Search results for: heat release rate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11192

Search results for: heat release rate

2972 The Dynamics of a 3D Vibrating and Rotating Disc Gyroscope

Authors: Getachew T. Sedebo, Stephan V. Joubert, Michael Y. Shatalov

Abstract:

Conventional configuration of the vibratory disc gyroscope is based on in-plane non-axisymmetric vibrations of the disc with a prescribed circumferential wave number. Due to the Bryan's effect, the vibrating pattern of the disc becomes sensitive to the axial component of inertial rotation of the disc. Rotation of the vibrating pattern relative to the disc is proportional to the inertial angular rate and is measured by sensors. In the present paper, the authors investigate a possibility of making a 3D sensor on the basis of both in-plane and bending vibrations of the disc resonator. We derive equations of motion for the disc vibratory gyroscope, where both in-plane and bending vibrations are considered. Hamiltonian variational principle is used in setting up equations of motion and the corresponding boundary conditions. The theory of thin shells with the linear elasticity principles is used in formulating the problem and also the disc is assumed to be isotropic and obeys Hooke's Law. The governing equation for a specific mode is converted to an ODE to determine the eigenfunction. The resulting ODE has exact solution as a linear combination of Bessel and Neumann functions. We demonstrate how to obtain an explicit solution and hence the eigenvalues and corresponding eigenfunctions for annular disc with fixed inner boundary and free outer boundary. Finally, the characteristics equations are obtained and the corresponding eigenvalues are calculated. The eigenvalues are used for the calculation of tuning conditions of the 3D disc vibratory gyroscope.

Keywords: Bryan’s effect, bending vibrations, disc gyroscope, eigenfunctions, eigenvalues, tuning conditions

Procedia PDF Downloads 302
2971 Comparison Between Tension Band Wiring Using K-Wires and Cannulated Screws in Transverse Patella Fracture Fixation

Authors: Daniel Francis, Mo Yassin

Abstract:

Transverse patella fractures are routinely fixed using tension band wiring (TBW) using Kirschner wires and a wire in the shape of a figure of 8. The idea of the study was to compare the outcomes of the traditional technique against the more recently used cannulated screws and fiber tape in the shape of a figure of 8. We performed a retrospective cohort study of all the surgically fixed patella fractures from the year 2019 to 2022. The patients were divided into two groups TBW group and cannulated screws group. The primary outcome measure was the failure of fixation and the need for the removal of metalwork. Twenty-six patellar fractures were studied. TBW was used in 14 (53.8%), and cannulated screws were used for fixation in 12 (46.2%). There was one incident of metalwork failure in the TBW and one incident in the cannulated screws group. Five (35.7%) of patients in the TBW needed symptomatic metal work removed and One (8.3%) in the cannulated screw group. In both groups, the rate of fixation failure was low. Symptomatic implants, the most common complication observed, were higher in the TBW group in our practice. Although the small numbers in both groups, the hope of this study is to shine the light on the use of cannulated screws for patella fractures as it would reduce the need for a second operation and reduce the load on the already stretched services as well as improving the patient experience by not requiring further surgery. Although this is not a brand-new technique, it is not commonly used as there have not yet been any studies that demonstrate the lower rates of second surgery needed.

Keywords: patella, tension band wiring, randomised, new technique

Procedia PDF Downloads 56
2970 Growth and Anatomical Responses of Lycopersicon esculentum (Tomatoes) under Microgravity and Normal Gravity Conditions

Authors: Gbenga F. Akomolafe, Joseph Omojola, Ezekiel S. Joshua, Seyi C. Adediwura, Elijah T. Adesuji, Michael O. Odey, Oyinade A. Dedeke, Ayo H. Labulo

Abstract:

Microgravity is known to be a major abiotic stress in space which affects plants depending on the duration of exposure. In this work, tomatoes seeds were exposed to long hours of simulated microgravity condition using a one-axis clinostat. The seeds were sown on a 1.5% combination of plant nutrient and agar-agar solidified medium in three Petri dishes. One of the Petri dishes was mounted on the clinostat and allowed to rotate at the speed of 20 rpm for 72 hours, while the others were subjected to the normal gravity vector. The anatomical sections of both clinorotated and normal gravity plants were made after 72 hours and observed using a Phase-contrast digital microscope. The percentage germination, as well as the growth rate of the normal gravity seeds, was higher than the clinorotated ones. The germinated clinorotated roots followed different directions unlike the normal gravity ones which grew towards the direction of gravity vector. The clinostat was able to switch off gravistimulation. Distinct cellular arrangement was observed for tomatoes under normal gravity condition, unlike those of clinorotated ones. The root epidermis and cortex of normal gravity are thicker than the clinorotated ones. This implied that under long-term microgravity influence, plants do alter their anatomical features as a way of adapting to the stress condition.

Keywords: anatomy, clinostat, germination, lycopersicon esculentum, microgravity

Procedia PDF Downloads 298
2969 Rearrangement and Depletion of Human Skin Folate after UVA Exposure

Authors: Luai Z. Hasoun, Steven W. Bailey, Kitti K. Outlaw, June E. Ayling

Abstract:

Human skin color is thought to have evolved to balance sufficient photochemical synthesis of vitamin D versus the need to protect not only DNA but also folate from degradation by ultraviolet light (UV). Although the risk of DNA damage and subsequent skin cancer is related to light skin color, the effect of UV on skin folate of any species is unknown. Here we show that UVA irradiation at 13 mW/cm2 for a total exposure of 187 J/cm2 (similar to a maximal daily equatorial dose) induced a significant loss of total folate in epidermis of ex vivo white skin. No loss was observed in black skin samples, or in the dermis of either color. Interestingly, while the concentration of 5 methyltetrahydrofolate (5-MTHF) fell in white epidermis, a concomitant increase of tetrahydrofolic acid was found, though not enough to maintain the total pool. These results demonstrate that UVA indeed not only decreases folate in skin, but also rearranges the pool components. This could be due in part to the reported increase of NADPH oxidase activity upon UV irradiation, which in turn depletes the NADPH needed for 5-MTHF biosynthesis by 5,10-methylenetetrahydrofolate reductase. The increased tetrahydrofolic acid might further support production of the nucleotide bases needed for DNA repair. However, total folate was lost at a rate that could, with strong or continuous enough exposure to ultraviolet radiation, substantially deplete light colored skin locally, and also put pressure on total body stores for individuals with low intake of folate.

Keywords: depletion, folate, human skin, ultraviolet

Procedia PDF Downloads 370
2968 Early Warning System of Financial Distress Based On Credit Cycle Index

Authors: Bi-Huei Tsai

Abstract:

Previous studies on financial distress prediction choose the conventional failing and non-failing dichotomy; however, the distressed extent differs substantially among different financial distress events. To solve the problem, “non-distressed”, “slightly-distressed” and “reorganization and bankruptcy” are used in our article to approximate the continuum of corporate financial health. This paper explains different financial distress events using the two-stage method. First, this investigation adopts firm-specific financial ratios, corporate governance and market factors to measure the probability of various financial distress events based on multinomial logit models. Specifically, the bootstrapping simulation is performed to examine the difference of estimated misclassifying cost (EMC). Second, this work further applies macroeconomic factors to establish the credit cycle index and determines the distressed cut-off indicator of the two-stage models using such index. Two different models, one-stage and two-stage prediction models, are developed to forecast financial distress, and the results acquired from different models are compared with each other, and with the collected data. The findings show that the two-stage model incorporating financial ratios, corporate governance and market factors has the lowest misclassification error rate. The two-stage model is more accurate than the one-stage model as its distressed cut-off indicators are adjusted according to the macroeconomic-based credit cycle index.

Keywords: Multinomial logit model, corporate governance, company failure, reorganization, bankruptcy

Procedia PDF Downloads 362
2967 Climate Change and Global Warming: Effect on Indian Agriculture and Legal Control

Authors: Aman Guru, Chiron Singhi

Abstract:

The Earth’s climate is being changed at an unrivalled rate since beginning of the evolution of the Earth, 4–5 billion years back, but presently it gained pace due to unintentional anthropogenic disturbances and also increased global warming since the mid-20th century, and these incessant changes in the climatic pattern may bring unpropitious effect on global health and security. Today, however, it is not only the air, or water that are polluted, but the whole atmosphere is prone to pollution and this resulted in other cascading ramification in the form of change in the pattern of rainfall, melting of ice, the rise in the sea level etc. Human activities like production, transport, burning of fuels are adding umpteen dangerous pollutants to the atmosphere which in turn gives rise to global warming. Agriculture plays an imperative part in India's economy. Agriculture, along with fisheries and forestry, is one of the largest contributors to the Gross Domestic Product in India. Research on the effect of climate change and vulnerability of agriculture is a high need in India. A steady increase of CO2 is a primary cause of climate change and global warming and which in turn have a great impact on Indian agriculture. The research focuses on the effect of climate change on Indian agriculture and the proceedings and legal control of legislative measures on such issues and the ways to implement such laws which can help to provide a solution to these problems which can prove beneficial to Indian farmers and their agricultural produce.

Keywords: agriculture, climate change, global warming, India laws, legislative measures

Procedia PDF Downloads 293
2966 Six Sigma-Based Optimization of Shrinkage Accuracy in Injection Molding Processes

Authors: Sky Chou, Joseph C. Chen

Abstract:

This paper focuses on using six sigma methodologies to reach the desired shrinkage of a manufactured high-density polyurethane (HDPE) part produced by the injection molding machine. It presents a case study where the correct shrinkage is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for an injection molding process. To improve this process and keep the product within specifications, the six sigma methodology, design, measure, analyze, improve, and control (DMAIC) approach, was implemented in this study. The six sigma approach was paired with the Taguchi methodology to identify the optimized processing parameters that keep the shrinkage rate within the specifications by our customer. An L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of the cooling time, melt temperature, holding time, and metering stroke. The noise factor is the difference between material brand 1 and material brand 2. After the confirmation run was completed, measurements verify that the new parameter settings are optimal. With the new settings, the process capability index has improved dramatically. The purpose of this study is to show that the six sigma and Taguchi methodology can be efficiently used to determine important factors that will improve the process capability index of the injection molding process.

Keywords: injection molding, shrinkage, six sigma, Taguchi parameter design

Procedia PDF Downloads 157
2965 Effects of Multilayer Coating of Chitosan and Polystyrene Sulfonate on Quality of ‘Nam Dok Mai No.4’ Mango

Authors: N. Hadthamard, P. Chaumpluk, M. Buanong, P. Boonyaritthongchai, C. Wongs-Aree

Abstract:

Ripe ‘Nam Dok Mai’ mango (Mangifera indica L.) is an important exported fruit of Thailand, but rapidly declined in the quality attributes mainly by infection of anthracnose and stem end rot diseases. Multilayer coating is considered as a developed technique to maintain the postharvest quality of mangoes. The utilization of alternated coating by matching oppositely electrostatic charges between 0.1% chitosan and 0.1% polystyrene sulfonate (PSS) was studied. A number of the coating layers (layer by layer) were applied on mature green ‘Nam Dok Mai No.4’ mangoes prior to storage at 25 oC, 65-70% relative humidity (RH). There were significant differences in some quality attributes of mangoes coated by 3½ layers, 4½ layers and 5½ layers. In comparison to coated mangoes, uncoated fruits were higher in weight loss, total soluble solids, respiration rate, ethylene production and disease incidence except the titratable acidity. Coating fruit at 3½ layers exhibited the ripening delay and reducing disease infection without off flavour. On the other hand, fruit coated with 5½ layers comprised the lowest acceptable score, caused by exhibiting disorders from fermentation at the end of storage. As a result, multilayer coating between chitosan and PSS could effectively maintain the postharvest quality of mango, but number of coating layers should be thoroughly considered.

Keywords: multilayer, chitosan, polystyrene sulfonate, Nam Dok Mai No.4

Procedia PDF Downloads 191
2964 The Impact of Innovation Best Practices in Economic Development

Authors: Hanadi Mubarak AL-Mubaraki, Michael Busler

Abstract:

Innovation is the process of making changes, differences, and novelties in the products and services, adding values and business practices to create economic and social benefit. The purpose of this paper is to identify the strengths and weaknesses of innovation programs in developed and developing countries. We used a mixed-methods approach, quantitative as survey and qualitative as a multi-case study to examine innovation best practices in developed and developing countries. In addition, four case studies of innovation organisations based on the best practices and successful implementation in the developed and developing countries are selected for examination. The research findings provide guidance, suggestions, and recommendations for future implementation in developed and developing countries for practitioners such as policy makers, governments, funded organizations, and strategic institutions. In conclusion, innovation programs are vital tools for economic growth, knowledge, and technology transfer based on the several indicators such as creativity, entrepreneurship, role of government, role of university, strategic focus, new products, survival rate, job creation, start-up companies, and number of patents. The authors aim to conduct future research which will include a comparative study of innovation case studies between developed and developing countries for policy implications worldwide. The originality of this study makes a contribution to the current literature about the innovation best practice in developed and developing countries.

Keywords: economic development, entrepreneurship, innovation program, developed countries

Procedia PDF Downloads 352
2963 A Multi-Scale Approach for the Analysis of Fiber-Reinforced Composites

Authors: Azeez Shaik, Amit Salvi, B. P. Gautham

Abstract:

Fiber reinforced polymer resin composite materials are finding wide variety of applications in automotive and aerospace industry because of their high specific stiffness and specific strengths when compared to metals. New class of 2D and 3D textile and woven fabric composites offer excellent fracture toughens as they bridge the cracks formed during fracture. Due to complexity of their fiber architectures and its resulting composite microstructures, optimized design and analysis of these structures is very complicated. A traditional homogenization approach is typically used to analyze structures made up of these materials. This approach usually fails to predict damage initiation as well as damage propagation and ultimate failure of structure made up of woven and textile composites. This study demonstrates a methodology to analyze woven and textile composites by using the multi-level multi-scale modelling approach. In this approach, a geometric repetitive unit cell (RUC) is developed with all its constituents to develop a representative volume element (RVE) with all its constituents and their interaction modeled correctly. The structure is modeled based on the RUC/RVE and analyzed at different length scales with desired levels of fidelity incorporating the damage and failure. The results are passed across (up and down) the scales qualitatively as well as quantitatively from the perspective of material, configuration and architecture.

Keywords: cohesive zone, multi-scale modeling, rate dependency, RUC, woven textiles

Procedia PDF Downloads 347
2962 Extraction of M. paradisiaca L. Inflorescences Using Compressed Propane

Authors: Michele C. Mesomo, Madeline de Souza Correa, Roberta L. Kruger, Luis R. S. Kanda, Marcos L. Corazza

Abstract:

Natural extracts of plants have been used for many years for different purposes and recently they have been screened for their potential use as alternative remedies and food preservatives. Inflorescences of M. paradisiaca L., also known as the heart of the banana, have great economic interest due to its fruit. All parts of the banana are used for many different purposes, including use in folk medicine. The use of extraction via supercritical technology has grown in recent years, though it is still necessary to obtain experimental information for the construction of industrial plants. This work reports the extraction of Musa paradisiaca L. using compressed propane as solvent. The effects of the supercritical extraction conditions, pressure and temperature on the yield were evaluated. The raw material, inflorescences banana, was dried at 313.15 K and milled. The particle size used for the packaging of the extraction cell was 12 mesh (23.5%), 16 mesh (23.5%), 32 mesh (34.5%), 48 mesh (18.5%). The extractions were performed in a laboratory scale unit at pressures of 3.0 MPa, 6.5 MPa and 10.0 MPa and at 308.15 K, 323.15 K and 338.15 K. The operating conditions tested achieved a maximum yield of 2.94 wt% for the CO2 extraction at 10.0 MPa and 338.15 K, higher pressure and temperature. The lower yield, 2.29 wt%, was obtained in the condition of lower pressure and higher temperature. Temperature presented significant and positive effect on the extraction yield with supercritical CO2, while pressure had no effect on the yield. The overall extraction curves showed typical behavior obtained for the supercritical extraction procedure and and reached a constant extraction rate of about 80 to 100 min. The largest amount of extract was obtained at the beginning of the process, within 10 to 60 min.

Keywords: banana, natural products, supercritical extraction, temperature

Procedia PDF Downloads 593
2961 Recycling Motivations and Barriers in Kota Kinabalu, Malaysia

Authors: Jasmine Adela Mutang, Rosnah Ismail, Chua Bee Seok, Ferlis Bahari, Lailawati Madlan, Walton Wider, Rickless Das

Abstract:

Waste projection is increasing and most landfills in Malaysia are running out of space. Due to that, waste management is now becoming a major challenge. The most sustainable solution is by practicing sustainable practices such as recycling. Since 1993 the government has launched several recycling campaigns and implemented the National Recycling Policy. However, public participation is still very low. Only 10.5% of solid waste was recycled up to now which is far below than of in developed countries. Nevertheless the government is optimistic that the target of 22% recycling by 2020 will be achieved if there is a positive flow pattern in sustainable practices in particular recycling behavior among Malaysian. Understanding public motivations towards recycling domestic waste are important to improve current recycling rate. Thus this study attempts to identify what are the possible motivations and hindrances for the public to recycle. Open-ended questions format were administered to 484 people in Kota Kinabalu, Sabah, Malaysia. Two specific questions we asked to explore their general determinants and barriers in practicing recycling: “What motivates you to recycle?” and “What are the barriers you encountered in doing recycling activities?” Thematic analysis was conducted on the open-ended questions in which themes were created with the raw comments. It was found that the underlying recycling motivations are awareness’ towards the environment, benefits to the society and individual, and social influence. Non participations are influence by attitudes, commitment, facilities, knowledge, inconvenience, and enforcement.

Keywords: recycling motivation, recycling barrier, sustainable, household waste

Procedia PDF Downloads 531
2960 Depression in Non Hospitalized Jordanian Patients with Coronary Artery Disease

Authors: Ibtisam Al-Zaru

Abstract:

Background: Worldwide, depression among coronary artery disease (CAD) patients is considered a serious problem that may cause many complications and negative consequences; particularly serious being increased mortality and morbidity rate. Studying depression among CAD patients in Jordan has not been investigated thoroughly and thus a need for further studies has been a priority. Aims: To assess depression in non-hospitalized Jordanian patients with CAD; to describe the relationship between socio-demographic data, health related factors, and depression; and to examine the best predictors of depression in non-hospitalized Jordanian patients with CAD. Method: A cross-sectional-descriptive design was used to collect data from 174 non-hospitalized Jordanian patients diagnosed with CAD in outpatients’ cardiac clinics, using a self- administered questionnaires and Cardiac Depression Scale. Results: 53.4% of CAD patients reported mild/moderate, and severe depressive symptoms. Significant relationships between depressive symptoms and some demo-clinical characteristics (i.e. being female gender; having of chronic disease and surgical history; being physically inactive, and perceived their sexual activity, physical and psychological as poor). The preceding factors are also found to be statistically significant predictors for depression among this patients’ group. Conclusion: Jordanian patients with CAD had various levels of severity regarding their depressive symptoms. Therefore, health care providers need to introduce depression assessment and treatment in cardiac rehabilitation to control depression and its impact on the patient. Consequently, such control will reduce co-morbidity, mortality, complications and health costs among CAD patients and enhance the quality of their lives.

Keywords: coronary artery disease, predictors, depression, prevalence

Procedia PDF Downloads 256
2959 Creating Renewable Energy Investment Portfolio in Turkey between 2018-2023: An Approach on Multi-Objective Linear Programming Method

Authors: Berker Bayazit, Gulgun Kayakutlu

Abstract:

The World Energy Outlook shows that energy markets will substantially change within a few forthcoming decades. First, determined action plans according to COP21 and aim of CO₂ emission reduction have already impact on policies of countries. Secondly, swiftly changed technological developments in the field of renewable energy will be influential upon medium and long-term energy generation and consumption behaviors of countries. Furthermore, share of electricity on global energy consumption is to be expected as high as 40 percent in 2040. Electrical vehicles, heat pumps, new electronical devices and digital improvements will be outstanding technologies and innovations will be the testimony of the market modifications. In order to meet highly increasing electricity demand caused by technologies, countries have to make new investments in the field of electricity production, transmission and distribution. Specifically, electricity generation mix becomes vital for both prevention of CO₂ emission and reduction of power prices. Majority of the research and development investments are made in the field of electricity generation. Hence, the prime source diversity and source planning of electricity generation are crucial for improving the wealth of citizen life. Approaches considering the CO₂ emission and total cost of generation, are necessary but not sufficient to evaluate and construct the product mix. On the other hand, employment and positive contribution to macroeconomic values are important factors that have to be taken into consideration. This study aims to constitute new investments in renewable energies (solar, wind, geothermal, biogas and hydropower) between 2018-2023 under 4 different goals. Therefore, a multi-objective programming model is proposed to optimize the goals of minimizing the CO₂ emission, investment amount and electricity sales price while maximizing the total employment and positive contribution to current deficit. In order to avoid the user preference among the goals, Dinkelbach’s algorithm and Guzel’s approach have been combined. The achievements are discussed with comparison to the current policies. Our study shows that new policies like huge capacity allotment might be discussible although obligation for local production is positive. The improvements in grid infrastructure and re-design support for the biogas and geothermal can be recommended.

Keywords: energy generation policies, multi-objective linear programming, portfolio planning, renewable energy

Procedia PDF Downloads 227
2958 Reliability of the Estimate of Earthwork Quantity Based on 3D-BIM

Authors: Jaechoul Shin, Juhwan Hwang

Abstract:

In case of applying the BIM method to the civil engineering in the area of free formed structure, we can expect comparatively high rate of construction productivity as it is in the building engineering area. In this research, we developed quantity calculation error applying it to earthwork and bridge construction (e.g. PSC-I type segmental girder bridge amd integrated bridge of steel I-girders and inverted-Tee bent cap), NATM (New Austrian Tunneling Method) tunnel construction, retaining wall construction, culvert construction and implemented BIM based 3D modeling quantity survey. we confirmed high reliability of the BIM-based method in structure work in which errors occurred in range between -6% ~ +5%. Especially, understanding of the problem and improvement of the existing 2D-CAD based of quantity calculation through rock type quantity calculation error in range of -14% ~ +13% of earthwork quantity calculation. It is benefit and applicability of BIM method in civil engineering. In addition, routine method for quantity of earthwork has the same error tolerance negligible for that of structure work. But, rock type's quantity calculated as the error appears significantly to the reliability of 2D-based volume calculation shows that the problem could be. Through the estimating quantity of earthwork based 3D-BIM, proposed method has better reliability than routine method. BIM, as well as the design, construction, maintenance levels of information when you consider the benefits of integration, the introduction of BIM design in civil engineering and the possibility of applying for the effectiveness was confirmed.

Keywords: BIM, 3D modeling, 3D-BIM, quantity of earthwork

Procedia PDF Downloads 424
2957 Finite-Sum Optimization: Adaptivity to Smoothness and Loopless Variance Reduction

Authors: Bastien Batardière, Joon Kwon

Abstract:

For finite-sum optimization, variance-reduced gradient methods (VR) compute at each iteration the gradient of a single function (or of a mini-batch), and yet achieve faster convergence than SGD thanks to a carefully crafted lower-variance stochastic gradient estimator that reuses past gradients. Another important line of research of the past decade in continuous optimization is the adaptive algorithms such as AdaGrad, that dynamically adjust the (possibly coordinate-wise) learning rate to past gradients and thereby adapt to the geometry of the objective function. Variants such as RMSprop and Adam demonstrate outstanding practical performance that have contributed to the success of deep learning. In this work, we present AdaLVR, which combines the AdaGrad algorithm with loopless variance-reduced gradient estimators such as SAGA or L-SVRG that benefits from a straightforward construction and a streamlined analysis. We assess that AdaLVR inherits both good convergence properties from VR methods and the adaptive nature of AdaGrad: in the case of L-smooth convex functions we establish a gradient complexity of O(n + (L + √ nL)/ε) without prior knowledge of L. Numerical experiments demonstrate the superiority of AdaLVR over state-of-the-art methods. Moreover, we empirically show that the RMSprop and Adam algorithm combined with variance-reduced gradients estimators achieve even faster convergence.

Keywords: convex optimization, variance reduction, adaptive algorithms, loopless

Procedia PDF Downloads 49
2956 Nonlinear Analysis in Investigating the Complexity of Neurophysiological Data during Reflex Behavior

Authors: Juliana A. Knocikova

Abstract:

Methods of nonlinear signal analysis are based on finding that random behavior can arise in deterministic nonlinear systems with a few degrees of freedom. Considering the dynamical systems, entropy is usually understood as a rate of information production. Changes in temporal dynamics of physiological data are indicating evolving of system in time, thus a level of new signal pattern generation. During last decades, many algorithms were introduced to assess some patterns of physiological responses to external stimulus. However, the reflex responses are usually characterized by short periods of time. This characteristic represents a great limitation for usual methods of nonlinear analysis. To solve the problems of short recordings, parameter of approximate entropy has been introduced as a measure of system complexity. Low value of this parameter is reflecting regularity and predictability in analyzed time series. On the other side, increasing of this parameter means unpredictability and a random behavior, hence a higher system complexity. Reduced neurophysiological data complexity has been observed repeatedly when analyzing electroneurogram and electromyogram activities during defence reflex responses. Quantitative phrenic neurogram changes are also obvious during severe hypoxia, as well as during airway reflex episodes. Concluding, the approximate entropy parameter serves as a convenient tool for analysis of reflex behavior characterized by short lasting time series.

Keywords: approximate entropy, neurophysiological data, nonlinear dynamics, reflex

Procedia PDF Downloads 289
2955 Development of Ecofriendly Ionic Liquid Modified Reverse Phase Liquid Chromatography Method for Simultaneous Determination of Anti-Hyperlipidemic Drugs

Authors: Hassan M. Albishri, Fatimah Al-Shehri, Deia Abd El-Hady

Abstract:

Among the analytical techniques, reverse phase liquid chromatography (RPLC) is currently used in pharmaceutical industry. Ecofriendly analytical chemistry offers the advantages of decreasing the environmental impact with the advantage of increasing operator safety which constituted a topic of industrial interest. Recently, ionic liquids have been successfully used to reduce or eliminate the conventional organic toxic solvents. In the current work, a simple and ecofriendly ionic liquid modified RPLC (IL-RPLC) method has been firstly developed and compared with RPLC under acidic and neutral mobile phase conditions for simultaneous determination of atorvastatin-calcium, rosuvastatin and simvastatin. Several chromatographic effective parameters have been changed in a systematic way. Adequate results have been achieved by mixing ILs with ethanol as a mobile phase under neutral conditions at 1 mL/min flow rate on C18 column. The developed IL-RPLC method has been validated for the quantitative determination of drugs in pharmaceutical formulations. The method showed excellent linearity for analytes in a wide range of concentrations with acceptable precise and accurate data. The current IL-RPLC technique could have vast applications particularly under neutral conditions for simple and greener (bio)analytical applications of pharmaceuticals.

Keywords: ionic liquid, RPLC, anti-hyperlipidemic drugs, ecofriendly

Procedia PDF Downloads 239
2954 Automated Digital Mammogram Segmentation Using Dispersed Region Growing and Pectoral Muscle Sliding Window Algorithm

Authors: Ayush Shrivastava, Arpit Chaudhary, Devang Kulshreshtha, Vibhav Prakash Singh, Rajeev Srivastava

Abstract:

Early diagnosis of breast cancer can improve the survival rate by detecting cancer at an early stage. Breast region segmentation is an essential step in the analysis of digital mammograms. Accurate image segmentation leads to better detection of cancer. It aims at separating out Region of Interest (ROI) from rest of the image. The procedure begins with removal of labels, annotations and tags from the mammographic image using morphological opening method. Pectoral Muscle Sliding Window Algorithm (PMSWA) is used for removal of pectoral muscle from mammograms which is necessary as the intensity values of pectoral muscles are similar to that of ROI which makes it difficult to separate out. After removing the pectoral muscle, Dispersed Region Growing Algorithm (DRGA) is used for segmentation of mammogram which disperses seeds in different regions instead of a single bright region. To demonstrate the validity of our segmentation method, 322 mammographic images from Mammographic Image Analysis Society (MIAS) database are used. The dataset contains medio-lateral oblique (MLO) view of mammograms. Experimental results on MIAS dataset show the effectiveness of our proposed method.

Keywords: CAD, dispersed region growing algorithm (DRGA), image segmentation, mammography, pectoral muscle sliding window algorithm (PMSWA)

Procedia PDF Downloads 293
2953 Non-Reacting Numerical Simulation of Axisymmetric Trapped Vortex Combustor

Authors: Heval Serhat Uluk, Sam M. Dakka, Kuldeep Singh, Richard Jefferson-Loveday

Abstract:

This paper will focus on the suitability of a trapped vortex combustor as a candidate for gas turbine combustor objectives to minimize pressure drop across the combustor and investigate aerodynamic performance. Non-reacting simulation of axisymmetric cavity trapped vortex combustors were simulated to investigate the pressure drop for various cavity aspect ratios of 0.3, 0.6, and 1 and for air mass flow rates of 14 m/s, 28 m/s, and 42 m/s. A numerical study of an axisymmetric trapped vortex combustor was carried out by using two-dimensional and three-dimensional computational domains. A comparison study was conducted between Reynolds Averaged Navier Stokes (RANS) k-ε Realizable with enhanced wall treatment and RANS k-ω Shear Stress Transport (SST) models to find the most suitable turbulence model. It was found that the k-ω SST model gives relatively close results to experimental outcomes. The numerical results were validated and showed good agreement with the experimental data. Pressure drop rises with increasing air mass flow rate, and the lowest pressure drop was observed at 0.6 cavity aspect ratio for all air mass flow rates tested, which agrees with the experimental outcome. A mixing enhancement study showed that 30-degree angle air injectors provide improved fuel-air mixing.

Keywords: aerodynamic, computational fluid dynamics, propulsion, trapped vortex combustor

Procedia PDF Downloads 72
2952 Development of a Cost Effective Two Wheel Tractor Mounted Mobile Maize Sheller for Small Farmers in Bangladesh

Authors: M. Israil Hossain, T. P. Tiwari, Ashrafuzzaman Gulandaz, Nusrat Jahan

Abstract:

Two-wheel tractor (power tiller) is a common tillage tool in Bangladesh agriculture for easy access in fragmented land with affordable price of small farmers. Traditional maize sheller needs to be carried from place to place by hooking with two-wheel tractor (2WT) and set up again for shelling operation which takes longer time for preparation of maize shelling. The mobile maize sheller eliminates the transportation problem and can start shelling operation instantly any place as it is attached together with 2WT. It is counterclockwise rotating cylinder, axial flow type sheller, and grain separated with a frictional force between spike tooth and concave. The maize sheller is attached with nuts and bolts in front of the engine base of 2WT. The operating power of the sheller comes from the fly wheel of the engine of the tractor through ‘V” belt pulley arrangement. The average shelling capacity of the mobile sheller is 2.0 t/hr, broken kernel 2.2%, and shelling efficiency 97%. The average maize shelling cost is Tk. 0.22/kg and traditional custom hire rate is Tk.1.0/kg, respectively (1 US$=Tk.78.0). The service provider of the 2WT can transport the mobile maize sheller long distance in operator’s seating position. The manufacturers started the fabrication of mobile maize sheller. This mobile maize sheller is also compatible for the other countries where 2WT is available for farming operation.

Keywords: cost effective, mobile maize sheller, maize shelling capacity, small farmers, two wheel tractor

Procedia PDF Downloads 169
2951 Machine Learning for Classifying Risks of Death and Length of Stay of Patients in Intensive Unit Care Beds

Authors: Itamir de Morais Barroca Filho, Cephas A. S. Barreto, Ramon Malaquias, Cezar Miranda Paula de Souza, Arthur Costa Gorgônio, João C. Xavier-Júnior, Mateus Firmino, Fellipe Matheus Costa Barbosa

Abstract:

Information and Communication Technologies (ICT) in healthcare are crucial for efficiently delivering medical healthcare services to patients. These ICTs are also known as e-health and comprise technologies such as electronic record systems, telemedicine systems, and personalized devices for diagnosis. The focus of e-health is to improve the quality of health information, strengthen national health systems, and ensure accessible, high-quality health care for all. All the data gathered by these technologies make it possible to help clinical staff with automated decisions using machine learning. In this context, we collected patient data, such as heart rate, oxygen saturation (SpO2), blood pressure, respiration, and others. With this data, we were able to develop machine learning models for patients’ risk of death and estimate the length of stay in ICU beds. Thus, this paper presents the methodology for applying machine learning techniques to develop these models. As a result, although we implemented these models on an IoT healthcare platform, helping clinical staff in healthcare in an ICU, it is essential to create a robust clinical validation process and monitoring of the proposed models.

Keywords: ICT, e-health, machine learning, ICU, healthcare

Procedia PDF Downloads 81
2950 A Study on Effect of Dynamic Loading Speed on the Fracture Toughness of Equivalent Stress Gradient (ESG) Specimen

Authors: Moon Byung Woo, Seok Chang-Sung, Koo Jae-Mean, Kim Sang-Young, Choi Jae Gu, Huh Nam-Su

Abstract:

Recently, the occurrence of the earthquake has increased sharply and many of the casualties have occurred worldwide, due to the influence of earthquakes. Especially, the Fukushima nuclear power plant accident which was caused by the earthquake in 2011 has significantly increased the fear of people and the demand for the safety of the nuclear power plant. Thus, in order to prevent the earthquake accident at nuclear power plant, it is important to evaluate the fracture toughness considering the seismic loading rate. To obtain fracture toughness for the safety evaluation of nuclear power plant, it is desirable to perform experiments with a real scale pipe which is expensive and hard to perform. Therefore, many researchers have proposed various test specimens to replicate the fracture toughness of a real scale pipe. Since such specimens have several problems, the equivalent stress gradient (ESG) specimen has been recently suggested. In this study, in order to consider the effects of the dynamic loading speed on fracture toughness, the experiment was conducted by applying five different kinds of test speeds using an ESG specimen. In addition, after we performed the fracture toughness test under dynamic loading with different speeds using an ESG specimen and a standard specimen, we compared them with the test results under static loading.

Keywords: dynamic loading speed, fracture toughness, load-ratio-method, equivalent stress gradient (ESG) specimen

Procedia PDF Downloads 292
2949 Development of Cationic Gelatin Nanoparticles as an Antigen-Carrier for Mucosal Immunization

Authors: Ping-Lun Jiang, Hung-Jun Lin, Shen-Fu Lin, Mei-Yin Chien, Ting-Wei Li, Chun-Han Lin, Der-Zen Liu

Abstract:

Mucosal vaccine induces both mucosal (secretory IgA) and systemic immune responses and it is considered an ideal vaccination strategy for prevention of infectious diseases. One important point to be considered in mucosal vaccination is effective antigen delivery system which can manage effective delivery of antigen to antigen-presenting cells (APCs) of mucosal. In the present study, cationic gelatin nanoparticles were prepared as ideal carriers for more efficient antigen delivery. The average diameter of cationic gelatin nanoparticle was approximate 190 nm, and the zeta potential was about +45 mV, then ovalbumin (OVA) was physically absorbed onto cationic gelatin nanoparticle. The OVA absorption rate was near 95% the zeta potential was about +20 mV. We show that cationic gelatin nanoparticle effectively facilitated antigen uptake by mice bone marrow-derived dendritic cells (mBMDCs) and RAW264.7 cells and induced higher levels of pro-inflammatory cytokines. C57BL/6 mice twice immunized intranasally with OVA-absorbed cationic gelatin nanoparticle induced high levels of OVA-specific IgG in the serum and IgA in their in the nasal and lung wash fluid. These results indicate that nasal administration of cationic gelatin nanoparticles induced both mucosal and systemic immune responses and cationic gelatin nanoparticles might be a potential antigen delivery carrier for further clinical applications.

Keywords: antigen delivery, antigen-presenting cells, gelatin nanoparticle, mucosal vaccine

Procedia PDF Downloads 342
2948 Modeling the Effect of Thermal Gradation on Steady-State Creep Behavior of Isotropic Rotating Disc Made of Functionally Graded Material

Authors: Tania Bose, Minto Rattan, Neeraj Chamoli

Abstract:

In this paper, an attempt has been made to study the effect of thermal gradation on the steady-state creep behavior of rotating isotropic disc made of functionally graded material using threshold stress based Sherby’s creep law. The composite discs made of aluminum matrix reinforced with silicon carbide particulate have been taken for analysis. The stress and strain rate distributions have been calculated for the discs rotating at elevated temperatures having thermal gradation. The material parameters of creep vary radially and have been estimated by regression fit of the available experimental data. Investigations for discs made up of linearly increasing particle content operating under linearly decreasing temperature from inner to outer radii have been done using von Mises’ yield criterion. The results are displayed and compared graphically in designer friendly format for the above said disc profile with the disc made of particle reinforced composite operating under uniform temperature profile. It is observed that radial and tangential stresses show minor variation and the strain rates vary significantly in the presence of thermal gradation as compared to disc having uniform temperature.

Keywords: creep, isotropic, steady-state, thermal gradation

Procedia PDF Downloads 223
2947 Female Criminality in Lagos State: A Case of Armed Robbery

Authors: Ebobo Urowoli Christiana

Abstract:

The Nigerian Prison Service statistics of 2007; 2009 revealed that though crime in the past was ascribed to men, but today there is a steady increase in the population of women involved in crime. This study focused on the investigation of female criminality in Lagos State: A case of Armed Robbery. Its major objective was to find out if there is an increase or decrease in female involvement in armed robbery and its growth rate. The major research question is 'Is there an increase in the perpetration of armed robbery by females in Lagos State?' the null hypotheses is 'There is no significant increase in the perpetration of armed robbery by females in Lagos State.' As a result, this study adopted the survey design, purposive sampling method and a sample size of 120 respondents. The rational choice theory was used to explain the reason for female involvement in armed robbery. Both primary and secondary data was generated for this study; the primary data was collected from the criminal records in Lagos State Police Command, Panti while the Quantitative data was collected using the questionnaire from 120 female detainees and inmates. The data collected was analyzed using the simple frequency tables and percentages and chi square was used to test for relationships. The study revealed a persistent rise in the prevalence of female armed robbery and recommended that youths should be equipped with educational/vocational skills in order to lead responsible lives.

Keywords: criminality, armed robbery, female, police commands, panti, nature

Procedia PDF Downloads 389
2946 Estimation of a Finite Population Mean under Random Non Response Using Improved Nadaraya and Watson Kernel Weights

Authors: Nelson Bii, Christopher Ouma, John Odhiambo

Abstract:

Non-response is a potential source of errors in sample surveys. It introduces bias and large variance in the estimation of finite population parameters. Regression models have been recognized as one of the techniques of reducing bias and variance due to random non-response using auxiliary data. In this study, it is assumed that random non-response occurs in the survey variable in the second stage of cluster sampling, assuming full auxiliary information is available throughout. Auxiliary information is used at the estimation stage via a regression model to address the problem of random non-response. In particular, the auxiliary information is used via an improved Nadaraya-Watson kernel regression technique to compensate for random non-response. The asymptotic bias and mean squared error of the estimator proposed are derived. Besides, a simulation study conducted indicates that the proposed estimator has smaller values of the bias and smaller mean squared error values compared to existing estimators of finite population mean. The proposed estimator is also shown to have tighter confidence interval lengths at a 95% coverage rate. The results obtained in this study are useful, for instance, in choosing efficient estimators of the finite population mean in demographic sample surveys.

Keywords: mean squared error, random non-response, two-stage cluster sampling, confidence interval lengths

Procedia PDF Downloads 118
2945 Spatio-Temporal Pest Risk Analysis with ‘BioClass’

Authors: Vladimir A. Todiras

Abstract:

Spatio-temporal models provide new possibilities for real-time action in pest risk analysis. It should be noted that estimation of the possibility and probability of introduction of a pest and of its economic consequences involves many uncertainties. We present a new mapping technique that assesses pest invasion risk using online BioClass software. BioClass is a GIS tool designed to solve multiple-criteria classification and optimization problems based on fuzzy logic and level set methods. This research describes a method for predicting the potential establishment and spread of a plant pest into new areas using a case study: corn rootworm (Diabrotica spp.), tomato leaf miner (Tuta absoluta) and plum fruit moth (Grapholita funebrana). Our study demonstrated that in BioClass we can combine fuzzy logic and geographic information systems with knowledge of pest biology and environmental data to derive new information for decision making. Pests are sensitive to a warming climate, as temperature greatly affects their survival and reproductive rate and capacity. Changes have been observed in the distribution, frequency and severity of outbreaks of Helicoverpa armigera on tomato. BioClass has demonstrated to be a powerful tool for applying dynamic models and map the potential future distribution of a species, enable resource to make decisions about dangerous and invasive species management and control.

Keywords: classification, model, pest, risk

Procedia PDF Downloads 268
2944 Role of Amount of Glass Fibers in PAEK Composites to Control Mechanical and Tribological Properties

Authors: Jitendra Narayan Panda, Jayashree Bijwe, Raj K. Pandey

Abstract:

PAEK (Polyaryl ether ketone) being a high-performance polymer, is currently being explored for its tribo-potential by incorporating various fibers, solid lubricants. In this work, influence of amount (30 and 40 %) of short glass fibers (GF) in two composites containing PAEK (60 and 50 %) and synthetic graphite (10 %) on mechanical and tribological behaviour was studied. The composites were developed by injection molding and evaluated in adhesive wear mode (pin on disc configuration) against mild steel disc. The load and speed were selected as variable input parameters while coefficient of friction (µ), specific wear rate (K0) and PVlimit (pressure × velocity) values were selected as output parameters for performance evaluation. Although higher amount of GF lead to better mechanical properties, tribological properties were not in tune to this. Overall, µ and K0 for both composites were in the range 0.04-0.08 and 3-8x 10-16 m3/Nm respectively and decreased with increase in applied PV values till failure was observed. PVlimit was indicated by 112 and 100 MPa m/s. Such high PVlimit values are not reported for any polymer composites running in dry conditions in the literature. The mechanical properties of the C40 composite (40 % GF) proved superior to C30 composite (30 % GF). However, all tribological properties of C40 were inferior to C30. It exhibited higher µ, higher K0 and slightly lower PVlimit value. The higher % fibers proved detrimental for tribo-performance and worn surface analysis by SEM & EDAX was done on the discs & pins to understand wear mechanisms.

Keywords: PAEK composites, pin-on-disk, PV limit, friction

Procedia PDF Downloads 184
2943 RP-HPLC Method Development and Its Validation for Simultaneous Estimation of Metoprolol Succinate and Olmesartan Medoxomil Combination in Bulk and Tablet Dosage Form

Authors: S. Jain, R. Savalia, V. Saini

Abstract:

A simple, accurate, precise, sensitive and specific RP-HPLC method was developed and validated for simultaneous estimation of Metoprolol Succinate and Olmesartan Medoxomil in bulk and tablet dosage form. The RP-HPLC method has shown adequate separation for Metoprolol Succinate and Olmesartan Medoxomil from its degradation products. The separation was achieved on a Phenomenex luna ODS C18 (250mm X 4.6mm i.d., 5μm particle size) with an isocratic mixture of acetonitrile: 50mM phosphate buffer pH 4.0 adjusted with glacial acetic acid in the ratio of 55:45 v/v. The mobile phase at a flow rate of 1.0ml/min, Injection volume 20μl and wavelength of detection was kept at 225nm. The retention time for Metoprolol Succinate and Olmesartan Medoxomil was 2.451±0.1min and 6.167±0.1min, respectively. The linearity of the proposed method was investigated in the range of 5-50μg/ml and 2-20μg/ml for Metoprolol Succinate and Olmesartan Medoxomil, respectively. Correlation coefficient was 0.999 and 0.9996 for Metoprolol Succinate and Olmesartan Medoxomil, respectively. The limit of detection was 0.2847μg/ml and 0.1251μg/ml for Metoprolol Succinate and Olmesartan Medoxomil, respectively and the limit of quantification was 0.8630μg/ml and 0.3793μg/ml for Metoprolol and Olmesartan, respectively. Proposed methods were validated as per ICH guidelines for linearity, accuracy, precision, specificity and robustness for estimation of Metoprolol Succinate and Olmesartan Medoxomil in commercially available tablet dosage form and results were found to be satisfactory. Thus the developed and validated stability indicating method can be used successfully for marketed formulations.

Keywords: metoprolol succinate, olmesartan medoxomil, RP-HPLC method, validation, ICH

Procedia PDF Downloads 294