Search results for: PEM water electrolyser
417 The Effects of Alpha-Lipoic Acid Supplementation on Post-Stroke Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
Authors: Hamid Abbasi, Neda Jourabchi, Ranasadat Abedi, Kiarash Tajernarenj, Mehdi Farhoudi, Sarvin Sanaie
Abstract:
Background: Alpha lipoic acid (ALA), fat- and water-soluble, coenzyme with sulfuret content, has received considerable attention for its potential therapeutic role in diabetes, cardiovascular diseases, cancers, and central nervous disease. This investigation aims to evaluate the probable protective effects of ALA in stroke patients. Methods: Based on Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, This meta-analysis was performed. The PICO criteria for this meta-analysis were as follows: Population/Patients (P: stroke patients); Intervention (I: ALA); Comparison (C: control); Outcome (O: blood glucose, lipid profile, oxidative stress, inflammatory factors).In addition, Studies that were excluded from the analysis consisted of in vitro, in vivo, and ex vivo studies, case reports, quasi-experimental studies. Scopus, PubMed, Web of Science, EMBASE databases were searched until August 2023. Results: Of 496 records that were screened in the title/abstract stage, 9 studies were included in this meta-analysis. The sample sizes in the included studies vary between 28 and 90. The result of risk of bias was performed via risk of bias (RoB) in randomized-controlled trials (RCTs) based on the second version of the Cochrane RoB assessment tool. 8 studies had a definitely high risk of bias. Discussion: To the best of our knowledge, The present meta-analysis is the first study addressing the effectiveness of ALA supplementation in enhancing post-stroke metabolic markers, including lipid profile, oxidative stress, and inflammatory indices. It is imperative to acknowledge certain potential limitations inherent in this study. First of all, type of treatment (oral or intravenous infusion) could alter the bioavailability of ALA. Our study had restricted evidence regarding the impact of ALA supplementation on included outcomes. Therefore, further research is warranted to develop into the effects of ALA specifically on inflammation and oxidative stress. Funding: The research protocol was approved and supported by the Student Research Committee, Tabriz University of Medical Sciences (grant number: 72825). Registration: This study was registered in the International prospective register of systematic reviews (PROSPERO ID: CR42023461612).Keywords: alpha-lipoic acid, lipid profile, blood glucose, inflammatory factors, oxidative stress, meta-analysis, post-stroke
Procedia PDF Downloads 63416 Neighborhood Sustainability Assessment Tools: A Conceptual Framework for Their Use in Building Adaptive Capacity to Climate Change
Authors: Sally Naji, Julie Gwilliam
Abstract:
Climate change remains a challenging matter for the human and the built environment in the 21st century, where the need to consider adaptation to climate change in the development process is paramount. However, there remains a lack of information regarding how we should prepare responses to this issue, such as through developing organized and sophisticated tools enabling the adaptation process. This study aims to build a systematic framework approach to investigate the potentials that Neighborhood Sustainability Assessment tools (NSA) might offer in enabling both the analysis of the emerging adaptive capacity to climate change. The analysis of the framework presented in this paper aims to discuss this issue in three main phases. The first part attempts to link sustainability and climate change, in the context of adaptive capacity. It is argued that in deciding to promote sustainability in the context of climate change, both the resilience and vulnerability processes become central. However, there is still a gap in the current literature regarding how the sustainable development process can respond to climate change. As well as how the resilience of practical strategies might be evaluated. It is suggested that the integration of the sustainability assessment processes with both the resilience thinking process, and vulnerability might provide important components for addressing the adaptive capacity to climate change. A critical review of existing literature is presented illustrating the current lack of work in this field, integrating these three concepts in the context of addressing the adaptive capacity to climate change. The second part aims to identify the most appropriate scale at which to address the built environment for the climate change adaptation. It is suggested that the neighborhood scale can be considered as more suitable than either the building or urban scales. It then presents the example of NSAs, and discusses the need to explore their potential role in promoting the adaptive capacity to climate change. The third part of the framework presents a comparison among three example NSAs, BREEAM Communities, LEED-ND, and CASBEE-UD. These three tools have been selected as the most developed and comprehensive assessment tools that are currently available for the neighborhood scale. This study concludes that NSAs are likely to present the basis for an organized framework to address the practical process for analyzing and yet promoting Adaptive Capacity to Climate Change. It is further argued that vulnerability (exposure & sensitivity) and resilience (Interdependence & Recovery) form essential aspects to be addressed in the future assessment of NSA’s capability to adapt to both short and long term climate change impacts. Finally, it is acknowledged that further work is now required to understand impact assessment in terms of the range of physical sectors (Water, Energy, Transportation, Building, Land Use and Ecosystems), Actor and stakeholder engagement as well as a detailed evaluation of the NSA indicators, together with a barriers diagnosis process.Keywords: adaptive capacity, climate change, NSA tools, resilience, sustainability
Procedia PDF Downloads 381415 Advancing Women's Participation in SIDS' Renewable Energy Sector: A Multicriteria Evaluation Framework
Authors: Carolina Mayen Huerta, Clara Ivanescu, Paloma Marcos
Abstract:
Due to their unique geographic challenges and the imperative to combat climate change, Small Island Developing States (SIDS) are experiencing rapid growth in the renewable energy (RE) sector. However, women's representation in formal employment within this burgeoning field remains significantly lower than their male counterparts. Conventional methodologies often overlook critical geographic data that influence women's job prospects. To address this gap, this paper introduces a Multicriteria Evaluation (MCE) framework designed to identify spatially enabling environments and restrictions affecting women's access to formal employment and business opportunities in the SIDS' RE sector. The proposed MCE framework comprises 24 key factors categorized into four dimensions: Individual, Contextual, Accessibility, and Place Characterization. "Individual factors" encompass personal attributes influencing women's career development, including caregiving responsibilities, exposure to domestic violence, and disparities in education. "Contextual factors" pertain to the legal and policy environment, influencing workplace gender discrimination, financial autonomy, and overall gender empowerment. "Accessibility factors" evaluate women's day-to-day mobility, considering travel patterns, access to public transport, educational facilities, RE job opportunities, healthcare facilities, and financial services. Finally, "Place Characterization factors" enclose attributes of geographical locations or environments. This dimension includes walkability, public transport availability, safety, electricity access, digital inclusion, fragility, conflict, violence, water and sanitation, and climatic factors in specific regions. The analytical framework proposed in this paper incorporates a spatial methodology to visualize regions within countries where conducive environments for women to access RE jobs exist. In areas where these environments are absent, the methodology serves as a decision-making tool to reinforce critical factors, such as transportation, education, and internet access, which currently hinder access to employment opportunities. This approach is designed to equip policymakers and institutions with data-driven insights, enabling them to make evidence-based decisions that consider the geographic dimensions of disparity. These insights, in turn, can help ensure the efficient allocation of resources to achieve gender equity objectives.Keywords: gender, women, spatial analysis, renewable energy, access
Procedia PDF Downloads 69414 A Multicriteria Evaluation Framework for Enhancing Women's Participation in SIDS Renewable Energy Sector
Authors: Carolina Mayen Huerta, Clara Ivanescu, Paloma Marcos
Abstract:
Due to their unique geographic challenges and the imperative to combat climate change, Small Island Developing States (SIDS) are experiencing rapid growth in the renewable energy (RE) sector. However, women's representation in formal employment within this burgeoning field remains significantly lower than their male counterparts. Conventional methodologies often overlook critical geographic data that influence women's job prospects. To address this gap, this paper introduces a Multicriteria Evaluation (MCE) framework designed to identify spatially enabling environments and restrictions affecting women's access to formal employment and business opportunities in the SIDS' RE sector. The proposed MCE framework comprises 24 key factors categorized into four dimensions: Individual, Contextual, Accessibility, and Place Characterization. "Individual factors" encompass personal attributes influencing women's career development, including caregiving responsibilities, exposure to domestic violence, and disparities in education. "Contextual factors" pertain to the legal and policy environment, influencing workplace gender discrimination, financial autonomy, and overall gender empowerment. "Accessibility factors" evaluate women's day-to-day mobility, considering travel patterns, access to public transport, educational facilities, RE job opportunities, healthcare facilities, and financial services. Finally, "Place Characterization factors" enclose attributes of geographical locations or environments. This dimension includes walkability, public transport availability, safety, electricity access, digital inclusion, fragility, conflict, violence, water and sanitation, and climatic factors in specific regions. The analytical framework proposed in this paper incorporates a spatial methodology to visualize regions within countries where conducive environments for women to access RE jobs exist. In areas where these environments are absent, the methodology serves as a decision-making tool to reinforce critical factors, such as transportation, education, and internet access, which currently hinder access to employment opportunities. This approach is designed to equip policymakers and institutions with data-driven insights, enabling them to make evidence-based decisions that consider the geographic dimensions of disparity. These insights, in turn, can help ensure the efficient allocation of resources to achieve gender equity objectives.Keywords: gender, women, spatial analysis, renewable energy, access
Procedia PDF Downloads 83413 Biotechnological Methods for the Grouting of the Tunneling Space
Authors: V. Ivanov, J. Chu, V. Stabnikov
Abstract:
Different biotechnological methods for the production of construction materials and for the performance of construction processes in situ are developing within a new scientific discipline of Construction Biotechnology. The aim of this research was to develop and test new biotechnologies and biotechnological grouts for the minimization of the hydraulic conductivity of the fractured rocks and porous soil. This problem is essential to minimize flow rate of groundwater into the construction sites, the tunneling space before and after excavation, inside levies, as well as to stop water seepage from the aquaculture ponds, agricultural channels, radioactive waste or toxic chemicals storage sites, from the landfills or from the soil-polluted sites. The conventional fine or ultrafine cement grouts or chemical grouts have such restrictions as high cost, viscosity, sometime toxicity but the biogrouts, which are based on microbial or enzymatic activities and some not expensive inorganic reagents, could be more suitable in many cases because of lower cost and low or zero toxicity. Due to these advantages, development of biotechnologies for biogrouting is going exponentially. However, most popular at present biogrout, which is based on activity of urease- producing bacteria initiating crystallization of calcium carbonate from calcium salt has such disadvantages as production of toxic ammonium/ammonia and development of high pH. Therefore, the aim of our studies was development and testing of new biogrouts that are environmentally friendly and have low cost suitable for large scale geotechnical, construction, and environmental applications. New microbial biotechnologies have been studied and tested in the sand columns, fissured rock samples, in 1 m3 tank with sand, and in the pack of stone sheets that were the models of the porous soil and fractured rocks. Several biotechnological methods showed positive results: 1) biogrouting using sequential desaturation of sand by injection of denitrifying bacteria and medium following with biocementation using urease-producing bacteria, urea and calcium salt decreased hydraulic conductivity of sand to 2×10-7 ms-1 after 17 days of treatment and consumed almost three times less reagents than conventional calcium-and urea-based biogrouting; 2) biogrouting using slime-producing bacteria decreased hydraulic conductivity of sand to 1x10-6 ms-1 after 15 days of treatment; 3) biogrouting of the rocks with the width of the fissures 65×10-6 m using calcium bicarbonate solution, that was produced from CaCO3 and CO2 under 30 bars pressure, decreased hydraulic conductivity of the fissured rocks to 2×10-7 ms-1 after 5 days of treatment. These bioclogging technologies could have a lot of advantages over conventional construction materials and processes and can be used in geotechnical engineering, agriculture and aquaculture, and for the environmental protection.Keywords: biocementation, bioclogging, biogrouting, fractured rocks, porous soil, tunneling space
Procedia PDF Downloads 208412 Awareness and Perception of Food Safety, Nutrition and Food Security among Omani Women
Authors: Abeer Al Kalbani
Abstract:
Oman is a sub-tropical country with limited water resources, harsh weather and limited soil fertility, constraining food production. Therefore, it largely depends on international markets to assure supply of food. In the light of these circumstances, food security in Oman is defined as the ability of the country to grant the staple food needs of people (e.g. rice, wheat, lentil, sugar, dates, dairy products, fish and plant or vegetable oils). It also involves exporting local goods with high production rates to exchange them with required food products. This concept of food security includes the availability of food through production and/or importing, stability of the market prices during all circumstances, and the ability of people to meet their needs within their income capabilities. As a result, most of the food security work is focused on availability and access dimensions of the issue. Not much research is focused on the utilization aspect of food security in Oman. Although women play a vital role in food security, there is limited research on women’s role in food security neither in Oman nor in neighboring Gulf countries. Women play an important role not only by carrying the responsibility of feeding their families but also by setting the consumption model for the household. Therefore, the research aims to contribute to the work done on food security in Oman and similar regions of the world by studying the role women play at the utilization level. Methods used in this research include Qualitative unstructured interviews, focus groups, survey questionnaire and an experimental study. Based on the FAO definition of food security, it consists of availability, access, utilization and sustainability. Results from a pilot study conducted for this research on two groups of women in Oman; urban and rural women, showed that women in Oman are responsible for achieving these four pillars at the household level. Moreover, awareness of women increased as their educational level increased. Urban women showed more awareness and openness to adopt healthier and proper food related choices than rural women. Urban women seem also more open than rural women to new ideas and concepts and ways to healthier food. However, both urban and rural women claim that no training and educational programs are available for them and awareness of food security in general remains relatively low in both groups. In the light of these findings, this research attempts to further investigate the social beliefs, practices and attitudes women adopt in relation to food purchase, storage, preparation and consumption as considered as important parts of the food system. It also seeks to examine the effect of educational training programs and media on the level of women awareness on the issue.Keywords: food security, household food security, utilization, role of women
Procedia PDF Downloads 405411 Use of Locomotor Activity of Rainbow Trout Juveniles in Identifying Sublethal Concentrations of Landfill Leachate
Authors: Tomas Makaras, Gintaras Svecevičius
Abstract:
Landfill waste is a common problem as it has an economic and environmental impact even if it is closed. Landfill waste contains a high density of various persistent compounds such as heavy metals, organic and inorganic materials. As persistent compounds are slowly-degradable or even non-degradable in the environment, they often produce sublethal or even lethal effects on aquatic organisms. The aims of the present study were to estimate sublethal effects of the Kairiai landfill (WGS: 55°55‘46.74“, 23°23‘28.4“) leachate on the locomotor activity of rainbow trout Oncorhynchus mykiss juveniles using the original system package developed in our laboratory for automated monitoring, recording and analysis of aquatic organisms’ activity, and to determine patterns of fish behavioral response to sublethal effects of leachate. Four different concentrations of leachate were chosen: 0.125; 0.25; 0.5 and 1.0 mL/L (0.0025; 0.005; 0.01 and 0.002 as part of 96-hour LC50, respectively). Locomotor activity was measured after 5, 10 and 30 minutes of exposure during 1-minute test-periods of each fish (7 fish per treatment). The threshold-effect-concentration amounted to 0.18 mL/L (0.0036 parts of 96-hour LC50). This concentration was found to be even 2.8-fold lower than the concentration generally assumed to be “safe” for fish. At higher concentrations, the landfill leachate solution elicited behavioral response of test fish to sublethal levels of pollutants. The ability of the rainbow trout to detect and avoid contaminants occurred after 5 minutes of exposure. The intensity of locomotor activity reached a peak within 10 minutes, evidently decreasing after 30 minutes. This could be explained by the physiological and biochemical adaptation of fish to altered environmental conditions. It has been established that the locomotor activity of juvenile trout depends on leachate concentration and exposure duration. Modeling of these parameters showed that the activity of juveniles increased at higher leachate concentrations, but slightly decreased with the increasing exposure duration. Experiment results confirm that the behavior of rainbow trout juveniles is a sensitive and rapid biomarker that can be used in combination with the system for fish behavior monitoring, registration and analysis to determine sublethal concentrations of pollutants in ambient water. Further research should be focused on software improvement aimed to include more parameters of aquatic organisms’ behavior and to investigate the most rapid and appropriate behavioral responses in different species. In practice, this study could be the basis for the development and creation of biological early-warning systems (BEWS).Keywords: fish behavior biomarker, landfill leachate, locomotor activity, rainbow trout juveniles, sublethal effects
Procedia PDF Downloads 271410 Energy Harvesting and Storage System for Marine Applications
Authors: Sayem Zafar, Mahmood Rahi
Abstract:
Rigorous international maritime regulations are in place to limit boat and ship hydrocarbon emissions. The global sustainability goals are reducing the fuel consumption and minimizing the emissions from the ships and boats. These maritime sustainability goals have attracted a lot of research interest. Energy harvesting and storage system is designed in this study based on hybrid renewable and conventional energy systems. This energy harvesting and storage system is designed for marine applications, such as, boats and small ships. These systems can be utilized for mobile use or off-grid remote electrification. This study analyzed the use of micro power generation for boats and small ships. The energy harvesting and storage system has two distinct systems i.e. dockside shore-based system and on-board system. The shore-based system consists of a small wind turbine, photovoltaic (PV) panels, small gas turbine, hydrogen generator and high-pressure hydrogen storage tank. This dockside system is to provide easy access to the boats and small ships for supply of hydrogen. The on-board system consists of hydrogen storage tanks and fuel cells. The wind turbine and PV panels generate electricity to operate electrolyzer. A small gas turbine is used as a supplementary power system to contribute in case the hybrid renewable energy system does not provide the required energy. The electrolyzer performs the electrolysis on distilled water to produce hydrogen. The hydrogen is stored in high-pressure tanks. The hydrogen from the high-pressure tank is filled in the low-pressure tanks on-board seagoing vessels to operate the fuel cell. The boats and small ships use the hydrogen fuel cell to provide power to electric propulsion motors and for on-board auxiliary use. For shore-based system, a small wind turbine with the total length of 4.5 m and the disk diameter of 1.8 m is used. The small wind turbine dimensions make it big enough to be used to charge batteries yet small enough to be installed on the rooftops of dockside facility. The small dimensions also make the wind turbine easily transportable. In this paper, PV, sizing and solar flux are studied parametrically. System performance is evaluated under different operating and environmental conditions. The parametric study is conducted to evaluate the energy output and storage capacity of energy storage system. Results are generated for a wide range of conditions to analyze the usability of hybrid energy harvesting and storage system. This energy harvesting method significantly improves the usability and output of the renewable energy sources. It also shows that small hybrid energy systems have promising practical applications.Keywords: energy harvesting, fuel cell, hybrid energy system, hydrogen, wind turbine
Procedia PDF Downloads 138409 Development of Polylactic Acid Insert with a Cinnamaldehyde-Betacyclodextrin Complex for Cape Gooseberry (Physalis Peruviana L.) Packed
Authors: Gómez S. Jennifer, Méndez V. Camila, Moncayo M. Diana, Vega M. Lizeth
Abstract:
The cape gooseberry is a climacteric fruit; Colombia is one of the principal exporters in the world. The environmental condition of temperature and relative moisture decreases the titratable acidity and pH. These conditions and fruit maturation result in the fungal proliferation of Botrytis cinerea disease. Plastic packaging for fresh cape gooseberries was used for mechanical damage protection but created a suitable atmosphere for fungal growth. Beta-cyclodextrins are currently implemented as coatings for the encapsulation of hydrophobic compounds, for example, with bioactive compounds from essential oils such as cinnamaldehyde, which has a high antimicrobial capacity. However, it is a volatile substance. In this article, the casting method was used to obtain a polylactic acid (PLA) polymer film containing the beta-cyclodextrin-cinnamaldehyde inclusion complex, generating an insert that allowed the controlled release of the antifungal substance in packed cape gooseberries to decrease contamination by Botrytis cinerea in a latent state during storage. For the encapsulation technique, three ratios for the cinnamaldehyde: beta-cyclodextrin inclusion complex were proposed: (25:75), (40:60), and (50:50). Spectrophotometry, colorimetry in L*a*b* coordinate space and scanning electron microscopy (SEM) were made for the complex characterization. Subsequently, two ratios of tween and water (40:60) and (50:50) were used to obtain the polylactic acid (PLA) film. To determine mechanical and physical parameters of colourimetry in L*a*b* coordinate space, atomic force microscopy and stereoscopy were done to determine the transparency and flexibility of the film; for both cases, Statgraphics software was used to determine the best ratio in each of the proposed phases, where for encapsulation it was (50:50) with an encapsulation efficiency of 65,92%, and for casting the ratio (40:60) obtained greater transparency and flexibility that permitted its incorporation into the polymeric packaging. A liberation assay was also developed under ambient temperature conditions to evaluate the concentration of cinnamaldehyde inside the packaging through gas chromatography for three weeks. It was found that the insert had a controlled release. Nevertheless, a higher cinnamaldehyde concentration is needed to obtain the minimum inhibitory concentration for the fungus Botrytis cinerea (0.2g/L). The homogeneity of the cinnamaldehyde gas phase inside the packaging can be improved by considering other insert configurations. This development aims to impact emerging food preservation technologies with the controlled release of antifungals to reduce the affectation of the physico-chemical and sensory properties of the fruit as a result of contamination by microorganisms in the postharvest stage.Keywords: antifungal, casting, encapsulation, postharvest
Procedia PDF Downloads 75408 Suggestion of Methodology to Detect Building Damage Level Collectively with Flood Depth Utilizing Geographic Information System at Flood Disaster in Japan
Authors: Munenari Inoguchi, Keiko Tamura
Abstract:
In Japan, we were suffered by earthquake, typhoon, and flood disaster in 2019. Especially, 38 of 47 prefectures were affected by typhoon #1919 occurred in October 2019. By this disaster, 99 people were dead, three people were missing, and 484 people were injured as human damage. Furthermore, 3,081 buildings were totally collapsed, 24,998 buildings were half-collapsed. Once disaster occurs, local responders have to inspect damage level of each building by themselves in order to certificate building damage for survivors for starting their life reconstruction process. At that disaster, the total number to be inspected was so high. Based on this situation, Cabinet Office of Japan approved the way to detect building damage level efficiently, that is collectively detection. However, they proposed a just guideline, and local responders had to establish the concrete and infallible method by themselves. Against this issue, we decided to establish the effective and efficient methodology to detect building damage level collectively with flood depth. Besides, we thought that the flood depth was relied on the land height, and we decided to utilize GIS (Geographic Information System) for analyzing the elevation spatially. We focused on the analyzing tool of spatial interpolation, which is utilized to survey the ground water level usually. In establishing the methodology, we considered 4 key-points: 1) how to satisfy the condition defined in the guideline approved by Cabinet Office for detecting building damage level, 2) how to satisfy survivors for the result of building damage level, 3) how to keep equitability and fairness because the detection of building damage level was executed by public institution, 4) how to reduce cost of time and human-resource because they do not have enough time and human-resource for disaster response. Then, we proposed a methodology for detecting building damage level collectively with flood depth utilizing GIS with five steps. First is to obtain the boundary of flooded area. Second is to collect the actual flood depth as sampling over flooded area. Third is to execute spatial analysis of interpolation with sampled flood depth to detect two-dimensional flood depth extent. Fourth is to divide to blocks by four categories of flood depth (non-flooded, over the floor to 100 cm, 100 cm to 180 cm and over 180 cm) following lines of roads for getting satisfaction from survivors. Fifth is to put flood depth level to each building. In Koriyama city of Fukushima prefecture, we proposed the methodology of collectively detection for building damage level as described above, and local responders decided to adopt our methodology at typhoon #1919 in 2019. Then, we and local responders detect building damage level collectively to over 1,000 buildings. We have received good feedback that the methodology was so simple, and it reduced cost of time and human-resources.Keywords: building damage inspection, flood, geographic information system, spatial interpolation
Procedia PDF Downloads 124407 Ozonation as an Effective Method to Remove Pharmaceuticals from Biologically Treated Wastewater of Different Origin
Authors: Agne Jucyte Cicine, Vytautas Abromaitis, Zita Rasuole Gasiunaite, I. Vybernaite-Lubiene, D. Overlinge, K. Vilke
Abstract:
Pharmaceutical pollution in aquatic environments has become a growing concern. Various active pharmaceutical ingredient (API) residues, hormones, antibiotics, or/and psychiatric drugs, have already been discovered in different environmental compartments. Due to existing ineffective wastewater treatment technologies to remove APIs, an underestimated amount can enter the ecosystem by discharged treated wastewater. Especially, psychiatric compounds, such as carbamazepine (CBZ) and venlafaxine (VNX), persist in effluent even post-treatment. Therefore, these pharmaceuticals usually exceed safe environmental levels and pose risks to the aquatic environment, particularly to sensitive ecosystems such as the Baltic Sea. CBZ, known for its chemical stability and long biodegradation time, accumulates in the environment, threatening aquatic life and human health through the food chain. As the use of medication rises, there is an urgent need for advanced wastewater treatment to reduce pharmaceutical contamination and meet future regulatory requirements. In this study, we tested advanced oxidation technology using ozone to remove two commonly used psychiatric drugs (carbamazepine and venlafaxine) from biologically treated wastewater effluent. Additionally, general water quality parameters (suspended matter (SPM), dissolved organic carbon (DOC), chemical oxygen demand (COD), and bacterial presence were analyzed. Three wastewater treatment plants (WWTPs) representing different anthropogenic pressures were selected: 1) resort, 2) resort and residential, and 3) residential, industrial, and resort. Wastewater samples for the experiment were collected during the summer season after mechanical and biological treatment and ozonated for 5, 10, and 15 minutes. The initial dissolved ozone concentration of 7,3±0,7 mg/L was held constant during all the experiments. Pharmaceutical levels in this study exceeded the predicted no-effect concentration (PNEC) of 500 and 90 ng L⁻¹ for CBZ and VNX, respectively, in all WWTPs, except CBZ in WWTP 1. Initial CBZ contamination was found to be lower in WWTP 1 (427.4 ng L⁻¹), compared with WWTP 2 (1266.5 ng L⁻¹) and 3 (119.2 ng L⁻¹). VNX followed a similar trend with concentrations of 341.2 ng L⁻¹, 361.4 ng L⁻¹, and 390.0 ng L⁻¹, respectively, for WWTPs 1, 2, and 3. It was determined that CBZ was not detected in the effluent after 5 minutes of ozonation in any of the WWTPs. Contrarily, VNX was still detected after 5, 10, and 15 minutes of treatment with ozone, however, under the limits of quantification (LOD) (<5ng L⁻¹). Additionally, general pollution of SPM, DOC, COD, and bacterial contamination was reduced notably after 5 minutes of treatment with ozone, while no bacterial growth was obtained. Although initial pharmaceutical levels exceeded PNECs, indicating ongoing environmental risks, ozonation demonstrated high efficiency in reducing pharmaceutical and general contamination in wastewater with different pollution matrices.Keywords: Baltic Sea, ozonation, pharmaceuticals, wastewater treatment plants
Procedia PDF Downloads 19406 A Study on Unplanned Settlement in Kabul City
Authors: Samir Ranjbar, Nasrullah Istanekzai
Abstract:
According to a report published in The Guardian, Kabul, the capital city of Afghanistan is the fifth fastest growing city in the world, whose population has increased fourfold since 2001 from 1.2 million to 4.8 million people. The main reason for this increment is identified as the return of Afghans migrated during the civil war. In addition to the return of immigrants, a steep economic growth due to foreign assistance in last decade creating lots of job opportunities in Kabul resulted in the attraction of individuals from the neighboring provinces as well. However, the development of urban facilities such as water supply system, housing transportation and waste management systems has yet to catch up with this rapid increase in population. Since Kabul city has developed traditionally and municipal governance had very limited capacity to implement municipal bylaws. As an unwanted consequence of this growth 70% of Kabul citizens contributed to developing informal settlement for which we can say that around three million people living in informally settled areas, lacking the very vital social and physical infrastructures of livelihood. This research focuses on a region with 30 ha area and 2100 people residents in the center of Kabul city. A comprehensive land readjustment concept plan has been formulated for this area. Through this concept plan, physical and social infrastructure has been demonstrated and analyzed. Findings of this paper propose a solution for the problems of this unplanned area in Kabul which is readjusting of unplanned area by a self-supporting process. This process does not need governmental budget and can be applied by government, private sectors and landowner associations. Furthermore, by implementing the Land Readjustment process, conceptual plans can be built for unplanned areas, maximum facilities can be brought to the residents’ urban life, improve the environment for the users’ benefit, promote the culture and sense of cooperation, participation and coexistence in the mind of people, improving the transport system, improvement in economic status (the value of land increases due to infrastructure availability and land legalization). In addition to all these benefits for the public, we can raise the revenue of government by collecting the taxes from landowners. This process is implemented in most of countries of the world, it was implemented for the first time in Germany and after that in most cities of Japan as well, and is known as one of the effective processes for infrastructural development. To sum up, the notable characteristic of the Land readjustment process is that it works on the concept of mutual interest in which both landowners and the government take advantage. However, in this process, the engagement of community is very important and without public cooperation, this process can face the failure.Keywords: land readjustment, informal settlement, Kabul, Afghanistan
Procedia PDF Downloads 252405 Effects of Long-Term Exposure of Cadmium to the Ovary of Lithobius forficatus (Myriapoda, Chilopoda)
Authors: Izabela Poprawa, Alina Chachulska-Zymelka, Lukasz Chajec, Grazyna Wilczek, Piotr Wilczek, Sebastian Student, Magdalena Rost-Roszkowska
Abstract:
Heavy metals polluting the environment, especially soil, have a harmful effect on organisms, because they can damage the organ structure, disturb their function and cause developmental disorders. They can affect not only the somatic tissues but also the germinal tissues. In the natural environment, plants and animals are exposed to short- and long-term exposure to these stressors, which have a major influence on the functioning of these organisms. Numerous animals have been treated as the bioindicators of the environment. Therefore, studies on any alterations caused by, e.g., heavy metals are in the center of interests of not only environmental but also medical and biological science. Myriapods are invertebrates which are bioindicators of the environment. One of the species which lives in the upper layers of soil, particularly under stones and rocks is Lithobius forficatus (Chilopoda), commonly known as the brown centipede or stone centipede. It is a European species of the family Lithobiidae. This centipede living in the soil is exposed to, e.g., heavy metals such as cadmium, lead, arsenic. The main goal of our project was to analyze the impact of long-term exposure to cadmium on the structure of ovary with the emphasis on the course of oogenesis. As the material for analysis of cadmium exposure to ovaries, we chose the centipede species, L. forficatus. Animals were divided into two experimental groups: C – the control group, the animals cultured in laboratory conditions in a horticultural soil; Cd2 – the animals cultured in a horticultural soil supplemented with 80 mg/kg (dry weight) of CdCl2 for 45 days – long-term exposure. Animals were fed with Acheta and Chironomus larvae maintained in tap water. The analyzes were carried out using transmission electron microscopy (TEM), flow cytometry and laser scanning (confocal) microscopy. Here we present the results of long-term exposure to cadmium concentration in soil on the organ responsible for female germ cell formation. Analysis with the use of the transmission electron microscope showed changes in the ultrastructure of both somatic and germ cells in the ovary. Moreover, quantitative analysis revealed the decrease in the percentage of cells viability, the increase in the percentage of cells with depolarized mitochondria and increasing the number of early apoptotic cells. All these changes were statistically significant compared to the control. Additionally, an increase in the ADP/ATP index was recorded. However, changes were not statistically significant to the control. Acknowledgment: The study has been financed by the National Science Centre, Poland, grant no 2017/25/B/NZ4/00420.Keywords: cadmium, centipede, ovary, ultrastructure
Procedia PDF Downloads 118404 Comparison of Two Methods of Cryopreservation of Testicular Tissue from Prepubertal Lambs
Authors: Rensson Homero Celiz Ygnacio, Marco Aurélio Schiavo Novaes, Lucy Vanessa Sulca Ñaupas, Ana Paula Ribeiro Rodrigues
Abstract:
The cryopreservation of testicular tissue emerges as an alternative for the preservation of the reproductive potential of individuals who still cannot produce sperm; however, they will undergo treatments that may affect their fertility (e.g., chemotherapy). Therefore, the present work aims to compare two cryopreservation methods (slow freezing and vitrification) in testicular tissue of prepubertal lambs. For that, to obtain the testicular tissue, the animals were castrated and the testicles were collected immediately in a physiological solution supplemented with antibiotics. In the laboratory, the testis was split into small pieces. The total size of the testicular fragments was 3×3x1 mm³ and was placed in a dish contained in Minimum Essential Medium (MEM-HEPES). The fragments were distributed randomly into non-cryopreserved (fresh control), slow freezing (SF), and vitrified. To SF procedures, two fragments from a given male were then placed in a 2,0 mL cryogenic vial containing 1,0 mL MEM-HEPES supplemented with 20% fetal bovine serum (FBS) and 20% dimethylsulfoxide (DMSO). Tubes were placed into a Mr. Frosty™ Freezing container with isopropyl alcohol and transferred to a -80°C freezer for overnight storage. On the next day, each tube was plunged into liquid nitrogen (NL). For vitrification, the ovarian tissue cryosystem (OTC) device was used. Testicular fragments were placed in the OTC device and exposed to the first vitrification solution composed of MEM-HEPES supplemented with 10 mg/mL Bovine Serum Albumin (BSA), 0.25 M sucrose, 10% Ethylene glycol (EG), 10% DMSO and 150 μM alpha-lipoic acid for four min. The VS1 was discarded and then the fragments were submerged into a second vitrification solution (VS2) containing the same composition of VS1 but 20% EG and 20% DMSO. VS2 was then discarded and each OTC device containing up to four testicular fragments was closed and immersed in NL. After the storage period, the fragments were removed from the NL, kept at room temperature for one min and then immersed at 37 °C in a water bath for 30 s. Samples were warmed by sequentially immersing in solutions of MEM-HEPES supplemented with 3 mg/mL BSA and decreasing concentrations of sucrose. Hematoxylin-eosin staining to analyze the tissue architecture was used. The score scale used was from 0 to 3, classified with a score 0 representing normal morphologically, and 3 were considered a lot of alteration. The histomorphological evaluation of the testicular tissue shows that when evaluating the nuclear alteration (distinction of nucleoli and condensation of nuclei), there are no differences when using slow freezing with respect to the control. However, vitrification presents greater damage (p <0.05). On the other hand, when evaluating the epithelial alteration, we observed that the freezing showed scores statistically equal to the control in variables such as retraction of the basement membrane, formation of gaps and organization of the peritubular cells. The results of the study demonstrated that cryopreservation using the slow freezing method is an excellent tool for the preservation of pubertal testicular tissue.Keywords: cryopreservation, slow freezing, vitrification, testicular tissue, lambs
Procedia PDF Downloads 174403 The Relationship between Basic Human Needs and Opportunity Based on Social Progress Index
Authors: Ebru Ozgur Guler, Huseyin Guler, Sera Sanli
Abstract:
Social Progress Index (SPI) whose fundamentals have been thrown in the World Economy Forum is an index which aims to form a systematic basis for guiding strategy for inclusive growth which requires achieving both economic and social progress. In this research, it has been aimed to determine the relations among “Basic Human Needs” (BHN) (including four variables of ‘Nutrition and Basic Medical Care’, ‘Water and Sanitation’, ‘Shelter’ and ‘Personal Safety’) and “Opportunity” (OPT) (that is composed of ‘Personal Rights’, ‘Personal Freedom and Choice’, ‘Tolerance and Inclusion’, and ‘Access to Advanced Education’ components) dimensions of 2016 SPI for 138 countries which take place in the website of Social Progress Imperative by carrying out canonical correlation analysis (CCA) which is a data reduction technique that operates in a way to maximize the correlation between two variable sets. In the interpretation of results, the first pair of canonical variates pointing to the highest canonical correlation has been taken into account. The first canonical correlation coefficient has been found as 0.880 indicating to the high relationship between BHN and OPT variable sets. Wilk’s Lambda statistic has revealed that an overall effect of 0.809 is highly large for the full model in order to be counted as statistically significant (with a p-value of 0.000). According to the standardized canonical coefficients, the largest contribution to BHN set of variables has come from ‘shelter’ variable. The most effective variable in OPT set has been detected to be ‘access to advanced education’. Findings based on canonical loadings have also confirmed these results with respect to the contributions to the first canonical variates. When canonical cross loadings (structure coefficients) are examined, for the first pair of canonical variates, the largest contributions have been provided by ‘shelter’ and ‘access to advanced education’ variables. Since the signs for structure coefficients have been found to be negative for all variables; all OPT set of variables are positively related to all of the BHN set of variables. In case canonical communality coefficients which are the sum of the squares of structure coefficients across all interpretable functions are taken as the basis; amongst all variables, ‘personal rights’ and ‘tolerance and inclusion’ variables can be said not to be useful in the model with 0.318721 and 0.341722 coefficients respectively. On the other hand, while redundancy index for BHN set has been found to be 0.615; OPT set has a lower redundancy index with 0.475. High redundancy implies high ability for predictability. The proportion of the total variation in BHN set of variables that is explained by all of the opposite canonical variates has been calculated as 63% and finally, the proportion of the total variation in OPT set that is explained by all of the canonical variables in BHN set has been determined as 50.4% and a large part of this proportion belongs to the first pair. The results suggest that there is a high and statistically significant relationship between BHN and OPT. This relationship is generally accounted by ‘shelter’ and ‘access to advanced education’.Keywords: canonical communality coefficient, canonical correlation analysis, redundancy index, social progress index
Procedia PDF Downloads 218402 Post-Soviet LULC Analysis of Tbilisi, Batumi and Kutaisi Using of Remote Sensing and Geo Information System
Authors: Lela Gadrani, Mariam Tsitsagi
Abstract:
Human is a part of the urban landscape and responsible for it. Urbanization of cities includes the longest phase; thus none of the environment ever undergoes such anthropogenic impact as the area of large cities. The post-Soviet period is very interesting in terms of scientific research. The changes that have occurred in the cities since the collapse of the Soviet Union have not yet been analyzed best to our knowledge. In this context, the aim of this paper is to analyze the changes in the land use of the three large cities of Georgia (Tbilisi, Kutaisi, Batumi). Tbilisi as a capital city, Batumi as a port city, and Kutaisi as a former industrial center. Data used during the research process are conventionally divided into satellite and supporting materials. For this purpose, the largest topographic maps (1:10 000) of all three cities were analyzed, Tbilisi General Plans (1896, 1924), Tbilisi and Kutaisi historical maps. The main emphasis was placed on the classification of Landsat images. In this case, we have classified the images LULC (LandUse / LandCover) of all three cities taken in 1987 and 2016 using the supervised and unsupervised methods. All the procedures were performed in the programs: Arc GIS 10.3.1 and ENVI 5.0. In each classification we have singled out the following classes: built-up area, water bodies, agricultural lands, green cover and bare soil, and calculated the areas occupied by them. In order to check the validity of the obtained results, additionally we used the higher resolution images of CORONA and Sentinel. Ultimately we identified the changes that took place in the land use in the post-Soviet period in the above cities. According to the results, a large wave of changes touched Tbilisi and Batumi, though in different periods. It turned out that in the case of Tbilisi, the area of developed territory has increased by 13.9% compared to the 1987 data, which is certainly happening at the expense of agricultural land and green cover, in particular, the area of agricultural lands has decreased by 4.97%; and the green cover by 5.67%. It should be noted that Batumi has obviously overtaken the country's capital in terms of development. With the unaided eye it is clear that in comparison with other regions of Georgia, everything is different in Batumi. In fact, Batumi is an unofficial summer capital of Georgia. Undoubtedly, Batumi’s development is very important both in economic and social terms. However, there is a danger that in the uneven conditions of urban development, we will eventually get a developed center - Batumi, and multiple underdeveloped peripheries around it. Analysis of the changes in the land use is of utmost importance not only for quantitative evaluation of the changes already implemented, but for future modeling and prognosis of urban development. Raster data containing the classes of land use is an integral part of the city's prognostic models.Keywords: analysis, geo information system, remote sensing, LULC
Procedia PDF Downloads 451401 Social Mobility and Urbanization: Case Study of Well-Educated Urban Migrant's Life Experience in the Era of China's New Urbanization Project
Authors: Xu Heng
Abstract:
Since the financial crisis of 2008 and the resulting Great Recession, the number of China’s unemployed college graduate reached over 500 thousand in 2011. Following the severe situation of college graduate employment, there has been growing public concern about college graduates, especially those with the less-privileged background, and their working and living condition in metropolises. Previous studies indicate that well-educated urban migrants with less-privileged background tend to obtain temporary occupation with less financial income and lower social status. Those vulnerable young migrants are described as ‘Ant Tribe’ by some scholars. However, since the implementation of a new urbanization project, together with the relaxed Hukou system and the acceleration of socio-economic development in middle/small cities, some researchers described well-educated urban migrant’s situation and the prospect of upward social mobility in urban areas in an overly optimistic light. In order to shed more lights on the underlying tensions encountered by China’s well-educated urban migrants in their upward social mobility pursuit, this research mainly focuses on 10 well-educated urban migrants’ life trajectories between their university-to-work transition and their current situation. All selected well-educated urban migrants are young adults with rural background who have already received higher education qualification from first-tier universities of Wuhan City (capital of Hubei Province). Drawing on the in-depth interviews with 10 participants and Inspired by Lahire’s Theory of Plural Actor, this study yields the following preliminary findings; 1) For those migrants who move to super-mega cities (i.e., Beijing, Shenzhen, Guangzhou) or stay in Wuhan after college graduation, their inadequacies of economic and social capital are the structural factors which negatively influence their living condition and further shape their plan for career development. The incompatibility between the sub-fields of urban life and the disposition, which generated from their early socialization, is the main cause for marginalized position in the metropolises. 2) For those migrants who move back to middle/small cities located in their hometown regions, the inconsistency between the disposition, which generated from college life, and the organizational habitus of the workplace is the main cause for their sense of ‘fish out of water’, even though they have obtained the stable occupation of local government or state-owned enterprise. On the whole, this research illuminates how the underlying the structural forces shape well-educated urban migrants’ life trajectories and hinder their upward social mobility under the context of new urbanization project.Keywords: life trajectory, social mobility, urbanization, well-educated urban migrant
Procedia PDF Downloads 215400 Combat Plastic Entering in Kanpur City, Uttar Pradesh, India Marine Environment
Authors: Arvind Kumar
Abstract:
The city of Kanpur is located in the terrestrial plain area on the bank of the river Ganges and is the second largest city in the state of Uttar Pradesh. The city generates approximately 1400-1600 tons per day of MSW. Kanpur has been known as a major point and non-points-based pollution hotspot for the river Ganges. The city has a major industrial hub, probably the largest in the state, catering to the manufacturing and recycling of plastic and other dry waste streams. There are 4 to 5 major drains flowing across the city, which receive a significant quantity of waste leakage, which subsequently adds to the Ganges flow and is carried to the Bay of Bengal. A river-to-sea flow approach has been established to account for leaked waste into urban drains, leading to the build-up of marine litter. Throughout its journey, the river accumulates plastic – macro, meso, and micro, from various sources and transports it towards the sea. The Ganges network forms the second-largest plastic-polluting catchment in the world, with over 0.12 million tonnes of plastic discharged into marine ecosystems per year and is among 14 continental rivers into which over a quarter of global waste is discarded 3.150 Kilo tons of plastic waste is generated in Kanpur, out of which 10%-13% of plastic is leaked into the local drains and water flow systems. With the Support of Kanpur Municipal Corporation, 1TPD capacity MRF for drain waste management was established at Krishna Nagar, Kanpur & A German startup- Plastic Fisher, was identified for providing a solution to capture the drain waste and achieve its recycling in a sustainable manner with a circular economy approach. The team at Plastic Fisher conducted joint surveys and identified locations on 3 drains at Kanpur using GIS maps developed during the survey. It suggested putting floating 'Boom Barriers' across the drains with a low-cost material, which reduced their cost to only 2000 INR per barrier. The project was built upon the self-sustaining financial model. The project includes activities where a cost-efficient model is developed and adopted for a socially self-inclusive model. The project has recommended the use of low-cost floating boom barriers for capturing waste from drains. This involves a one-time time cost and has no operational cost. Manpower is engaged in fishing and capturing immobilized waste, whose salaries are paid by the Plastic Fisher. The captured material is sun-dried and transported to the designated place, where the shed and power connection, which act as MRF, are provided by the city Municipal corporation. Material aggregation, baling, and transportation costs to end-users are borne by Plastic Fisher as well.Keywords: Kanpur, marine environment, drain waste management, plastic fisher
Procedia PDF Downloads 71399 Big Data for Local Decision-Making: Indicators Identified at International Conference on Urban Health 2017
Authors: Dana R. Thomson, Catherine Linard, Sabine Vanhuysse, Jessica E. Steele, Michal Shimoni, Jose Siri, Waleska Caiaffa, Megumi Rosenberg, Eleonore Wolff, Tais Grippa, Stefanos Georganos, Helen Elsey
Abstract:
The Sustainable Development Goals (SDGs) and Urban Health Equity Assessment and Response Tool (Urban HEART) identify dozens of key indicators to help local decision-makers prioritize and track inequalities in health outcomes. However, presentations and discussions at the International Conference on Urban Health (ICUH) 2017 suggested that additional indicators are needed to make decisions and policies. A local decision-maker may realize that malaria or road accidents are a top priority. However, s/he needs additional health determinant indicators, for example about standing water or traffic, to address the priority and reduce inequalities. Health determinants reflect the physical and social environments that influence health outcomes often at community- and societal-levels and include such indicators as access to quality health facilities, access to safe parks, traffic density, location of slum areas, air pollution, social exclusion, and social networks. Indicator identification and disaggregation are necessarily constrained by available datasets – typically collected about households and individuals in surveys, censuses, and administrative records. Continued advancements in earth observation, data storage, computing and mobile technologies mean that new sources of health determinants indicators derived from 'big data' are becoming available at fine geographic scale. Big data includes high-resolution satellite imagery and aggregated, anonymized mobile phone data. While big data are themselves not representative of the population (e.g., satellite images depict the physical environment), they can provide information about population density, wealth, mobility, and social environments with tremendous detail and accuracy when combined with population-representative survey, census, administrative and health system data. The aim of this paper is to (1) flag to data scientists important indicators needed by health decision-makers at the city and sub-city scale - ideally free and publicly available, and (2) summarize for local decision-makers new datasets that can be generated from big data, with layperson descriptions of difficulties in generating them. We include SDGs and Urban HEART indicators, as well as indicators mentioned by decision-makers attending ICUH 2017.Keywords: health determinant, health outcome, mobile phone, remote sensing, satellite imagery, SDG, urban HEART
Procedia PDF Downloads 209398 Stability of a Biofilm Reactor Able to Degrade a Mixture of the Organochlorine Herbicides Atrazine, Simazine, Diuron and 2,4-Dichlorophenoxyacetic Acid to Changes in the Composition of the Supply Medium
Authors: I. Nava-Arenas, N. Ruiz-Ordaz, C. J. Galindez-Mayer, M. L. Luna-Guido, S. L. Ruiz-López, A. Cabrera-Orozco, D. Nava-Arenas
Abstract:
Among the most important herbicides, the organochlorine compounds are of considerable interest due to their recalcitrance to the chemical, biological, and photolytic degradation, their persistence in the environment, their mobility, and their bioacummulation. The most widely used herbicides in North America are primarily 2,4-dichlorophenoxyacetic acid (2,4-D), the triazines (atrazine and simazine), and to a lesser extent diuron. The contamination of soils and water bodies frequently occurs by mixtures of these xenobiotics. For this reason, in this work, the operational stability to changes in the composition of the medium supplied to an aerobic biofilm reactor was studied. The reactor was packed with fragments of volcanic rock that retained a complex microbial film, able to degrade a mixture of organochlorine herbicides atrazine, simazine, diuron and 2,4-D, and whose members have microbial genes encoding the main catabolic enzymes atzABCD, tfdACD and puhB. To acclimate the attached microbial community, the biofilm reactor was fed continuously with a mineral minimal medium containing the herbicides (in mg•L-1): diuron, 20.4; atrazine, 14.2, simazine, 11.4, and 2,4-D, 59.7, as carbon and nitrogen sources. Throughout the bioprocess, removal efficiencies of 92-100% for herbicides, 78-90% for COD, 92-96% for TOC and 61-83% for dehalogenation were reached. In the microbial community, the genes encoding catabolic enzymes of different herbicides tfdACD, puhB and, occasionally, the genes atzA and atzC were detected. After the acclimatization, the triazine herbicides were eliminated from the mixture formulation. Volumetric loading rates of the mixture 2,4-D and diuron were continuously supplied to the reactor (1.9-21.5 mg herbicides •L-1 •h-1). Along the bioprocess, the removal efficiencies obtained were 86-100% for the mixture of herbicides, 63-94% for for COD, 90-100% for COT, and dehalogenation values of 63-100%. It was also observed that the genes encoding the enzymes in the catabolism of both herbicides, tfdACD and puhB, were consistently detected; and, occasionally, the atzA and atzC. Subsequently, the triazine herbicide atrazine and simazine were restored to the medium supply. Different volumetric charges of this mixture were continuously fed to the reactor (2.9 to 12.6 mg herbicides •L-1 •h-1). During this new treatment process, removal efficiencies of 65-95% for the mixture of herbicides, 63-92% for COD, 66-89% for TOC and 73-94% of dehalogenation were observed. In this last case, the genes tfdACD, puhB and atzABC encoding for the enzymes involved in the catabolism of the distinct herbicides were consistently detected. The atzD gene, encoding the cyanuric hydrolase enzyme, could not be detected, though it was determined that there was partial degradation of cyanuric acid. In general, the community in the biofilm reactor showed some catabolic stability, adapting to changes in loading rates and composition of the mixture of herbicides, and preserving their ability to degrade the four herbicides tested; although, there was a significant delay in the response time to recover to degradation of the herbicides.Keywords: biodegradation, biofilm reactor, microbial community, organochlorine herbicides
Procedia PDF Downloads 435397 Assessment of Current and Future Opportunities of Chemical and Biological Surveillance of Wastewater for Human Health
Authors: Adam Gushgari
Abstract:
The SARS-CoV-2 pandemic has catalyzed the rapid adoption of wastewater-based epidemiology (WBE) methodologies both domestically and internationally. To support the rapid scale-up of pandemic-response wastewater surveillance systems, multiple federal agencies (i.e. US CDC), non-government organizations (i.e. Water Environment Federation), and private charities (i.e. Bill and Melinda Gates Foundation) have funded over $220 million USD supporting development and expanding equitable access of surveillance methods. Funds were primarily distributed directly to municipalities under the CARES Act (90.6%), followed by academic projects (7.6%), and initiatives developed by private companies (1.8%). In addition to federal funding for wastewater monitoring primarily conducted at wastewater treatment plants, state/local governments and private companies have leveraged wastewater sampling to obtain health and lifestyle data on student, prison inmate, and employee populations. We explore the viable paths for expansion of the WBE m1ethodology across a variety of analytical methods; the development of WBE-specific samplers and real-time wastewater sensors; and their application to various governments and private sector industries. Considerable investment in, and public acceptance of WBE suggests the methodology will be applied to other future notifiable diseases and health risks. Early research suggests that WBE methods can be applied to a host of additional “biological insults” including communicable diseases and pathogens, such as influenza, Cryptosporidium, Giardia, mycotoxin exposure, hepatitis, dengue, West Nile, Zika, and yellow fever. Interest in chemical insults is also likely, providing community health and lifestyle data on narcotics consumption, use of pharmaceutical and personal care products (PPCP), PFAS and hazardous chemical exposure, and microplastic exposure. Successful application of WBE to monitor analytes correlated with carcinogen exposure, community stress prevalence, and dietary indicators has also been shown. Additionally, technology developments of in situ wastewater sensors, WBE-specific wastewater samplers, and integration of artificial intelligence will drastically change the landscape of WBE through the development of “smart sewer” networks. The rapid expansion of the WBE field is creating significant business opportunities for professionals across the scientific, engineering, and technology industries ultimately focused on community health improvement.Keywords: wastewater surveillance, wastewater-based epidemiology, smart cities, public health, pandemic management, substance abuse
Procedia PDF Downloads 108396 Roads and Agriculture: Impacts of Connectivity in Peru
Authors: Julio Aguirre, Yohnny Campana, Elmer Guerrero, Daniel De La Torre Ugarte
Abstract:
A well-developed transportation network is a necessary condition for a country to derive full benefits from good trade and macroeconomic policies. Road infrastructure plays a key role in the economic development of rural areas of developing countries; where agriculture is the main economic activity. The ability to move agricultural production from the place of production to the market, and then to the place of consumption, greatly influence the economic value of farming activities, and of the resources involved in the production process, i.e., labor and land. Consequently, investment in transportation networks contributes to enhance or overcome the natural advantages or disadvantages that topography and location have imposed over the agricultural sector. This is of particular importance when dealing with countries, like Peru, with a great topographic diversity. The objective of this research is to estimate the impacts of road infrastructure on the performance of the agricultural sector. Specific variables of interest are changes in travel time, shifts of production for self-consumption to production for the market, changes in farmers income, and impacts on the diversification of the agricultural sector. In the study, a cross-section model with instrumental variables is the central methodological instrument. The data is obtained from agricultural and transport geo-referenced databases, and the instrumental variable specification utilized is based on the Kruskal algorithm. The results show that the expansion of road connectivity reduced farmers' travel time by an average of 3.1 hours and the proportion of output sold in the market increases by up to 40 percentage points. The increase in connectivity has an unexpected increase in the districts index of diversification of agricultural production. The results are robust to the inclusion of year and region fixed-effects, and to control for geography (i.e., slope and altitude), population variables, and mining activity. Other results are also very eloquent. For example, a clear positive impact can be seen in access to local markets, but this does not necessarily correlate with an increase in the production of the sector. This can be explained by the fact that agricultural development not only requires provision of roads but additional complementary infrastructure and investments intended to provide the necessary conditions so that producers can offer quality products (improved management practices, timely maintenance of irrigation infrastructure, transparent management of water rights, among other factors). Therefore, complementary public goods are needed to enhance the effects of roads on the welfare of the population, beyond enabling them to increase their access to markets.Keywords: agriculture devolepment, market access, road connectivity, regional development
Procedia PDF Downloads 205395 Removal of Heavy Metal Ions from Aqueous Solution by Polymer Enhanced Ultrafiltration Using Unmodified Starch as Biopolymer
Authors: Nurul Huda Baharuddin, Nik Meriam Nik Sulaiman, Mohammed Kheireddine Aroua
Abstract:
The effects of pH, polymer concentration, and metal ions feed concentration for four selected heavy metals Zn (II), Pb (II), Cr (III) and Cr (VI) were tested by using Polymer Enhanced Ultrafiltration (PEUF). An alternative biopolymer namely unmodified starch is proposed as a binding reagent in consequences, as compared to commonly used water-soluble polymers namely polyethylene glycol (PEG) and polyethyleneimine (PEI) in the removal of selected four heavy metal ions. The speciation species profiles of four selected complexes ions namely Zn (II), Pb (II), Cr (III) and Cr (VI) and the present of hydroxides ions (OH-) in variously charged ions were investigated by available software at certain pH range. In corresponds to identify the potential of complexation behavior between metal ion-polymers, potentiometric titration studies were obtained at first before carried out experimental works. Experimental works were done using ultrafiltration systems obtained by laboratory ultrafiltration bench scale equipped with 10 kDa polysulfone hollow fiber membrane. Throughout the laboratory works, the rejection coefficient and permeate flux were found to be significantly affected by the main operating parameter, namely the effects of pH, polymer composition and metal ions concentrations. The interaction of complexation between two binding polymers namely unmodified starch and PEG were occurred due to physical attraction of metal ions to the polymer on the molecular surface with high possibility of chemical occurrence. However, these selected metal ions are mainly complexes by polymer functional groups whenever there is interaction with PEI polymer. For study of single metal ions solutions, Zn (II) ions' rejections approaching over 90% were obtained at pH 7 for each tested polymer. This behavior was similar to Pb (II), Cr (III) and Cr (VI); where the rejections were obtained at lower acidic pH and increased at neutral pH of 7. Different behavior was found by Cr (VI) ions where a high rejection was only achieved at acidic pH region with PEI. Polymer concentration and metal ions concentration are found to have a significant effect on rejections. For mixed metal ion solutions, the behavior of metal ion rejections was similar to single metal ion solutions for investigation on the effects of pH. Rejection values were high at pH 7 for Zn (II) pH 7 for Zn (II) and Cr (III) ions, corresponding to higher rejections with unmodified starch. Pb (II) ions obtained high rejections when tested with PEG whenever carried out in mixed metal ion solutions. High Cr (VI) ions' rejection was found with PEI in single and mixed metal ions solutions at neutral pH range. The influence of starch’s granule structure towards the rejections of these four selected metal ions is found to be attracted in a non-ionic manner. No significant effects on permeate flux were obtained when tested at different pH ranges, polymer concentrations and metal ions feed either by single or mixtures metal ions solutions. Canizares Model was employed as the theoretical model to predict permeate flux and metal ions retention on the study of heavy metal ions removal.Keywords: polyethyleneimine, polyethylene glycol, polymer-enhanced ultrafiltration, unmodified starch
Procedia PDF Downloads 176394 Modelling of Air-Cooled Adiabatic Membrane-Based Absorber for Absorption Chillers Using Low Temperature Solar Heat
Authors: M. Venegas, M. De Vega, N. García-Hernando
Abstract:
Absorption cooling chillers have received growing attention over the past few decades as they allow the use of low-grade heat to produce the cooling effect. The combination of this technology with solar thermal energy in the summer period can reduce the electricity consumption peak due to air-conditioning. One of the main components, the absorber, is designed for simultaneous heat and mass transfer. Usually, shell and tubes heat exchangers are used, which are large and heavy. Cooling water from a cooling tower is conventionally used to extract the heat released during the absorption and condensation processes. These are clear inconvenient for the generalization of the absorption technology use, limiting its benefits in the contribution to the reduction in CO2 emissions, particularly for the H2O-LiBr solution which can work with low heat temperature sources as provided by solar panels. In the present work a promising new technology is under study, consisting in the use of membrane contactors in adiabatic microchannel mass exchangers. The configuration here proposed consists in one or several modules (depending on the cooling capacity of the chiller) that contain two vapour channels, separated from the solution by adjacent microporous membranes. The solution is confined in rectangular microchannels. A plastic or synthetic wall separates the solution channels between them. The solution entering the absorber is previously subcooled using ambient air. In this way, the need for a cooling tower is avoided. A model of the configuration proposed is developed based on mass and energy balances and some correlations were selected to predict the heat and mass transfer coefficients. The concentration and temperatures along the channels cannot be explicitly determined from the set of equations obtained. For this reason, the equations were implemented in a computer code using Engineering Equation Solver software, EES™. With the aim of minimizing the absorber volume to reduce the size of absorption cooling chillers, the ratio between the cooling power of the chiller and the absorber volume (R) is calculated. Its variation is shown along the solution channels, allowing its optimization for selected operating conditions. For the case considered the solution channel length is recommended to be lower than 3 cm. Maximum values of R obtained in this work are higher than the ones found in optimized horizontal falling film absorbers using the same solution. Results obtained also show the variation of R and the chiller efficiency (COP) for different ambient temperatures and desorption temperatures typically obtained using flat plate solar collectors. The configuration proposed of adiabatic membrane-based absorber using ambient air to subcool the solution is a good technology to reduce the size of the absorption chillers, allowing the use of low temperature solar heat and avoiding the need for cooling towers.Keywords: adiabatic absorption, air-cooled, membrane, solar thermal energy
Procedia PDF Downloads 285393 Nano-MFC (Nano Microbial Fuel Cell): Utilization of Carbon Nano Tube to Increase Efficiency of Microbial Fuel Cell Power as an Effective, Efficient and Environmentally Friendly Alternative Energy Sources
Authors: Annisa Ulfah Pristya, Andi Setiawan
Abstract:
Electricity is the primary requirement today's world, including Indonesia. This is because electricity is a source of electrical energy that is flexible to use. Fossil energy sources are the major energy source that is used as a source of energy power plants. Unfortunately, this conversion process impacts on the depletion of fossil fuel reserves and causes an increase in the amount of CO2 in the atmosphere, disrupting health, ozone depletion, and the greenhouse effect. Solutions have been applied are solar cells, ocean wave power, the wind, water, and so forth. However, low efficiency and complicated treatment led to most people and industry in Indonesia still using fossil fuels. Referring to this Fuel Cell was developed. Fuel Cells are electrochemical technology that continuously converts chemical energy into electrical energy for the fuel and oxidizer are the efficiency is considerably higher than the previous natural source of electrical energy, which is 40-60%. However, Fuel Cells still have some weaknesses in terms of the use of an expensive platinum catalyst which is limited and not environmentally friendly. Because of it, required the simultaneous source of electrical energy and environmentally friendly. On the other hand, Indonesia is a rich country in marine sediments and organic content that is never exhausted. Stacking the organic component can be an alternative energy source continued development of fuel cell is A Microbial Fuel Cell. Microbial Fuel Cells (MFC) is a tool that uses bacteria to generate electricity from organic and non-organic compounds. MFC same tools as usual fuel cell composed of an anode, cathode and electrolyte. Its main advantage is the catalyst in the microbial fuel cell is a microorganism and working conditions carried out in neutral solution, low temperatures, and environmentally friendly than previous fuel cells (Chemistry Fuel Cell). However, when compared to Chemistry Fuel Cell, MFC only have an efficiency of 40%. Therefore, the authors provide a solution in the form of Nano-MFC (Nano Microbial Fuel Cell): Utilization of Carbon Nano Tube to Increase Efficiency of Microbial Fuel Cell Power as an Effective, Efficient and Environmentally Friendly Alternative Energy Source. Nano-MFC has the advantage of an effective, high efficiency, cheap and environmental friendly. Related stakeholders that helped are government ministers, especially Energy Minister, the Institute for Research, as well as the industry as a production executive facilitator. strategic steps undertaken to achieve that begin from conduct preliminary research, then lab scale testing, and dissemination and build cooperation with related parties (MOU), conduct last research and its applications in the field, then do the licensing and production of Nano-MFC on an industrial scale and publications to the public.Keywords: CNT, efficiency, electric, microorganisms, sediment
Procedia PDF Downloads 408392 Optimizing the Pair Carbon Xerogels-Electrolyte for High Performance Supercapacitors
Authors: Boriana Karamanova, Svetlana Veleva, Luybomir Soserov, Ana Arenillas, Francesco Lufrano, Antonia Stoyanova
Abstract:
Supercapacitors have received a lot of research attention and are promising energy storage devices due to their high power and long cycle life. In order to developed an advanced device with significant capacity for storing charge and cheap carbon materials, efforts must focus not only on improving synthesis by controlling the morphology and pore size but also on improving electrode-electrolyte compatibility of the resulting systems. The present study examines the relationship between the surface chemistry of two activated carbon xerogels, the electrolyte type, and the electrochemical properties of supercapacitors. Activated carbon xerogels were prepared by varying the initial pH of the resorcinol-formaldehyde aqueous solution. The materials produced are physicochemical characterized by DTA/TGA, porous characterization, and SEM analysis. The carbon xerogel based electrodes were prepared by spreading over glass plate a slurry containing the carbon gel, graphite, and poly vinylidene difluoride (PVDF) binder. The layer formed was dried consecutively at different temperatures and then detached by water. After, the layer was dried again to improve its mechanical stability. The developed electrode materials and the Aquivion® E87-05S membrane (Solvay Specialty Polymers), socked in Na2SO4 as a polymer electrolyte, were used to assembly the solid-state supercapacitor. Symmetric supercapacitor cells composed by same electrodes and 1 M KOH electrolytes are also assembled and tested for comparison. The supercapacitor performances are verified by different electrochemical methods - cyclic voltammetry, galvanostatic charge/discharge measurements, electrochemical impedance spectroscopy, and long-term durability tests in neutral and alkaline electrolytes. Specific capacitances, energy, and power density, energy efficiencies, and durability were compared into studied supercapacitors. Ex-situ physicochemical analyses on the synthesized materials have also been performed, which provide information about chemical and structural changes in the electrode morphology during charge / discharge durability tests. They are discussed on the basis of electrode-electrolyte interaction. The obtained correlations could be of significance in order to design sustainable solid-state supercapacitors with high power and energy density. Acknowledgement: This research is funded by the Ministry of Education and Science of Bulgaria under the National Program "European Scientific Networks" (Agreement D01-286 / 07.10.2020, D01-78/30.03.2021). Authors gratefully acknowledge.Keywords: carbon xerogel, electrochemical tests, neutral and alkaline electrolytes, supercapacitors
Procedia PDF Downloads 136391 Offshore Wind Assessment and Analysis for South Western Mediterranean Sea
Authors: Abdallah Touaibia, Nachida Kasbadji Merzouk, Mustapha Merzouk, Ryma Belarbi
Abstract:
accuracy assessment and a better understand of the wind resource distribution are the most important tasks for decision making before installing wind energy operating systems in a given region, there where our interest come to the Algerian coastline and its Mediterranean sea area. Despite its large coastline overlooking the border of Mediterranean Sea, there is still no strategy encouraging the development of offshore wind farms in Algerian waters. The present work aims to estimate the offshore wind fields for the Algerian Mediterranean Sea based on wind data measurements ranging from 1995 to 2018 provided of 24 years of measurement by seven observation stations focusing on three coastline cities in Algeria under a different measurement time step recorded from 30 min, 60 min, and 180 min variate from one to each other, two stations in Spain, two other ones in Italy and three in the coast of Algeria from the east Annaba, at the center Algiers, and to Oran taken place at the west of it. The idea behind consists to have multiple measurement points that helping to characterize this area in terms of wind potential by the use of interpolation method of their average wind speed values between these available data to achieve the approximate values of others locations where aren’t any available measurement because of the difficulties against the implementation of masts within the deep depth water. This study is organized as follow: first, a brief description of the studied area and its climatic characteristics were done. After that, the statistical properties of the recorded data were checked by evaluating wind histograms, direction roses, and average speeds using MatLab programs. Finally, ArcGIS and MapInfo soft-wares were used to establish offshore wind maps for better understanding the wind resource distribution, as well as to identify windy sites for wind farm installation and power management. The study pointed out that Cap Carbonara is the windiest site with an average wind speed of 7.26 m/s at 10 m, inducing a power density of 902 W/m², then the site of Cap Caccia with 4.88 m/s inducing a power density of 282 W/m². The average wind speed of 4.83 m/s is occurred for the site of Oran, inducing a power density of 230 W/m². The results indicated also that the dominant wind direction where the frequencies are highest for the site of Cap Carbonara is the West with 34%, an average wind speed of 9.49 m/s, and a power density of 1722 W/m². Then comes the site of Cap Caccia, where the prevailing wind direction is the North-west, about 20% and 5.82 m/s occurring a power density of 452 W/m². The site of Oran comes in third place with the North dominant direction with 32% inducing an average wind speed of 4.59 m/s and power density of 189 W/m². It also shown that the proposed method is either crucial in understanding wind resource distribution for revealing windy sites over a large area and more effective for wind turbines micro-siting.Keywords: wind ressources, mediterranean sea, offshore, arcGIS, mapInfo, wind maps, wind farms
Procedia PDF Downloads 146390 Bioclimatic Devices in the Historical Rural Building: A Carried out Analysis on Some Rural Architectures in Puglia
Authors: Valentina Adduci
Abstract:
The developing research aims to define in general the criteria of environmental sustainability of rural buildings in Puglia and particularly in the manor farm. The main part of the study analyzes the relationship / dependence between the rural building and the landscape which, after many stratifications, results clearly identified and sometimes also characterized in a positive way. The location of the manor farm, in fact, is often conditioned by the infrastructural network and by the structure of the agricultural landscape. The manor farm, without the constraints due to the urban pattern’s density, was developed in accordance with a logical settlement that gives priority to the environmental aspects. These vernacular architectures are the most valuable example of how our ancestors have planned their dwellings according to nature. The 237 farms, analysis’ object, have been reported in cartography through the GIS system; a symbol has been assigned to each of them to identify the architectural typology and a different color for the historical period of construction. A datasheet template has been drawn up, and it has made possible a deeper understanding of each manor farm. This method provides a faster comparison of the most recurring characters in all the considered buildings, except for those farms which benefited from special geographical conditions, such as proximity to the road network or waterways. Below there are some of the most frequently constants derived from the statistical study of the examined buildings: southeast orientation of the main facade; placement of the sheep pen on the ground tilted and exposed to the south side; larger windowed surface on the south elevation; smaller windowed surface on the north elevation; presence of shielding vegetation near the more exposed elevations to the solar radiation; food storage’s rooms located on the ground floor or in the basement; animal shelter located in north side of the farm; presence of tanks and wells, sometimes combined with a very accurate channeling storm water system; thick layers of masonry walls, inside of which were often obtained hollow spaces to house stairwells or depots for the food storage; exclusive use of local building materials. The research aims to trace the ancient use of bioclimatic constructive techniques in the Apulian rural architecture and to define those that derive from an empirical knowledge and those that respond to an already encoded design. These constructive expedients are especially useful to obtain an effective passive cooling, to promote the natural ventilation and to built ingenious systems for the recovery and the preservation of rainwater and are still found in some of the manor farms analyzed, most of them are, today, in a serious state of neglect.Keywords: bioclimatic devices, farmstead, rural landscape, sustainability
Procedia PDF Downloads 383389 Jigger Flea (Tunga penetrans) Infestations and Use of Soil-Cow Dung-Ash Mixture as a Flea Control Method in Eastern Uganda
Authors: Gerald Amatre, Julius Bunny Lejju, Morgan Andama
Abstract:
Despite several interventions, jigger flea infestations continue to be reported in the Busoga sub-region in Eastern Uganda. The purpose of this study was to identify factors that expose the indigenous people to jigger flea infestations and evaluate the effectiveness of any indigenous materials used in flea control by the affected communities. Flea compositions in residences were described, factors associated with flea infestation and indigenous materials used in flea control were evaluated. Field surveys were conducted in the affected communities after obtaining preliminary information on jigger infestation from the offices of the District Health Inspectors to identify the affected villages and households. Informed consent was then sought from the local authorities and household heads to conduct the study. Focus group discussions were conducted with key district informants, namely, the District Health Inspectors, District Entomologists and representatives from the District Health Office. A GPS coordinate was taken at central point at every household enrolled. Fleas were trapped inside residences using Kilonzo traps. A Kilonzo Trap comprised a shallow pan, about three centimetres deep, filled to the brim with water. The edges of the pan were smeared with Vaseline to prevent fleas from crawling out. Traps were placed in the evening and checked every morning the following day. The trapped fleas were collected in labelled vials filled with 70% aqueous ethanol and taken to the laboratory for identification. Socio-economic and environmental data were collected. The results indicate that the commonest flea trapped in the residences was the cat flea (Ctenocephalides felis) (50%), followed by Jigger flea (Tunga penetrans) (46%) and rat flea (Xenopsylla Cheopis) (4%), respectively. The average size of residences was seven squire metres with a mean of six occupants. The residences were generally untidy; with loose dusty floors and the brick walls were not plastered. The majority of the jigger affected households were headed by peasants (86.7%) and artisans (13.3%). The household heads mainly stopped at primary school level (80%) and few at secondary school level (20%). The jigger affected households were mainly headed by peasants of low socioeconomic status. The affected community members use soil-cow dung-ash mixture to smear floors of residences as the only measure to control fleas. This method was found to be ineffective in controlling the insects. The study recommends that home improvement campaigns be continued in the affected communities to improve sanitation and hygiene in residences as one of the interventions to combat flea infestations. Other cheap, available and effective means should be identified to curb jigger flea infestations.Keywords: cow dung-soil-ash mixture, infestations, jigger flea, Tunga penetrans
Procedia PDF Downloads 136388 Multiphase Equilibrium Characterization Model For Hydrate-Containing Systems Based On Trust-Region Method Non-Iterative Solving Approach
Authors: Zhuoran Li, Guan Qin
Abstract:
A robust and efficient compositional equilibrium characterization model for hydrate-containing systems is required, especially for time-critical simulations such as subsea pipeline flow assurance analysis, compositional simulation in hydrate reservoirs etc. A multiphase flash calculation framework, which combines Gibbs energy minimization function and cubic plus association (CPA) EoS, is developed to describe the highly non-ideal phase behavior of hydrate-containing systems. A non-iterative eigenvalue problem-solving approach for the trust-region sub-problem is selected to guarantee efficiency. The developed flash model is based on the state-of-the-art objective function proposed by Michelsen to minimize the Gibbs energy of the multiphase system. It is conceivable that a hydrate-containing system always contains polar components (such as water and hydrate inhibitors), introducing hydrogen bonds to influence phase behavior. Thus, the cubic plus associating (CPA) EoS is utilized to compute the thermodynamic parameters. The solid solution theory proposed by van der Waals and Platteeuw is applied to represent hydrate phase parameters. The trust-region method combined with the trust-region sub-problem non-iterative eigenvalue problem-solving approach is utilized to ensure fast convergence. The developed multiphase flash model's accuracy performance is validated by three available models (one published and two commercial models). Hundreds of published hydrate-containing system equilibrium experimental data are collected to act as the standard group for the accuracy test. The accuracy comparing results show that our model has superior performances over two models and comparable calculation accuracy to CSMGem. Efficiency performance test also has been carried out. Because the trust-region method can determine the optimization step's direction and size simultaneously, fast solution progress can be obtained. The comparison results show that less iteration number is needed to optimize the objective function by utilizing trust-region methods than applying line search methods. The non-iterative eigenvalue problem approach also performs faster computation speed than the conventional iterative solving algorithm for the trust-region sub-problem, further improving the calculation efficiency. A new thermodynamic framework of the multiphase flash model for the hydrate-containing system has been constructed in this work. Sensitive analysis and numerical experiments have been carried out to prove the accuracy and efficiency of this model. Furthermore, based on the current thermodynamic model in the oil and gas industry, implementing this model is simple.Keywords: equation of state, hydrates, multiphase equilibrium, trust-region method
Procedia PDF Downloads 172