehensive global healthcare delivery System based on information technology. It has medical consultation system where a virtual consultant can give medical consultation to the patients and Doctors at the digital medical centre after reviewing the patient’s EMR file consisting of patient’s history, investigations in the voice, images and data format. The system has the surgical operation system too, where a remote robotic consultant can conduct surgery at the robotic surgical centre. The instant speech and text translation is incorporated in the software where the patient’s speech and text (language) can be translated into the consultant’s language and vice versa. A consultant of any specialty (surgeon or Physician) based in any country can provide instant health care consultation, to any patient in any country without loss of time. Robotic surgeons based in any country in a tertiary care hospital can perform remote robotic surgery, through patient friendly telemedicine and tele-surgical centres. The patient EMR, financial data and data of all the consultants and robotic surgeons shall be stored in cloud. It is a complete comprehensive business model with healthcare medical and surgical delivery system. The whole system is self-financing and can be implemented in any country. The entire system uses paperless, filmless techniques. This eliminates the use of all consumables thereby reduces substantial cost which is incurred by consumables. The consultants receive virtual patients, in the form of EMR, thus the consultant saves time and expense to travel to the hospital to see the patients. The consultant gets electronic file ready for reporting & diagnosis. Hence time spent on the physical examination of the patient is saved, the consultant can, therefore, spend quality time in studying the EMR/virtual patient and give his instant advice. The time consumed per patient is reduced and therefore can see more number of patients, the cost of the consultation per patients is therefore reduced. The additional productivity of the consultants can be channelized to serve rural patients devoid of doctors.Keywords: e-health, telemedicine, telecare, IT-based healthcare
Procedia PDF Downloads 18175 Digital Twin for University Campus: Workflow, Applications and Benefits
Authors: Frederico Fialho Teixeira, Islam Mashaly, Maryam Shafiei, Jurij Karlovsek
Abstract:
The ubiquity of data gathering and smart technologies, advancements in virtual technologies, and the development of the internet of things (IoT) have created urgent demands for the development of frameworks and efficient workflows for data collection, visualisation, and analysis. Digital twin, in different scales of the city into the building, allows for bringing together data from different sources to generate fundamental and illuminating insights for the management of current facilities and the lifecycle of amenities as well as improvement of the performance of current and future designs. Over the past two decades, there has been growing interest in the topic of digital twin and their applications in city and building scales. Most such studies look at the urban environment through a homogeneous or generalist lens and lack specificity in particular characteristics or identities, which define an urban university campus. Bridging this knowledge gap, this paper offers a framework for developing a digital twin for a university campus that, with some modifications, could provide insights for any large-scale digital twin settings like towns and cities. It showcases how currently unused data could be purposefully combined, interpolated and visualised for producing analysis-ready data (such as flood or energy simulations or functional and occupancy maps), highlighting the potential applications of such a framework for campus planning and policymaking. The research integrates campus-level data layers into one spatial information repository and casts light on critical data clusters for the digital twin at the campus level. The paper also seeks to raise insightful and directive questions on how digital twin for campus can be extrapolated to city-scale digital twin. The outcomes of the paper, thus, inform future projects for the development of large-scale digital twin as well as urban and architectural researchers on potential applications of digital twin in future design, management, and sustainable planning, to predict problems, calculate risks, decrease management costs, and improve performance.Keywords: digital twin, smart campus, framework, data collection, point cloud
Procedia PDF Downloads 7074 Corpus-Based Neural Machine Translation: Empirical Study Multilingual Corpus for Machine Translation of Opaque Idioms - Cloud AutoML Platform
Authors: Khadija Refouh
Abstract:
Culture bound-expressions have been a bottleneck for Natural Language Processing (NLP) and comprehension, especially in the case of machine translation (MT). In the last decade, the field of machine translation has greatly advanced. Neural machine translation NMT has recently achieved considerable development in the quality of translation that outperformed previous traditional translation systems in many language pairs. Neural machine translation NMT is an Artificial Intelligence AI and deep neural networks applied to language processing. Despite this development, there remain some serious challenges that face neural machine translation NMT when translating culture bounded-expressions, especially for low resources language pairs such as Arabic-English and Arabic-French, which is not the case with well-established language pairs such as English-French. Machine translation of opaque idioms from English into French are likely to be more accurate than translating them from English into Arabic. For example, Google Translate Application translated the sentence “What a bad weather! It runs cats and dogs.” to “يا له من طقس سيء! تمطر القطط والكلاب” into the target language Arabic which is an inaccurate literal translation. The translation of the same sentence into the target language French was “Quel mauvais temps! Il pleut des cordes.” where Google Translate Application used the accurate French corresponding idioms. This paper aims to perform NMT experiments towards better translation of opaque idioms using high quality clean multilingual corpus. This Corpus will be collected analytically from human generated idiom translation. AutoML translation, a Google Neural Machine Translation Platform, is used as a custom translation model to improve the translation of opaque idioms. The automatic evaluation of the custom model will be compared to the Google NMT using Bilingual Evaluation Understudy Score BLEU. BLEU is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Human evaluation is integrated to test the reliability of the Blue Score. The researcher will examine syntactical, lexical, and semantic features using Halliday's functional theory.Keywords: multilingual corpora, natural language processing (NLP), neural machine translation (NMT), opaque idioms
Procedia PDF Downloads 15173 Empirical Analysis of the Effect of Cloud Movement in a Basic Off-Grid Photovoltaic System: Case Study Using Transient Response of DC-DC Converters
Authors: Asowata Osamede, Christo Pienaar, Johan Bekker
Abstract:
Mismatch in electrical energy (power) or outage from commercial providers, in general, does not promote development to the public and private sector, these basically limit the development of industries. The necessity for a well-structured photovoltaic (PV) system is of importance for an efficient and cost-effective monitoring system. The major renewable energy potential on earth is provided from solar radiation and solar photovoltaics (PV) are considered a promising technological solution to support the global transformation to a low-carbon economy and reduction on the dependence on fossil fuels. Solar arrays which consist of various PV module should be operated at the maximum power point in order to reduce the overall cost of the system. So power regulation and conditioning circuits should be incorporated in the set-up of a PV system. Power regulation circuits used in PV systems include maximum power point trackers, DC-DC converters and solar chargers. Inappropriate choice of power conditioning device in a basic off-grid PV system can attribute to power loss, hence the need for a right choice of power conditioning device to be coupled with the system of the essence. This paper presents the design and implementation of a power conditioning devices in order to improve the overall yield from the availability of solar energy and the system’s total efficiency. The power conditioning devices taken into consideration in the project includes the Buck and Boost DC-DC converters as well as solar chargers with MPPT. A logging interface circuit (LIC) is designed and employed into the system. The LIC is designed on a printed circuit board. It basically has DC current signalling sensors, specifically the LTS 6-NP. The LIC is consequently required to program the voltages in the system (these include the PV voltage and the power conditioning device voltage). The voltage is structured in such a way that it can be accommodated by the data logger. Preliminary results which include availability of power as well as power loss in the system and efficiency will be presented and this would be used to draw the final conclusion.Keywords: tilt and orientation angles, solar chargers, PV panels, storage devices, direct solar radiation
Procedia PDF Downloads 13672 Tele-Rehabilitation for Multiple Sclerosis: A Case Study
Authors: Sharon Harel, Rachel Kizony, Yoram Feldman, Gabi Zeilig, Mordechai Shani
Abstract:
Multiple Sclerosis (MS) is a neurological disease that may cause restriction in participation in daily activities of young adults. Main symptoms include fatigue, weakness and cognitive decline. The appearance of symptoms, their severity and deterioration rate, change between patients. The challenge of health services is to provide long-term rehabilitation services to people with MS. The objective of this presentation is to describe a course of tele-rehabilitation service of a woman with MS. Methods; R is a 48 years-old woman, diagnosed with MS when she was 22. She started to suffer from weakness of her non-dominant left upper extremity about ten years after the diagnosis. She was referred to the tele-rehabilitation service by her rehabilitation team, 16 years after diagnosis. Her goals were to improve ability to use her affected upper extremity in daily activities. On admission her score in the Mini-Mental State Exam was 30/30. Her Fugl-Meyer Assessment (FMA) score of the left upper extremity was 48/60, indicating mild weakness and she had a limitation of her shoulder abduction (90 degrees). In addition, she reported little use of her arm in daily activities as shown in her responses to the Motor Activity Log (MAL) that were equal to 1.25/5 in amount and 1.37 in quality of use. R. received two 30 minutes on-line sessions per week in the tele-rehabilitation service, with the CogniMotion system. These were complemented by self-practice with the system. The CogniMotion system provides a hybrid (synchronous-asynchronous), the home-based tele-rehabilitation program to improve the motor, cognitive and functional status of people with neurological deficits. The system consists of a computer, large monitor, and the Microsoft’s Kinect 3D sensor. This equipment is located in the client’s home and connected to a clinician’s computer setup in a remote clinic via WiFi. The client sits in front of the monitor and uses his body movements to interact with games and tasks presented on the monitor. The system provides feedback in the form of ‘knowledge of results’ (e.g., the success of a game) and ‘knowledge of performance’ (e.g., alerts for compensatory movements) to enhance motor learning. The games and tasks were adapted for R. motor abilities and level of difficulty was gradually increased according to her abilities. The results of her second assessment (after 35 on-line sessions) showed improvement in her FMA score to 52 and shoulder abduction to 140 degrees. Moreover, her responses to the MAL indicated an increased amount (2.4) and quality (2.2) of use of her left upper extremity in daily activities. She reported high level of enjoyment from the treatments (5/5), specifically the combination of cognitive challenges while moving her body. In addition, she found the system easy to use as reflected by her responses to the System Usability Scale (85/100). To-date, R. continues to receive treatments in the tele-rehabilitation service. To conclude, this case report shows the potential of using tele-rehabilitation for people with MS to provide strategies to enhance the use of the upper extremity in daily activities as well as for maintaining motor function.Keywords: motor function, multiple-sclerosis, tele-rehabilitation, daily activities
Procedia PDF Downloads 18271 Dysphagia Tele Assessment Challenges Faced by Speech and Swallow Pathologists in India: Questionnaire Study
Authors: B. S. Premalatha, Mereen Rose Babu, Vaishali Prabhu
Abstract:
Background: Dysphagia must be assessed, either subjectively or objectively, in order to properly address the swallowing difficulty. Providing therapeutic care to patients with dysphagia via tele mode was one approach for providing clinical services during the COVID-19 epidemic. As a result, the teleassessment of dysphagia has increased in India. Aim: This study aimed to identify challenges faced by Indian SLPs while providing teleassessment to individuals with dysphagia during the outbreak of COVID-19 from 2020 to 2021. Method: After receiving approval from the institute's institutional review board and ethics committee, the current study was carried out. The study was cross-sectional in nature and lasted from 2020 to 2021. The study enrolled participants who met the inclusion and exclusion criteria of the study. It was decided to recruit roughly 246 people based on the sample size calculations. The research was done in three stages: questionnaire development and content validation, questionnaire administration. Five speech and hearing professionals' content verified the questionnaire for faults and clarity. Participants received questionnaires via various social media platforms such as e-mail and WhatsApp, which were written in Microsoft Word and then converted to Google Forms. SPSS software was used to examine the data. Results: In light of the obstacles that Indian SLPs encounter, the study's findings were examined. Only 135 people responded. During the COVID-19 lockdowns, 38% of participants said they did not deal with dysphagia patients. After the lockout, 70.4% of SLPs kept working with dysphagia patients, while 29.6% did not. From the beginning of the oromotor examination, the main problems in completing tele evaluation of dysphagia have been highlighted. Around 37.5% of SLPs said they don't undertake the OPME online because of difficulties doing the evaluation, such as the need for repeated instructions from patients and family members and trouble visualizing structures in various positions. The majority of SLPs' online assessments were inefficient and time-consuming. A bigger percentage of SLPs stated that they will not advocate tele evaluation in dysphagia to their colleagues. SLPs' use of dysphagia assessment has decreased as a result of the epidemic. When it came to the amount of food, the majority of people proposed a small amount. Apart from placing the patient for assessment and gaining less cooperation from the family, most SLPs found that Internet speed was a source of concern and a barrier. Hearing impairment and the presence of a tracheostomy in patients with dysphagia proved to be the most difficult conditions to treat online. For patients with NPO, the majority of SLPs did not advise tele-evaluation. In the anterior region of the oral cavity, oral meal residue was more visible. The majority of SLPs reported more anterior than posterior leakage. Even while the majority of SLPs could detect aspiration by coughing, many found it difficult to discern the gurgling tone of speech after swallowing. Conclusion: The current study sheds light on the difficulties that Indian SLPs experience when assessing dysphagia via tele mode, indicating that tele-assessment of dysphagia is still to gain importance in India.Keywords: dysphagia, teleassessment, challenges, Indian SLP
Procedia PDF Downloads 13870 The Lessons Learned from Managing Malignant Melanoma During COVID-19 in a Plastic Surgery Unit in Ireland
Authors: Amenah Dhannoon, Ciaran Martin Hurley, Laura Wrafter, Podraic J. Regan
Abstract:
Introduction: The COVID-19 pandemic continues to present unprecedented challenges for healthcare systems. This has resulted in the pragmatic shift in the practice of plastic surgery units worldwide. During this period, many units reported a significant fall in urgent melanoma referrals, leading to patients presenting with advanced disease requiring more extensive surgery and inferior outcomes. Our objective was to evaluate our unit's experience with both non-invasive and invasive melanoma during the COVID-19 pandemic and characterize our experience and contrast it to that experienced by our neighbors in the UK, mainland Europe and North America. Methods: a retrospective chart review was performed on all patients diagnosed with invasive and non-invasive cutaneous melanoma between March to December of 2019 (control) compared to 2020 (COVID-19 pandemic) in a single plastic surgery unit in Ireland. Patient demographics, referral source, surgical procedures, tumour characteristics, radiological findings, oncological therapies and follow-up were recorded. All data were anonymized and stored in Microsoft Excel. Results: A total of 589 patients were included in the study. Of these, 314 (53%) with invasive melanoma, compared to 275 (47%) with the non-invasive disease. Overall, more patients were diagnosed with both invasive and non-invasive melanoma in 2020 than in 2019 (p<0.05). However, significantly longer waiting times in 2020 (64 days) compared to 2019 (28 days) (p<0.05), with the majority of the referral being from GP in 2019 (83%) compared to 61% in 2020. Positive sentinel lymph node were higher in 2019 at 56% (n=28) compared to 24% (n=22) in 2020. There was no statistically significant difference in the tutor characteristics or metastasis status. Discussion: While other countries have noticed a fall in the melanoma diagnosis. Our units experienced a higher number of disease diagnoses. This can be due to multiple reasons. In Ireland, the government reached an early agreement with the private sector to continue elective surgery on an urgent basis in private hospitals. This allowed access to local anesthetic procedures and local skin cancer cases were triaged to non-COVID-19 provider centers. Our unit also adapted a fast, effective and minimal patient contact strategy for triaging skin cancer based on telemedicine. Thirdly, a skin cancer nurse specialist maintained patient follow-ups and triaging a dedicated email service. Finally, our plastic surgery service continued to maintain a virtual complex skin cancer multidisciplinary team meeting during the pandemic, ensuring local clinical governance has adhered to each clinical case. Conclusion: Our study highlights that with the prompt efficient restructuring of services, we could reserve successful management of skin cancer even in the most devastating times. It is important to reflect on the success during the pandemic and emphasize the importance of preparation for a potentially difficult futureKeywords: malignant melanoma, skin cancer, COVID-19, triage
Procedia PDF Downloads 17269 IoT Based Soil Moisture Monitoring System for Indoor Plants
Authors: Gul Rahim Rahimi
Abstract:
The IoT-based soil moisture monitoring system for indoor plants is designed to address the challenges of maintaining optimal moisture levels in soil for plant growth and health. The system utilizes sensor technology to collect real-time data on soil moisture levels, which is then processed and analyzed using machine learning algorithms. This allows for accurate and timely monitoring of soil moisture levels, ensuring plants receive the appropriate amount of water to thrive. The main objectives of the system are twofold: to keep plants fresh and healthy by preventing water deficiency and to provide users with comprehensive insights into the water content of the soil on a daily and hourly basis. By monitoring soil moisture levels, users can identify patterns and trends in water consumption, allowing for more informed decision-making regarding watering schedules and plant care. The scope of the system extends to the agriculture industry, where it can be utilized to minimize the efforts required by farmers to monitor soil moisture levels manually. By automating the process of soil moisture monitoring, farmers can optimize water usage, improve crop yields, and reduce the risk of plant diseases associated with over or under-watering. Key technologies employed in the system include the Capacitive Soil Moisture Sensor V1.2 for accurate soil moisture measurement, the Node MCU ESP8266-12E Board for data transmission and communication, and the Arduino framework for programming and development. Additionally, machine learning algorithms are utilized to analyze the collected data and provide actionable insights. Cloud storage is utilized to store and manage the data collected from multiple sensors, allowing for easy access and retrieval of information. Overall, the IoT-based soil moisture monitoring system offers a scalable and efficient solution for indoor plant care, with potential applications in agriculture and beyond. By harnessing the power of IoT and machine learning, the system empowers users to make informed decisions about plant watering, leading to healthier and more vibrant indoor environments.Keywords: IoT-based, soil moisture monitoring, indoor plants, water management
Procedia PDF Downloads 5268 Prioritizing Biodiversity Conservation Areas based on the Vulnerability and the Irreplaceability Framework in Mexico
Authors: Alma Mendoza-Ponce, Rogelio Corona-Núñez, Florian Kraxner
Abstract:
Mexico is a megadiverse country and it has nearly halved its natural vegetation in the last century due to agricultural and livestock expansion. Impacts of land use cover change and climate change are unevenly distributed and spatial prioritization to minimize the affectations on biodiversity is crucial. Global and national efforts for prioritizing biodiversity conservation show that ~33% to 45% of Mexico should be protected. The width of these targets makes difficult to lead resources. We use a framework based on vulnerability and irreplaceability to prioritize conservation efforts in Mexico. Vulnerability considered exposure, sensitivity and adaptive capacity under two scenarios (business as usual, BAU based, on the SSP2 and RCP 4.5 and a Green scenario, based on the SSP1 and the RCP 2.6). Exposure to land use is the magnitude of change from natural vegetation to anthropogenic covers while exposure to climate change is the difference between current and future values for both scenarios. Sensitivity was considered as the number of endemic species of terrestrial vertebrates which are critically endangered and endangered. Adaptive capacity is used as the ration between the percentage of converted area (natural to anthropogenic) and the percentage of protected area at municipality level. The results suggest that by 2050, between 11.6 and 13.9% of Mexico show vulnerability ≥ 50%, and by 2070, between 12.0 and 14.8%, in the Green and BAU scenario, respectively. From an ecosystem perspective cloud forests, followed by tropical dry forests, natural grasslands and temperate forests will be the most vulnerable (≥ 50%). Amphibians are the most threatened vertebrates; 62% of the endemic amphibians are critically endangered or endangered while 39%, 12% and 9% of the mammals, birds, and reptiles, respectively. However, the distribution of these amphibians counts for only 3.3% of the country, while mammals, birds, and reptiles in these categories represent 10%, 16% and 29% of Mexico. There are 5 municipalities out of the 2,457 that Mexico has that represent 31% of the most vulnerable areas (70%).These municipalities account for 0.05% of Mexico. This multiscale approach can be used to address resources to conservation targets as ecosystems, municipalities or species considering land use cover change, climate change and biodiversity uniqueness.Keywords: biodiversity, climate change, land use change, Mexico, vulnerability
Procedia PDF Downloads 16867 The Association between Saharran Dust and Emergency Department Admission and Hospitalization in Gaziantep, Turkey
Authors: Behcet Al, Mustafa Bogan, Mehmet Murat Oktay, Suat Zengin, Hasan Bayram
Abstract:
Objective: In the last two decades there is a strong scientific interest regarding the role of aerosols for the Earth’s climate and associated changes. Aerosol particles are very important to the Earth-atmosphere climate system playing a crucial role in cloud and precipitation processes, air quality and climate. Here, we evaluated the association between saharran dust and emergency department admission, hospitalization, and mortality. Method: The records of admission to emergency department of Gaziantep University and the dust stroms of 31 months were studied. Patients admitted to ED at dust strom with chronic obstructive lung disease (COLD), asthma bronchiale (AB), serebrovascular events (SVE), acute myocardial infarction (AMI), stabile and unstabile angina pectoris (SAAP andUSAP); and the days with and without dust stroms were included. The study was realized from March 2010 to October 2012. The admission of three days before strom (group 1), during strom days (group 2) and three days after strom (group 3) were determined. The mean level of dust PM10 particulate was calculated, and the results were compared. Results: 5864 patients with chronic obstructive lung disease, asthma bronchiale, serebrovascular events, acute myocardial infarction, stabile and unstabile angyina pectoris admitted during the days with and without dust stroms. 28 dust stroms ocurred during 31 months. The totaliy of stroms continiued 78 days. Of admissions, 35.5% (n=2075) were in group1, 29.8% (n=1746) in group 2, and 34.8% (n=2043) were in group 3. The mean of PM10 for groups (group 1, 2 and 3) were 78.53 mg/m3 (range 19–276) particulate, 108.7 mg/m3 (range 34–631) particulate, and 60.9 mg/m3 (range 17–160) particulate respectively. The mean admission per a day for groups were 24.86, 22.55, and 24.50 respectively. The mortality was 12 in group 1, 12 in group 2, and 17 in grou 3. The hospitalization ratio for groups were 0.24, 0.27, and 0.27 respectively. Conclusion: However, the mean level of PM10 particulate for groups 2 (in dust strom days) is significantly higher (p=0.001) than the days before (group 1) and after (group 3) dust stroms, the mean admissions/day, hostilalization and mortality related to deseases (COLD, AB, SVE, AMI, SAAP andUSA) for group 2 is lower than the group 1 and group 3.Keywords: Saharran dust, PM10 particulate, emergency department admission, mortality
Procedia PDF Downloads 39666 Global News Coverage of the Pandemic: Towards an Ethical Framework for Media Professionalism
Authors: Anantha S. Babbili
Abstract:
This paper analyzes the current media practices dominant in global journalistic practices within the framework of world press theories of Libertarian, Authoritarian, Communist, and Social Responsibility to evaluate their efficacy in addressing their role in the coverage of the coronavirus, also known as COVID-19. The global media flows, determinants of news coverage, and international awareness and the Western view of the world will be critically analyzed within the context of the prevalent news values that underpin free press and media coverage of the world. While evaluating the global discourse paramount to a sustained and dispassionate understanding of world events, this paper proposes an ethical framework that brings clarity devoid of sensationalism, partisanship, right-wing and left-wing interpretations to a breaking and dangerous development of a pandemic. As the world struggles to contain the coronavirus pandemic with death climbing close to 6,000 from late January to mid-March, 2020, the populations of the developed as well as the developing nations are beset with news media renditions of the crisis that are contradictory, confusing and evoking anxiety, fear and hysteria. How are we to understand differing news standards and news values? What lessons do we as journalism and mass media educators, researchers, and academics learn in order to construct a better news model and structure of media practice that addresses science, health, and media literacy among media practitioners, journalists, and news consumers? As traditional media struggles to cover the pandemic to its audience and consumers, social media from which an increasing number of consumers get their news have exerted their influence both in a positive way and in a negative manner. Even as the world struggles to grasp the full significance of the pandemic, the World Health Organization (WHO) has been feverishly battling an additional challenge related to the pandemic in what it termed an 'infodemic'—'an overabundance of information, some accurate and some not, that makes it hard for people to find trustworthy sources and reliable guidance when they need it.' There is, indeed, a need for journalism and news coverage in times of pandemics that reflect social responsibility and ethos of public service journalism. Social media and high-tech information corporations, collectively termed GAMAF—Google, Apple, Microsoft, Amazon, and Facebook – can team up with reliable traditional media—newspapers, magazines, book publishers, radio and television corporates—to ease public emotions and be helpful in times of a pandemic outbreak. GAMAF can, conceivably, weed out sensational and non-credible sources of coronavirus information, exotic cures offered for sale on a quick fix, and demonetize videos that exploit peoples’ vulnerabilities at the lowest ebb. Credible news of utility delivered in a sustained, calm, and reliable manner serves people in a meaningful and helpful way. The world’s consumers of news and information, indeed, deserve a healthy and trustworthy news media – at least in the time of pandemic COVID-19. Towards this end, the paper will propose a practical model for news media and journalistic coverage during times of a pandemic.Keywords: COVID-19, international news flow, social media, social responsibility
Procedia PDF Downloads 11365 Development of Internet of Things (IoT) with Mobile Voice Picking and Cargo Tracing Systems in Warehouse Operations of Third-Party Logistics
Authors: Eugene Y. C. Wong
Abstract:
The increased market competition, customer expectation, and warehouse operating cost in third-party logistics have motivated the continuous exploration in improving operation efficiency in warehouse logistics. Cargo tracing in ordering picking process consumes excessive time for warehouse operators when handling enormous quantities of goods flowing through the warehouse each day. Internet of Things (IoT) with mobile cargo tracing apps and database management systems are developed this research to facilitate and reduce the cargo tracing time in order picking process of a third-party logistics firm. An operation review is carried out in the firm with opportunities for improvement being identified, including inaccurate inventory record in warehouse management system, excessive tracing time on stored products, and product misdelivery. The facility layout has been improved by modifying the designated locations of various types of products. The relationship among the pick and pack processing time, cargo tracing time, delivery accuracy, inventory turnover, and inventory count operation time in the warehouse are evaluated. The correlation of the factors affecting the overall cycle time is analysed. A mobile app is developed with the use of MIT App Inventor and the Access management database to facilitate cargo tracking anytime anywhere. The information flow framework from warehouse database system to cloud computing document-sharing, and further to the mobile app device is developed. The improved performance on cargo tracing in the order processing cycle time of warehouse operators have been collected and evaluated. The developed mobile voice picking and tracking systems brings significant benefit to the third-party logistics firm, including eliminating unnecessary cargo tracing time in order picking process and reducing warehouse operators overtime cost. The mobile tracking device is further planned to enhance the picking time and cycle count of warehouse operators with voice picking system in the developed mobile apps as future development.Keywords: warehouse, order picking process, cargo tracing, mobile app, third-party logistics
Procedia PDF Downloads 37564 Geographic Information System Cloud for Sustainable Digital Water Management: A Case Study
Authors: Mohamed H. Khalil
Abstract:
Water is one of the most crucial elements which influence human lives and development. Noteworthy, over the last few years, GIS plays a significant role in optimizing water management systems, especially after exponential developing in this sector. In this context, the Egyptian government initiated an advanced ‘GIS-Web Based System’. This system is efficiently designed to tangibly assist and optimize the complement and integration of data between departments of Call Center, Operation and Maintenance, and laboratory. The core of this system is a unified ‘Data Model’ for all the spatial and tabular data of the corresponding departments. The system is professionally built to provide advanced functionalities such as interactive data collection, dynamic monitoring, multi-user editing capabilities, enhancing data retrieval, integrated work-flow, different access levels, and correlative information record/track. Noteworthy, this cost-effective system contributes significantly not only in the completeness of the base-map (93%), the water network (87%) in high level of details GIS format, enhancement of the performance of the customer service, but also in reducing the operating costs/day-to-day operations (~ 5-10 %). In addition, the proposed system facilitates data exchange between different departments (Call Center, Operation and Maintenance, and laboratory), which allowed a better understanding/analyzing of complex situations. Furthermore, this system reflected tangibly on: (i) dynamic environmental monitor/water quality indicators (ammonia, turbidity, TDS, sulfate, iron, pH, etc.), (ii) improved effectiveness of the different water departments, (iii) efficient deep advanced analysis, (iv) advanced web-reporting tools (daily, weekly, monthly, quarterly, and annually), (v) tangible planning synthesizing spatial and tabular data; and finally, (vi) scalable decision support system. It is worth to highlight that the proposed future plan (second phase) of this system encompasses scalability will extend to include integration with departments of Billing and SCADA. This scalability will comprise advanced functionalities in association with the existing one to allow further sustainable contributions.Keywords: GIS Web-Based, base-map, water network, decision support system
Procedia PDF Downloads 9863 The Competitiveness of Small and Medium Sized Enterprises: Digital Transformation of Business Models
Authors: Chante Van Tonder, Bart Bossink, Chris Schachtebeck, Cecile Nieuwenhuizen
Abstract:
Small and Medium-Sized Enterprises (SMEs) play a key role in national economies around the world, being contributors to economic and social well-being. Due to this, the success, growth and competitiveness of SMEs are critical. However, there are many factors that undermine this, such as resource constraints, poor information communication infrastructure (ICT), skills shortages and poor management. The Fourth Industrial Revolution offers new tools and opportunities such as digital transformation and business model innovation (BMI) to the SME sector to enhance its competitiveness. Adopting and leveraging digital technologies such as cloud, mobile technologies, big data and analytics can significantly improve business efficiencies, value proposition and customer experiences. Digital transformation can contribute to the growth and competitiveness of SMEs. However, SMEs are lagging behind in the participation of digital transformation. Extant research lacks conceptual and empirical research on how digital transformation drives BMI and the impact it has on the growth and competitiveness of SMEs. The purpose of the study is, therefore, to close this gap by developing and empirically validating a conceptual model to determine if SMEs are achieving BMI through digital transformation and how this is impacting the growth, competitiveness and overall business performance. An empirical study is being conducted on 300 SMEs, consisting of 150 South-African and 150 Dutch SMEs, to achieve this purpose. Structural equation modeling is used, since it is a multivariate statistical analysis technique that is used to analyse structural relationships and is a suitable research method to test the hypotheses in the model. Empirical research is needed to gather more insight into how and if SMEs are digitally transformed and how BMI can be driven through digital transformation. The findings of this study can be used by SME business owners, managers and employees at all levels. The findings will indicate if digital transformation can indeed impact the growth, competitiveness and overall performance of an SME, reiterating the importance and potential benefits of adopting digital technologies. In addition, the findings will also exhibit how BMI can be achieved in light of digital transformation. This study contributes to the body of knowledge in a highly relevant and important topic in management studies by analysing the impact of digital transformation on BMI on a large number of SMEs that are distinctly different in economic and cultural factorsKeywords: business models, business model innovation, digital transformation, SMEs
Procedia PDF Downloads 24062 Surveying Adolescent Males in India Regarding Mobile Phone Use and Sexual and Reproductive Health Education
Authors: Rohan M. Dalal, Elena Pirondini, Shanu Somvanshi
Abstract:
Introduction: The current state of reproductive health outcomes in lower-income countries is poor, with inadequate knowledge and culture among adolescent boys. Moreover, boys have traditionally not been a priority target. To explore the opportunity to educate adolescent boys in the developing world regarding accurate reproductive health information, the purpose of this study is to investigate how adolescent boys in the developing world engage and use technology, utilizing cell phones. This electronic survey and video interview study were conducted to determine the feasibility of a mobile phone platform for an educational video game specifically designed for boys that will improve health knowledge, influence behavior, and change health outcomes, namely teen pregnancies. Methods: With the assistance of Plan India, a subsidiary of Plan International, informed consent was obtained from parents of adolescent males who participated in an electronic survey and video interviews via Microsoft Teams. An electronic survey was created with 27 questions, including topics of mobile phone usage, gaming preferences, and sexual and reproductive health, with a sample size of 181 adolescents, ages 11-25, near New Delhi, India. The interview questions were written to explore more in-depth topics after the completion of the electronic survey. Eight boys, aged 15, were interviewed for 40 minutes about gaming and usage of mobile phones as well as sexual and reproductive health. Data/Results. 154 boys and 27 girls completed the survey. They rated their English fluency as relatively high. 97% of boys (149/154) had access to mobile phones. The majority of phones were smartphones (97%, 143/148). 48% (71/149) of boys borrowed cell phones. The most popular phone platform was Samsung (22%, 33/148). 36% (54/148) of adolescent males looked at their phones 1-10 times per day for 1-2 hours. 55% (81/149) of the boys had parental restrictions. 51% (76/148) had 32 GB of storage on their phone. 78% (117/150) of the boys had wifi access. 80% (120/150) of respondents reported ease in downloading apps. 97% (145/150) of male adolescents had social media, including WhatsApp, Facebook, and YouTube. 58% (87/150) played video games. Favorite video games included Free Fire, PubG, and other shooting games. In the video interviews, the boys revealed what made games fun and engaging, including customized avatars, progression to higher levels, realistic interactive platforms, shooting/guns, the ability to perform multiple actions, and a variety of worlds/settings/adventures. Ideas to improve engagement in sexual and reproductive health classes included open discussions in the community, enhanced access to information, and posting on social media. Conclusion: This study involving an electronic survey and video interviews provides an initial foray into understanding mobile phone usage among adolescent males and understanding sexual and reproductive health education in New Delhi, India. The data gathered from this study support using mobile phone platforms, and this will be used to create a serious video game to educate adolescent males about sexual and reproductive health in an attempt to lower the rate of unwanted pregnancies in the world.Keywords: adolescent males, India, mobile phone, sexual and reproductive health
Procedia PDF Downloads 13161 Digital Immunity System for Healthcare Data Security
Authors: Nihar Bheda
Abstract:
Protecting digital assets such as networks, systems, and data from advanced cyber threats is the aim of Digital Immunity Systems (DIS), which are a subset of cybersecurity. With features like continuous monitoring, coordinated reactions, and long-term adaptation, DIS seeks to mimic biological immunity. This minimizes downtime by automatically identifying and eliminating threats. Traditional security measures, such as firewalls and antivirus software, are insufficient for enterprises, such as healthcare providers, given the rapid evolution of cyber threats. The number of medical record breaches that have occurred in recent years is proof that attackers are finding healthcare data to be an increasingly valuable target. However, obstacles to enhancing security include outdated systems, financial limitations, and a lack of knowledge. DIS is an advancement in cyber defenses designed specifically for healthcare settings. Protection akin to an "immune system" is produced by core capabilities such as anomaly detection, access controls, and policy enforcement. Coordination of responses across IT infrastructure to contain attacks is made possible by automation and orchestration. Massive amounts of data are analyzed by AI and machine learning to find new threats. After an incident, self-healing enables services to resume quickly. The implementation of DIS is consistent with the healthcare industry's urgent requirement for resilient data security in light of evolving risks and strict guidelines. With resilient systems, it can help organizations lower business risk, minimize the effects of breaches, and preserve patient care continuity. DIS will be essential for protecting a variety of environments, including cloud computing and the Internet of medical devices, as healthcare providers quickly adopt new technologies. DIS lowers traditional security overhead for IT departments and offers automated protection, even though it requires an initial investment. In the near future, DIS may prove to be essential for small clinics, blood banks, imaging centers, large hospitals, and other healthcare organizations. Cyber resilience can become attainable for the whole healthcare ecosystem with customized DIS implementations.Keywords: digital immunity system, cybersecurity, healthcare data, emerging technology
Procedia PDF Downloads 6960 The Impact of Artificial Intelligence on Digital Factory
Authors: Mona Awad Wanis Gad
Abstract:
The method of factory making plans has changed loads, in particular, whilst it's miles approximately making plans the factory building itself. Factory making plans have the venture of designing merchandise, plants, tactics, organization, regions, and the construction of a factory. Ordinary restructuring is turning into greater essential for you to preserve the competitiveness of a manufacturing unit. Regulations in new regions, shorter lifestyle cycles of product and manufacturing era, in addition to a VUCA global (Volatility, Uncertainty, Complexity and Ambiguity) cause extra common restructuring measures inside a factory. A digital factory model is the planning foundation for rebuilding measures and turns into a critical device. Furthermore, digital building fashions are increasingly being utilized in factories to help facility management and manufacturing processes. First, exclusive styles of digital manufacturing unit fashions are investigated, and their residences and usabilities to be used instances are analyzed. Within the scope of research are point cloud fashions, building statistics fashions, photogrammetry fashions, and those enriched with sensor information are tested. It investigated which digital fashions permit a simple integration of sensor facts and in which the variations are. In the end, viable application areas of virtual manufacturing unit models are determined by a survey, and the respective digital manufacturing facility fashions are assigned to the application areas. Ultimately, an application case from upkeep is selected and implemented with the assistance of the best virtual factory version. It is shown how a completely digitalized preservation process can be supported by a digital manufacturing facility version by offering facts. Among different functions, the virtual manufacturing facility version is used for indoor navigation, facts provision, and display of sensor statistics. In summary, the paper suggests a structuring of virtual factory fashions that concentrates on the geometric representation of a manufacturing facility building and its technical facilities. A practical application case is proven and implemented. For that reason, the systematic selection of virtual manufacturing facility models with the corresponding utility cases is evaluated.Keywords: augmented reality, digital factory model, factory planning, restructuring digital factory model, photogrammetry, factory planning, restructuring building information modeling, digital factory model, factory planning, maintenance
Procedia PDF Downloads 4059 Effects of Front Porch and Loft on Indoor Ventilation in the Renewal of Beijing Courtyard
Authors: Zhongzhong Zeng, Zichen Liang
Abstract:
In recent years, Beijing courtyards have been facing the problem of renewal and renovation, and the residents are faced with the problems of small house areas, large household sizes, old and dangerous houses, etc. Among the many renovation methods, the authors note two more common practices of using the front porch to expand the floor area and adding a loft. Residents and architects, however, did not give the ventilation performance of the significant interior consideration before beginning the remodeling. The aim of this article is to explore the good or negative impacts of both front porch and loft structures on the manner of interior ventilation in the courtyard. Ventilation, in turn, is crucial to the indoor environmental quality of a home. The major method utilized in this study is the comparative analysis method, in which the authors create four alternative house models with or without a front porch and an attic as two variables and examine internal ventilation using the CFD(Computational Fluid Dynamics) technique. The authors compare the indoor ventilation of four different architectural models with or without front porches and lofts as two variables. The results obtained from the analysis of the sectional airflow and the plane 1.5m height cloud are the existence of the loft, to a certain extent, disrupts the airflow organization of the building and makes the rear wall high windows of the building less effective. Occupying the front porch to become the area of the house has no significant effect on ventilation, but try not to occupy the front porch and add the loft at the same time in the building renovation. The findings of this study led to the following recommendations: strive to preserve the courtyard building's original architectural design and make adjustments to only the inappropriate elements or constructions. The ventilation in the loft portion is inadequate, and the inhabitants typically use the loft as a living area. This may lead to the building relying more on air conditioning in the summer, which would raise energy demand. The front porch serves as a transition place as well as a source of shade, weather protection, and inside ventilation. In conclusion, the examination of interior environments in upcoming studies should concentrate on cross-disciplinary, multi-angle, and multi-level research topics.Keywords: Beijing courtyard renewal, CFD, indoor environment, ventilation analysis
Procedia PDF Downloads 8158 Integration of Building Information Modeling Framework for 4D Constructability Review and Clash Detection Management of a Sewage Treatment Plant
Authors: Malla Vijayeta, Y. Vijaya Kumar, N. Ramakrishna Raju, K. Satyanarayana
Abstract:
Global AEC (architecture, engineering, and construction) industry has been coined as one of the most resistive domains in embracing technology. Although this digital era has been inundated with software tools like CAD, STADD, CANDY, Microsoft Project, Primavera etc. the key stakeholders have been working in siloes and processes remain fragmented. Unlike the yesteryears’ simpler project delivery methods, the current projects are of fast-track, complex, risky, multidisciplinary, stakeholder’s influential, statutorily regulative etc. pose extensive bottlenecks in preventing timely completion of projects. At this juncture, a paradigm shift surfaced in construction industry, and Building Information Modeling, aka BIM, has been a panacea to bolster the multidisciplinary teams’ cooperative and collaborative work leading to productive, sustainable and leaner project outcome. Building information modeling has been integrative, stakeholder engaging and centralized approach in providing a common platform of communication. A common misconception that BIM can be used for building/high rise projects in Indian Construction Industry, while this paper discusses of the implementation of BIM processes/methodologies in water and waste water industry. It elucidates about BIM 4D planning and constructability reviews of a Sewage Treatment Plant in India. Conventional construction planning and logistics management involves a blend of experience coupled with imagination. Even though the excerpts or judgments or lessons learnt gained from veterans might be predictive and helpful, but the uncertainty factor persists. This paper shall delve about the case study of real time implementation of BIM 4D planning protocols for one of the Sewage Treatment Plant of Dravyavati River Rejuvenation Project in India and develops a Time Liner to identify logistics planning and clash detection. With this BIM processes, we shall find that there will be significant reduction of duplication of tasks and reworks. Also another benefit achieved will be better visualization and workarounds during conception stage and enables for early involvement of the stakeholders in the Project Life cycle of Sewage Treatment Plant construction. Moreover, we have also taken an opinion poll of the benefits accrued utilizing BIM processes versus traditional paper based communication like 2D and 3D CAD tools. Thus this paper concludes with BIM framework for Sewage Treatment Plant construction which will achieve optimal construction co-ordination advantages like 4D construction sequencing, interference checking, clash detection checking and resolutions by primary engagement of all key stakeholders thereby identifying potential risks and subsequent creation of risk response strategies. However, certain hiccups like hesitancy in adoption of BIM technology by naïve users and availability of proficient BIM trainers in India poses a phenomenal impediment. Hence the nurture of BIM processes from conception, construction and till commissioning, operation and maintenance along with deconstruction of a project’s life cycle is highly essential for Indian Construction Industry in this digital era.Keywords: integrated BIM workflow, 4D planning with BIM, building information modeling, clash detection and visualization, constructability reviews, project life cycle
Procedia PDF Downloads 12257 Understanding Hydrodynamic in Lake Victoria Basin in a Catchment Scale: A Literature Review
Authors: Seema Paul, John Mango Magero, Prosun Bhattacharya, Zahra Kalantari, Steve W. Lyon
Abstract:
The purpose of this review paper is to develop an understanding of lake hydrodynamics and the potential climate impact on the Lake Victoria (LV) catchment scale. This paper briefly discusses the main problems of lake hydrodynamics and its’ solutions that are related to quality assessment and climate effect. An empirical methodology in modeling and mapping have considered for understanding lake hydrodynamic and visualizing the long-term observational daily, monthly, and yearly mean dataset results by using geographical information system (GIS) and Comsol techniques. Data were obtained for the whole lake and five different meteorological stations, and several geoprocessing tools with spatial analysis are considered to produce results. The linear regression analyses were developed to build climate scenarios and a linear trend on lake rainfall data for a long period. A potential evapotranspiration rate has been described by the MODIS and the Thornthwaite method. The rainfall effect on lake water level observed by Partial Differential Equations (PDE), and water quality has manifested by a few nutrients parameters. The study revealed monthly and yearly rainfall varies with monthly and yearly maximum and minimum temperatures, and the rainfall is high during cool years and the temperature is high associated with below and average rainfall patterns. Rising temperatures are likely to accelerate evapotranspiration rates and more evapotranspiration is likely to lead to more rainfall, drought is more correlated with temperature and cloud is more correlated with rainfall. There is a trend in lake rainfall and long-time rainfall on the lake water surface has affected the lake level. The onshore and offshore have been concentrated by initial literature nutrients data. The study recommended that further studies should consider fully lake bathymetry development with flow analysis and its’ water balance, hydro-meteorological processes, solute transport, wind hydrodynamics, pollution and eutrophication these are crucial for lake water quality, climate impact assessment, and water sustainability.Keywords: climograph, climate scenarios, evapotranspiration, linear trend flow, rainfall event on LV, concentration
Procedia PDF Downloads 9956 Digital Transformation and Digitalization of Public Administration
Authors: Govind Kumar
Abstract:
The concept of ‘e-governance’ that was brought about by the new wave of reforms, namely ‘LPG’ in the early 1990s, has been enabling governments across the globe to digitally transform themselves. Digital transformation is leading the governments with qualitative decisions, optimization in rational use of resources, facilitation of cost-benefit analyses, and elimination of redundancy and corruption with the help of ICT-based applications interface. ICT-based applications/technologies have enormous potential for impacting positive change in the social lives of the global citizenry. Supercomputers test and analyze millions of drug molecules for developing candidate vaccines to combat the global pandemic. Further, e-commerce portals help distribute and supply household items and medicines, while videoconferencing tools provide a visual interface between the clients and hosts. Besides, crop yields are being maximized with the help of drones and machine learning, whereas satellite data, artificial intelligence, and cloud computing help governments with the detection of illegal mining, tackling deforestation, and managing freshwater resources. Such e-applications have the potential to take governance an extra mile by achieving 5 Es (effective, efficient, easy, empower, and equity) of e-governance and six Rs (reduce, reuse, recycle, recover, redesign and remanufacture) of sustainable development. If such digital transformation gains traction within the government framework, it will replace the traditional administration with the digitalization of public administration. On the other hand, it has brought in a new set of challenges, like the digital divide, e-illiteracy, technological divide, etc., and problems like handling e-waste, technological obsolescence, cyber terrorism, e-fraud, hacking, phishing, etc. before the governments. Therefore, it would be essential to bring in a rightful mixture of technological and humanistic interventions for addressing the above issues. This is on account of the reason that technology lacks an emotional quotient, and the administration does not work like technology. Both are self-effacing unless a blend of technology and a humane face are brought in into the administration. The paper will empirically analyze the significance of the technological framework of digital transformation within the government set up for the digitalization of public administration on the basis of the synthesis of two case studies undertaken from two diverse fields of administration and present a future framework of the study.Keywords: digital transformation, electronic governance, public administration, knowledge framework
Procedia PDF Downloads 10155 Predicting Daily Patient Hospital Visits Using Machine Learning
Authors: Shreya Goyal
Abstract:
The study aims to build user-friendly software to understand patient arrival patterns and compute the number of potential patients who will visit a particular health facility for a given period by using a machine learning algorithm. The underlying machine learning algorithm used in this study is the Support Vector Machine (SVM). Accurate prediction of patient arrival allows hospitals to operate more effectively, providing timely and efficient care while optimizing resources and improving patient experience. It allows for better allocation of staff, equipment, and other resources. If there's a projected surge in patients, additional staff or resources can be allocated to handle the influx, preventing bottlenecks or delays in care. Understanding patient arrival patterns can also help streamline processes to minimize waiting times for patients and ensure timely access to care for patients in need. Another big advantage of using this software is adhering to strict data protection regulations such as the Health Insurance Portability and Accountability Act (HIPAA) in the United States as the hospital will not have to share the data with any third party or upload it to the cloud because the software can read data locally from the machine. The data needs to be arranged in. a particular format and the software will be able to read the data and provide meaningful output. Using software that operates locally can facilitate compliance with these regulations by minimizing data exposure. Keeping patient data within the hospital's local systems reduces the risk of unauthorized access or breaches associated with transmitting data over networks or storing it in external servers. This can help maintain the confidentiality and integrity of sensitive patient information. Historical patient data is used in this study. The input variables used to train the model include patient age, time of day, day of the week, seasonal variations, and local events. The algorithm uses a Supervised learning method to optimize the objective function and find the global minima. The algorithm stores the values of the local minima after each iteration and at the end compares all the local minima to find the global minima. The strength of this study is the transfer function used to calculate the number of patients. The model has an output accuracy of >95%. The method proposed in this study could be used for better management planning of personnel and medical resources.Keywords: machine learning, SVM, HIPAA, data
Procedia PDF Downloads 6654 Treating Voxels as Words: Word-to-Vector Methods for fMRI Meta-Analyses
Authors: Matthew Baucum
Abstract:
With the increasing popularity of fMRI as an experimental method, psychology and neuroscience can greatly benefit from advanced techniques for summarizing and synthesizing large amounts of data from brain imaging studies. One promising avenue is automated meta-analyses, in which natural language processing methods are used to identify the brain regions consistently associated with certain semantic concepts (e.g. “social”, “reward’) across large corpora of studies. This study builds on this approach by demonstrating how, in fMRI meta-analyses, individual voxels can be treated as vectors in a semantic space and evaluated for their “proximity” to terms of interest. In this technique, a low-dimensional semantic space is built from brain imaging study texts, allowing words in each text to be represented as vectors (where words that frequently appear together are near each other in the semantic space). Consequently, each voxel in a brain mask can be represented as a normalized vector sum of all of the words in the studies that showed activation in that voxel. The entire brain mask can then be visualized in terms of each voxel’s proximity to a given term of interest (e.g., “vision”, “decision making”) or collection of terms (e.g., “theory of mind”, “social”, “agent”), as measured by the cosine similarity between the voxel’s vector and the term vector (or the average of multiple term vectors). Analysis can also proceed in the opposite direction, allowing word cloud visualizations of the nearest semantic neighbors for a given brain region. This approach allows for continuous, fine-grained metrics of voxel-term associations, and relies on state-of-the-art “open vocabulary” methods that go beyond mere word-counts. An analysis of over 11,000 neuroimaging studies from an existing meta-analytic fMRI database demonstrates that this technique can be used to recover known neural bases for multiple psychological functions, suggesting this method’s utility for efficient, high-level meta-analyses of localized brain function. While automated text analytic methods are no replacement for deliberate, manual meta-analyses, they seem to show promise for the efficient aggregation of large bodies of scientific knowledge, at least on a relatively general level.Keywords: FMRI, machine learning, meta-analysis, text analysis
Procedia PDF Downloads 45053 Detection of Powdery Mildew Disease in Strawberry Using Image Texture and Supervised Classifiers
Authors: Sultan Mahmud, Qamar Zaman, Travis Esau, Young Chang
Abstract:
Strawberry powdery mildew (PM) is a serious disease that has a significant impact on strawberry production. Field scouting is still a major way to find PM disease, which is not only labor intensive but also almost impossible to monitor disease severity. To reduce the loss caused by PM disease and achieve faster automatic detection of the disease, this paper proposes an approach for detection of the disease, based on image texture and classified with support vector machines (SVMs) and k-nearest neighbors (kNNs). The methodology of the proposed study is based on image processing which is composed of five main steps including image acquisition, pre-processing, segmentation, features extraction and classification. Two strawberry fields were used in this study. Images of healthy leaves and leaves infected with PM (Sphaerotheca macularis) disease under artificial cloud lighting condition. Colour thresholding was utilized to segment all images before textural analysis. Colour co-occurrence matrix (CCM) was introduced for extraction of textural features. Forty textural features, related to a physiological parameter of leaves were extracted from CCM of National television system committee (NTSC) luminance, hue, saturation and intensity (HSI) images. The normalized feature data were utilized for training and validation, respectively, using developed classifiers. The classifiers have experimented with internal, external and cross-validations. The best classifier was selected based on their performance and accuracy. Experimental results suggested that SVMs classifier showed 98.33%, 85.33%, 87.33%, 93.33% and 95.0% of accuracy on internal, external-I, external-II, 4-fold cross and 5-fold cross-validation, respectively. Whereas, kNNs results represented 90.0%, 72.00%, 74.66%, 89.33% and 90.3% of classification accuracy, respectively. The outcome of this study demonstrated that SVMs classified PM disease with a highest overall accuracy of 91.86% and 1.1211 seconds of processing time. Therefore, overall results concluded that the proposed study can significantly support an accurate and automatic identification and recognition of strawberry PM disease with SVMs classifier.Keywords: powdery mildew, image processing, textural analysis, color co-occurrence matrix, support vector machines, k-nearest neighbors
Procedia PDF Downloads 12252 A Unified Approach for Digital Forensics Analysis
Authors: Ali Alshumrani, Nathan Clarke, Bogdan Ghite, Stavros Shiaeles
Abstract:
Digital forensics has become an essential tool in the investigation of cyber and computer-assisted crime. Arguably, given the prevalence of technology and the subsequent digital footprints that exist, it could have a significant role across almost all crimes. However, the variety of technology platforms (such as computers, mobiles, Closed-Circuit Television (CCTV), Internet of Things (IoT), databases, drones, cloud computing services), heterogeneity and volume of data, forensic tool capability, and the investigative cost make investigations both technically challenging and prohibitively expensive. Forensic tools also tend to be siloed into specific technologies, e.g., File System Forensic Analysis Tools (FS-FAT) and Network Forensic Analysis Tools (N-FAT), and a good deal of data sources has little to no specialist forensic tools. Increasingly it also becomes essential to compare and correlate evidence across data sources and to do so in an efficient and effective manner enabling an investigator to answer high-level questions of the data in a timely manner without having to trawl through data and perform the correlation manually. This paper proposes a Unified Forensic Analysis Tool (U-FAT), which aims to establish a common language for electronic information and permit multi-source forensic analysis. Core to this approach is the identification and development of forensic analyses that automate complex data correlations, enabling investigators to investigate cases more efficiently. The paper presents a systematic analysis of major crime categories and identifies what forensic analyses could be used. For example, in a child abduction, an investigation team might have evidence from a range of sources including computing devices (mobile phone, PC), CCTV (potentially a large number), ISP records, and mobile network cell tower data, in addition to third party databases such as the National Sex Offender registry and tax records, with the desire to auto-correlate and across sources and visualize in a cognitively effective manner. U-FAT provides a holistic, flexible, and extensible approach to providing digital forensics in technology, application, and data-agnostic manner, providing powerful and automated forensic analysis.Keywords: digital forensics, evidence correlation, heterogeneous data, forensics tool
Procedia PDF Downloads 19751 Utilization of Informatics to Transform Clinical Data into a Simplified Reporting System to Examine the Analgesic Prescribing Practices of a Single Urban Hospital’s Emergency Department
Authors: Rubaiat S. Ahmed, Jemer Garrido, Sergey M. Motov
Abstract:
Clinical informatics (CI) enables the transformation of data into a systematic organization that improves the quality of care and the generation of positive health outcomes.Innovative technology through informatics that compiles accurate data on analgesic utilization in the emergency department can enhance pain management in this important clinical setting. We aim to establish a simplified reporting system through CI to examine and assess the analgesic prescribing practices in the EDthrough executing a U.S. federal grant project on opioid reduction initiatives. Queried data points of interest from a level-one trauma ED’s electronic medical records were used to create data sets and develop informational/visual reporting dashboards (on Microsoft Excel and Google Sheets) concerning analgesic usage across several pre-defined parameters and performance metrics using CI. The data was then qualitatively analyzed to evaluate ED analgesic prescribing trends by departmental clinicians and leadership. During a 12-month reporting period (Dec. 1, 2020 – Nov. 30, 2021) for the ongoing project, about 41% of all ED patient visits (N = 91,747) were for pain conditions, of which 81.6% received analgesics in the ED and at discharge (D/C). Of those treated with analgesics, 24.3% received opioids compared to 75.7% receiving opioid alternatives in the ED and at D/C, including non-pharmacological modalities. Demographics showed among patients receiving analgesics, 56.7% were aged between 18-64, 51.8% were male, 51.7% were white, and 66.2% had government funded health insurance. Ninety-one percent of all opioids prescribed were in the ED, with intravenous (IV) morphine, IV fentanyl, and morphine sulfate immediate release (MSIR) tablets accounting for 88.0% of ED dispensed opioids. With 9.3% of all opioids prescribed at D/C, MSIR was dispensed 72.1% of the time. Hydrocodone, oxycodone, and tramadol usage to only 10-15% of the time, and hydromorphone at 0%. Of opioid alternatives, non-steroidal anti-inflammatory drugs were utilized 60.3% of the time, 23.5% with local anesthetics and ultrasound-guided nerve blocks, and 7.9% with acetaminophen as the primary non-opioid drug categories prescribed by ED providers. Non-pharmacological analgesia included virtual reality and other modalities. An average of 18.5 ED opioid orders and 1.9 opioid D/C prescriptions per 102.4 daily ED patient visits was observed for the period. Compared to other specialties within our institution, 2.0% of opioid D/C prescriptions are given by ED providers, compared to the national average of 4.8%. Opioid alternatives accounted for 69.7% and 30.3% usage, versus 90.7% and 9.3% for opioids in the ED and D/C, respectively.There is a pressing need for concise, relevant, and reliable clinical data on analgesic utilization for ED providers and leadership to evaluate prescribing practices and make data-driven decisions. Basic computer software can be used to create effective visual reporting dashboards with indicators that convey relevant and timely information in an easy-to-digest manner. We accurately examined our ED's analgesic prescribing practices using CI through dashboard reporting. Such reporting tools can quickly identify key performance indicators and prioritize data to enhance pain management and promote safe prescribing practices in the emergency setting.Keywords: clinical informatics, dashboards, emergency department, health informatics, healthcare informatics, medical informatics, opioids, pain management, technology
Procedia PDF Downloads 14550 Smart Construction Sites in KSA: Challenges and Prospects
Authors: Ahmad Mohammad Sharqi, Mohamed Hechmi El Ouni, Saleh Alsulamy
Abstract:
Due to the emerging technologies revolution worldwide, the need to exploit and employ innovative technologies for other functions and purposes in different aspects has become a remarkable matter. Saudi Arabia is considered one of the most powerful economic countries in the world, where the construction sector participates effectively in its economy. Thus, the construction sector in KSA should convoy the rapid digital revolution and transformation and implement smart devices on sites. A Smart Construction Site (SCS) includes smart devices, artificial intelligence, the internet of things, augmented reality, building information modeling, geographical information systems, and cloud information. This paper aims to study the level of implementation of SCS in KSA, analyze the obstacles and challenges of adopting SCS and find out critical success factors for its implementation. A survey of close-ended questions (scale and multi-choices) has been conducted on professionals in the construction sector of Saudi Arabia. A total number of twenty-nine questions has been prepared for respondents. Twenty-four scale questions were established, and those questions were categorized into several themes: quality, scheduling, cost, occupational safety and health, technologies and applications, and general perception. Consequently, the 5-point Likert scale tool (very low to very high) was adopted for this survey. In addition, five close-ended questions with multi-choice types have also been prepared; these questions have been derived from a previous study implemented in the United Kingdom (UK) and the Dominic Republic (DR), these questions have been rearranged and organized to fit the structured survey in order to place the Kingdom of Saudi Arabia in comparison with the United Kingdom (UK) as well as the Dominican Republic (DR). A total number of one hundred respondents have participated in this survey from all regions of the Kingdom of Saudi Arabia: southern, central, western, eastern, and northern regions. The drivers, obstacles, and success factors for implementing smart devices and technologies in KSA’s construction sector have been investigated and analyzed. Besides, it has been concluded that KSA is on the right path toward adopting smart construction sites with attractive results comparable to and even better than the UK in some factors.Keywords: artificial intelligence, construction projects management, internet of things, smart construction sites, smart devices
Procedia PDF Downloads 15649 Conceptualizing Personalized Learning: Review of Literature 2007-2017
Authors: Ruthanne Tobin
Abstract:
As our data-driven, cloud-based, knowledge-centric lives become ever more global, mobile, and digital, educational systems everywhere are struggling to keep pace. Schools need to prepare students to become critical-thinking, tech-savvy, life-long learners who are engaged and adaptable enough to find their unique calling in a post-industrial world of work. Recognizing that no nation can afford poor achievement or high dropout rates without jeopardizing its social and economic future, the thirty-two nations of the OECD are launching initiatives to redesign schools, generally under the banner of Personalized Learning or 21st Century Learning. Their intention is to transform education by situating students as co-enquirers and co-contributors with their teachers of what, when, and how learning happens for each individual. In this focused review of the 2007-2017 literature on personalized learning, the author sought answers to two main questions: “What are the theoretical frameworks that guide personalized learning?” and “What is the conceptual understanding of the model?” Ultimately, the review reveals that, although the research area is overly theorized and under-substantiated, it does provide a significant body of knowledge about this potentially transformative educational restructuring. For example, it addresses the following questions: a) What components comprise a PL model? b) How are teachers facilitating agency (voice & choice) in their students? c) What kinds of systems, processes and procedures are being used to guide the innovation? d) How is learning organized, monitored and assessed? e) What role do inquiry based models play? f) How do teachers integrate the three types of knowledge: Content, pedagogical and technological? g) Which kinds of forces enable, and which impede, personalizing learning? h) What is the nature of the collaboration among teachers? i) How do teachers co-regulate differentiated tasks? One finding of the review shows that while technology can dramatically expand access to information, expectations of its impact on teaching and learning are often disappointing unless the technologies are paired with excellent pedagogies in order to address students’ needs, interests and aspirations. This literature review fills a significant gap in this emerging field of research, as it serves to increase conceptual clarity that has hampered both the theorizing and the classroom implementation of a personalized learning model.Keywords: curriculum change, educational innovation, personalized learning, school reform
Procedia PDF Downloads 22548 Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Study Case of the Beterou Catchment
Authors: Ella Sèdé Maforikan
Abstract:
Accurate land cover mapping is essential for effective environmental monitoring and natural resources management. This study focuses on assessing the classification performance of two satellite datasets and evaluating the impact of different input feature combinations on classification accuracy in the Beterou catchment, situated in the northern part of Benin. Landsat-8 and Sentinel-2 images from June 1, 2020, to March 31, 2021, were utilized. Employing the Random Forest (RF) algorithm on Google Earth Engine (GEE), a supervised classification categorized the land into five classes: forest, savannas, cropland, settlement, and water bodies. GEE was chosen due to its high-performance computing capabilities, mitigating computational burdens associated with traditional land cover classification methods. By eliminating the need for individual satellite image downloads and providing access to an extensive archive of remote sensing data, GEE facilitated efficient model training on remote sensing data. The study achieved commendable overall accuracy (OA), ranging from 84% to 85%, even without incorporating spectral indices and terrain metrics into the model. Notably, the inclusion of additional input sources, specifically terrain features like slope and elevation, enhanced classification accuracy. The highest accuracy was achieved with Sentinel-2 (OA = 91%, Kappa = 0.88), slightly surpassing Landsat-8 (OA = 90%, Kappa = 0.87). This underscores the significance of combining diverse input sources for optimal accuracy in land cover mapping. The methodology presented herein not only enables the creation of precise, expeditious land cover maps but also demonstrates the prowess of cloud computing through GEE for large-scale land cover mapping with remarkable accuracy. The study emphasizes the synergy of different input sources to achieve superior accuracy. As a future recommendation, the application of Light Detection and Ranging (LiDAR) technology is proposed to enhance vegetation type differentiation in the Beterou catchment. Additionally, a cross-comparison between Sentinel-2 and Landsat-8 for assessing long-term land cover changes is suggested.Keywords: land cover mapping, Google Earth Engine, random forest, Beterou catchment
Procedia PDF Downloads 6347 ChatGPT 4.0 Demonstrates Strong Performance in Standardised Medical Licensing Examinations: Insights and Implications for Medical Educators
Authors: K. O'Malley
Abstract:
Background: The emergence and rapid evolution of large language models (LLMs) (i.e., models of generative artificial intelligence, or AI) has been unprecedented. ChatGPT is one of the most widely used LLM platforms. Using natural language processing technology, it generates customized responses to user prompts, enabling it to mimic human conversation. Responses are generated using predictive modeling of vast internet text and data swathes and are further refined and reinforced through user feedback. The popularity of LLMs is increasing, with a growing number of students utilizing these platforms for study and revision purposes. Notwithstanding its many novel applications, LLM technology is inherently susceptible to bias and error. This poses a significant challenge in the educational setting, where academic integrity may be undermined. This study aims to evaluate the performance of the latest iteration of ChatGPT (ChatGPT4.0) in standardized state medical licensing examinations. Methods: A considered search strategy was used to interrogate the PubMed electronic database. The keywords ‘ChatGPT’ AND ‘medical education’ OR ‘medical school’ OR ‘medical licensing exam’ were used to identify relevant literature. The search included all peer-reviewed literature published in the past five years. The search was limited to publications in the English language only. Eligibility was ascertained based on the study title and abstract and confirmed by consulting the full-text document. Data was extracted into a Microsoft Excel document for analysis. Results: The search yielded 345 publications that were screened. 225 original articles were identified, of which 11 met the pre-determined criteria for inclusion in a narrative synthesis. These studies included performance assessments in national medical licensing examinations from the United States, United Kingdom, Saudi Arabia, Poland, Taiwan, Japan and Germany. ChatGPT 4.0 achieved scores ranging from 67.1 to 88.6 percent. The mean score across all studies was 82.49 percent (SD= 5.95). In all studies, ChatGPT exceeded the threshold for a passing grade in the corresponding exam. Conclusion: The capabilities of ChatGPT in standardized academic assessment in medicine are robust. While this technology can potentially revolutionize higher education, it also presents several challenges with which educators have not had to contend before. The overall strong performance of ChatGPT, as outlined above, may lend itself to unfair use (such as the plagiarism of deliverable coursework) and pose unforeseen ethical challenges (arising from algorithmic bias). Conversely, it highlights potential pitfalls if users assume LLM-generated content to be entirely accurate. In the aforementioned studies, ChatGPT exhibits a margin of error between 11.4 and 32.9 percent, which resonates strongly with concerns regarding the quality and veracity of LLM-generated content. It is imperative to highlight these limitations, particularly to students in the early stages of their education who are less likely to possess the requisite insight or knowledge to recognize errors, inaccuracies or false information. Educators must inform themselves of these emerging challenges to effectively address them and mitigate potential disruption in academic fora.Keywords: artificial intelligence, ChatGPT, generative ai, large language models, licensing exam, medical education, medicine, university
Procedia PDF Downloads 34