Search results for: effective microorganism
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9642

Search results for: effective microorganism

1302 The Analysis of Swales Model (Cars Model) in the UMT Final Year Engineering Students

Authors: Kais Amir Kadhim

Abstract:

Context: The study focuses on the rhetorical structure of chapters in engineering final year projects, specifically the Introduction chapter, written by UMT (University of Marine Technology) engineering students. Existing research has explored the use of genre-based approaches to analyze the writing of final year projects in various disciplines. Research Aim: The aim of this study is to investigate the rhetorical structure of Introduction chapters in engineering final year projects by UMT students. The study aims to identify the frequency of communicative moves and their constituent steps within the Introduction chapters, as well as understand how students justify their research projects. Methodology: The research design will utilize a mixed method approach, combining both quantitative and qualitative methods. Forty Introduction chapters from two different fields in UMT engineering undergraduate programs will be selected for analysis. Findings: The study intends to identify the types of moves present in the Introduction chapters of engineering final year projects by UMT students. Additionally, it aims to determine if these moves and steps are obligatory, conventional, or optional. Theoretical Importance: The study draws upon Bunton's modified CARS (Creating a Research Space) model, which is a conceptual framework used for analyzing the introduction sections of theses. By applying this model, the study contributes to the understanding of the rhetorical structure of Introduction chapters in engineering final year projects. Data Collection: The study will collect data from forty Introduction chapters of engineering final year projects written by UMT engineering students. These chapters will be selected from two different fields within UMT's engineering undergraduate programs. Analysis Procedures: The analysis will involve identifying and categorizing the communicative moves and their constituent steps within the Introduction chapters. The study will utilize both quantitative and qualitative analysis methods to examine the frequency and nature of these moves. Question Addressed: The study aims to address the question of how UMT engineering students structure and justify their research projects within the Introduction chapters of their final year projects. Conclusion: The study aims to contribute to the knowledge of rhetorical structure in engineering final year projects by investigating the Introduction chapters written by UMT engineering students. By using a mixed method research design and applying the modified CARS model, the study intends to identify the types of moves and steps employed by students and explore their justifications for their research projects. The findings have the potential to enhance the understanding of effective academic writing in engineering disciplines.

Keywords: cohesive markers, learning, meaning, students

Procedia PDF Downloads 75
1301 The Role of EDTA and EDDS in Reducing Metal Toxicity for Aquaculture Shellfish Perna canaliculus

Authors: Daniel R. McDougall, Martin D. de Jonge, Gordon M. Miskelly, Duncan J. McGillivray, Andrew G. Jeffs

Abstract:

The chelating agent ethylenediaminetetraacetic acid (EDTA) is commonly added as a cure-all to seawater in aquaculture hatcheries around the world to reduce heavy metal toxicity, significantly improve the survival of larval shellfish, and to therefore improve the overall production efficiency of the aquaculture industry. However, EDTA is not a biodegradable chemical and is considered to be a persistent organic pollutant, which will accumulate in the environment over time. This makes the use of EDTA unsustainable environmentally, and therefore alternatives should be considered. Ethylenediaminedisuccinic acid (EDDS) is a biodegradable alternative to EDTA with very similar metal chelation properties. This study investigates the effect of EDTA and EDDS at two different concentrations, on metal concentrations found within developing New Zealand green-lipped mussel (Perna canaliculus) larvae. P. canaliculus is New Zealand’s main shellfish aquaculture species, providing a major export for New Zealand’s economy, with excellent potential for increased production in the near future. It is well known that the early stages of bivalve development are the most vulnerable to metal toxicity and P. canaliculus is no exception. The commercially used concentration (12 µmol L⁻¹) of EDTA added to P. canaliculus larval rearing tanks often increases the yield of D-larvae by over 80%. This concentration of EDTA and EDDS will be tested in this study, along with a lower concentration (3 µmol L⁻¹). After 48 hours of larval development, the D-larvae will be analyzed for heavy metal content with Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and heavy metal distribution with synchrotron X-ray Fluorescence Microscopy (XFM). In this study, we found that EDDS also improves the yield of P. canaliculus larvae and could be a viable alternative to EDTA in aquaculture. Furthermore, results suggest a higher concentration of chelating agent is more effective for improving the yield of developing P. canaliculus larvae. Metals with significant differences in concentration with the addition of EDTA were Cr, Cu, Zn, Cd and Pb (P < 0.05). We observed for the first time to the author’s best knowledge, metal distribution within 100 µm P. canaliculus D-larvae using synchrotron XFM and found changes in the distribution of metals with the addition of EDTA. XFM also has the potential to provide information about the chemical state of the metals within mussel larvae. This research provides greater insight into the reasons for the effectiveness of adding the chelating agent to aquaculture culture water, and a more environmentally conscious alternative to the currently used EDTA, which could be extremely valuable for the aquaculture industry.

Keywords: EDDS, EDTA, heavy metals, P. canaliculus, toxicity, water treatment

Procedia PDF Downloads 231
1300 Integrated Passive Cooling Systems for Tropical Residential Buildings: A Review through the Lens of Latent Heat Assessment

Authors: O. Eso, M. Mohammadi, J. Darkwa, J. Calautit

Abstract:

Residential buildings are responsible for 22% of the global end-use energy demand and 17% of global CO₂ emissions. Tropical climates particularly present higher latent heat gains, leading to more cooling loads. However, the cooling processes are all based on conventional mechanical air conditioning systems which are energy and carbon intensive technologies. Passive cooling systems have in the past been considered as alternative technologies for minimizing energy consumption in buildings. Nevertheless, replacing mechanical cooling systems with passive ones will require a careful assessment of the passive cooling system heat transfer to determine if suitable to outperform their conventional counterparts. This is because internal heat gains, indoor-outdoor heat transfer, and heat transfer through envelope affects the performance of passive cooling systems. While many studies have investigated sensible heat transfer in passive cooling systems, not many studies have focused on their latent heat transfer capabilities. Furthermore, combining heat prevention, heat modulation and heat dissipation to passively cool indoor spaces in the tropical climates is critical to achieve thermal comfort. Since passive cooling systems use only one of these three approaches at a time, integrating more than one passive cooling system for effective indoor latent heat removal while still saving energy is studied. This study is a systematic review of recently published peer review journals on integrated passive cooling systems for tropical residential buildings. The missing links in the experimental and numerical studies with regards to latent heat reduction interventions are presented. Energy simulation studies of integrated passive cooling systems in tropical residential buildings are also discussed. The review has shown that comfortable indoor environment is attainable when two or more passive cooling systems are integrated in tropical residential buildings. Improvement occurs in the heat transfer rate and cooling performance of the passive cooling systems when thermal energy storage systems like phase change materials are included. Integrating passive cooling systems in tropical residential buildings can reduce energy consumption by 6-87% while achieving up to 17.55% reduction in indoor heat flux. The review has highlighted a lack of numerical studies regarding passive cooling system performance in tropical savannah climates. In addition, detailed studies are required to establish suitable latent heat transfer rate in passive cooling ventilation devices under this climate category. This should be considered in subsequent studies. The conclusions and outcomes of this study will help researchers understand the overall energy performance of integrated passive cooling systems in tropical climates and help them identify and design suitable climate specific options for residential buildings.

Keywords: energy savings, latent heat, passive cooling systems, residential buildings, tropical residential buildings

Procedia PDF Downloads 149
1299 Towards a New Spinozistic Democracy: Power and/ or Virtue

Authors: Cetin Balanuye

Abstract:

The present study aims to accomplish two tasks: First, it critically reinterprets the actual relationship between democracy and the modern state in order to show that it is responsible for most of our current political problems and dilemmas. Second, it is argued that this relationship can be reimagined for better, and Spinozistic notions such as ‘conatus’, ‘power’ and ‘virtue’ are crucial in this pursuit. The significance of the present study lies in several interrelated observations: The world has never been a more heterogeneous place than today. People from different religious, cultural and historical backgrounds do equally have 'good reasons' to hold that their world views are the best ones. We have almost no authority to be respected equally by all these different world views. We no longer have gods at once we had in our ancient times. We have three big monotheistic religions, yet the God of which is significantly different from each other. The worse is that the believers of these religions do not seem eager to perform a duet, but rather tend to fight a duel with each other. Thanks to post-modernism, neither reason nor science is any longer seen as universally value-neutral guide to be employed in our search for a common ground. In sum, the question 'how should I live?' has never generated this much diversity before in terms of answers and the answers have never been this much away from a fairly objective evaluation. Our so-called liberal democracies are supposed to perform against this heterogenous, antagonistic and self-sustained web of discursive background. It is argued that our conception of 'State' with a weak emphasis on democracy is not a solution, if not itself the source of this topsy-turvy. Weak emphasis on democracy should be understood here as a kind of liberal democracy which operates in a partisan State, one which takes sides among rivals either for this or against that world view. This conception of State rests on a misleading understanding of the concept of power, and it is argued that it can only be corrected by means of a Spinoza-informed ontology of politics. The role of State in such an ontology is no longer a partisanship of any kind, nor is it representative of all-encompassing authority to favor any world view. State in this Spinozistic ontology equally encourages world views and their discursive practices to let them increase the power of acting and have more power to affect rules and regulations. World views can enhance every medium -in the sense of nonviolence ethology- to increase their power of acting. The more active a world view is, the more powerful and the more virtuous it is in terms of its effective power on the State. Though Spinoza has provided us with a limited guideline to understand what kind of democracy, he actually had in his mind, his ontology developed in Ethics is rich enough to imagine and inspire a better democratic practice to help us sustain the modern State in our extremely pluralistic contemporary societies.

Keywords: democracy, Islam, power, Spinoza

Procedia PDF Downloads 209
1298 Virtue Ethics as a Corrective to Mismanagement of Resources in Nigeria’s Economy: Akwa Ibom State Experience

Authors: Veronica Onyemauwa

Abstract:

This research work examines the socio-ethical issues embedded in resource management and wealth creation in Nigeria, using Akwa Ibom State as a case study. The work is poised to proffer answers to the problematic questions raised, “why is the wealth of Akwa Ibom State not prudently managed, and wastages curbed in order to cater for the satisfaction of the indigent citizens, as Jesus Christ did in the feeding of five thousand people (John 6:12) ? Could ethical and responsible resource management not solve the paradox of poverty stricken people of Akwa Ibom in a rich economy? What ought to be done to better the lot of Akwa Ibomites? The research adopts phenomenological and sociological research methodology with primary and secondary sources of information to explore the socio-ethical issues embedded in resource management and wealth creation in Akwa Ibom State. Findings revealed that, reckless exploitation and mismanagement of the rich natural and human resources of Akwa Ibom State have spelt doom to the economic progress and survival of Akwa Ibomites in particular and Nigerians in general. Hence, hunger and poverty remain adversaries to majority of the people. Again, the culture of diversion of funds and squandermania institutionalized within the confine of Akwa Ibom State government, deter investment in economic enterprises, job and wealth creation that would have yielded economic dividends for Akwa Ibomites. These and many other unwholesome practices are responsible for the present deplorable condition of Akwa Ibom State in particular and Nigerian society in general. As a way out of this economic quagmire, it is imperative that, every unwholesome practice within the State be tackled more proactively and innovatively in the interest of the masses through responsible resource management and wealth creation. It is believed that, an effective leadership, a statesman with vision and commitment would transform the abundant resources to achieve meaningful development, create wealth and reduce poverty. Ethical leadership is required in all the tiers of government and public organizations to transform resources into more wealth. Thus, this paper advocates for ethics of virtue: a paradigm shift from exploitative leadership style to productive leadership style; change from atomistic human relation to corporative human relation; change from being subsistence to abundant in other to maximize the available resources in the State. To do otherwise is unethical and lack moral justification.

Keywords: corrective, mismanagement, resources, virtue ethics

Procedia PDF Downloads 113
1297 Game On: Unlocking the Educational Potential of Games and Entertainment in Online Learning

Authors: Colleen Cleveland, W. Adam Baldowski

Abstract:

In the dynamic realm of online education, the integration of games and entertainment has emerged as a powerful strategy to captivate learners, drive active participation, and cultivate meaningful learning experiences. This abstract presents an overview of the upcoming conference, "Game On," dedicated to exploring the transformative impact of gamification, interactive simulations, and multimedia content in the digital learning landscape. Introduction: The conference aims to blur the traditional boundaries between education and entertainment, inspiring learners of diverse ages and backgrounds to actively engage in their online learning journeys. By leveraging the captivating elements of games and entertainment, educators can enhance motivation, retention, and deep understanding among virtual classroom participants. Conference Highlights: Commencing with an exploration of theoretical foundations drawing from educational psychology, instructional design, and the latest pedagogical research, participants will gain valuable insights into the ways gamified elements elevate the quality of online education. Attendees can expect interactive sessions, workshops, and case studies showcasing best practices and innovative strategies, including game-based assessments and virtual reality simulations. Inclusivity and Diversity: The conference places a strong emphasis on inclusivity, accessibility, and diversity in the integration of games and entertainment for educational purposes. Discussions will revolve around accommodating diverse learning styles, overcoming potential challenges, and ensuring equitable access to engaging educational content for all learners. Educational Transformation: Educators, instructional designers, and e-learning professionals attending "Game On" will acquire practical techniques to elevate the quality of their online courses. The conference promises a stimulating and informative exploration of blending education with entertainment, unlocking the untapped potential of games and entertainment in online education. Conclusion: "Game On" invites participants to embark on a journey that transforms online education by harnessing the power of entertainment. This event promises to be a cornerstone in the evolution of virtual learning, offering valuable insights for those seeking to create a more engaging and effective online educational experience. Join us as we explore new horizons, pushing the boundaries of online education through the fusion of games and entertainment.

Keywords: online education, games, entertainment, psychology, therapy, pop culture

Procedia PDF Downloads 51
1296 Study of Open Spaces in Urban Residential Clusters in India

Authors: Renuka G. Oka

Abstract:

From chowks to streets to verandahs to courtyards; residential open spaces are very significantly placed in traditional urban neighborhoods of India. At various levels of intersection, the open spaces with their attributes like juxtaposition with the built fabric, scale, climate sensitivity and response, multi-functionality, etc. reflect and respond to the patterns of human interactions. Also, these spaces tend to be quite well utilized. On the other hand, it is a common specter to see an imbalanced utilization of open spaces in newly/recently planned residential clusters. This is maybe due to lack of activity generators around or wrong locations or excess provisions or improper incorporation of aforementioned design attributes. These casual observations suggest the necessity for a systematic study of current residential open spaces. The exploratory study thus attempts to draw lessons through a structured inspection of residential open spaces to understand the effective environment as revealed through their use patterns. Here, residential open spaces are considered in a wider sense to incorporate all the un-built fabric around. These thus, include both use spaces and access space. For the study, open spaces in ten exemplary housing clusters/societies built during the last ten years across India are studied. A threefold inquiry is attempted in this direction. The first relates to identifying and determining the effects of various physical functions like space organization, size, hierarchy, thermal and optical comfort, etc. on the performance of residential open spaces. The second part sets out to understand socio-cultural variations in values, lifestyle, and beliefs which determine activity choices and behavioral preferences of users for respective residential open spaces. The third inquiry further observes the application of these research findings to the design process to derive meaningful and qualitative design advice. However, the study also emphasizes to develop a suitable framework of analysis and to carve out appropriate methods and approaches to probe into these aspects of the inquiry. Given this emphasis, a considerable portion of the research details out the conceptual framework for the study. This framework is supported by an in-depth search of available literature. The findings are worked out for design solutions which integrate the open space systems with the overall design process for residential clusters. The open spaces in residential areas present great complexities both in terms of their use patterns and determinants of their functional responses. The broad aim of the study is, therefore, to arrive at reconsideration of standards and qualitative parameters used by designers – on the basis of more substantial inquiry into the use patterns of open spaces in residential areas.

Keywords: open spaces, physical and social determinants, residential clusters, use patterns

Procedia PDF Downloads 148
1295 Coupling of Microfluidic Droplet Systems with ESI-MS Detection for Reaction Optimization

Authors: Julia R. Beulig, Stefan Ohla, Detlev Belder

Abstract:

In contrast to off-line analytical methods, lab-on-a-chip technology delivers direct information about the observed reaction. Therefore, microfluidic devices make an important scientific contribution, e.g. in the field of synthetic chemistry. Herein, the rapid generation of analytical data can be applied for the optimization of chemical reactions. These microfluidic devices enable a fast change of reaction conditions as well as a resource saving method of operation. In the presented work, we focus on the investigation of multiphase regimes, more specifically on a biphasic microfluidic droplet systems. Here, every single droplet is a reaction container with customized conditions. The biggest challenge is the rapid qualitative and quantitative readout of information as most detection techniques for droplet systems are non-specific, time-consuming or too slow. An exception is the electrospray mass spectrometry (ESI-MS). The combination of a reaction screening platform with a rapid and specific detection method is an important step in droplet-based microfluidics. In this work, we present a novel approach for synthesis optimization on the nanoliter scale with direct ESI-MS detection. The development of a droplet-based microfluidic device, which enables the modification of different parameters while simultaneously monitoring the effect on the reaction within a single run, is shown. By common soft- and photolithographic techniques a polydimethylsiloxane (PDMS) microfluidic chip with different functionalities is developed. As an interface for the MS detection, we use a steel capillary for ESI and improve the spray stability with a Teflon siphon tubing, which is inserted underneath the steel capillary. By optimizing the flow rates, it is possible to screen parameters of various reactions, this is exemplarity shown by a Domino Knoevenagel Hetero-Diels-Alder reaction. Different starting materials, catalyst concentrations and solvent compositions are investigated. Due to the high repetition rate of the droplet production, each set of reaction condition is examined hundreds of times. As a result, of the investigation, we receive possible reagents, the ideal water-methanol ratio of the solvent and the most effective catalyst concentration. The developed system can help to determine important information about the optimal parameters of a reaction within a short time. With this novel tool, we make an important step on the field of combining droplet-based microfluidics with organic reaction screening.

Keywords: droplet, mass spectrometry, microfluidics, organic reaction, screening

Procedia PDF Downloads 301
1294 Structural Health Assessment of a Masonry Bridge Using Wireless

Authors: Nalluri Lakshmi Ramu, C. Venkat Nihit, Narayana Kumar, Dillep

Abstract:

Masonry bridges are the iconic heritage transportation infrastructure throughout the world. Continuous increase in traffic loads and speed have kept engineers in dilemma about their structural performance and capacity. Henceforth, research community has an urgent need to propose an effective methodology and validate on real-time bridges. The presented research aims to assess the structural health of an Eighty-year-old masonry railway bridge in India using wireless accelerometer sensors. The bridge consists of 44 spans with length of 24.2 m each and individual pier is 13 m tall laid on well foundation. To calculate the dynamic characteristic properties of the bridge, ambient vibrations were recorded from the moving traffic at various speeds and the same are compared with the developed three-dimensional numerical model using finite element-based software. The conclusions about the weaker or deteriorated piers are drawn from the comparison of frequencies obtained from the experimental tests conducted on alternative spans. Masonry is a heterogeneous anisotropic material made up of incoherent materials (such as bricks, stones, and blocks). It is most likely the earliest largely used construction material. Masonry bridges, which were typically constructed of brick and stone, are still a key feature of the world's highway and railway networks. There are 1,47,523 railway bridges across India and about 15% of these bridges are built by masonry, which are around 80 to 100 year old. The cultural significance of masonry bridges cannot be overstated. These bridges are considered to be complicated due to the presence of arches, spandrel walls, piers, foundations, and soils. Due to traffic loads and vibrations, wind, rain, frost attack, high/low temperature cycles, moisture, earthquakes, river overflows, floods, scour, and soil under their foundations may cause material deterioration, opening of joints and ring separation in arch barrels, cracks in piers, loss of brick-stones and mortar joints, distortion of the arch profile. Few NDT tests like Flat jack Tests are being employed to access the homogeneity, durability of masonry structure, however there are many drawbacks because of the test. A modern approach of structural health assessment of masonry structures by vibration analysis, frequencies and stiffness properties is being explored in this paper.

Keywords: masonry bridges, condition assessment, wireless sensors, numerical analysis modal frequencies

Procedia PDF Downloads 169
1293 Training 'Green Ambassadors' in the Community-Action Learning Course

Authors: Friman Hen, Banner Ifaa, Shalom-Tuchin Bosmat, Einav Yulia

Abstract:

The action learning course is an academic course which involves academic learning and social activities. The courses deal with processes and social challenges, reveal different ideologies, and develop critical thinking and pragmatic ideas. Students receive course credits and a grade for being part of such courses. Participating students enroll in courses that involve action and activities to engage in the experiential learning process, thereby creating a dialogue and cross-fertilization between being taught in the classroom and experiencing the reality in the real world. A learning experience includes meeting with social organizations, institutions, and state authorities and carrying out practical work with diverse populations. Through experience, students strengthen their academic skills, formulate ethical attitudes toward reality, develop professional and civilian perspectives, and realize how they can influence their surrounding in the present and the hereafter. Under the guidance and supervision of Dr. Hen Friman, H.I.T. has built an innovative course that combines action and activities to increase the awareness and accessibility of the community in an experiential way. The end goal is to create Green Ambassadors—children with a high level of environmental awareness. This course is divided into two parts. The first part, focused on frontal teaching, delivers knowledge from extensive environmental fields to students. These areas include introduction to ecology, the process of electricity generation, air pollution, renewable energy, water economy, waste and recycling, and energy efficiency (first stage). In addition to the professional content in the environment field, students learn the method of effective and experiential teaching to younger learners (4 to 8 years old). With the attainment of knowledge, students are divided into operating groups. The second part of the course shows how the theory becomes practical and concrete. At this stage, students are asked to introduce to the first- and second-graders of ‘Revivim’ School in Holon a lesson of 90 minutes focused on presenting the issues and their importance during the course (second stage). This course is the beginning of a paradigm shift regarding energy usage in the modern society in Israel. The objective of the course is to expand worldwide and train the first and second-graders, and even pre-schoolers, in a wide scope to increase population awareness rate, both in Israel and all over the world, for a green future.

Keywords: air pollution, green ambassador, recycling, renewable energy

Procedia PDF Downloads 242
1292 Energy Efficiency Measures in Canada’s Iron and Steel Industry

Authors: A. Talaei, M. Ahiduzzaman, A. Kumar

Abstract:

In Canada, an increase in the production of iron and steel is anticipated for satisfying the increasing demand of iron and steel in the oil sands and automobile industries. It is predicted that GHG emissions from iron and steel sector will show a continuous increase till 2030 and, with emissions of 20 million tonnes of carbon dioxide equivalent, the sector will account for more than 2% of total national GHG emissions, or 12% of industrial emissions (i.e. 25% increase from 2010 levels). Therefore, there is an urgent need to improve the energy intensity and to implement energy efficiency measures in the industry to reduce the GHG footprint. This paper analyzes the current energy consumption in the Canadian iron and steel industries and identifies energy efficiency opportunities to improve the energy intensity and mitigate greenhouse gas emissions from this industry. In order to do this, a demand tree is developed representing different iron and steel production routs and the technologies within each rout. The main energy consumer within the industry is found to be flared heaters accounting for 81% of overall energy consumption followed by motor system and steam generation each accounting for 7% of total energy consumption. Eighteen different energy efficiency measures are identified which will help the efficiency improvement in various subsector of the industry. In the sintering process, heat recovery from coolers provides a high potential for energy saving and can be integrated in both new and existing plants. Coke dry quenching (CDQ) has the same advantages. Within the blast furnace iron-making process, injection of large amounts of coal in the furnace appears to be more effective than any other option in this category. In addition, because coal-powered electricity is being phased out in Ontario (where the majority of iron and steel plants are located) there will be surplus coal that could be used in iron and steel plants. In the steel-making processes, the recovery of Basic Oxygen Furnace (BOF) gas and scrap preheating provides considerable potential for energy savings in BOF and Electric Arc Furnace (EAF) steel-making processes, respectively. However, despite the energy savings potential, the BOF gas recovery is not applicable in existing plants using steam recovery processes. Given that the share of EAF in steel production is expected to increase the application potential of the technology will be limited. On the other hand, the long lifetime of the technology and the expected capacity increase of EAF makes scrap preheating a justified energy saving option. This paper would present the results of the assessment of the above mentioned options in terms of the costs and GHG mitigation potential.

Keywords: Iron and Steel Sectors, Energy Efficiency Improvement, Blast Furnace Iron-making Process, GHG Mitigation

Procedia PDF Downloads 397
1291 An Assessment of Government Entrepreneurship Programs for Women in Sabah Malaysia

Authors: Imelda Albert Gisip, Tarsiah T. Z. Taman

Abstract:

In Asia, particularly in Malaysia women entrepreneurs contribute substantially to economic growth. This paper presents a review of women entrepreneurs’ program, focusing on Creating Millionaires among Young Women Entrepreneurs (CREAM@YWE) program in Sabah Malaysia which aims to accelerate the entrepreneurship among young women in Sabah Malaysia. Entrepreneurs is seen as essential for growth, job creation and social progress and the virtues of small business for Sabah Maju Jaya (SMJ), the Sabah state government Sabah State development plan for the year 2021-2025. SMJ guides the direction of the government's policies and programs, further guiding the implementation in a planned and strategic manner, to achieve targets and goals that coincide with the development needs of the state. One of the government’s agenda is to put its efforts more strongly to ensure that women entrepreneurs are well supported and enhanced. Thus, The CreaM@YWE Program was developed in 2018 with the main objective is to produce competitive young women entrepreneurs in Sabah and achieve "millionaire" status. CreaM@YWE Program is an innovation process which specifically developed to accelerate entrepreneurship sector particularly for women entrepreneurs in Sabah by incorporating strategic partnerships and collaborations with government agencies and industry players. Being the first of its kind in Sabah, the novelty of this project is providing a supportive ecosystem including six months intensive courses, guided through "hands-holding”, collaborations with strategic partners and easy access to government's assistance. Since its inception, the program has significantly impact society’s wellbeing particularly in empowering young women entrepreneurs in Sabah for the past six years and has produced many successful women entrepreneurs with “millionaire” status. Generally, improving women’s enterprise sector in Malaysia needs an overall enabling environment that allows development opportunities for women entrepreneurs including access to resources and support services. Since achieving the goal of women entrepreneurship policy requires effective partnerships and inclusiveness, Cream @YWE Program has managed to practice these in assisting small entrepreneurs among young women in Sabah in accessing public goods and business opportunities. This proves that achieving women’s economic empowerment requires sound policies, a holistic approach and long-term commitment. Thus, this paper presents how Cream@YWE Program has been supporting Sabah young women entrepreneurs by reforming the business environment to help create opportunities for women, while addressing the few existing gender-specific hurdles.

Keywords: entrepreneurship programs, women, Sabah, Malaysia

Procedia PDF Downloads 24
1290 Rice Tablet Poisoning in Iran

Authors: Somayeh Khanjani, Samaneh Nabavi, Shirin Jalili

Abstract:

Aluminum phosphide (ALP) is an inorganic phosphide used to control insects and is a highly effective insecticide and rodenticide used frequently to protect stored grain. Acute poisoning with this compound is common in some countries including India and Iran, and is a serious health problem. In Iran it was known as "rice tablet", for its use to preserve rice. Two kinds of rice tablets one being herbal while other containing 3g aluminum phosphide (AlP) are available for use in Iranian households to protect stored food grains from pests and rodents. The toxicity of Aluminum phosphide is attributed to the liberation of phosphine gas in contact with water or weak acid and is the major cause of poisoning and deaths. Rice tablet (Aluminum Phosphid) poisoning may be associated with serious and sometimes incurable complications. In 61.3% of patients were shown uniform ingestion. Vomiting was the most common symptoms reported by 96.4% patients. Agitation was reported in 36.9% and felling of thirsty in 27.9 %. Although many complications such as Hypotension, Adult Respiratory Distress Syndrome (ARDS), Acute Renal Failure (ARF) AND Multi Organ Failure (MOF) were the common complications observed in these patients, but the most lethal complication was Cardiac Arrhythmias occurred in 36.9% of cases. Abdominal pain in 31.4% of the patients, nausea in 79.4% of the patients and 41.1% of the patients showed metabolic acidosis. Suicidal intention was the most common cause of poisoning leading to deaths in 18.6% of the patients. Aluminum phosphide can cause either elevation, decrease or no change in electrolytes, bicarbonate and blood glucose level. The possible mechanism for changes in blood glucose levels are complex and depend on the balance of factors which increase its concentration and those which reduce it. AlP poisoning has been postulated to stimulate cortisol which leads to increasing blood level of cortisol, also it may cause stimulation of glucagon, and Adrenaline secretion; in addition, it can inhibit insulin synthesis which may lead to hyperglycemia. Another suggested mechanism of hyperglycemia is rennin activity in some cases, an increase in magnesium level of plasma and that of tissues, and high phosphate level. Although hyperglycemia is most frequent in this poisoning and also is known as a marker of poor prognostic, hypoglycemia in aluminum phosphide poisoning is a rare finding which may be so dangerous. Patients showed sever hypotension and sever acidosis in addition to sever hypoglycemia. The presenting features of AlP intoxication are rapid onset of shock, severe metabolic acidosis, cardiac dysrhythmias and adult respiratory distress syndrome (ARDS).

Keywords: aluminum phosphide (ALP), rice tablet, poisoning, phosphine gas

Procedia PDF Downloads 517
1289 A Delphi Study of Factors Affecting the Forest Biorefinery Development in the Pulp and Paper Industry: The Case of Bio-Based Products

Authors: Natasha Gabriella, Josef-Peter Schöggl, Alfred Posch

Abstract:

Being a mature industry, pulp and paper industry (PPI) possess strength points coming from its existing infrastructure, technology know-how, and abundant availability of biomass. However, the declining trend of the wood-based products sales sends a clear signal to the industry to transform its business model in order to increase its profitability. With the emerging global attention on bio-based economy and circular economy, coupled with the low price of fossil feedstock, the PPI starts to integrate biorefinery as a value-added business model to keep the industry’s competitiveness. Nonetheless, biorefinery as an innovation exposes the PPI with some barriers, of which the uncertainty of the promising product becomes one of the major hurdles. This study aims to assess factors that affect the diffusion and development of forest biorefinery in the PPI, including drivers, barriers, advantages, disadvantages, as well as the most promising bio-based products of forest biorefinery. The study examines the identified factors according to the layer of business environment, being the macro-environment, industry, and strategic group level. Besides, an overview of future state of the identified factors is elaborated as to map necessary improvements for implementing forest biorefinery. A two-phase Delphi method is used to collect the empirical data for the study, comprising of an online-based survey and interviews. Delphi method is an effective communication tools to elicit ideas from a group of experts to further reach a consensus of forecasting future trends. Collaborating a total of 50 experts in the panel, the study reveals that influential factors are found in every layers of business of the PPI. The politic dimension is apparent to have a significant influence for tackling the economy barrier while reinforcing the environmental and social benefits in the macro-environment. In the industry level, the biomass availability appears to be a strength point of the PPI while the knowledge gap on technology and market seem to be barriers. Consequently, cooperation with academia and the chemical industry has to be improved. Human resources issue is indicated as one important premise behind the preceding barrier, along with the indication of the PPI’s resistance towards biorefinery implementation as an innovation. Further, cellulose-based products are acknowledged for near-term product development whereas lignin-based products are emphasized to gain importance in the long-term future.

Keywords: forest biorefinery, pulp and paper, bio-based product, Delphi method

Procedia PDF Downloads 278
1288 Evaluation of the Anti Ulcer Activity of Ethyl Acetate Fraction of Methanol Leaf Extract of Clerodendrum Capitatum

Authors: M. N. Ofokansi, Onyemelukwe Chisom, Amauche Chukwuemeka, Ezema Onyinye

Abstract:

The leaves of Clerodendrumcapitatum(Lamiaceae) is mostly used in the treatment of gastric ulcer in Nigerian folk medicine. The aim of this study was to evaluate the antiulcer activity of its crude methanol leaf extract and its ethyl acetate fraction in white albino rats. The effect of crude methanol leaf extract and its ethyl acetate fraction(250mg/kg, 500mg/kg) was evaluated using an absolute ethanol induced ulcer model. Crude methanol leaf extract and the ethyl acetate fraction was treated with distilled water and 6% Tween 80, respectively. crude methanol leaf extract was further investigated using a pylorus ligation induced ulcer model. Omeprazole was used as the standard treatment. Four groups of five albino rats of either sex were used. Parameters such as mean ulcer index and percentage ulcer protection were assessed in the ethanol-induced ulcer model, while the gastric volume, pH, and total acidity were assessed in the pyloric ligation induced ulcer model. Crude methanol leaf extract of Clerodendrumcapitatum(500mg/kg) showed a very highly significant reduction in mean ulcer index(p<0.001) in the absolute ethanol-induced model. ethyl acetate fraction of crude methanol leaf extract of Clerodendrumcapitatum(250mg/kg,500mg/kg) showed a very highly significant dose-dependent reduction in mean ulcer indices (p<0.001) in the absolute ethanol-induced model. The mean ulcer indices (1.6,2.2) with dose concentration (250mg/kg, 500mg/kg) of ethyl acetate fraction increased with ulcer protection (82.85%,76.42%) respectively when compared to the control group in the absolute ethanol-induced ulcer model. Crude methanol leaf extract of Clerodendrumcapitatum(250mg/kg, 500mg/kg) treated animals showed a highly significant dose-dependent reduction in mean ulcer index(p<0.01) with an increase in ulcer protection (56.77%,63.22%) respectively in pyloric ligated induced, ulcer model. Gastric parameters such as volume of gastric juice, pH, and total acidity were of no significance in the different doses of the crude methanol leaf extract when compared to the control group. The phytochemical investigation showed that the crude methanol leaf extracts Possess Saponins and Flavonoids while its ethyl acetate fraction possess only Flavonoids. The results of the study indicate that the crude methanol leaf extract and its ethyl acetate fraction is effective and has gastro protective and ulcer healing capacity. Ethyl acetate fraction is more potent than crude methanol leaf extract against ethanol-induced This result provides scientific evidence as a validation for its folkloric use in the treatment of gastric ulcer.

Keywords: gastroprotective, herbal medicine, anti-ulcer, pharmacology

Procedia PDF Downloads 162
1287 Chromium (VI) Removal from Aqueous Solutions by Ion Exchange Processing Using Eichrom 1-X4, Lewatit Monoplus M800 and Lewatit A8071 Resins: Batch Ion Exchange Modeling

Authors: Havva Tutar Kahraman, Erol Pehlivan

Abstract:

In recent years, environmental pollution by wastewater rises very critically. Effluents discharged from various industries cause this challenge. Different type of pollutants such as organic compounds, oxyanions, and heavy metal ions create this threat for human bodies and all other living things. However, heavy metals are considered one of the main pollutant groups of wastewater. Therefore, this case creates a great need to apply and enhance the water treatment technologies. Among adopted treatment technologies, adsorption process is one of the methods, which is gaining more and more attention because of its easy operations, the simplicity of design and versatility. Ion exchange process is one of the preferred methods for removal of heavy metal ions from aqueous solutions. It has found widespread application in water remediation technologies, during the past several decades. Therefore, the purpose of this study is to the removal of hexavalent chromium, Cr(VI), from aqueous solutions. Cr(VI) is considered as a well-known highly toxic metal which modifies the DNA transcription process and causes important chromosomic aberrations. The treatment and removal of this heavy metal have received great attention to maintaining its allowed legal standards. The purpose of the present paper is an attempt to investigate some aspects of the use of three anion exchange resins: Eichrom 1-X4, Lewatit Monoplus M800 and Lewatit A8071. Batch adsorption experiments were carried out to evaluate the adsorption capacity of these three commercial resins in the removal of Cr(VI) from aqueous solutions. The chromium solutions used in the experiments were synthetic solutions. The parameters that affect the adsorption, solution pH, adsorbent concentration, contact time, and initial Cr(VI) concentration, were performed at room temperature. High adsorption rates of metal ions for the three resins were reported at the onset, and then plateau values were gradually reached within 60 min. The optimum pH for Cr(VI) adsorption was found as 3.0 for these three resins. The adsorption decreases with the increase in pH for three anion exchangers. The suitability of Freundlich, Langmuir and Scatchard models were investigated for Cr(VI)-resin equilibrium. Results, obtained in this study, demonstrate excellent comparability between three anion exchange resins indicating that Eichrom 1-X4 is more effective and showing highest adsorption capacity for the removal of Cr(VI) ions. Investigated anion exchange resins in this study can be used for the efficient removal of chromium from water and wastewater.

Keywords: adsorption, anion exchange resin, chromium, kinetics

Procedia PDF Downloads 260
1286 Analysis of the Content of Sugars, Vitamin C, Preservatives, Synthetic Dyes, Sweeteners, Sodium and Potassium and Microbiological Purity in Selected Products Made From Fruit and Vegetables in Small Regional Factories and in Large Food Corporations

Authors: Katarzyna Miśkiewicz, Magdalena Lasoń-Rydel, Małgorzata Krępska, Katarzyna Sieczyńska, Iwona Masłowska-Lipowicz, Katarzyna Ławińska

Abstract:

The aim of the study was to analyse a selection of 12 pasteurised products made from fruit and vegetables, such as fruit juices, fruit drinks, jams, marmalades and jam produced by small regional factories as well as large food corporations. The research was carried out as part of the project "Innovative system of healthy and regional food distribution", funded by the Ministry of Education and Science (Poland), which aims to create an economically and organisationally strong agri-food industry in Poland through effective cooperation between scientific and socio-economic actors. The main activities of the project include support for the creation of new distribution channels for regional food products and their easy access to a wide group of potential customers while maintaining the highest quality standards. One of the key areas of the project is food quality analyses conducted to indicate the competitive advantage of regional products. Presented here are studies on the content of sugars, vitamin C, preservatives, synthetic colours, sweeteners, sodium and potassium, as well as studies on the microbiological purity of selected products made from fruit and vegetables. The composition of products made from fruit and vegetables varies greatly and depends on both the type of raw material and the way it is processed. Of the samples tested, fruit drinks contained the least amount of sugars, and jam and marmalade made by large producers and bought in large chain stores contained the most. However, the low sugar content of some fruit drinks is due to the presence of the sweetener sucralose in their composition. The vitamin C content of the samples varied, being higher in products where it was added during production. All products made in small local factories were free of food additives such as preservatives, sweeteners and synthetic colours, indicating their superiority over products made by large producers. Products made in small local factories were characterised by a relatively high potassium content. The microbiological purity of commercial products was confirmed - no Salmonella spp. were detected, and the number of mesophilic bacteria, moulds, yeasts, and β-glucuronidase-positive E. coli was below the limit of quantification.

Keywords: fruit and vegetable products, sugars, food additives, HPLC, ICP-OES

Procedia PDF Downloads 94
1285 Enhancement of Fracture Toughness for Low-Temperature Applications in Mild Steel Weldments

Authors: Manjinder Singh, Jasvinder Singh

Abstract:

Existing theories of Titanic/Liberty ship, Sydney bridge accidents and practical experience generated an interest in developing weldments those has high toughness under sub-zero temperature conditions. The purpose was to protect the joint from undergoing DBT (Ductile to brittle transition), when ambient temperature reach sub-zero levels. Metallurgical improvement such as low carbonization or addition of deoxidization elements like Mn and Si was effective to prevent fracture in weldments (crack) at low temperature. In the present research, an attempt has been made to investigate the reason behind ductile to brittle transition of mild steel weldments when subjected to sub-zero temperatures and method of its mitigation. Nickel is added to weldments using manual metal arc welding (MMAW) preventing the DBT, but progressive reduction in charpy impact values as temperature is lowered. The variation in toughness with respect to nickel content being added to the weld pool is analyzed quantitatively to evaluate the rise in toughness value with increasing nickel amount. The impact performance of welded specimens was evaluated by Charpy V-notch impact tests at various temperatures (20 °C, 0 °C, -20 °C, -40 °C, -60 °C). Notch is made in the weldments, as notch sensitive failure is particularly likely to occur at zones of high stress concentration caused by a notch. Then the effect of nickel to weldments is investigated at various temperatures was studied by mechanical and metallurgical tests. It was noted that a large gain in impact toughness could be achieved by adding nickel content. The highest yield strength (462J) in combination with good impact toughness (over 220J at – 60 °C) was achieved with an alloying content of 16 wt. %nickel. Based on metallurgical behavior it was concluded that the weld metals solidify as austenite with increase in nickel. The microstructure was characterized using optical and high resolution SEM (scanning electron microscopy). At inter-dendritic regions mainly martensite was found. In dendrite core regions of the low carbon weld metals a mixture of upper bainite, lower bainite and a novel constituent coalesced bainite formed. Coalesced bainite was characterized by large bainitic ferrite grains with cementite precipitates and is believed to form when the bainite and martensite start temperatures are close to each other. Mechanical properties could be rationalized in terms of micro structural constituents as a function of nickel content.

Keywords: MMAW, Toughness, DBT, Notch, SEM, Coalesced bainite

Procedia PDF Downloads 526
1284 Cosmic Radiation Hazards and Protective Strategies in Space Exploration

Authors: Mehrnaz Mostafavi, Alireza Azani, Mahtab Shabani, Fatemeh Ghafari

Abstract:

While filled with promise and wonder, space exploration also presents significant challenges, one of the foremost being the threat of cosmic radiation to astronaut health. Recent advancements in assessing these risks and developing protective strategies have shed new light on this issue. Cosmic radiation encompasses a variety of high-energy particles originating from sources like solar particle events, galactic cosmic rays, and cosmic rays from beyond the solar system. These particles, composed of protons, electrons, and heavy ions, pose a substantial threat to human health in space due to the lack of Earth's protective atmosphere and magnetic field. Researchers have made significant progress in assessing the risks associated with cosmic radiation exposure. By employing advanced dosimetry techniques and conducting biological studies, they have gained insights into how cosmic radiation affects astronauts' health, including increasing the risk of cancer and radiation sickness. This research has led to personalized risk assessment methods tailored to individual astronaut profiles. Distinctive protection strategies have been proposed to combat the dangers of cosmic radiation. These include developing spacecraft shielding materials and designs to enhance radiation protection. Additionally, researchers are exploring pharmacological interventions such as radioprotective drugs and antioxidant therapies to mitigate the biological effects of radiation exposure and preserve astronaut well-being. The findings from recent research have significant implications for the future of space exploration. By advancing our understanding of cosmic radiation risks and developing effective protection strategies, we pave the way for safer and more sustainable human missions beyond Earth's orbit. This is especially crucial for long-duration missions to destinations like Mars, where astronauts will face prolonged exposure to cosmic radiation. In conclusion, recent research has marked a milestone in addressing the challenges posed by cosmic radiation in space exploration. By delving into the complexities of cosmic radiation exposure and developing innovative protection strategies, scientists are ensuring the health and resilience of astronauts as they venture into the vast expanse of the cosmos. Continued research and collaboration in this area are essential for overcoming the cosmic radiation challenge and enabling humanity to embark on new frontiers of exploration and discovery in space.

Keywords: Space exploration, cosmic radiation, astronaut health, risk assessment, protective strategies

Procedia PDF Downloads 79
1283 Disruptions to Medical Education during COVID-19: Perceptions and Recommendations from Students at the University of the West, Indies, Jamaica

Authors: Charléa M. Smith, Raiden L. Schodowski, Arletty Pinel

Abstract:

Due to the COVID-19 pandemic, the Faculty of Medical Sciences of The University of the West Indies (UWI) Mona in Kingston, Jamaica, had to rapidly migrate to digital and blended learning. Students in the preclinical stage of the program transitioned to full-time online learning, while students in the clinical stage experienced decreased daily patient contact and the implementation of a blend of online lectures and virtual clinical practice. Such sudden changes were coupled with the institutional pressure of the need to introduce a novel approach to education without much time for preparation, as well as additional strain endured by the faculty, who were overwhelmed by serving as frontline workers. During the period July 20 to August 23, 2021, this study surveyed preclinical and clinical students to capture their experiences with these changes and their recommendations for future use of digital modalities of learning to enhance medical education. It was conducted with a fellow student of the 2021 cohort of the MultiPod mentoring program. A questionnaire was developed and distributed digitally via WhatsApp to all medical students of the UWI Mona campus to assess students’ experiences and perceptions of the advantages, challenges, and impact on individual knowledge proficiencies brought about by the transition to predominantly digital learning environments. 108 students replied, 53.7% preclinical and 46.3% clinical. 67.6% of the total were female and 30.6 % were male; 1.8% did not identify themselves by gender. 67.2% of preclinical students preferred blended learning and 60.3% considered that the content presented did not prepare them for clinical work. Only 31% considered that the online classes were interactive and encouraged student participation. 84.5% missed socialization with classmates and friends and 79.3% missed a focused environment for learning. 80% of the clinical students felt that they had not learned all that they expected and only 34% had virtual interaction with patients, mostly by telephone and video calls. Observing direct consultations was considered the most useful, yet this was the least-used modality. 96% of the preclinical students and 100% of the clinical ones supplemented their learning with additional online tools. The main recommendations from the survey are the use of interactive teaching strategies, more discussion time with lecturers, and increased virtual interactions with patients. Universities are returning to face-to-face learning, yet it is unlikely that blended education will disappear. This study demonstrates that students’ perceptions of their experience during mobility restrictions must be taken into consideration in creating more effective, inclusive, and efficient blended learning opportunities.

Keywords: blended learning, digital learning, medical education, student perceptions

Procedia PDF Downloads 166
1282 A Model of the Universe without Expansion of Space

Authors: Jia-Chao Wang

Abstract:

A model of the universe without invoking space expansion is proposed to explain the observed redshift-distance relation and the cosmic microwave background radiation (CMB). The main hypothesized feature of the model is that photons traveling in space interact with the CMB photon gas. This interaction causes the photons to gradually lose energy through dissipation and, therefore, experience redshift. The interaction also causes some of the photons to be scattered off their track toward an observer and, therefore, results in beam intensity attenuation. As observed, the CMB exists everywhere in space and its photon density is relatively high (about 410 per cm³). The small average energy of the CMB photons (about 6.3×10⁻⁴ eV) can reduce the energies of traveling photons gradually and will not alter their momenta drastically as in, for example, Compton scattering, to totally blur the images of distant objects. An object moving through a thermalized photon gas, such as the CMB, experiences a drag. The cause is that the object sees a blue shifted photon gas along the direction of motion and a redshifted one in the opposite direction. An example of this effect can be the observed CMB dipole: The earth travels at about 368 km/s (600 km/s) relative to the CMB. In the all-sky map from the COBE satellite, radiation in the Earth's direction of motion appears 0.35 mK hotter than the average temperature, 2.725 K, while radiation on the opposite side of the sky is 0.35 mK colder. The pressure of a thermalized photon gas is given by Pγ = Eγ/3 = αT⁴/3, where Eγ is the energy density of the photon gas and α is the Stefan-Boltzmann constant. The observed CMB dipole, therefore, implies a pressure difference between the two sides of the earth and results in a CMB drag on the earth. By plugging in suitable estimates of quantities involved, such as the cross section of the earth and the temperatures on the two sides, this drag can be estimated to be tiny. But for a photon traveling at the speed of light, 300,000 km/s, the drag can be significant. In the present model, for the dissipation part, it is assumed that a photon traveling from a distant object toward an observer has an effective interaction cross section pushing against the pressure of the CMB photon gas. For the attenuation part, the coefficient of the typical attenuation equation is used as a parameter. The values of these two parameters are determined by fitting the 748 µ vs. z data points compiled from 643 supernova and 105 γ-ray burst observations with z values up to 8.1. The fit is as good as that obtained from the lambda cold dark matter (ΛCDM) model using online cosmological calculators and Planck 2015 results. The model can be used to interpret Hubble's constant, Olbers' paradox, the origin and blackbody nature of the CMB radiation, the broadening of supernova light curves, and the size of the observable universe.

Keywords: CMB as the lowest energy state, model of the universe, origin of CMB in a static universe, photon-CMB photon gas interaction

Procedia PDF Downloads 134
1281 Histopatological Analysis of Vital Organs in Cattle Infected with Lumpy Skin Disease in Rajasthan, India

Authors: Manisha, Manisha Mathur, Jay K. Desai, Shesh Asopa, Manisha Mehra

Abstract:

The present study was carried out for the comprehensive analysis of lumpy skin disease (LSD) in cattle and to elucidate the histopathology of vital organs in natural outbreaks. Lumpy skin disease (LSD) is a viral infection that primarily affects cattle. It is caused by a Capri pox virus and is characterized by the formation of skin nodules or lesions. For this study, a postmortem of 20 cows who died of Lumpy skin disease in different regions of Rajasthan was conducted. This study aimed to examine a cow's external and internal organs to confirm if lumpy skin disease was the cause of death. Accurate diagnosis is essential for improving disease surveillance, understanding the disease's progression, and informing control measures. Pathological examinations reveal virus-induced changes across organs, while histopathological analyses provide crucial insights into the disease's pathogenesis, aiding in the development of advanced diagnostics and effective prevention strategies. Histopathological examination of nodular skin lesions revealed edema, hyperemia, acanthosis, severe hydropic degeneration/ballooning degeneration, and hyperkeratosis in the epidermis. In the lungs, congestion, oedema, emphysema, and atelectasis were observed grossly. Microscopically changes were suggestive of interstitial pneumonia, suppurative pneumonia, bronchopneumonia post pneumonic fibrosis, and stage of resolution. Grossely liver showed congestion and necrotic foci microscopically in most of the cases, and the liver showed acute viral hepatitis. Microscopically in kidneys, multifocal interstitial nephritis was observed. There was marked interstitial inflammation and zonal fibrosis with cystically dilated tubules and bowman's capsules. Microscopically, most of the heart tissue section showed normal histology with few sarcocysts in between cardiac muscles. In some cases, loss of cross striation, sarcoplasmic vacuolation, fregmentation, and disintegration of cardiac fibres were observed. The present study revealed the characteristic gross and histopathological changes in different organs in natural cases of lumpy skin disease. Further, the disease was confirmed based on the molecular diagnosis and transmission electron microscopy of capripox infection in the affected cattle in the study area.

Keywords: Capripoxvirus, lumpy skin disease, polymerage chain reaction, transmission electron microscopy

Procedia PDF Downloads 26
1280 Improving Photocatalytic Efficiency of TiO2 Films Incorporated with Natural Geopolymer for Sunlight-Driven Water Purification

Authors: Satam Alotibi, Haya A. Al-Sunaidi, Almaymunah M. AlRoibah, Zahraa H. Al-Omaran, Mohammed Alyami, Fatehia S. Alhakami, Abdellah Kaiba, Mazen Alshaaer, Talal F. Qahtan

Abstract:

This research study presents a novel approach to harnessing the potential of natural geopolymer in conjunction with TiO₂ nanoparticles (TiO₂ NPs) for the development of highly efficient photocatalytic materials for water decontamination. The study begins with the formulation of a geopolymer paste derived from natural sources, which is subsequently applied as a coating on glass substrates and allowed to air-dry at room temperature. The result is a series of geopolymer-coated glass films, serving as the foundation for further experimentation. To enhance the photocatalytic capabilities of these films, a critical step involves immersing them in a suspension of TiO₂ nanoparticles (TiO₂ NPs) in water for varying durations. This immersion process yields geopolymer-loaded TiO₂ NPs films with varying concentrations, setting the stage for comprehensive characterization and analysis. A range of advanced analytical techniques, including UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM), were meticulously employed to assess the structural, morphological, and chemical properties of the geopolymer-based TiO₂ films. These analyses provided invaluable insights into the materials' composition and surface characteristics. The culmination of this research effort sees the geopolymer-based TiO₂ films being repurposed as immobilized photocatalytic reactors for water decontamination under natural sunlight irradiation. Remarkably, the results revealed exceptional photocatalytic performance that exceeded the capabilities of conventional TiO₂-based photocatalysts. This breakthrough underscores the significant potential of natural geopolymer as a versatile and highly effective matrix for enhancing the photocatalytic efficiency of TiO₂ nanoparticles in water treatment applications. In summary, this study represents a significant advancement in the quest for sustainable and efficient photocatalytic materials for environmental remediation. By harnessing the synergistic effects of natural geopolymer and TiO₂ nanoparticles, these geopolymer-based films exhibit outstanding promise in addressing water decontamination challenges and contribute to the development of eco-friendly solutions for a cleaner and healthier environment.

Keywords: geopolymer, TiO2 nanoparticles, photocatalytic materials, water decontamination, sustainable remediation

Procedia PDF Downloads 67
1279 Assessment of Environmental Risk Factors of Railway Using Integrated ANP-DEMATEL Approach in Fuzzy Conditions

Authors: Mehrdad Abkenari, Mehmet Kunt, Mahdi Nourollahi

Abstract:

Evaluating the environmental risk factors is a combination of analysis of transportation effects. Various definitions for risk can be found in different scientific sources. Each definition depends on a specific and particular perspective or dimension. The effects of potential risks present along the new proposed routes and existing infrastructures of large transportation projects like railways should be studied under comprehensive engineering frameworks. Despite various definitions provided for ‘risk’, all include a uniform concept. Two obvious aspects, loss and unreliability, have always been pointed in all definitions of this term. But, selection as the third aspect is usually implied and means how one notices it. Currently, conducting engineering studies on the environmental effects of railway projects have become obligatory according to the Environmental Assessment Act in developing countries. Considering the longitudinal nature of these projects and probable passage of railways through various ecosystems, scientific research on the environmental risk of these projects have become of great interest. Although many areas of expertise such as road construction in developing countries have not seriously committed to these studies yet, attention to these subjects in establishment or implementation of different systems have become an inseparable part of this wave of research. The present study used environmental risks identified and existing in previous studies and stations to use in next step. The second step proposes a new hybrid approach of analytical network process (ANP) and DEMATEL in fuzzy conditions for assessment of determined risks. Since evaluation of identified risks was not an easy touch, mesh structure was an appropriate approach for analyzing complex systems which were accordingly employed for problem description and modeling. Researchers faced the shortage of real space data and also due to the ambiguity of experts’ opinions and judgments, they were declared in language variables instead of numerical ones. Since fuzzy logic is appropriate for ambiguity and uncertainty, formulation of experts’ opinions in the form of fuzzy numbers seemed an appropriate approach. Fuzzy DEMATEL method was used to extract the relations between major and minor risk factors. Considering the internal relations of risk major factors and its sub-factors in the analysis of fuzzy network, the weight of risk’s main factors and sub-factors were determined. In general, findings of the present study, in which effective railway environmental risk indicators were theoretically identified and rated through the first usage of combined model of DEMATEL and fuzzy network analysis, indicate that environmental risks can be evaluated more accurately and also employed in railway projects.

Keywords: DEMATEL, ANP, fuzzy, risk

Procedia PDF Downloads 413
1278 Reducing Pressure Drop in Microscale Channel Using Constructal Theory

Authors: K. X. Cheng, A. L. Goh, K. T. Ooi

Abstract:

The effectiveness of microchannels in enhancing heat transfer has been demonstrated in the semiconductor industry. In order to tap the microscale heat transfer effects into macro geometries, overcoming the cost and technological constraints, microscale passages were created in macro geometries machined using conventional fabrication methods. A cylindrical insert was placed within a pipe, and geometrical profiles were created on the outer surface of the insert to enhance heat transfer under steady-state single-phase liquid flow conditions. However, while heat transfer coefficient values of above 10 kW/m2·K were achieved, the heat transfer enhancement was accompanied by undesirable pressure drop increment. Therefore, this study aims to address the high pressure drop issue using Constructal theory, a universal design law for both animate and inanimate systems. Two designs based on Constructal theory were developed to study the effectiveness of Constructal features in reducing the pressure drop increment as compared to parallel channels, which are commonly found in microchannel fabrication. The hydrodynamic and heat transfer performance for the Tree insert and Constructal fin (Cfin) insert were studied using experimental methods, and the underlying mechanisms were substantiated by numerical results. In technical terms, the objective is to achieve at least comparable increment in both heat transfer coefficient and pressure drop, if not higher increment in the former parameter. Results show that the Tree insert improved the heat transfer performance by more than 16 percent at low flow rates, as compared to the Tree-parallel insert. However, the heat transfer enhancement reduced to less than 5 percent at high Reynolds numbers. On the other hand, the pressure drop increment stayed almost constant at 20 percent. This suggests that the Tree insert has better heat transfer performance in the low Reynolds number region. More importantly, the Cfin insert displayed improved heat transfer performance along with favourable hydrodynamic performance, as compared to Cfinparallel insert, at all flow rates in this study. At 2 L/min, the enhancement of heat transfer was more than 30 percent, with 20 percent pressure drop increment, as compared to Cfin-parallel insert. Furthermore, comparable increment in both heat transfer coefficient and pressure drop was observed at 8 L/min. In other words, the Cfin insert successfully achieved the objective of this study. Analysis of the results suggests that bifurcation of flows is effective in reducing the increment in pressure drop relative to heat transfer enhancement. Optimising the geometries of the Constructal fins is therefore the potential future study in achieving a bigger stride in energy efficiency at much lower costs.

Keywords: constructal theory, enhanced heat transfer, microchannel, pressure drop

Procedia PDF Downloads 337
1277 Hydrogen Induced Fatigue Crack Growth in Pipeline Steel API 5L X65: A Combined Experimental and Modelling Approach

Authors: H. M. Ferreira, H. Cockings, D. F. Gordon

Abstract:

Climate change is driving a transition in the energy sector, with low-carbon energy sources such as hydrogen (H2) emerging as an alternative to fossil fuels. However, the successful implementation of a hydrogen economy requires an expansion of hydrogen production, transportation and storage capacity. The costs associated with this transition are high but can be partly mitigated by adapting the current oil and natural gas networks, such as pipeline, an important component of the hydrogen infrastructure, to transport pure or blended hydrogen. Steel pipelines are designed to withstand fatigue, one of the most common causes of pipeline failure. However, it is well established that some materials, such as steel, can fail prematurely in service when exposed to hydrogen-rich environments. Therefore, it is imperative to evaluate how defects (e.g. inclusions, dents, and pre-existing cracks) will interact with hydrogen under cyclic loading and, ultimately, to what extent hydrogen induced failure will limit the service conditions of steel pipelines. This presentation will explore how the exposure of API 5L X65 to a hydrogen-rich environment and cyclic loads will influence its susceptibility to hydrogen induced failure. That evaluation will be performed by a combination of several techniques such as hydrogen permeation testing (ISO 17081:2014), fatigue crack growth (FCG) testing (ISO 12108:2018 and AFGROW modelling), combined with microstructural and fractographic analysis. The development of a FCG test setup coupled with an electrochemical cell will be discussed, along with the advantages and challenges of measuring crack growth rates in electrolytic hydrogen environments. A detailed assessment of several electrolytic charging conditions will also be presented, using hydrogen permeation testing as a method to correlate the different charging settings to equivalent hydrogen concentrations and effective diffusivity coefficients, not only on the base material but also on the heat affected zone and weld of the pipelines. The experimental work is being complemented with AFGROW, a useful FCG modelling software that has helped inform testing parameters and which will also be developed to ultimately help industry experts perform structural integrity analysis and remnant life characterisation of pipeline steels under representative conditions. The results from this research will allow to conclude if there is an acceleration of the crack growth rate of API 5L X65 under the influence of a hydrogen-rich environment, an important aspect that needs to be rectified instandards and codes of practice on pipeline integrity evaluation and maintenance.

Keywords: AFGROW, electrolytic hydrogen charging, fatigue crack growth, hydrogen, pipeline, steel

Procedia PDF Downloads 105
1276 Automated Building Internal Layout Design Incorporating Post-Earthquake Evacuation Considerations

Authors: Sajjad Hassanpour, Vicente A. González, Yang Zou, Jiamou Liu

Abstract:

Earthquakes pose a significant threat to both structural and non-structural elements in buildings, putting human lives at risk. Effective post-earthquake evacuation is critical for ensuring the safety of building occupants. However, current design practices often neglect the integration of post-earthquake evacuation considerations into the early-stage architectural design process. To address this gap, this paper presents a novel automated internal architectural layout generation tool that optimizes post-earthquake evacuation performance. The tool takes an initial plain floor plan as input, along with specific requirements from the user/architect, such as minimum room dimensions, corridor width, and exit lengths. Based on these inputs, firstly, the tool randomly generates different architectural layouts. Secondly, the human post-earthquake evacuation behaviour will be thoroughly assessed for each generated layout using the advanced Agent-Based Building Earthquake Evacuation Simulation (AB2E2S) model. The AB2E2S prototype is a post-earthquake evacuation simulation tool that incorporates variables related to earthquake intensity, architectural layout, and human factors. It leverages a hierarchical agent-based simulation approach, incorporating reinforcement learning to mimic human behaviour during evacuation. The model evaluates different layout options and provides feedback on evacuation flow, time, and possible casualties due to earthquake non-structural damage. By integrating the AB2E2S model into the automated layout generation tool, architects and designers can obtain optimized architectural layouts that prioritize post-earthquake evacuation performance. Through the use of the tool, architects and designers can explore various design alternatives, considering different minimum room requirements, corridor widths, and exit lengths. This approach ensures that evacuation considerations are embedded in the early stages of the design process. In conclusion, this research presents an innovative automated internal architectural layout generation tool that integrates post-earthquake evacuation simulation. By incorporating evacuation considerations into the early-stage design process, architects and designers can optimize building layouts for improved post-earthquake evacuation performance. This tool empowers professionals to create resilient designs that prioritize the safety of building occupants in the face of seismic events.

Keywords: agent-based simulation, automation in design, architectural layout, post-earthquake evacuation behavior

Procedia PDF Downloads 104
1275 Remote Sensing-Based Prediction of Asymptomatic Rice Blast Disease Using Hyperspectral Spectroradiometry and Spectral Sensitivity Analysis

Authors: Selvaprakash Ramalingam, Rabi N. Sahoo, Dharmendra Saraswat, A. Kumar, Rajeev Ranjan, Joydeep Mukerjee, Viswanathan Chinnasamy, K. K. Chaturvedi, Sanjeev Kumar

Abstract:

Rice is one of the most important staple food crops in the world. Among the various diseases that affect rice crops, rice blast is particularly significant, causing crop yield and economic losses. While the plant has defense mechanisms in place, such as chemical indicators (proteins, salicylic acid, jasmonic acid, ethylene, and azelaic acid) and resistance genes in certain varieties that can protect against diseases, susceptible varieties remain vulnerable to these fungal diseases. Early prediction of rice blast (RB) disease is crucial, but conventional techniques for early prediction are time-consuming and labor-intensive. Hyperspectral remote sensing techniques hold the potential to predict RB disease at its asymptomatic stage. In this study, we aimed to demonstrate the prediction of RB disease at the asymptomatic stage using non-imaging hyperspectral ASD spectroradiometer under controlled laboratory conditions. We applied statistical spectral discrimination theory to identify unknown spectra of M. Oryzae, the fungus responsible for rice blast disease. The infrared (IR) region was found to be significantly affected by RB disease. These changes may result in alterations in the absorption, reflection, or emission of infrared radiation by the affected plant tissues. Our research revealed that the protein spectrum in the IR region is impacted by RB disease. In our study, we identified strong correlations in the region (Amide group - I) around X 1064 nm and Y 1300 nm with the Lambda / Lambda derived spectra methods for protein detection. During the stages when the disease is developing, typically from day 3 to day 5, the plant's defense mechanisms are not as effective. This is especially true for the PB-1 variety of rice, which is highly susceptible to rice blast disease. Consequently, the proteins in the plant are adversely affected during this critical time. The spectral contour plot reveals the highly correlated spectral regions 1064 nm and Y 1300 nm associated with RB disease infection. Based on these spectral sensitivities, we developed new spectral disease indices for predicting different stages of disease emergence. The goal of this research is to lay the foundation for future UAV and satellite-based studies aimed at long-term monitoring of RB disease.

Keywords: rice blast, asymptomatic stage, spectral sensitivity, IR

Procedia PDF Downloads 86
1274 Preoperative Smoking Cessation Audit: A Single Centre Experience from Metropolitan Melbourne

Authors: Ya-Chu May Tsai, Ibrahim Yacoub, Eoin Casey

Abstract:

The Australian and New Zealand College of Anaesthetists (ANZCA) advises that smoking should not be permitted within 12 hours of surgery. There is little information in the medical literature regarding patients awareness of perioperative smoking cessation recommendations nor their appreciation of how smoking might negatively impact their perioperative course. The aim of the study is to assess the prevalence of current smokers presenting to Werribee Mercy Hospital (WMH) and to evaluate if pre-operative provision of both written and verbal pre-operative advice was, 1: Effective in improving patient awareness of the benefits of pre-operative smoking cessation, 2: Associated with an increase in the number of elective surgical patients who stop smoking at least 12 hours pre-operatively. Methods: The initial survey included all patients who presented to WMH for elective surgical procedures from 19 – 30 September 2016 using a standardized questionnaire focused on patients’ smoking history and their awareness of smoking cessation preoperatively. The intervention consisted of a standard pre-operative phone call to all patients advising them of the increased perioperative risks associated with smoking, and advised patients to cease 12 hours prior. In addition, written information on smoking cessation strategies were sent out in mail at least 1 week prior to planned procedure date to all patients. Questionnaire-based study after the intervention was conducted on day of elective procedure from 10 – 21 October 2016 inclusive. Primary outcomes measured were patient’s awareness of smoking cessation and proportion of smokers who quit >12 hours, considered a clinically meaning duration to reduce anaesthetics complications. Comparison of pre and post intervention results were made using SPSS 21.0. Results: In the pre-intervention group (n=156), 36 (22.4%) patients were current smokers, 46 were ex-smokers (29.5%) and 74 were non-smokers (48.1%). Of the smokers, 12 (33%) reported having been informed of smoking cessation prior to operation and 8 (22%) were aware of increased intra- and perioperative adverse events associated with smoking. In the post-intervention group n= 177, 38 (21.5%) patients were current smokers, 39 were ex-smokers (22.0%) and 100 were non-smokers (56.5%). Of the smokers, 32 (88.9%) reported having been informed of smoking cessation prior to operation and 35 (97.2%) reported being aware of increased intra- and perioperative adverse events associated with smoking. The median time since last smoke in the pre-intervention group was 5.5 hours (Q1-Q3 = 2-14) compared with 13 hours (Q1-Q3 = 5-24) in post intervention group. Amongst the smokers, smoking cessation at least 12 hours prior to surgery significantly increased from 27.8% pre-intervention to 52.6% post intervention (P=0.03). Conclusion: A standard preoperative phone call and written instruction on smoking cessation guidelines at time of waitlist placement increase preoperative smoking cessation rates by almost 2-fold.

Keywords: anaesthesia, audit, perioperative medicine, smoking cessation

Procedia PDF Downloads 306
1273 Robust Processing of Antenna Array Signals under Local Scattering Environments

Authors: Ju-Hong Lee, Ching-Wei Liao

Abstract:

An adaptive array beamformer is designed for automatically preserving the desired signals while cancelling interference and noise. Providing robustness against model mismatches and tracking possible environment changes calls for robust adaptive beamforming techniques. The design criterion yields the well-known generalized sidelobe canceller (GSC) beamformer. In practice, the knowledge of the desired steering vector can be imprecise, which often occurs due to estimation errors in the DOA of the desired signal or imperfect array calibration. In these situations, the SOI is considered as interference, and the performance of the GSC beamformer is known to degrade. This undesired behavior results in a reduction of the array output signal-to-interference plus-noise-ratio (SINR). Therefore, it is worth developing robust techniques to deal with the problem due to local scattering environments. As to the implementation of adaptive beamforming, the required computational complexity is enormous when the array beamformer is equipped with massive antenna array sensors. To alleviate this difficulty, a generalized sidelobe canceller (GSC) with partially adaptivity for less adaptive degrees of freedom and faster adaptive response has been proposed in the literature. Unfortunately, it has been shown that the conventional GSC-based adaptive beamformers are usually very sensitive to the mismatch problems due to local scattering situations. In this paper, we present an effective GSC-based beamformer against the mismatch problems mentioned above. The proposed GSC-based array beamformer adaptively estimates the actual direction of the desired signal by using the presumed steering vector and the received array data snapshots. We utilize the predefined steering vector and a presumed angle tolerance range to carry out the required estimation for obtaining an appropriate steering vector. A matrix associated with the direction vector of signal sources is first created. Then projection matrices related to the matrix are generated and are utilized to iteratively estimate the actual direction vector of the desired signal. As a result, the quiescent weight vector and the required signal blocking matrix required for performing adaptive beamforming can be easily found. By utilizing the proposed GSC-based beamformer, we find that the performance degradation due to the considered local scattering environments can be effectively mitigated. To further enhance the beamforming performance, a signal subspace projection matrix is also introduced into the proposed GSC-based beamformer. Several computer simulation examples show that the proposed GSC-based beamformer outperforms the existing robust techniques.

Keywords: adaptive antenna beamforming, local scattering, signal blocking, steering mismatch

Procedia PDF Downloads 112