Search results for: design phase
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15865

Search results for: design phase

7585 Returns to Communities of the Social Entrepreneurship and Environmental Design (SEED) Integration Results in Architectural Training

Authors: P. Kavuma, J. Mukasa, M. Lusunku

Abstract:

Background and Problem: The widespread poverty in Africa- together with the negative impacts of climate change-are two great global challenges that call for everyone’s involvement including Architects. This in particular places serious challenges on architects to have additional skills in both Entrepreneurship and Environmental Design (SEED). Regrettably, while Architectural Training in most African Universities including those from Uganda lack comprehensive implementation of SEED in their curricula, regulatory bodies have not contributed towards the effective integration of SEED in their professional practice. In response to these challenges, Nkumba University (NU) under Architect Kavuma Paul supported by the Uganda Chambers of Architects– initiated the SEED integration in the undergraduate Architectural curricula to cultivate SEED know-how and examples of best practices. Main activities: Initiated in 2007, going beyond the traditional Architectural degree curriculum, the NU Architect department offers SEED courses including provoking passions for creating desirable positive changes in communities. Learning outcomes are assessed theoretically and practically through field projects. The first set of SEED graduates came out in 2012. As part of the NU post-graduation and alumni survey, in October 2014, the pioneer SEED graduates were contacted through automated reminder emails followed by individual, repeated personal follow-ups via email and phone. Out of the 36 graduates who responded to the survey, 24 have formed four (4) private consortium agencies of 5-7 graduates all of whom have pioneered Ugandan-own-cultivated Architectural social projects that include: fishing farming in shipping containers; solar powered mobile homes in shipping containers, solar powered retail kiosks in rural and fishing communities, and floating homes in the flood-prone areas. Primary outcomes: include being business self –reliant in creating the social change the architects desired in the communities. Examples of the SEED project returns to communities reported by the graduates include; employment creation via fabrication, retail business, marketing, improved diets, safety of life and property, decent shelter in the remote mining and oil exploration areas. Negative outcomes-though not yet evaluated include the disposal of used-up materials. Conclusion: The integration of SEED in Architectural Training has established a baseline benchmark and a replicable model based on best practice projects.

Keywords: architectural training, entrepreneurship, environment, integration

Procedia PDF Downloads 398
7584 English Reading Preferences among Primary Pupils

Authors: Jezza Mae T. Francisco, Marianet R. Delos Santos, Crisjame C. Toribio

Abstract:

This study aims to determine the reading preference for English enrichment and reading comprehension among primary students and the difference in the reading preference and comprehension for English enrichment among primary students. This study employed a Descriptive-Quantitative Correlational Research Design. This study yielded the following findings: (1) It reveals that primary students got fair on their reading comprehension, and (2) It shows that there is no significant relationship between the reading preference for English enrichment and reading comprehension of the students. It is safe to conclude that the students’ reading preference is growing evidently in various milieus. This can inform the English department curriculum planners to consider their students’ text preferences that interest them to maximize engagement within a dynamic interactive learning process.

Keywords: reading preferences, reading comprehension, primary student, English enrichment

Procedia PDF Downloads 100
7583 Transmit Power Optimization for Cooperative Beamforming in Reverse-Link MIMO Ad-Hoc Networks

Authors: Younghyun Jeon, Seungjoo Maeng

Abstract:

In the Ad-hoc network, the great interests regarding MIMO scheme leads to their combination, which is also utilized into its applicable network. We manage the field of the problem into Reverse-link MIMO Ad-hoc Network (RMAN) and propose the methodology to maximize the data rate with its power consumption using Node-Cooperative beamforming technique. Based on the result of mathematical optimization formulation, we design the algorithm to construct optimal orthogonal weight vector according to channel feedback and control its transmission power according to QoS-pricing value level. In simulation results, we show the validity of the proposed mathematical optimization result and algorithm which mean that the sum-rate of each link is converged into some point.

Keywords: ad-hoc network, MIMO, cooperative beamforming, transmit power

Procedia PDF Downloads 382
7582 Soliton Interaction in Multi-Core Optical Fiber: Application to WDM System

Authors: S. Arun Prakash, V. Malathi, M. S. Mani Rajan

Abstract:

The analytical bright two soliton solution of the 3-coupled nonlinear Schrödinger equations with variable coefficients in birefringent optical fiber is obtained by Darboux transformation method. To the design of ultra-speed optical devices, Soliton interaction and control in birefringence fiber is investigated. Lax pair is constructed for N coupled NLS system through AKNS method. Using two soliton solution, we demonstrate different interaction behaviors of solitons in birefringent fiber depending on the choice of control parameters. Our results shows that interactions of optical solitons have some specific applications such as construction of logic gates, optical computing, soliton switching, and soliton amplification in wavelength division multiplexing (WDM) system.

Keywords: optical soliton, soliton interaction, soliton switching, WDM

Procedia PDF Downloads 493
7581 One Pot Synthesis of Ultrasmall NiMo Catalysts Supported on Amorphous Alumina with Enhanced type 2 Sites for Hydrodesulfurization Reaction: A Combined Experimental and Theoretical Study

Authors: Shalini Arora, Sri Sivakumar

Abstract:

The deep removal of high molecular weight sulphur compounds (e.g., 4,6, dimethyl dibenzothiophene) is challenging due to their steric hindrance. Hydrogenation desulfurization (HYD) pathway is the main pathway to remove these sulfur compounds, and it is mainly governed by the number of type 2 sites. The formation of type 2 sites can be enhanced by modulating the pore structure and the interaction between the active metal and support. To this end, we report the enhanced HDS catalytic activity of ultrasmall NiMo supported on amorphous alumina (A-Al₂O₃) catalysts by one pot colloidal synthesis method followed by calcination and sulfidation. The amorphous alumina (A-Al₂O₃) was chosen as the support due to its lower surface energy, better physicochemical properties, and enhanced acidic sites (due to the dominance of tetra and penta coordinated [Al] sites) than crystalline alumina phase. At 20% metal oxide composition, NiMo supported on A-Al₂O₃ catalyst showed 1.4 and 1.2 times more reaction rate constant and turn over frequency (TOF) respectively than the conventional catalyst (wet impregnated NiMo catalysts) for HDS reaction of dibenzothiophene reactant molecule. A-Al₂O₃ supported catalysts represented enhanced type 2 sites formation (because this catalystpossesses higher sulfidation degree (80%) and NiMoS sites (19.3 x 10¹⁷ sites/mg) with desired optimum stacking degree (2.5) than wet impregnated catalyst at same metal oxide composition 20%) along with higher active metal dispersion, Mo edge site fraction. The experimental observations were also supported by DFT simulations. Lower heat of adsorption (< 4.2 ev for MoS2 interaction and < 3.15 ev for Ni doped MoS2 interaction) values for A-Al₂O₃ confirmed the presence of weaker metal-support interaction in A-Al₂O₃ in contrast to crystalline ℽ-Al₂O3. The weak metal-support interaction for prepared catalysts clearly suggests the higher formation of type 2 sites which leads to higher catalytic activity for HDS reaction.

Keywords: amorphous alumina, colloidal, desulfurization, metal-support interaction

Procedia PDF Downloads 254
7580 Learning Compression Techniques on Smart Phone

Authors: Farouk Lawan Gambo, Hamada Mohammad

Abstract:

Data compression shrinks files into fewer bits than their original presentation. It has more advantage on the internet because the smaller a file, the faster it can be transferred but learning most of the concepts in data compression are abstract in nature, therefore, making them difficult to digest by some students (engineers in particular). This paper studies the learning preference of engineering students who tend to have strong, active, sensing, visual and sequential learning preferences, the paper also studies the three shift of technology-aided that learning has experienced, which mobile learning has been considered to be the feature of learning that will integrate other form of the education process. Lastly, we propose a design and implementation of mobile learning application using software engineering methodology that will enhance the traditional teaching and learning of data compression techniques.

Keywords: data compression, learning preference, mobile learning, multimedia

Procedia PDF Downloads 431
7579 Predicting Polyethylene Processing Properties Based on Reaction Conditions via a Coupled Kinetic, Stochastic and Rheological Modelling Approach

Authors: Kristina Pflug, Markus Busch

Abstract:

Being able to predict polymer properties and processing behavior based on the applied operating reaction conditions in one of the key challenges in modern polymer reaction engineering. Especially, for cost-intensive processes such as the high-pressure polymerization of low-density polyethylene (LDPE) with high safety-requirements, the need for simulation-based process optimization and product design is high. A multi-scale modelling approach was set-up and validated via a series of high-pressure mini-plant autoclave reactor experiments. The approach starts with the numerical modelling of the complex reaction network of the LDPE polymerization taking into consideration the actual reaction conditions. While this gives average product properties, the complex polymeric microstructure including random short- and long-chain branching is calculated via a hybrid Monte Carlo-approach. Finally, the processing behavior of LDPE -its melt flow behavior- is determined in dependence of the previously determined polymeric microstructure using the branch on branch algorithm for randomly branched polymer systems. All three steps of the multi-scale modelling approach can be independently validated against analytical data. A triple-detector GPC containing an IR, viscosimetry and multi-angle light scattering detector is applied. It serves to determine molecular weight distributions as well as chain-length dependent short- and long-chain branching frequencies. 13C-NMR measurements give average branching frequencies, and rheological measurements in shear and extension serve to characterize the polymeric flow behavior. The accordance of experimental and modelled results was found to be extraordinary, especially taking into consideration that the applied multi-scale modelling approach does not contain parameter fitting of the data. This validates the suggested approach and proves its universality at the same time. In the next step, the modelling approach can be applied to other reactor types, such as tubular reactors or industrial scale. Moreover, sensitivity analysis for systematically varying process conditions is easily feasible. The developed multi-scale modelling approach finally gives the opportunity to predict and design LDPE processing behavior simply based on process conditions such as feed streams and inlet temperatures and pressures.

Keywords: low-density polyethylene, multi-scale modelling, polymer properties, reaction engineering, rheology

Procedia PDF Downloads 114
7578 Optimization of Dual Band Antenna on Silicon Substrate

Authors: Syrine lahmadi, Jamel Bel Hadj Tahar

Abstract:

In this paper, a rectangular antenna with slots integrated on silicon substrate operating in 60GHz, is studied and optimized. The effect of different parameter of the antenna (width, length, the position of the microstrip-feed line...) and the parameter of the substrate (the thickness, the dielectric constant) on gain, frequency is presented. Also, the paper presents a solution to ameliorate the bandwidth. The maximum simulated radiation gain of this rectangular dual band antenna is 5, 38 dB around 60GHz. The simulation studied id developed based on advanced design system tools. It is found that the designed antenna is 19 % smaller than a rectangular antenna with the same dimensions. This antenna with dual band can function for many communication systems as automobile or radar.

Keywords: dual band, enlargement of bandwidth, miniaturized antennas, printed antenna

Procedia PDF Downloads 346
7577 Enzymatic Hydrolysis of Sugar Cane Bagasse Using Recombinant Hemicellulases

Authors: Lorena C. Cintra, Izadora M. De Oliveira, Amanda G. Fernandes, Francieli Colussi, Rosália S. A. Jesuíno, Fabrícia P. Faria, Cirano J. Ulhoa

Abstract:

Xylan is the main component of hemicellulose and for its complete degradation is required cooperative action of a system consisting of several enzymes including endo-xylanases (XYN), β-xylosidases (XYL) and α-L-arabinofuranosidases (ABF). The recombinant hemicellulolytic enzymes an endoxylanase (HXYN2), β-xylosidase (HXYLA), and an α-L-arabinofuranosidase (ABF3) were used in hydrolysis tests. These three enzymes are produced by filamentous fungi and were expressed heterologously and produced in Pichia pastoris previously. The aim of this work was to evaluate the effect of recombinant hemicellulolytic enzymes on the enzymatic hydrolysis of sugarcane bagasse (SCB). The interaction between the three recombinant enzymes during SCB pre-treated by steam explosion hydrolysis was performed with different concentrations of HXYN2, HXYLA and ABF3 in different ratios in according to a central composite rotational design (CCRD) 23, including six axial points and six central points, totaling 20 assays. The influence of the factors was assessed by analyzing the main effects and interaction between the factors, calculated using Statistica 8.0 software (StatSoft Inc. Tulsa, OK, USA). The Pareto chart was constructed with this software and showed the values of the Student’s t test for each recombinant enzyme. It was considered as response variable the quantification of reducing sugars by DNS (mg/mL). The Pareto chart showed that the recombinant enzyme ABF3 exerted more significant effect during SCB hydrolysis, with higher concentrations and with the lowest concentration of this enzyme. It was performed analysis of variance according to Fisher method (ANOVA). In ANOVA for the release of reducing sugars (mg/ml) as the variable response, the concentration of ABF3 showed significance during hydrolysis SCB. The result obtained by ANOVA, is in accordance with those presented in the analysis method based on the statistical Student's t (Pareto chart). The degradation of the central chain of xylan by HXYN2 and HXYLA was more strongly influenced by ABF3 action. A model was obtained, and it describes the performance of the interaction of all three enzymes for the release of reducing sugars, and can be used to better explain the results of the statistical analysis. The formulation capable of releasing the higher levels of reducing sugars had the following concentrations: HXYN2 with 600 U/g of substrate, HXYLA with 11.5 U.g-1 and ABF3 with 0.32 U.g-1. In conclusion, the recombinant enzyme that has a more significant effect during SCB hydrolysis was ABF3. It is noteworthy that the xylan present in the SCB is arabinoglucoronoxylan, due to this fact debranching enzymes are important to allow access of enzymes that act on the central chain.

Keywords: experimental design, hydrolysis, recombinant enzymes, sugar cane bagasse

Procedia PDF Downloads 219
7576 Copolymers of Epsilon-Caprolactam Received via Anionic Polymerization in the Presence of Polypropylene Glycol Based Polymeric Activators

Authors: Krasimira N. Zhilkova, Mariya K. Kyulavska, Roza P. Mateva

Abstract:

The anionic polymerization of -caprolactam (CL) with bifunctional activators has been extensively studied as an effective and beneficial method of improving chemical and impact resistances, elasticity and other mechanical properties of polyamide (PA6). In presence of activators or macroactivators (MAs) also called polymeric activators (PACs) the anionic polymerization of lactams proceeds rapidly at a temperature range of 130-180C, well below the melting point of PA-6 (220C) permitting thus the direct manufacturing of copolymer product together with desired modifications of polyamide properties. Copolymers of PA6 with an elastic polypropylene glycol (PPG) middle block into main chain were successfully synthesized via activated anionic ring opening polymerization (ROP) of CL. Using novel PACs based on PPG polyols (with differ molecular weight) the anionic ROP of CL was realized and investigated in the presence of a basic initiator sodium salt of CL (NaCL). The PACs were synthesized as N-carbamoyllactam derivatives of hydroxyl terminated PPG functionalized with isophorone diisocyanate [IPh, 5-Isocyanato-1-(isocyanatomethyl)-1,3,3-trimethylcyclohexane] and blocked then with CL units via an addition reaction. The block copolymers were analyzed and proved with 1H-NMR and FT-IR spectroscopy. The influence of the CL/PACs ratio in feed, the length of the PPG segments and polymerization conditions on the kinetics of anionic ROP, on average molecular weight, and on the structure of the obtained block copolymers were investigated. The structure and phase behaviour of the copolymers were explored with differential scanning calorimetry, wide-angle X-ray diffraction, thermogravimetric analysis and dynamic mechanical thermal analysis. The crystallinity dependence of PPG content incorporated into copolymers main backbone was estimate. Additionally, the mechanical properties of the obtained copolymers were studied by notched impact test. From the performed investigation in this study could be concluded that using PPG based PACs at the chosen ROP conditions leads to obtaining well-defined PA6-b-PPG-b-PA6 copolymers with improved impact resistance.

Keywords: anionic ring opening polymerization, caprolactam, polyamide copolymers, polypropylene glycol

Procedia PDF Downloads 398
7575 Field Synergy Analysis of Combustion Characteristics in the Afterburner of Solid Oxide Fuel Cell System

Authors: Shing-Cheng Chang, Cheng-Hao Yang, Wen-Sheng Chang, Chih-Chia Lin, Chun-Han Li

Abstract:

The solid oxide fuel cell (SOFC) is a promising green technology which can achieve a high electrical efficiency. Due to the high operating temperature of SOFC stack, the off-gases at high temperature from anode and cathode outlets are introduced into an afterburner to convert the chemical energy into thermal energy by combustion. The heat is recovered to preheat the fresh air and fuel gases before they pass through the stack during the SOFC power generation system operation. For an afterburner of the SOFC system, the temperature control with a good thermal uniformity is important. A burner with a well-designed geometry usually can achieve a satisfactory performance. To design an afterburner for an SOFC system, the computational fluid dynamics (CFD) simulation is adoptable. In this paper, the hydrogen combustion characteristics in an afterburner with simple geometry are studied by using CFD. The burner is constructed by a cylinder chamber with the configuration of a fuel gas inlet, an air inlet, and an exhaust outlet. The flow field and temperature distributions inside the afterburner under different fuel and air flow rates are analyzed. To improve the temperature uniformity of the afterburner during the SOFC system operation, the flow paths of anode/cathode off-gases are varied by changing the positions of fuels and air inlet channel to improve the heat and flow field synergy in the burner furnace. Because the air flow rate is much larger than the fuel gas, the flow structure and heat transfer in the afterburner is dominated by the air flow path. The present work studied the effects of fluid flow structures on the combustion characteristics of an SOFC afterburner by three simulation models with a cylindrical combustion chamber and a tapered outlet. All walls in the afterburner are assumed to be no-slip and adiabatic. In each case, two set of parameters are simulated to study the transport phenomena of hydrogen combustion. The equivalence ratios are in the range of 0.08 to 0.1. Finally, the pattern factor for the simulation cases is calculated to investigate the effect of gas inlet locations on the temperature uniformity of the SOFC afterburner. The results show that the temperature uniformity of the exhaust gas can be improved by simply adjusting the position of the gas inlet. The field synergy analysis indicates the design of the fluid flow paths should be in the way that can significantly contribute to the heat transfer, i.e. the field synergy angle should be as small as possible. In the study cases, the averaged synergy angle of the burner is about 85̊, 84̊, and 81̊ respectively.

Keywords: afterburner, combustion, field synergy, solid oxide fuel cell

Procedia PDF Downloads 124
7574 Methods for Material and Process Monitoring by Characterization of (Second and Third Order) Elastic Properties with Lamb Waves

Authors: R. Meier, M. Pander

Abstract:

In accordance with the industry 4.0 concept, manufacturing process steps as well as the materials themselves are going to be more and more digitalized within the next years. The “digital twin” representing the simulated and measured dataset of the (semi-finished) product can be used to control and optimize the individual processing steps and help to reduce costs and expenditure of time in product development, manufacturing, and recycling. In the present work, two material characterization methods based on Lamb waves were evaluated and compared. For demonstration purpose, both methods were shown at a standard industrial product - copper ribbons, often used in photovoltaic modules as well as in high-current microelectronic devices. By numerical approximation of the Rayleigh-Lamb dispersion model on measured phase velocities second order elastic constants (Young’s modulus, Poisson’s ratio) were determined. Furthermore, the effective third order elastic constants were evaluated by applying elastic, “non-destructive”, mechanical stress on the samples. In this way, small microstructural variations due to mechanical preconditioning could be detected for the first time. Both methods were compared with respect to precision and inline application capabilities. Microstructure of the samples was systematically varied by mechanical loading and annealing. Changes in the elastic ultrasound transport properties were correlated with results from microstructural analysis and mechanical testing. In summary, monitoring the elastic material properties of plate-like structures using Lamb waves is valuable for inline and non-destructive material characterization and manufacturing process control. Second order elastic constants analysis is robust over wide environmental and sample conditions, whereas the effective third order elastic constants highly increase the sensitivity with respect to small microstructural changes. Both Lamb wave based characterization methods are fitting perfectly into the industry 4.0 concept.

Keywords: lamb waves, industry 4.0, process control, elasticity, acoustoelasticity, microstructure

Procedia PDF Downloads 215
7573 Differential Impacts of Whole-Growth-Duration Warming on the Grain Yield and Quality between Early and Late Rice

Authors: Shan Huang, Guanjun Huang, Yongjun Zeng, Haiyuan Wang

Abstract:

The impacts of whole-growth warming on grain yield and quality in double rice cropping systems still remain largely unknown. In this study, a two-year field whole-growth warming experiment was conducted with two inbred indica rice cultivars (Zhongjiazao 17 and Xiangzaoxian 45) for early season and two hybrid indica rice cultivars (Wanxiangyouhuazhan and Tianyouhuazhan) for late season. The results showed that whole-growth warming did not affect early rice yield but significantly decreased late rice yield, which was caused by the decreased grain weight that may be related to the increased plant respiration and reduced translocation of dry matter accumulated during the pre-heading phase under warming. Whole-growth warming improved the milling quality of late rice but decreased that of early rice; however, the chalky rice rate and chalkiness degree were increased by 20.7% and 33.9% for early rice and 37.6 % and 51.6% for late rice under warming, respectively. We found that the crude protein content of milled rice was significantly increased by warming in both early and late rice, which would result in deterioration of eating quality. Besides, compared with the control treatment, the setback of late rice was significantly reduced by 17.8 % under warming, while that of early rice was not significantly affected by warming. These results suggest that the negative impacts of whole-growth warming on grain quality may be more severe in early rice than in late rice. Therefore, adaptation in both rice breeding and agronomic practices is needed to alleviate climate warming on the production of a double rice cropping system. Climate-smart agricultural practices ought to be implemented to mitigate the detrimental effects of warming on rice grain quality. For instance, fine-tuning the application rate and timing of inorganic nitrogen fertilizers, along with the introduction of organic amendments and the cultivation of heat-tolerant rice varieties, can help reduce the negative impact of rising temperatures on rice quality. Furthermore, to comprehensively understand the influence of climate warming on rice grain quality, future research should encompass a wider range of rice cultivars and experimental sites.

Keywords: climate warming, double rice cropping, dry matter, grain quality, grain yield

Procedia PDF Downloads 17
7572 Thermal Stability and Electrical Conductivity of Ca₅Mg₄₋ₓMₓ(VO₄)₆ (0 ≤ x ≤ 4) where M = Zn, Ni Measured by Impedance Spectroscopy

Authors: Anna S. Tolkacheva, Sergey N. Shkerin, Kirill G. Zemlyanoi, Olga G. Reznitskikh, Pavel D. Khavlyuk

Abstract:

Calcium oxovanadates with garnet related structure are multifunctional oxides in various fields like photoluminescence, microwave dielectrics, and magneto-dielectrics. For example, vanadate garnets are self-luminescent compounds. They attract attention as RE-free broadband excitation and emission phosphors and are candidate materials for UV-based white light-emitting diodes (WLEDs). Ca₅M₄(VO₄)₆ (M = Mg, Zn, Co, Ni, Mn) compounds are also considered promising for application in microwave devices as substrate materials. However, the relation between their structure, composition and physical/chemical properties remains unclear. Given the above-listed observations, goals of this study are to synthesise Ca₅M₄(VO₄)₆ (M = Mg, Zn, Ni) and to study their thermal and electrical properties. Solid solutions Ca₅Mg₄₋ₓMₓ(VO₄)₆ (0 ≤ x ≤ 4) where M is Zn and Ni have been synthesized by sol-gel method. The single-phase character of the final products was checked by powder X-ray diffraction on a Rigaku D/MAX-2200 X-ray diffractometer using Cu Kα radiation in the 2θ range from 15° to 70°. The dependence of thermal properties on chemical composition of solid solutions was studied using simultaneous thermal analyses (DSC and TG). Thermal analyses were conducted in a Netzch simultaneous analyser STA 449C Jupiter, in Ar atmosphere, in temperature range from 25 to 1100°C heat rate was 10 K·min⁻¹. Coefficients of thermal expansion (CTE) were obtained by dilatometry measurements in air up to 800°C using a Netzsch 402PC dilatometer; heat rate was 1 K·min⁻¹. Impedance spectra were obtained via the two-probe technique with an impedance meter Parstat 2273 in air up to 700°C with the variation of pH₂O from 0.04 to 3.35 kPa. Cation deficiency in Ca and Mg sublattice under the substitution of MgO with ZnO up to 1/6 was observed using Rietveld refinement of the crystal structure. Melting point was found to decrease with x changing from 0 to 4 in Ca₅Mg₄₋ₓMₓ(VO₄)₆ where M is Zn and Ni. It was observed that electrical conductivity does not depend on air humidity. The reported study was funded by the RFBR Grant No. 17–03–01280. Sample attestation was carried out in the Shared Access Centers at the IHTE UB RAS.

Keywords: garnet structure, electrical conductivity, thermal expansion, thermal properties

Procedia PDF Downloads 149
7571 The Igbo People's Dual Religion Identity on Rite of Marriage in Imo State

Authors: Henry Okechukwu Onyeiwu, Arfah Ab. Majid

Abstract:

To fully understand the critical role of marriage in society, it is important to view it as a social institution that provides some basic social needs for society. A ‘social institution’ is the network of shared meanings, norms, definitions, expectations, and understandings held by the members of society. It is what guides and governs how the members of the society are expected to act and interact, what is socially desirable and legitimate, what they should be striving for, and so on. One of the major social institutions is marriage. Marriage is and has often focused on children and what is best for them because the rising generation literally is the future of every society. However, according to the aforementioned definition, which notes that marriage may also be a union between two persons of the same sex with legal support, this study stands with the definitions that are based on marriage being a union between a man and woman that is the most appropriate in Igbo land and not the other way round. The issue to be evaluated concerns marriage as it associates with Igbo Catholic Christians in Nigeria. Pasts of Igbo culture should be better organized into the Christian faith. Igbo Christians actually convey a significant number of their customary thoughts, customs, and social qualities, particularly regarding marriage, in the aftermath of switching to Christianity. The analyst agrees that marriage among Igbo Christians warrants adequate evolution. This study, therefore, concentrates on the Igbo community’s interpretation of the concept of culture and religion and the religious implications of traditional marriage and Christian marriage ceremonies in Igbo. The research design of this study is a qualitative design that provides in-depth information on the dual religious identity of the Igbo people on the rite of marriage in Imo state. The study population was composed of both male and female members from each selected local government area in Imo State. Thematic analysis was used to elaborate on the result from the respondents. This survey found that reputation is a major concern for Ibo people. Parental discomfort can lead to the use of coping strategies such as displacement, in which parents pass on their own vulnerable sentiments to their children. Those who participate in marriage negotiations feel the pain of their parents because they are unable to communicate their own feelings. As a result, participants experience increased stress and a range of negative emotions related to their marriage, including worry, dissatisfaction, and ambivalence. It was concluded that when it comes to Igbo culture, marriage is seen as a need for the continuation of the family’s lineage of descent, according to the outcome. The Task at hand was to discover how the locals preparing to get married define the impending transition. Imo State is home to the practice of Igba-nkwu, where the woman is either inherited or taken in the place of another.

Keywords: Igbo, culture, Christianity, traditional marriage, Christian wedding

Procedia PDF Downloads 144
7570 Damping Optimal Design of Sandwich Beams Partially Covered with Damping Patches

Authors: Guerich Mohamed, Assaf Samir

Abstract:

The application of viscoelastic materials in the form of constrained layers in mechanical structures is an efficient and cost-effective technique for solving noise and vibration problems. This technique requires a design tool to select the best location, type, and thickness of the damping treatment. This paper presents a finite element model for the vibration of beams partially or fully covered with a constrained viscoelastic damping material. The model is based on Bernoulli-Euler theory for the faces and Timoshenko beam theory for the core. It uses four variables: the through-thickness constant deflection, the axial displacements of the faces, and the bending rotation of the beam. The sandwich beam finite element is compatible with the conventional C1 finite element for homogenous beams. To validate the proposed model, several free vibration analyses of fully or partially covered beams, with different locations of the damping patches and different percent coverage, are studied. The results show that the proposed approach can be used as an effective tool to study the influence of the location and treatment size on the natural frequencies and the associated modal loss factors. Then, a parametric study regarding the variation in the damping characteristics of partially covered beams has been conducted. In these studies, the effect of core shear modulus value, the effect of patch size variation, the thickness of constraining layer, and the core and the locations of the patches are considered. In partial coverage, the spatial distribution of additive damping by using viscoelastic material is as important as the thickness and material properties of the viscoelastic layer and the constraining layer. Indeed, to limit added mass and to attain maximum damping, the damping patches should be placed at optimum locations. These locations are often selected using the modal strain energy indicator. Following this approach, the damping patches are applied over regions of the base structure with the highest modal strain energy to target specific modes of vibration. In the present study, a more efficient indicator is proposed, which consists of placing the damping patches over regions of high energy dissipation through the viscoelastic layer of the fully covered sandwich beam. The presented approach is used in an optimization method to select the best location for the damping patches as well as the material thicknesses and material properties of the layers that will yield optimal damping with the minimum area of coverage.

Keywords: finite element model, damping treatment, viscoelastic materials, sandwich beam

Procedia PDF Downloads 137
7569 DPED Trainee Teachers' Views and Practice on Mathematics Lesson Study in Bangladesh

Authors: Mihir Halder

Abstract:

The main aim and objective of the eighteen-month long Diploma in Primary Education (DPED) teacher education training course for in-service primary teachers in Bangladesh is to acquire professional knowledge as well as make them proficient in professional practice. The training, therefore, introduces a variety of theoretical and practical approaches as well as some professional development activities—lesson study being one of them. But, in the field of mathematics teaching, even after implementing the lesson study method, the desired practical teaching skills of the teachers have not been developed. In addition, elementary students also remain quite raw in mathematics. Although there have been various studies to solve the problem, the need for the teachers' views on mathematical ideas has not been taken into consideration. The researcher conducted the research to find out the cause of the discussed problem. In this case, two teams of nine DPED trainee teachers and two instructors conducted two lesson studies in two schools located in the city and town of Khulna Province, Bangladesh. The researcher observed group lesson planning by trainee teachers, followed by a trainee teacher teaching the planned lesson plan to an actual mathematics classroom, and finally, post-teaching reflective discussion in each lesson study. Two DPED instructors acted as mentors in the lesson study. DPED trainee teachers and instructors were asked about mathematical concepts and classroom practices through questionnaires as well as videotaped mathematics classroom teaching. For this study, the DPED mathematics course, curriculum, and assessment activities were analyzed. In addition, the mathematics lesson plans prepared by the trainee teachers for the lesson study and their pre-teaching and post-teaching reflective discussions were analyzed by some analysis categories and rubrics. As a result, it was found that the trainee teachers' views of mathematics are not mature, and therefore, their mathematics teaching practice is not appropriate. Therefore, in order to improve teachers' mathematics teaching, the researcher recommended including some action-oriented aspects in each phase of mathematics lesson study in DPED—for example, emphasizing mathematics concepts of the trainee teachers, preparing appropriate teaching materials, presenting lessons using the problem-solving method, using revised rubrics for assessing mathematics lesson study, etc.

Keywords: mathematics lesson study, knowledge of mathematics, knowledge of teaching mathematics, teachers' views

Procedia PDF Downloads 60
7568 Life-Cycle Cost and Life-Cycle Assessment of Photovoltaic/Thermal Systems (PV/T) in Swedish Single-Family Houses

Authors: Arefeh Hesaraki

Abstract:

The application of photovoltaic-thermal hybrids (PVT), which delivers both electricity and heat simultaneously from the same system, has become more popular during the past few years. This study addresses techno-economic and environmental impacts assessment of photovoltaic/thermal systems combined with a ground-source heat pump (GSHP) for three single-family houses located in Stockholm, Sweden. Three case studies were: (1) A renovated building built in 1936, (2) A renovated building built in 1973, and (3) A new building built-in 2013. Two simulation programs of SimaPro 9.1 and IDA Indoor Climate and Energy 4.8 (IDA ICE) were applied to analyze environmental impacts and energy usage, respectively. The cost-effectiveness of the system was evaluated using net present value (NPV), internal rate of return (IRR), and discounted payback time (DPBT) methods. In addition to cost payback time, the studied PVT system was evaluated using the energy payback time (EPBT) method. EPBT presents the time that is needed for the installed system to generate the same amount of energy which was utilized during the whole lifecycle (fabrication, installation, transportation, and end-of-life) of the system itself. Energy calculation by IDA ICE showed that a 5 m² PVT was sufficient to create a balance between the maximum heat production and the domestic hot water consumption during the summer months for all three case studies. The techno-economic analysis revealed that combining a 5 m² PVT with GSHP in the second case study possess the smallest DPBT and the highest NPV and IRR among the three case studies. It means that DPBTs (IRR) were 10.8 years (6%), 12.6 years (4%), and 13.8 years (3%) for the second, first, and the third case study, respectively. Moreover, environmental assessment of embodied energy during cradle- to- grave life cycle of the studied PVT, including fabrication, delivery of energy and raw materials, manufacture process, installation, transportation, operation phase, and end of life, revealed approximately two years of EPBT in all cases.

Keywords: life-cycle cost, life-cycle assessment, photovoltaic/thermal, IDA ICE, net present value

Procedia PDF Downloads 103
7567 Using “Debate” in Enhancing Advanced Chinese Language Classrooms and Learning

Authors: ShuPei Wang, Yina Patterson

Abstract:

This article outlines strategies for improving oral expression to advance proficiency in speaking and listening skills through structured argumentation. The objective is to empower students to effectively use the target language to express opinions and construct compelling arguments. This empowerment is achieved by honing learners' debating and questioning skills, which involves increasing their familiarity with vocabulary and phrases relevant to debates and deepening their understanding of the cultural context surrounding pertinent issues. Through this approach, students can enhance their ability to articulate complex concepts and discern critical points, surpassing superficial comprehension and enabling them to engage in the target language actively and competently.

Keywords: debate, teaching and materials design, spoken expression, listening proficiency, critical thinking

Procedia PDF Downloads 55
7566 Finite Element Analysis of Rom Silo Subjected to 5000 Tons Monotic Loads at an Anonymous Mine in Zimbabwe

Authors: T. Mushiri, K. Tengende, C. Mbohwa, T. Garikayi

Abstract:

This paper introduces finite element analysis of Run off Mine (ROM) silo subjected to dynamic loading. The proposed procedure is based on the use of theoretical equations to come up with pressure and forces exerted by Platinum Group Metals (PGMs) ore to the silo wall. Finite Element Analysis of the silo involves the use of CAD software (AutoCAD) for3D creation and CAE software (T-FLEX) for the simulation work with an optimization routine to minimize the mass and also ensure structural stiffness and stability. In this research an efficient way to design and analysis of a silo in 3D T-FLEX (CAD) program was created the silo to stay within the constrains and so as to know the points of failure due dynamic loading.

Keywords: reinforced concrete silo, finite element analysis, T-FLEX software, AutoCAD

Procedia PDF Downloads 467
7565 Production of Pre-Reduction of Iron Ore Nuggets with Lesser Sulphur Intake by Devolatisation of Boiler Grade Coal

Authors: Chanchal Biswas, Anrin Bhattacharyya, Gopes Chandra Das, Mahua Ghosh Chaudhuri, Rajib Dey

Abstract:

Boiler coals with low fixed carbon and higher ash content have always challenged the metallurgists to develop a suitable method for their utilization. In the present study, an attempt is made to establish an energy effective method for the reduction of iron ore fines in the form of nuggets by using ‘Syngas’. By devolatisation (expulsion of volatile matter by applying heat) of boiler coal, gaseous product (enriched with reducing agents like CO, CO2, H2, and CH4 gases) is generated. Iron ore nuggets are reduced by this syngas. For that reason, there is no direct contact between iron ore nuggets and coal ash. It helps to control the minimization of the sulphur intake of the reduced nuggets. A laboratory scale devolatisation furnace designed with reduction facility is evaluated after in-depth studies and exhaustive experimentations including thermo-gravimetric (TG-DTA) analysis to find out the volatile fraction present in boiler grade coal, gas chromatography (GC) to find out syngas composition in different temperature and furnace temperature gradient measurements to minimize the furnace cost by applying one heating coil. The nuggets are reduced in the devolatisation furnace at three different temperatures and three different times. The pre-reduced nuggets are subjected to analytical weight loss calculations to evaluate the extent of reduction. The phase and surface morphology analysis of pre-reduced samples are characterized using X-ray diffractometry (XRD), energy dispersive x-ray spectrometry (EDX), scanning electron microscopy (SEM), carbon sulphur analyzer and chemical analysis method. Degree of metallization of the reduced nuggets is 78.9% by using boiler grade coal. The pre-reduced nuggets with lesser sulphur content could be used in the blast furnace as raw materials or coolant which would reduce the high quality of coke rate of the furnace due to its pre-reduced character. These can be used in Basic Oxygen Furnace (BOF) as coolant also.

Keywords: alternative ironmaking, coal gasification, extent of reduction, nugget making, syngas based DRI, solid state reduction

Procedia PDF Downloads 250
7564 Transient Freshwater-Saltwater Transition-Zone Dynamics in Heterogeneous Coastal Aquifers

Authors: Antoifi Abdoulhalik, Ashraf Ahmed

Abstract:

The ever growing threat of saltwater intrusion has prompted the need to further advance the understanding of underlying processes related to SWI for effective water resource management. While research efforts have mainly been focused on steady state analysis, studies on the transience of saltwater intrusion mechanism remain very scarce and studies considering transient SWI in heterogeneous medium are, as per our knowledge, simply inexistent. This study provides for the first time a quantitative analysis of the effect of both inland and coastal water level changes on the transition zone under transient conditions in layered coastal aquifer. In all, two sets of four experiments were completed, including a homogeneous case, and four layered cases: case LH and case HL presented were two bi-layered scenarios where a low K layer was set at the top and the bottom, respectively; case HLH and case LHL presented two stratified aquifers with High K–Low K–High K and Low K–High K– Low K pattern, respectively. Experimental automated image analysis technique was used here to quantify the main SWI parameters under high spatial and temporal resolution. The findings of this study provide an invaluable insight on the underlying processes responsible of transition zone dynamics in coastal aquifers. The results show that in all the investigated cases, the width of the transition zone remains almost unchanged throughout the saltwater intrusion process regardless of where the boundary change occurs. However, the results demonstrate that the width of the transition zone considerably increases during the retreat, with largest amplitude observed in cases LH and LHL, where a low K was set at the top of the system. In all the scenarios, the amplitude of widening was slightly smaller when the retreat was prompted by instantaneous drop of the saltwater level than when caused by inland freshwater rise, despite equivalent absolute head change magnitude. The magnitude of head change significantly caused larger widening during the saltwater wedge retreat, while having no impact during the intrusion phase.

Keywords: freshwater-saltwater transition-zone dynamics, heterogeneous coastal aquifers, laboratory experiments, transience seawater intrusion

Procedia PDF Downloads 227
7563 An Empirical Dynamic Fuel Cell Model Used for Power System Verification in Aerospace

Authors: Giuliano Raimondo, Jörg Wangemann, Peer Drechsel

Abstract:

In systems development involving Fuel Cells generators, it is important to have from an early stage of the project a dynamic model for the electrical behavior of the stack to be shared between involved development parties. It allows independent and early design and tests of fuel cell related power electronic. This paper presents an empirical Fuel Cell system model derived from characterization tests on a real system. Moreover, it is illustrated how the obtained model is used to build and validate a real-time Fuel Cell system emulator which is used for aerospace electrical integration testing activities.

Keywords: fuel cell, modelling, real time emulation, testing

Procedia PDF Downloads 325
7562 Simulation of an Active Controlled Vibration Isolation System for Astronaut’s Exercise Platform

Authors: Shield B. Lin, Sameer Abdali

Abstract:

Computer simulations were performed using MATLAB/Simulink for a vibration isolation system for astronaut’s exercise platform. Simulation parameters initially were based on an on-going experiment in a laboratory at NASA Johnson Space Center. The authors expanded later simulations to include other parameters. A discrete proportional-integral-derivative controller with a low-pass filter commanding a linear actuator served as the active control unit to push and pull a counterweight in balancing the disturbance forces. A spring-damper device is used as an optional passive control unit. Simulation results indicated such design could achieve near complete vibration isolation with small displacements of the exercise platform.

Keywords: control, counterweight, isolation, vibration

Procedia PDF Downloads 139
7561 Design of Permanent Sensor Fault Tolerance Algorithms by Sliding Mode Observer for Smart Hybrid Powerpack

Authors: Sungsik Jo, Hyeonwoo Kim, Iksu Choi, Hunmo Kim

Abstract:

In the SHP, LVDT sensor is for detecting the length changes of the EHA output, and the thrust of the EHA is controlled by the pressure sensor. Sensor is possible to cause hardware fault by internal problem or external disturbance. The EHA of SHP is able to be uncontrollable due to control by feedback from uncertain information, on this paper; the sliding mode observer algorithm estimates the original sensor output information in permanent sensor fault. The proposed algorithm shows performance to recovery fault of disconnection and short circuit basically, also the algorithm detect various of sensor fault mode.

Keywords: smart hybrid powerpack (SHP), electro hydraulic actuator (EHA), permanent sensor fault tolerance, sliding mode observer (SMO), graphic user interface (GUI)

Procedia PDF Downloads 539
7560 Three-Dimensional Numerical Model of an Earth Air Heat Exchanger under a Constrained Urban Environment in India: Modeling and Validation

Authors: V. Rangarajan, Priyanka Kaushal

Abstract:

This study investigates the effectiveness of a typical Earth Air Heat Exchanger (EATHE) for energy efficient space cooling in an urban environment typified by space and soil-related constraints that preclude an optimal design. It involves the development of a three-dimensional numerical transient model that is validated by measurements at a live site in India. It is found that the model accurately predicts the soil temperatures at various depths as well as the EATHE outlet air temperature. The study shows that such an EATHE, even when designed under constraints, does provide effective space cooling especially during the hot months of the year.

Keywords: earth air heat exchanger (EATHE), India, MATLAB, model, simulation

Procedia PDF Downloads 311
7559 Pattern Recognition Approach Based on Metabolite Profiling Using In vitro Cancer Cell Line

Authors: Amanina Iymia Jeffree, Reena Thriumani, Mohammad Iqbal Omar, Ammar Zakaria, Yumi Zuhanis Has-Yun Hashim, Ali Yeon Md Shakaff

Abstract:

Metabolite profiling is a strategy to be approached in the pattern recognition method focused on three types of cancer cell line that driving the most to death specifically lung, breast, and colon cancer. The purpose of this study was to discriminate the VOCs pattern among cancerous and control group based on metabolite profiling. The sampling was executed utilizing the cell culture technique. All culture flasks were incubated till 72 hours and data collection started after 24 hours. Every running sample took 24 minutes to be completed accordingly. The comparative metabolite patterns were identified by the implementation of headspace-solid phase micro-extraction (HS-SPME) sampling coupled with gas chromatography-mass spectrometry (GCMS). The optimizations of the main experimental variables such as oven temperature and time were evaluated by response surface methodology (RSM) to get the optimal condition. Volatiles were acknowledged through the National Institute of Standards and Technology (NIST) mass spectral database and retention time libraries. To improve the reliability of significance, it is of crucial importance to eliminate background noise which data from 3rd minutes to 17th minutes were selected for statistical analysis. Targeted metabolites, of which were annotated as known compounds with the peak area greater than 0.5 percent were highlighted and subsequently treated statistically. Volatiles produced contain hundreds to thousands of compounds; therefore, it will be optimized by chemometric analysis, such as principal component analysis (PCA) as a preliminary analysis before subjected to a pattern classifier for identification of VOC samples. The volatile organic compound profiling has shown to be significantly distinguished among cancerous and control group based on metabolite profiling.

Keywords: in vitro cancer cell line, metabolite profiling, pattern recognition, volatile organic compounds

Procedia PDF Downloads 354
7558 UML Model for Double-Loop Control Self-Adaptive Braking System

Authors: Heung Sun Yoon, Jong Tae Kim

Abstract:

In this paper, we present an activity diagram model for double-loop control self-adaptive braking system. Since activity diagram helps to improve visibility of self-adaption, we can easily find where improvement is needed on double-loop control. Double-loop control is adopted since the design conditions and actual conditions can be different. The system is reconfigured in runtime by using double-loop control. We simulated to verify and validate our model by using MATLAB. We compared single-loop control model with double-loop control model. Simulation results show that double-loop control provides more consistent brake power control than single-loop control.

Keywords: activity diagram, automotive, braking system, double-loop, self-adaptive, UML, vehicle

Procedia PDF Downloads 400
7557 Circular Economy in Relation to Waste Management Development

Authors: Kwok Tak Kit

Abstract:

Construction and demolition (C&D) waste generated in the process of urbanization which only contribute to approx. 25–35 per cent of municipal solid waste (MSW), and the action to reduce the generation of other MSW is considered more critical. Developed and cities produce a higher percentage of inorganic waste rather than organic waste. Most of the MSW was disposed in landfill, and a large number of the landfills are not effectively and efficiently operated to receive the untreated incoming waste. It is also a global problem that the demands for enhancement of basic infrastructure for waste collection, treatment, and disposal, including rehabilitation of the dump sites, is the urgent priority. This paper is to review the factors taken into consideration of waste management development in relation to circular economy development on development countries and green recovery in the post-pandemic era for further researches use.

Keywords: waste management, waste reduction, circular economy, developed countries, sustainable design goals

Procedia PDF Downloads 125
7556 Initial Palaeotsunami and Historical Tsunami in the Makran Subduction Zone of the Northwest Indian Ocean

Authors: Mohammad Mokhtari, Mehdi Masoodi, Parvaneh Faridi

Abstract:

history of tsunami generating earthquakes along the Makran Subduction Zone provides evidence of the potential tsunami hazard for the whole coastal area. In comparison with other subduction zone in the world, the Makran region of southern Pakistan and southeastern Iran remains low seismicity. Also, it is one of the least studied area in the northwest of the Indian Ocean regarding tsunami studies. We present a review of studies dealing with the historical /and ongoing palaeotsunamis supported by IGCP of UNESCO in the Makran Subduction Zone. The historical tsunami presented here includes about nine tsunamis in the Makran Subduction Zone, of which over 7 tsunamis occur in the eastern Makran. Tsunami is not as common in the western Makran as in the eastern Makran, where a database of historical events exists. The historically well-documented event is related to the 1945 earthquake with a magnitude of 8.1moment magnitude and tsunami in the western and eastern Makran. There are no details as to whether a tsunami was generated by a seismic event before 1945 off western Makran. But several potentially large tsunamigenic events in the MSZ before 1945 occurred in 325 B.C., 1008, 1483, 1524, 1765, 1851, 1864, and 1897. Here we will present new findings from a historical point of view, immediately, we would like to emphasize that the area needs to be considered with higher research investigation. As mentioned above, a palaeotsunami (geological evidence) is now being planned, and here we will present the first phase result. From a risk point of view, the study shows as preliminary achievement within 20 minutes the wave reaches to Iranian as well Pakistan and Oman coastal zone with very much destructive tsunami waves capable of inundating destructive effect. It is important to note that all the coastal areas of all states surrounding the MSZ are being developed very rapidly, so any event would have a devastating effect on this region. Although several papers published about modelling, seismology, tsunami deposits in the last decades; as Makran is a forgotten subduction zone, more data such as the main crustal structure, fault location, and its related parameter are required.

Keywords: historical tsunami, Indian ocean, makran subduction zone, palaeotsunami

Procedia PDF Downloads 119