Search results for: learning Maltese as a second language
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9685

Search results for: learning Maltese as a second language

1465 Oracle JDE Enterprise One ERP Implementation: A Case Study

Authors: Abhimanyu Pati, Krishna Kumar Veluri

Abstract:

The paper intends to bring out a real life experience encountered during actual implementation of a large scale Tier-1 Enterprise Resource Planning (ERP) system in a multi-location, discrete manufacturing organization in India, involved in manufacturing of auto components and aggregates. The business complexities, prior to the implementation of ERP, include multi-product with hierarchical product structures, geographically distributed multiple plant locations with disparate business practices, lack of inter-plant broadband connectivity, existence of disparate legacy applications for different business functions, and non-standardized codifications of products, machines, employees, and accounts apart from others. On the other hand, the manufacturing environment consisted of processes like Assemble-to-Order (ATO), Make-to-Stock (MTS), and Engineer-to-Order (ETO) with a mix of discrete and process operations. The paper has highlighted various business plan areas and concerns, prior to the implementation, with specific focus on strategic issues and objectives. Subsequently, it has dealt with the complete process of ERP implementation, starting from strategic planning, project planning, resource mobilization, and finally, the program execution. The step-by-step process provides a very good learning opportunity about the implementation methodology. At the end, various organizational challenges and lessons emerged, which will act as guidelines and checklist for organizations to successfully align and implement ERP and achieve their business objectives.

Keywords: ERP, ATO, MTS, ETO, discrete manufacturing, strategic planning

Procedia PDF Downloads 247
1464 Leveraging on Youth Agricultural Extension Outreach: Revisiting Young Farmer’s Club in Schools in Edo State, Nigeria

Authors: Christopher A. Igene, Jonathan O. Ighodalo

Abstract:

Youths play a critical role in the agricultural transformation of any developing nation such as Nigeria. Hence, the preparation of any nation for productive life depends on the policies and programmes designed for its youths. Studies have shown that children and youths contribute significantly in agricultural activities. Youths have vigour and prone to physical work, they constitute a great percentage of labour force in the country. It is of necessity that every policy on national development must of necessity take cognizance of the youths. Hence, the focus on youths in agricultural extension outreaches most especially, the young farmers club. It is an out-of-school education in agriculture and home economics for rural youth through learning by doing. Young farmers club in schools enables the young to learn and acquire those attributes that will enable them grown into useful and mature adult. There appears to be numerous constrains in the use of youths in extension, they are inadequate personnel, poor funding of agricultural sector, poor marketing channels, lack of good roads, others are poor input and lack of information. However, there is a need for Agricultural Development Programme (ADP) to organize workshop for secondary students and agricultural science teachers, schools to organize seminars and workshops for secondary schools who are members of Young Farmers Club (YFC). ADP should also organize agricultural show to encourage students to be members of Young Farmers Club (YFC).

Keywords: agricultural extension, agricultural role, students, youths, young farmers club (YFC)

Procedia PDF Downloads 169
1463 Approaches and Implications of Working on Gender Equality under Corporate Social Responsibility: A Case Study of Two Corporate Social Responsibilities in India

Authors: Shilpa Vasavada

Abstract:

One of the 17 SustainableDevelopmentGoals focuses on gender equality. The paper is based on the learning derived from working with two Corporate Social Responsibility cases in India: one, CSR of an International Corporate and the other, CSR of a multi state national level corporate -on their efforts to integrate gender perspective in their agriculture and livestock based rural livelihood programs. The author tries to dissect how ‘gender equality’ is seen by these two CSRs, where the goals are different. The implications of a CSR’sunderstandingon ‘gender equality’ as a goal; versus CSR’s understanding of working 'with women for enhancing quantity or quality of production’ gets reflected in their orientation to staff, resource allocation, strategic level and in processes followed at the rural grassroots level. The paper comes up with examples of changes made at programmatic front when CSR understands and works with the focus on gender equality as a goal. On the other hand, the paper also explores the differential, at times, the negative impact on women and the programmes;- when the goals differ. The paper concludes with recommendations for CSRs to take up at their resource allocation and strategic level if gender equality is the goal- which has direct implication at their grassroots programmatic work. The author argues that if gender equality has to be implemented actually in spirit by a CSR, it requires change in mindset and thus an openness to changes in strategies and resource allocation pattern of the CSR and not simply adding on women in the way intervention has been going on.

Keywords: gender equality, approaches, differential impact, resource allocation

Procedia PDF Downloads 196
1462 A Case Study of An Artist Diagnosed with Schizophrenia-Using the Graphic Rorschach (Digital version) “GRD”

Authors: Maiko Kiyohara, Toshiki Ito

Abstract:

In this study, we used a psychotherapy process for patient with dissociative disorder and the graphic Rorschach (Digital version) (GRD). A dissociative disorder is a type of dissociation characterized by multiple alternating personalities (also called alternate identity or another identity). "dissociation" is a state in which consciousness, memory, thinking, emotion, perception, behavior, body image, and so on are divided and experienced. Dissociation symptoms, such as lack of memory, are seen, and the repetition of blanks in daily events causes serious problems in life. Although the pathological mechanism of dissociation has not yet been fully elucidated, it is said that it is caused by childhood abuse or shocking trauma. In case of Japan, no reliable data has been reported on the number of patients and prevalence of dissociative disorders, no drug is compatible with dissociation symptoms, and no clear treatment has been established. GRD is a method that the author revised in 2017 to a Graphic Rorschach, which is a special technique for subjects to draw language responses when enforce Rorschach. GRD reduces the burden on both the subject and the examiner, reduces the complexity of organizing data, improves the simplicity of organizing data, and improves the accuracy of interpretation by introducing a tablet computer during the drawing reaction. We are conducting research for the purpose. The patient in this case is a woman in her 50s, and has multiple personalities since childhood. At present, there are about 10 personalities whose main personality is just grasped. The patients is raising her junior high school sons as single parent, but personal changes often occur at home, which makes the home environment inferior and economically oppressive, and has severely hindered daily life. In psychotherapy, while a personality different from the main personality has appeared, I have also conducted psychotherapy with her son. In this case, the psychotherapy process and the GRD were performed to understand the personality characteristics, and the possibility of therapeutic significance to personality integration is reported.

Keywords: GRD, dissociative disorder, a case study of psychotherapy process, dissociation

Procedia PDF Downloads 118
1461 Low-Cost Mechatronic Design of an Omnidirectional Mobile Robot

Authors: S. Cobos-Guzman

Abstract:

This paper presents the results of a mechatronic design based on a 4-wheel omnidirectional mobile robot that can be used in indoor logistic applications. The low-level control has been selected using two open-source hardware (Raspberry Pi 3 Model B+ and Arduino Mega 2560) that control four industrial motors, four ultrasound sensors, four optical encoders, a vision system of two cameras, and a Hokuyo URG-04LX-UG01 laser scanner. Moreover, the system is powered with a lithium battery that can supply 24 V DC and a maximum current-hour of 20Ah.The Robot Operating System (ROS) has been implemented in the Raspberry Pi and the performance is evaluated with the selection of the sensors and hardware selected. The mechatronic system is evaluated and proposed safe modes of power distribution for controlling all the electronic devices based on different tests. Therefore, based on different performance results, some recommendations are indicated for using the Raspberry Pi and Arduino in terms of power, communication, and distribution of control for different devices. According to these recommendations, the selection of sensors is distributed in both real-time controllers (Arduino and Raspberry Pi). On the other hand, the drivers of the cameras have been implemented in Linux and a python program has been implemented to access the cameras. These cameras will be used for implementing a deep learning algorithm to recognize people and objects. In this way, the level of intelligence can be increased in combination with the maps that can be obtained from the laser scanner.

Keywords: autonomous, indoor robot, mechatronic, omnidirectional robot

Procedia PDF Downloads 176
1460 A Review: Detection and Classification Defects on Banana and Apples by Computer Vision

Authors: Zahow Muoftah

Abstract:

Traditional manual visual grading of fruits has been one of the agricultural industry’s major challenges due to its laborious nature as well as inconsistency in the inspection and classification process. The main requirements for computer vision and visual processing are some effective techniques for identifying defects and estimating defect areas. Automated defect detection using computer vision and machine learning has emerged as a promising area of research with a high and direct impact on the visual inspection domain. Grading, sorting, and disease detection are important factors in determining the quality of fruits after harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have been conducted to identify diseases and pests that affect the fruits of agricultural crops. However, most previous studies concentrated solely on the diagnosis of a lesion or disease. This study focused on a comprehensive study to identify pests and diseases of apple and banana fruits using detection and classification defects on Banana and Apples by Computer Vision. As a result, the current article includes research from these domains as well. Finally, various pattern recognition techniques for detecting apple and banana defects are discussed.

Keywords: computer vision, banana, apple, detection, classification

Procedia PDF Downloads 107
1459 Humans Trust Building in Robots with the Help of Explanations

Authors: Misbah Javaid, Vladimir Estivill-Castro, Rene Hexel

Abstract:

The field of robotics is advancing rapidly to the point where robots have become an integral part of the modern society. These robots collaborate and contribute productively with humans and compensate some shortcomings from human abilities and complement them with their skills. Effective teamwork of humans and robots demands to investigate the critical issue of trust. The field of human-computer interaction (HCI) has already examined trust humans place in technical systems mostly on issues like reliability and accuracy of performance. Early work in the area of expert systems suggested that automatic generation of explanations improved trust and acceptability of these systems. In this work, we augmented a robot with the user-invoked explanation generation proficiency. To measure explanations effect on human’s level of trust, we collected subjective survey measures and behavioral data in a human-robot team task into an interactive, adversarial and partial information environment. The results showed that with the explanation capability humans not only understand and recognize robot as an expert team partner. But, it was also observed that human's learning and human-robot team performance also significantly improved because of the meaningful interaction with the robot in the human-robot team. Moreover, by observing distinctive outcomes, we expect our research outcomes will also provide insights into further improvement of human-robot trustworthy relationships.

Keywords: explanation interface, adversaries, partial observability, trust building

Procedia PDF Downloads 202
1458 Performance Assessment of Multi-Level Ensemble for Multi-Class Problems

Authors: Rodolfo Lorbieski, Silvia Modesto Nassar

Abstract:

Many supervised machine learning tasks require decision making across numerous different classes. Multi-class classification has several applications, such as face recognition, text recognition and medical diagnostics. The objective of this article is to analyze an adapted method of Stacking in multi-class problems, which combines ensembles within the ensemble itself. For this purpose, a training similar to Stacking was used, but with three levels, where the final decision-maker (level 2) performs its training by combining outputs from the tree-based pair of meta-classifiers (level 1) from Bayesian families. These are in turn trained by pairs of base classifiers (level 0) of the same family. This strategy seeks to promote diversity among the ensembles forming the meta-classifier level 2. Three performance measures were used: (1) accuracy, (2) area under the ROC curve, and (3) time for three factors: (a) datasets, (b) experiments and (c) levels. To compare the factors, ANOVA three-way test was executed for each performance measure, considering 5 datasets by 25 experiments by 3 levels. A triple interaction between factors was observed only in time. The accuracy and area under the ROC curve presented similar results, showing a double interaction between level and experiment, as well as for the dataset factor. It was concluded that level 2 had an average performance above the other levels and that the proposed method is especially efficient for multi-class problems when compared to binary problems.

Keywords: stacking, multi-layers, ensemble, multi-class

Procedia PDF Downloads 269
1457 A Comprehensive Methodology for Voice Segmentation of Large Sets of Speech Files Recorded in Naturalistic Environments

Authors: Ana Londral, Burcu Demiray, Marcus Cheetham

Abstract:

Speech recording is a methodology used in many different studies related to cognitive and behaviour research. Modern advances in digital equipment brought the possibility of continuously recording hours of speech in naturalistic environments and building rich sets of sound files. Speech analysis can then extract from these files multiple features for different scopes of research in Language and Communication. However, tools for analysing a large set of sound files and automatically extract relevant features from these files are often inaccessible to researchers that are not familiar with programming languages. Manual analysis is a common alternative, with a high time and efficiency cost. In the analysis of long sound files, the first step is the voice segmentation, i.e. to detect and label segments containing speech. We present a comprehensive methodology aiming to support researchers on voice segmentation, as the first step for data analysis of a big set of sound files. Praat, an open source software, is suggested as a tool to run a voice detection algorithm, label segments and files and extract other quantitative features on a structure of folders containing a large number of sound files. We present the validation of our methodology with a set of 5000 sound files that were collected in the daily life of a group of voluntary participants with age over 65. A smartphone device was used to collect sound using the Electronically Activated Recorder (EAR): an app programmed to record 30-second sound samples that were randomly distributed throughout the day. Results demonstrated that automatic segmentation and labelling of files containing speech segments was 74% faster when compared to a manual analysis performed with two independent coders. Furthermore, the methodology presented allows manual adjustments of voiced segments with visualisation of the sound signal and the automatic extraction of quantitative information on speech. In conclusion, we propose a comprehensive methodology for voice segmentation, to be used by researchers that have to work with large sets of sound files and are not familiar with programming tools.

Keywords: automatic speech analysis, behavior analysis, naturalistic environments, voice segmentation

Procedia PDF Downloads 282
1456 Effects of School Facilities’ Mechanical and Plumbing Characteristics and Conditions on Student Attendance, Academic Performance and Health

Authors: Erica Cochran Hameen, Bobuchi Ken-Opurum, Shalini Priyadarshini, Berangere Lartigue, Sadhana Anath-Pisipati

Abstract:

School districts throughout the United States are constantly seeking measures to improve test scores, reduce school absenteeism and improve indoor environmental quality. It is imperative to identify key building investments which will provide the largest benefits to schools in terms of improving the aforementioned factors. This study uses Analysis of Variance (ANOVA) tests to statistically evaluate the impact of a school building’s mechanical and plumbing characteristics on a child’s educational performance. The educational performance is measured via three indicators, i.e. test scores, suspensions, and absenteeism. The study investigated 125 New York City school facilities to determine the potential correlations between 50 mechanical and plumbing variables and the performance indicators. Key findings from the tests revealed that elementary schools with pneumatic systems in “good” condition have 48.8% lower percentages of students scoring at the minimum English Language Arts (ELA) competency level compared with those with no pneumatic system. Additionally, elementary schools with “unit heaters/cabinet heaters” in “good to fair” conditions have 1.1% higher attendance rates compared to schools with no “unit heaters/cabinet heaters” or those in inferior condition. Furthermore, elementary schools with air conditioning have 0.6% higher attendance rates compared to schools with no air conditioning, and those with interior floor drains in “good” condition have 1.8% higher attendance rates compared to schools with interior drains in inferior condition.

Keywords: academic attendance and performance, mechanical and plumbing systems, schools, student health

Procedia PDF Downloads 119
1455 Evidence Based Policy Studies: Examining Alternative Policy Practice towards Improving Enrolment to Higher Education in Nigeria

Authors: Muftahu Jibirin Salihu, Hazri Jamil

Abstract:

The persisting challenge of access and enrolment to higher education in commonwealth countries has been reported in several studies, including reports of the international organization such as World Bank, UNESCO among others however from the macro perspective. The overarching aim of this study is to examine alternative policy practices towards improving access to university education in Nigeria at meso level of policy practice from evidence base policy studies using one university as a case. The study adopted a qualitative approach to gain insightful understanding on the issue of the study employing a semi-structure interview and policy documents as the means for obtaining the data and other relevant information for the study. The participants of the study were purposively chosen which comprise of a number of individuals from the selected university and other related organization which responsible for the policies development and implementation of Nigerian higher education system. From the findings of the study, several initiatives have been taken at meso level to address this challenge including the introduction of the University Matriculation Program as an alternative route for enhancing to access to the university education. However, the study further provided a number of recommendations which aimed at improving access to university education such as improving the entry requirements, society orientation on university education and the issue of ranking of certificate among the Nigerian higher institutions of learning.

Keywords: policy practice, access, enrolment, university, education, Nigeria

Procedia PDF Downloads 269
1454 “It Takes a Community to Save a Child”: A Qualitative Analysis of Child Trafficking Interventions from Practitioner Perspectives

Authors: Crispin Rakibu Mbamba

Abstract:

Twenty-two years after the adoption of the United Nation Trafficking Protocol, evidence suggest that child trafficking continues to rise. Community level factors, like poverty which creates the conditions for children’s vulnerability is key to the rise in trafficking cases in Ghana. Albeit, growing evidence suggestthat despite the vulnerabilities, communities have the capacity to prevent and address child trafficking issues. This study contributes to this positive agenda by exploring the ways in which communities (and the key actors) in Ghana contribute to child trafficking interventions.The study objective is explored through in-depth interviews with practitioners (including social workers) from an organization working in trafficking hotspots in Ghana. Interviews wereanalyzed thematically with the help of HyperRESEARCH software. From the in-depth interviews, three themes were identified as the ways in which communities are involved in child trafficking interventions: 1) engagement of community leaders, 2) community-led anti-trafficking committees and 3) knowledge about trafficking. Albeit the cultural differences, evidence on the instrumental role of community chiefs and leaders provide important learning on how to harness trafficking intervention measures and ensure better child protection practices. Based on the findings, we recommend the need to intensify trafficking awareness campaigns in rural communities where education is lacking to contribute to United Nations (UN) promoting Just, Peaceful and Inclusive societies’ mandate.

Keywords: child trafficking, community interventions, knowledge on trafficking, human trafficking intervention

Procedia PDF Downloads 115
1453 A Methodological Approach to the Betterment of the Retail Store's Interior Design: The Example of Dereboyu Street, Nicosia

Authors: Nazanin Reza Nejad, Kamil Guley

Abstract:

Shopping is one of the most entertaining activities of daily life. In parallel to this, the successful settings of the stores impress the customers and made it more appealing for the users. The design of the atmosphere is the language of the interior space, and this design directly affects users’ emotions and perceptions. One of the goals of interior design is to increase the quality of the designed space. A well-designed venue satisfies the user and ensures happiness and safety. Thus, customers are turned into frequent users of the store. Spaces without the right designs negatively influence the user. The accurate interior design of the stores becomes crucial at this point. This study aims to act as a guideline for the betterment of the interior design of a newly designed or already existing clothing store located on the shopping streets of the cities. In light of the relevant literature review, the most important point in interior store design is the design and ambiance factors and how these factors are used in the interior space of the stores. Within the scope of this study, 27 clothing stores located on Dereboyu, the largest shopping street in Nicosia, the capital of North Cyprus, were examined. The examined stores were grouped as brand stores and non-brand stores which sell products from different production sites. The observation regarding the interiors of the selected stores was analyzed through qualitative and quantitative research methods. The arrangements of the sub-functions in the stores were analyzed through various reading methods over the plan schemes and recorded images. The sub-functions of all examined stores are compared against the ambiance and design factors in the literature, and results were interpreted accordingly. At the end of the study, the differences among stores that belong to a brand with an identity and stores which have not yet established an identity were identified and compared. The results of the comparisons were used to offer implications for the betterment of the interior design on a future or already existing store on the street. Thus, the study was concluded to be a guideline for people interested in interior store design.

Keywords: atmosphere, ambiance factors, clothing store, identity, interior design

Procedia PDF Downloads 203
1452 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes

Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani

Abstract:

The development of the method to annotate unknown gene functions is an important task in bioinformatics. One of the approaches for the annotation is The identification of the metabolic pathway that genes are involved in. Gene expression data have been utilized for the identification, since gene expression data reflect various intracellular phenomena. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.

Keywords: metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning

Procedia PDF Downloads 404
1451 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 98
1450 Development of a General Purpose Computer Programme Based on Differential Evolution Algorithm: An Application towards Predicting Elastic Properties of Pavement

Authors: Sai Sankalp Vemavarapu

Abstract:

This paper discusses the application of machine learning in the field of transportation engineering for predicting engineering properties of pavement more accurately and efficiently. Predicting the elastic properties aid us in assessing the current road conditions and taking appropriate measures to avoid any inconvenience to commuters. This improves the longevity and sustainability of the pavement layer while reducing its overall life-cycle cost. As an example, we have implemented differential evolution (DE) in the back-calculation of the elastic modulus of multi-layered pavement. The proposed DE global optimization back-calculation approach is integrated with a forward response model. This approach treats back-calculation as a global optimization problem where the cost function to be minimized is defined as the root mean square error in measured and computed deflections. The optimal solution which is elastic modulus, in this case, is searched for in the solution space by the DE algorithm. The best DE parameter combinations and the most optimum value is predicted so that the results are reproducible whenever the need arises. The algorithm’s performance in varied scenarios was analyzed by changing the input parameters. The prediction was well within the permissible error, establishing the supremacy of DE.

Keywords: cost function, differential evolution, falling weight deflectometer, genetic algorithm, global optimization, metaheuristic algorithm, multilayered pavement, pavement condition assessment, pavement layer moduli back calculation

Procedia PDF Downloads 164
1449 Contributions of Women to the Development of Hausa Literature as an Effective Means of Public Enlightenment: The Case of a 19th Century Female Scholar Maryam Bint Uthman Ibn Foduye

Authors: Balbasatu Ibrahim

Abstract:

In the 19th century, Hausaland an Islamic revolution known as the Sokoto Jihad took place that led to the establishment of the Sokoto Caliphate in 1804 under the leadership of the famous Sheik Uthman Bn Fodiye. Before the Jihad movement in Hausaland (now Northern Nigeria), women were left in ignorance and were used and dumped like old kitchen utensils. The sheik and his followers did their best to actualising women’s right to education by using their female family members as role models who were highly educated and renowned scholars. After the Jihad with the establishment of an Islamic state, the women scholars initiated different strategies to teach the generality of the women. The most efficient strategy was the ‘Yantaru Movement founded by Nana Asma’u the daughter of Sheikh Uthman Bn Fodiye in collaboration with her sisters around 1840. The ‘Yantaru movement is a women’s educational movement aimed at enlightening women in rural and urban areas. The move helped in massively mobilizing women for education. In addition to town pupils, women from villages and throughout the nooks and crannies of metropolitan Sokoto participated in the movement in the search for knowledge. Thus, the birth of the ‘Yantaru system of women’s education. The ‘Yantaru operates the three-tier system at village, town and the metropolitan capital of Sokoto. ‘Yantaru functions include imparting knowledge to elderly women and young girls. Step down enlightenment program on returning home. The most effective medium of communication in the ‘Yantaru movement was through poetry where scholars composed educational poems which were memorized by the ‘Yantaru, who on return recite it to fellow women at home. Through this system, many women were educated. This paper translated and examines one of such educative poems written by the second leader of the ‘Yantaru Movement Maryam Bn Uthman Bn Fodiye in 1855.

Keywords: English, Hausa language, public enlightenment, Maryam Bint Uthman Ibn Foduye

Procedia PDF Downloads 368
1448 Infodemic Detection on Social Media with a Multi-Dimensional Deep Learning Framework

Authors: Raymond Xu, Cindy Jingru Wang

Abstract:

Social media has become a globally connected and influencing platform. Social media data, such as tweets, can help predict the spread of pandemics and provide individuals and healthcare providers early warnings. Public psychological reactions and opinions can be efficiently monitored by AI models on the progression of dominant topics on Twitter. However, statistics show that as the coronavirus spreads, so does an infodemic of misinformation due to pandemic-related factors such as unemployment and lockdowns. Social media algorithms are often biased toward outrage by promoting content that people have an emotional reaction to and are likely to engage with. This can influence users’ attitudes and cause confusion. Therefore, social media is a double-edged sword. Combating fake news and biased content has become one of the essential tasks. This research analyzes the variety of methods used for fake news detection covering random forest, logistic regression, support vector machines, decision tree, naive Bayes, BoW, TF-IDF, LDA, CNN, RNN, LSTM, DeepFake, and hierarchical attention network. The performance of each method is analyzed. Based on these models’ achievements and limitations, a multi-dimensional AI framework is proposed to achieve higher accuracy in infodemic detection, especially pandemic-related news. The model is trained on contextual content, images, and news metadata.

Keywords: artificial intelligence, fake news detection, infodemic detection, image recognition, sentiment analysis

Procedia PDF Downloads 261
1447 Youth Voices on Experiences of (Dis)Advantage: A Case Study at a South African University

Authors: Oliver T. Gore

Abstract:

Social inequalities and inequity of outcomes in higher education (HE) persist in South Africa despite the government introducing policy that seeks to address social injustices brought about by previous apartheid policies. In addressing these social injustices, HE policy conceptualises inequalities under the concept of historical ‘disadvantage’ which is understood to be primarily race-based. The study adds on to the existing knowledge on inequalities through developing the dimensions of (dis)advantage, which have the potential to inform the South African HE policy on providing equal opportunities amongst diverse students to participate and succeed in their studies. Drawing from the capabilities approach, this study argues that (dis)advantage can be richly understood in terms of students’ capabilities, functionings and agency as opposed to a sole focus on race. The study argues that limited freedoms, lack of effective opportunities, and reduced agency for students to turn university resources into real achievements such as personal development, economic skills and social responsibility amounts to disadvantage, while the converse is also true. The study draws from qualitative interview data with honours students, university staff and Student Representative Council members from five different university departments at one South African university. This presentation uses results from 20 students and reveals what their university experiences tell us regarding students’ unfreedoms in relation to: the inability to make decisions, poor schooling backgrounds, inadequate finances, emotional stress, lack of social support, inability to understand the language of instruction, lack of safe transport and accommodation issues. Despite these unfreedoms, the data shows that the students aspired and persevered with their studies. Using theory and empirical data in conversation, the paper shows that there is a need to nuance the definition of (dis)advantage, particularly by focusing on how different forms of disadvantage intersect with each other.

Keywords: capabilities approach, (dis)advantage, higher education, social justice

Procedia PDF Downloads 142
1446 Impact of Keeping Drug-Addicted Mothers and Newborns Together: Enhancing Bonding, Interoception Learning, and Thriving for Newborns with Positive Effects on Attachment and Child Development

Authors: Poteet Frances, Glovinski Ira

Abstract:

INTRODUCTION: The interoceptive nervous system continuously senses chemical and anatomical changes and helps you recognize, understand, and feel what’s going on inside your body so it is important for energy regulation, memory, affect, and sense of self. A newborn needs predictable routines rather than confusion/chaos to make connections between internal experiences and emotions. AIM: Current legal protocols of removing babies from drug-addicted mothers impact the critical window of bonding. The newborn’s brain is social and the attachment process influences a child’s development which begins immediately after birth through nourishment, comfort, and protection. DESCRIPTION: Our project aims to educate drug-addicted mothers, and medical, nursing, and social work professionals on interoceptive concepts and practices to sustain the mother/newborn relationship. A mother’s interoceptive knowledge predicts children’s emotion regulation and social skills in middle childhood. CONCLUSION: When mothers develop an awareness of their inner bodily sensations, they can self-regulate and be emotionally available to co-regulate (support their newborn during distressing emotions and sensations). Our project has enhanced relationship preservation (mothers understand how their presence matters) and the overall mother/newborn connection.

Keywords: drug-addiction, interoception, legal, mothers, newborn, self-regulation

Procedia PDF Downloads 61
1445 Weighted-Distance Sliding Windows and Cooccurrence Graphs for Supporting Entity-Relationship Discovery in Unstructured Text

Authors: Paolo Fantozzi, Luigi Laura, Umberto Nanni

Abstract:

The problem of Entity relation discovery in structured data, a well covered topic in literature, consists in searching within unstructured sources (typically, text) in order to find connections among entities. These can be a whole dictionary, or a specific collection of named items. In many cases machine learning and/or text mining techniques are used for this goal. These approaches might be unfeasible in computationally challenging problems, such as processing massive data streams. A faster approach consists in collecting the cooccurrences of any two words (entities) in order to create a graph of relations - a cooccurrence graph. Indeed each cooccurrence highlights some grade of semantic correlation between the words because it is more common to have related words close each other than having them in the opposite sides of the text. Some authors have used sliding windows for such problem: they count all the occurrences within a sliding windows running over the whole text. In this paper we generalise such technique, coming up to a Weighted-Distance Sliding Window, where each occurrence of two named items within the window is accounted with a weight depending on the distance between items: a closer distance implies a stronger evidence of a relationship. We develop an experiment in order to support this intuition, by applying this technique to a data set consisting in the text of the Bible, split into verses.

Keywords: cooccurrence graph, entity relation graph, unstructured text, weighted distance

Procedia PDF Downloads 154
1444 Statecraft: Building a Hindu Nationalist Intellectual Ecosystem in India

Authors: Anuradha Sajjanhar

Abstract:

The rise of authoritarian populist regimes has been accompanied by hardened nationalism and heightened divisions between 'us' and 'them'. Political actors reinforce these sentiments through coercion, but also through inciting fear about imagined threats and by transforming public discourse about policy concerns. Extremist ideas can penetrate national policy, as newly appointed intellectuals and 'experts' in knowledge-producing institutions, such as government committees, universities, and think tanks, succeed in transforming public discourse. While attacking left and liberal academics, universities, and the press, the current Indian government is building new institutions to provide authority to its particularly rigid, nationalist discourse. This paper examines the building of a Hindu-nationalist intellectual ecosystem in India, interrogating the key role of hyper-nationalist think tanks. While some are explicit about their political and ideological leanings, others claim neutrality and pursue their agenda through coded technocratic language and resonant historical narratives. Their key is to change thinking by normalizing it. Six years before winning the election in 2014, India’s Hindu-nationalist party, the BJP, put together its own network of elite policy experts. In a national newspaper, the vice-president of the BJP described this as an intentional shift: from 'being action-oriented to solidifying its ideological underpinnings in a policy framework'. When the BJP came to power in 2014, 'experts' from these think tanks filled key positions in the central government. The BJP has since been circulating dominant ideas of Hindu supremacy through regional parties, grassroots political organisations, and civil society organisations. These think tanks have the authority to articulate and legitimate Hindu nationalism within a credible technocratic policy framework. This paper is based on ethnography and over 50 interviews in New Delhi, before and after the BJP’s staggering election victory in 2019. It outlines the party’s attempt to take over existing institutions while developing its own cadre of nationalist policy-making professionals.

Keywords: ideology, politics, South Asia, technocracy

Procedia PDF Downloads 122
1443 High Motivational Salient Face Distractors Slowed Target Detection: Evidence from Behavioral Studies

Authors: Rashmi Gupta

Abstract:

Rewarding stimuli capture attention involuntarily as a result of an association process that develops quickly during value learning, referred to as the reward or value-driven attentional capture. It is essential to compare reward with punishment processing to get a full picture of value-based modulation in visual attention processing. Hence, the present study manipulated both valence/value (reward as well as punishment) and motivational salience (probability of an outcome: high vs. low) together. Series of experiments were conducted, and there were two phases in each experiment. In phase 1, participants were required to learn to associate specific face stimuli with a high or low probability of winning or losing points. In the second phase, these conditioned stimuli then served as a distractor or prime in a speeded letter search task. Faces with high versus low outcome probability, regardless of valence, slowed the search for targets (specifically the left visual field target) and suggesting that the costs to performance on non-emotional cognitive tasks were only driven by motivational salience (high vs. loss) associated with the stimuli rather than the valence (gain vs. loss). It also suggests that the processing of motivationally salient stimuli is right-hemisphere biased. Together, results of these studies strengthen the notion that our visual attention system is more sensitive to affected by motivational saliency rather than valence, which termed here as motivational-driven attentional capture.

Keywords: attention, distractors, motivational salience, valence

Procedia PDF Downloads 221
1442 Academic, Socio-Cultural and Psychological Satisfaction of International Higher Degree Research Students (IRHD) in Australia

Authors: Baohua Yu

Abstract:

In line with wider tends in the expansion of international student mobility, the number of international higher degree research students has grown at a significant rate in recent years. In particular, Australia has become a hub for attracting international higher degree research students from around the world. However, research has identified that international higher degree research students often encounter a wide range of academic and socio-cultural challenges in adapting to their new environment. Moreover, this can have a significant bearing on their levels of satisfaction with their studies. This paper outlines the findings of a mixed method study exploring the experiences and perceptions of international higher degree research students in Australia. Findings revealed that IRHD students’ overall and academic satisfaction in Australia were highly related to each other, and they were strongly influenced by their learning and research, moderately influenced by co-national support and intercultural contact ability. Socio-cultural satisfaction seemed to belong to a different domain from academic satisfaction because it was explained by a different set of variables such as living and adaptation and intercultural contact ability. In addition, the most important issues in terms of satisfaction were not directly related to academic studies. Instead, factors such as integration into the community, interacting with other students, relationships with supervisors, and the provision of adequate desk space were often given the greatest weight. Implications for how university policy can better support international doctoral students are discussed.

Keywords: international higher degree research students, academic adaptation, socio-cultural adaptation, student satisfaction

Procedia PDF Downloads 305
1441 Knee Pain Reduction: Holistic vs. Traditional

Authors: Renee Moten

Abstract:

Introduction: Knee pain becomes chronic because the therapy used focuses only on the symptoms of knee pain and not the causes of knee pain. Preventing knee injuries is not in the toolbox of the traditional practitioner. This research was done to show that we must reduce the inflammation (holistically), reduce the swelling and regain flexibility before considering any type of exercise. This method of performing the correct exercise stops the bowing of the knee, corrects the walking gait, and starts to relieve knee, hip, back, and shoulder pain. Method: The holistic method that is used to heal knees is called the Knee Pain Recipe. It’s a six step system that only uses alternative medicine methods to reduce, relieve and restore knee joint mobility. The system is low cost, with no hospital bills, no physical therapy, and no painkillers that can cause damage to the kidneys and liver. This method has been tested on 200 women with knee, back, hip, and shoulder pain. Results: All 200 women reduce their knee pain by 50%, some by as much as 90%. Learning about ankle and foot flexibility, along with understanding the kinetic chain, helps improve the walking gait, which takes the pressure off the knee, hip and back. The knee pain recipe also has helped to reduce the need for a cortisone injection, stem cell procedures, to take painkillers, and surgeries. What has also been noted in the research was that if the women's knees were too far gone, the Knee Pain Recipe helped prepare the women for knee replacement surgery. Conclusion: It is believed that the Knee Pain Recipe, when performed by men and women from around the world, will give them a holistic alternative to drugs, injections, and surgeries.

Keywords: knee, surgery, healing, holistic

Procedia PDF Downloads 75
1440 Urban Forest Innovation Lab as a Driver to Boost Forest Bioeconomy

Authors: Carmen Avilés Palacios, Camilo Muñoz Arenas, Joaquín García Alfonso, Jesús González Arteaga, Alberto Alcalde Calonge

Abstract:

There is a need for review of the consumption and production models of industrialized states in accordance with the Paris Agreement and the Sustainable Development Goals (1) (OECD, 2016). This constitutes the basis of the bioeconomy (2) that is focused on striking a balance between economic development, social development and environmental protection. Bioeconomy promotes the adequate use and consumption of renewable natural resources (3) and involves developing new products and services adapted to the principles of circular economy: more sustainable (reusable, biodegradable, renewable and recyclable) and with a lower carbon footprint (4). In this context, Urban Forest Innovation Lab (UFIL) grows, an Urban Laboratory for experimentation focused on promoting entrepreneurship in forest bioeconomy (www.uiacuenca.es). UFIL generates local wellness taking sustainable advantage of an endogenous asset, forests. UFIL boosts forest bioeconomy opening its doors of knowledge to pioneers in this field, giving the opportunity to be an active part of a change in the way of understanding the exploitation of natural resources, discovering business, learning strategies and techniques and incubating business ideas So far now, 100 entrepreneurs are incubating their nearly 30 new business plans. UFIL has promoted an ecosystem to connect the rural-urban world that promotes sustainable rural development around the forest.

Keywords: bioeconomy, forestry, innovation, entrepreneurship

Procedia PDF Downloads 118
1439 Green Windows of Opportunity in Latin American Countries

Authors: Fabianna Bacil, Zenathan Hasannundin, Clovis Freire

Abstract:

The green transition opens green windows of opportunity – temporary moments in which there are lower barriers and shorter learning periods for developing countries to enter emerging technologies and catch-up. However, taking advantage of these windows requires capabilities in national sectoral systems to adopt and develop technologies linked to green sectors as well as strong responses to build the required knowledge, skills, and infrastructure and foster the growth of targeted sectors. This paper uses UNCTAD’s frontier technology readiness index to analyse the current position of Latin America and the Caribbean to use, adopt, and adapt frontier technologies, examining the preconditions in the region to take up windows of opportunity that arise with the green transition. The index highlights the inequality across countries in the region, as well as gaps in capabilities dimensions, especially in terms of R&D. Moving to responses, it highlights industrial policies implemented to foster the growth of green technologies, emphasising the essential role played by the state to build and strengthen capabilities and provide infant industry protection that enables the growth of these sectors. Overall, while there are exceptions, especially in the Brazilian case, countries in Latin America and the Caribbean should focus on strengthening their capabilities to be better positioned, especially in terms of knowledge creation, infrastructure, and financing availability.

Keywords: Green technologies, Industrial policy, Latin America, windows of opportunity

Procedia PDF Downloads 64
1438 Using Multiple Strategies to Improve the Nursing Staff Edwards Lifesciences Hemodynamic Monitoring Correctness of Operation

Authors: Hsin-Yi Lo, Huang-Ju Jiun, Yu-Chiao Chu

Abstract:

Hemodynamic monitoring is an important in the intensive care unit. Advances in medical technology in recent years, more diversification of intensive care equipment, there are many kinds of instruments available for monitoring of hemodynamics, Edwards Lifesciences Hemodynamic Monitoring (FloTrac) is one of them. The recent medical safety incidents in parameters were changed, nurses have not to notify doctor in time, therefore, it is hoped to analyze the current problems and find effective improvement strategies. In August 2021, the survey found that only 74.0% of FloTrac correctness of operation, reasons include lack of education, the operation manual is difficulty read, lack of audit mechanism, nurse doesn't know those numerical changes need to notify doctor, work busy omission, unfamiliar with operation and have many nursing records then omissions. Improvement methods include planning professional nurse education, formulate the secret arts of FloTrac, enacting an audit mechanism, establish FloTrac action learning, make「follow the sun」care map, hold simulated training and establish monitoring data automatically upload nursing records. After improvement, FloTrac correctness of operation increased to 98.8%. The results are good, implement to the ICU of the hospital.

Keywords: hemodynamic monitoring, edwards lifesciences hemodynamic monitoring, multiple strategies, intensive care

Procedia PDF Downloads 82
1437 A Palmprint Identification System Based Multi-Layer Perceptron

Authors: David P. Tantua, Abdulkader Helwan

Abstract:

Biometrics has been recently used for the human identification systems using the biological traits such as the fingerprints and iris scanning. Identification systems based biometrics show great efficiency and accuracy in such human identification applications. However, these types of systems are so far based on some image processing techniques only, which may decrease the efficiency of such applications. Thus, this paper aims to develop a human palmprint identification system using multi-layer perceptron neural network which has the capability to learn using a backpropagation learning algorithms. The developed system uses images obtained from a public database available on the internet (CASIA). The processing system is as follows: image filtering using median filter, image adjustment, image skeletonizing, edge detection using canny operator to extract features, clear unwanted components of the image. The second phase is to feed those processed images into a neural network classifier which will adaptively learn and create a class for each different image. 100 different images are used for training the system. Since this is an identification system, it should be tested with the same images. Therefore, the same 100 images are used for testing it, and any image out of the training set should be unrecognized. The experimental results shows that this developed system has a great accuracy 100% and it can be implemented in real life applications.

Keywords: biometrics, biological traits, multi-layer perceptron neural network, image skeletonizing, edge detection using canny operator

Procedia PDF Downloads 373
1436 Grey Wolf Optimization Technique for Predictive Analysis of Products in E-Commerce: An Adaptive Approach

Authors: Shital Suresh Borse, Vijayalaxmi Kadroli

Abstract:

E-commerce industries nowadays implement the latest AI, ML Techniques to improve their own performance and prediction accuracy. This helps to gain a huge profit from the online market. Ant Colony Optimization, Genetic algorithm, Particle Swarm Optimization, Neural Network & GWO help many e-commerce industries for up-gradation of their predictive performance. These algorithms are providing optimum results in various applications, such as stock price prediction, prediction of drug-target interaction & user ratings of similar products in e-commerce sites, etc. In this study, customer reviews will play an important role in prediction analysis. People showing much interest in buying a lot of services& products suggested by other customers. This ultimately increases net profit. In this work, a convolution neural network (CNN) is proposed which further is useful to optimize the prediction accuracy of an e-commerce website. This method shows that CNN is used to optimize hyperparameters of GWO algorithm using an appropriate coding scheme. Accurate model results are verified by comparing them to PSO results whose hyperparameters have been optimized by CNN in Amazon's customer review dataset. Here, experimental outcome proves that this proposed system using the GWO algorithm achieves superior execution in terms of accuracy, precision, recovery, etc. in prediction analysis compared to the existing systems.

Keywords: prediction analysis, e-commerce, machine learning, grey wolf optimization, particle swarm optimization, CNN

Procedia PDF Downloads 113