Search results for: maximum oxygen consumption
406 The Administration of Infection Diseases During the Pandemic COVID-19 and the Role of the Differential Diagnosis with Biomarkers VB10
Authors: Sofia Papadimitriou
Abstract:
INTRODUCTION: The differential diagnosis between acute viral and bacterial infections is an important cost-effectiveness parameter at the stage of the treatment process in order to achieve the maximum benefits in therapeutic intervention by combining the minimum cost to ensure the proper use of antibiotics.The discovery of sensitive and robust molecular diagnostic tests in response to the role of the host in infections has enhanced the accurate diagnosis and differentiation of infections. METHOD: The study used a sample of six independent blood samples (total=756) which are associated with human proteins-proteins, each of which at the transcription stage expresses a different response in the host network between viral and bacterial infections.Τhe individual blood samples are subjected to a sequence of computer filters that identify a gene panel corresponding to an autonomous diagnostic score. The data set and the correspondence of the gene panel to the diagnostic patents a new Bangalore -Viral Bacterial (BL-VB). FINDING: We use a biomarker based on the blood of 10 genes(Panel-VB) that are an important prognostic value for the detection of viruses from bacterial infections with a weighted average AUROC of 0.97(95% CL:0.96-0.99) in eleven independent samples (sets n=898). We discovered a base with a patient score (VB 10 ) according to the table, which is a significant diagnostic value with a weighted average of AUROC 0.94(95% CL: 0.91-0.98) in 2996 patient samples from 56 public sets of data from 19 different countries. We also studied VB 10 in a new cohort of South India (BL-VB,n=56) and found 97% accuracy in confirmed cases of viral and bacterial infections. We found that VB 10 (a)accurately identifies the type of infection even in unspecified cases negative to the culture (b) shows its clinical condition recovery and (c) applies to all age groups, covering a wide range of acute bacterial and viral infectious, including non-specific pathogens. We applied our VB 10 rating to publicly available COVID 19 data and found that our rating diagnosed viral infection in patient samples. RESULTS: Τhe results of the study showed the diagnostic power of the biomarker VB 10 as a diagnostic test for the accurate diagnosis of acute infections in recovery conditions. We look forward to helping you make clinical decisions about prescribing antibiotics and integrating them into your policies management of antibiotic stewardship efforts. CONCLUSIONS: Overall, we are developing a new property of the RNA-based biomarker and a new blood test to differentiate between viral and bacterial infections to assist a physician in designing the optimal treatment regimen to contribute to the proper use of antibiotics and reduce the burden on antimicrobial resistance, AMR.Keywords: acute infections, antimicrobial resistance, biomarker, blood transcriptome, systems biology, classifier diagnostic score
Procedia PDF Downloads 155405 Pre-Cooling Strategies for the Refueling of Hydrogen Cylinders in Vehicular Transport
Authors: C. Hall, J. Ramos, V. Ramasamy
Abstract:
Hydrocarbon-based fuel vehicles are a major contributor to air pollution due to harmful emissions produced, leading to a demand for cleaner fuel types. A leader in this pursuit is hydrogen, with its application in vehicles producing zero harmful emissions and the only by-product being water. To compete with the performance of conventional vehicles, hydrogen gas must be stored on-board of vehicles in cylinders at high pressures (35–70 MPa) and have a short refueling duration (approximately 3 mins). However, the fast-filling of hydrogen cylinders causes a significant rise in temperature due to the combination of the negative Joule-Thompson effect and the compression of the gas. This can lead to structural failure and therefore, a maximum allowable internal temperature of 85°C has been imposed by the International Standards Organization. The technological solution to tackle the issue of rapid temperature rise during the refueling process is to decrease the temperature of the gas entering the cylinder. Pre-cooling of the gas uses a heat exchanger and requires energy for its operation. Thus, it is imperative to determine the least amount of energy input that is required to lower the gas temperature for cost savings. A validated universal thermodynamic model is used to identify an energy-efficient pre-cooling strategy. The model requires negligible computational time and is applied to previously validated experimental cases to optimize pre-cooling requirements. The pre-cooling characteristics include the location within the refueling timeline and its duration. A constant pressure-ramp rate is imposed to eliminate the effects of rapid changes in mass flow rate. A pre-cooled gas temperature of -40°C is applied, which is the lowest allowable temperature. The heat exchanger is assumed to be ideal with no energy losses. The refueling of the cylinders is modeled with the pre-cooling split in ten percent time intervals. Furthermore, varying burst durations are applied in both the early and late stages of the refueling procedure. The model shows that pre-cooling in the later stages of the refuelling process is more energy-efficient than early pre-cooling. In addition, the efficiency of pre-cooling towards the end of the refueling process is independent of the pressure profile at the inlet. This leads to the hypothesis that pre-cooled gas should be applied as late as possible in the refueling timeline and at very low temperatures. The model had shown a 31% reduction in energy demand whilst achieving the same final gas temperature for a refueling scenario when pre-cooling was applied towards the end of the process. The identification of the most energy-efficient refueling approaches whilst adhering to the safety guidelines is imperative to reducing the operating cost of hydrogen refueling stations. Heat exchangers are energy-intensive and thus, reducing the energy requirement would lead to cost reduction. This investigation shows that pre-cooling should be applied as late as possible and for short durations.Keywords: cylinder, hydrogen, pre-cooling, refueling, thermodynamic model
Procedia PDF Downloads 96404 Potential Assessment and Techno-Economic Evaluation of Photovoltaic Energy Conversion System: A Case of Ethiopia Light Rail Transit System
Authors: Asegid Belay Kebede, Getachew Biru Worku
Abstract:
The Earth and its inhabitants have faced an existential threat as a result of severe manmade actions. Global warming and climate change have been the most apparent manifestations of this threat throughout the world, with increasingly intense heat waves, temperature rises, flooding, sea-level rise, ice sheet melting, and so on. One of the major contributors to this disaster is the ever-increasing production and consumption of energy, which is still primarily fossil-based and emits billions of tons of hazardous GHG. The transportation industry is recognized as the biggest actor in terms of emissions, accounting for 24% of direct CO2 emissions and being one of the few worldwide sectors where CO2 emissions are still growing. Rail transportation, which includes all from light rail transit to high-speed rail services, is regarded as one of the most efficient modes of transportation, accounting for 9% of total passenger travel and 7% of total freight transit. Nonetheless, there is still room for improvement in the transportation sector, which might be done by incorporating alternative and/or renewable energy sources. As a result of these rapidly changing global energy situations and rapidly dwindling fossil fuel supplies, we were driven to analyze the possibility of renewable energy sources for traction applications. Even a small achievement in energy conservation or harnessing might significantly influence the total railway system and have the potential to transform the railway sector like never before. As a result, the paper begins by assessing the potential for photovoltaic (PV) power generation on train rooftops and existing infrastructure such as railway depots, passenger stations, traction substation rooftops, and accessible land along rail lines. As a result, a method based on a Google Earth system (using Helioscopes software) is developed to assess the PV potential along rail lines and on train station roofs. As an example, the Addis Ababa light rail transit system (AA-LRTS) is utilized. The case study examines the electricity-generating potential and economic performance of photovoltaics installed on AALRTS. As a consequence, the overall capacity of solar systems on all stations, including train rooftops, reaches 72.6 MWh per day, with an annual power output of 10.6 GWh. Throughout a 25-year lifespan, the overall CO2 emission reduction and total profit from PV-AA-LRTS can reach 180,000 tons and 892 million Ethiopian birrs, respectively. The PV-AA-LRTS has a 200% return on investment. All PV stations have a payback time of less than 13 years, and the price of solar-generated power is less than $0.08/kWh, which can compete with the benchmark price of coal-fired electricity. Our findings indicate that PV-AA-LRTS has tremendous potential, with both energy and economic advantages.Keywords: sustainable development, global warming, energy crisis, photovoltaic energy conversion, techno-economic analysis, transportation system, light rail transit
Procedia PDF Downloads 76403 Identification of ω-3 Fatty Acids Using GC-MS Analysis in Extruded Spelt Product
Authors: Jelena Filipovic, Marija Bodroza-Solarov, Milenko Kosutic, Nebojsa Novkovic, Vladimir Filipovic, Vesna Vucurovic
Abstract:
Spelt wheat is suitable raw material for extruded products such as pasta, special types of bread and other products of altered nutritional characteristics compared to conventional wheat products. During the process of extrusion, spelt is exposed to high temperature and high pressure, during which raw material is also mechanically treated by shear forces. Spelt wheat is growing without the use of pesticides in harsh ecological conditions and in marginal areas of cultivation. So it can be used for organic and health safe food. Pasta is the most popular foodstuff; its consumption has been observed to rise. Pasta quality depends mainly on the properties of flour raw materials, especially protein content and its quality but starch properties are of a lesser importance. Pasta is characterized by significant amounts of complex carbohydrates, low sodium, total fat fiber, minerals, and essential fatty acids and its nutritional value can be improved with additional functional component. Over the past few decades, wheat pasta has been successfully formulated using different ingredients in pasta to cater health-conscious consumers who prefer having a product rich in protein, healthy lipids and other health benefits. Flaxseed flour is used in the production of bakery and pasta products that have properties of functional foods. However, it should be taken into account that food products retain the technological and sensory quality despite the added flax seed. Flaxseed contains important substances in its composition such as vitamins and minerals elements, and it is also an excellent source of fiber and one of the best sources of ω-3 fatty acids and lignin. In this paper, the quality and identification of spelt extruded product with the addition of flax seed, which is positively contributing to the nutritive and technology changes of the product, is investigated. ω-3 fatty acids are polyunsaturated essential fatty acids, and they must be taken with food to satisfy the recommended daily intake. Flaxseed flour is added in the quantity of 10/100 g of sample and 20/100 g of sample on farina. It is shown that the presence of ω-3 fatty acids in pasta can be clearly distinguished from other fatty acids by gas chromatography with mass spectrometry. Addition of flax seed flour influence chemical content of pasta. The addition of flax seed flour in spelt pasta in the quantities of 20g/100 g significantly increases the share of ω-3 fatty acids, which results in improved ratio of ω-6/ω-3 1:2.4 and completely satisfies minimum daily needs of ω-3 essential fatty acids (3.8 g/100 g) recommended by FDA. Flex flour influenced the pasta quality by increasing of hardness (2377.8 ± 13.3; 2874.5 ± 7.4; 3076.3 ± 5.9) and work of shear (102.6 ± 11.4; 150.8 ± 11.3; 165.0 ± 18.9) and increasing of adhesiveness (11.8 ± 20.6; 9.,98 ± 0.12; 7.1 ± 12.5) of the final product. Presented data point at good indicators of technological quality of spelt pasta with flax seed and that GC-MS analysis can be used in the quality control for flax seed identification. Acknowledgment: The research was financed by the Ministry of Education and Science of the Republic of Serbia (Project No. III 46005).Keywords: GC-MS analysis, ω-3 fatty acids, flex seed, spelt wheat, daily needs
Procedia PDF Downloads 163402 Risk Factors Associated with Ectoprotozoa Infestation of Wild and Farmed Cyprinids
Authors: M. A. Peribanez, G. Illan, I. De Blas, A. Muniesa, I. Ruiz-Zarzuela
Abstract:
Intensive aquaculture is commonly associated with increased incidence of parasites. However, in Spain, the recent intensification of cyprinid production has not led to knowledge of the parasites that develop in the aquaculture facilities, the factors that affect their development and spread and the transmission between wild and cultivated fish species. The present study focuses on the knowledge of environmental factors, as well as host dependent factors, and their possible influence as risk factors in the incidence and intensity of parasitic infections. This work was conducted in the Duero River Basin, NW Spain. A total of 114 tenches (Tinca tinca) were caught in a fish farm and 667 specimens belonging to six species of cyprinid, not tench, in five rivers. An exhaustive search and microscopic identification of protozoa on skin and gills were carried out. Physical, chemical, and biological parameters of water samples from the capture points were determined. Only two ectoprotozoa were identified, Ichthyophthirius multifiliis and Tripartiella sp. In I. multifiliis, a high intensity of infection (more than 40 parasites on the body surface and more than 80 on gills) was determined in farmed tench (14%) and in Iberian barbel (Luciobarbus bocagei) (91%) and Duero nase (Pseudochondrostoma duriense) (71%) of middle stretches of rivers. The prevalence was similar between farmed tenches and cyprinids of middle courses. Tripartiella sp. was only found in barbels (prevalence in middle stretches, 0.7%) and in farmed tenches (63%), this species resulting in a high risk factor (odds ratio, OR= 1143) in the presence of the ciliate. There were no differences between the two species relative to the intensity of parasitization. Some of the physical, chemical and microbiological water quality parameters appear to be risk factors in the presence of I. multifiliis, with maximum OR of 8. Nevertheless, in Tripartiella sp., the risk is multiplied by 720 when the pH value exceeds 8.4, if we consider the total of the data, and it is increased more than 500 times if we only consider the values recorded in the fish farm (529 by nitrates > 3 mg/l; 530 by total coliforms > 100 CFU/100 ml). However, the high prevalence and risk of infection by I. multifiliis and Tripartiella sp. in fish farms should be related to environmental factors that dependent upon sampling point rather than in direct influence of the physical-chemical and biological parameters of the water. The high pH value recorded in the fish farm (9.62 ± 0.76) is the only parameter that we consider may have a substantial direct influence. Chronic exposure to alkaline pH levels can be a chronic stress generator, predisposing to parasitization by Tripartiella sp. In conclusion, often minor changes in ecosystem conditions, both natural and man-made, can modify the host-parasite relationship, resulting in an increase in the prevalence and intensity of parasitic infections in populations of cyprinids, sometimes causing disease outbreaks.Keywords: cyprinids, fish, parasites, protozoa, risk factors
Procedia PDF Downloads 114401 Polarimetric Study of System Gelatin / Carboxymethylcellulose in the Food Field
Authors: Sihem Bazid, Meriem El Kolli, Aicha Medjahed
Abstract:
Proteins and polysaccharides are the two types of biopolymers most frequently used in the food industry to control the mechanical properties and structural stability and organoleptic properties of the products. The textural and structural properties of these two types of blend polymers depend on their interaction and their ability to form organized structures. From an industrial point of view, a better understanding of mixtures protein / polysaccharide is an important issue since they are already heavily involved in processed food. It is in this context that we have chosen to work on a model system composed of a fibrous protein mixture (gelatin)/anionic polysaccharide (sodium carboxymethylcellulose). Gelatin, one of the most popular biopolymers, is widely used in food, pharmaceutical, cosmetic and photographic applications, because of its unique functional and technological properties. Sodium Carboxymethylcellulose (NaCMC) is an anionic linear polysaccharide derived from cellulose. It is an important industrial polymer with a wide range of applications. The functional properties of this anionic polysaccharide can be modified by the presence of proteins with which it might interact. Another factor may also manage the interaction of protein-polysaccharide mixtures is the triple helix of the gelatin. Its complex synthesis method results in an extracellular assembly containing several levels. Collagen can be in a soluble state or associate into fibrils, which can associate in fiber. Each level corresponds to an organization recognized by the cellular and metabolic system. Gelatin allows this approach, the formation of gelatin gel has triple helical folding of denatured collagen chains, this gel has been the subject of numerous studies, and it is now known that the properties depend only on the rate of triple helices forming the network. Chemical modification of this system is quite controlled. Observe the dynamics of the triple helix may be relevant in understanding the interactions involved in protein-polysaccharides mixtures. Gelatin is central to any industrial process, understand and analyze the molecular dynamics induced by the triple helix in the transitions gelatin, can have great economic importance in all fields and especially the food. The goal is to understand the possible mechanisms involved depending on the nature of the mixtures obtained. From a fundamental point of view, it is clear that the protective effect of NaCMC on gelatin and conformational changes of the α helix are strongly influenced by the nature of the medium. Our goal is to minimize the maximum the α helix structure changes to maintain more stable gelatin and protect against denaturation that occurs during such conversion processes in the food industry. In order to study the nature of interactions and assess the properties of mixtures, polarimetry was used to monitor the optical parameters and to assess the rate of helicity gelatin.Keywords: gelatin, sodium carboxymethylcellulose, interaction gelatin-NaCMC, the rate of helicity, polarimetry
Procedia PDF Downloads 313400 Understanding the Diversity of Antimicrobial Resistance among Wild Animals, Livestock and Associated Environment in a Rural Ecosystem in Sri Lanka
Authors: B. M. Y. I. Basnayake, G. G. T. Nisansala, P. I. J. B. Wijewickrama, U. S. Weerathunga, K. W. M. Y. D. Gunasekara, N. K. Jayasekera, A. W. Kalupahana, R. S. Kalupahana, A. Silva- Fletcher, K. S. A. Kottawatta
Abstract:
Antimicrobial resistance (AMR) has attracted significant attention worldwide as an emerging threat to public health. Understanding the role of livestock and wildlife with the shared environment in the maintenance and transmission of AMR is of utmost importance due to its interactions with humans for combating the issue in one health approach. This study aims to investigate the extent of AMR distribution among wild animals, livestock, and environment cohabiting in a rural ecosystem in Sri Lanka: Hambegamuwa. One square km area at Hambegamuwa was mapped using GPS as the sampling area. The study was conducted for a period of five months from November 2020. Voided fecal samples were collected from 130 wild animals, 123 livestock: buffalo, cattle, chicken, and turkey, with 36 soil and 30 water samples associated with livestock and wildlife. From the samples, Escherichia coli (E. coli) was isolated, and their AMR profiles were investigated for 12 antimicrobials using the disk diffusion method following the CLSI standard. Seventy percent (91/130) of wild animals, 93% (115/123) of livestock, 89% (32/36) of soil, and 63% (19/30) of water samples were positive for E. coli. Maximum of two E. coli from each sample to a total of 467 were tested for the sensitivity of which 157, 208, 62, and 40 were from wild animals, livestock, soil, and water, respectively. The highest resistance in E. coli from livestock (13.9%) and wild animals (13.3%) was for ampicillin, followed by streptomycin. Apart from that, E. coli from livestock and wild animals revealed resistance mainly against tetracycline, cefotaxime, trimethoprim/ sulfamethoxazole, and nalidixic acid at levels less than 10%. Ten cefotaxime resistant E. coli were reported from wild animals, including four elephants, two land monitors, a pigeon, a spotted dove, and a monkey which was a significant finding. E. coli from soil samples reflected resistance primarily against ampicillin, streptomycin, and tetracycline at levels less than in livestock/wildlife. Two water samples had cefotaxime resistant E. coli as the only resistant isolates out of 30 water samples tested. Of the total E. coli isolates, 6.4% (30/467) was multi-drug resistant (MDR) which included 18, 9, and 3 isolates from livestock, wild animals, and soil, respectively. Among 18 livestock MDRs, the highest (13/ 18) was from poultry. Nine wild animal MDRs were from spotted dove, pigeon, land monitor, and elephant. Based on CLSI standard criteria, 60 E. coli isolates, of which 40, 16, and 4 from livestock, wild animal, and environment, respectively, were screened for Extended Spectrum β-Lactamase (ESBL) producers. Despite being a rural ecosystem, AMR and MDR are prevalent even at low levels. E. coli from livestock, wild animals, and the environment reflected a similar spectrum of AMR where ampicillin, streptomycin, tetracycline, and cefotaxime being the predominant antimicrobials of resistance. Wild animals may have acquired AMR via direct contact with livestock or via the environment, as antimicrobials are rarely used in wild animals. A source attribution study including the effects of the natural environment to study AMR can be proposed as this less contaminated rural ecosystem alarms the presence of AMR.Keywords: AMR, Escherichia coli, livestock, wildlife
Procedia PDF Downloads 216399 Sustainable Pavements with Reflective and Photoluminescent Properties
Authors: A.H. Martínez, T. López-Montero, R. Miró, R. Puig, R. Villar
Abstract:
An alternative to mitigate the heat island effect is to pave streets and sidewalks with pavements that reflect incident solar energy, keeping their surface temperature lower than conventional pavements. The “Heat island mitigation to prevent global warming by designing sustainable pavements with reflective and photoluminescent properties (RELUM) Project” has been carried out with this intention in mind. Its objective has been to develop bituminous mixtures for urban pavements that help in the fight against global warming and climate change, while improving the quality of life of citizens. The technology employed has focused on the use of reflective pavements, using bituminous mixes made with synthetic bitumens and light pigments that provide high solar reflectance. In addition to this advantage, the light surface colour achieved with these mixes can improve visibility, especially at night. In parallel and following the latter approach, an appropriate type of treatment has also been developed on bituminous mixtures to make them capable of illuminating at night, giving rise to photoluminescent applications, which can reduce energy consumption and increase road safety due to improved night-time visibility. The work carried out consisted of designing different bituminous mixtures in which the nature of the aggregate was varied (porphyry, granite and limestone) and also the colour of the mixture, which was lightened by adding pigments (titanium dioxide and iron oxide). The reflectance of each of these mixtures was measured, as well as the temperatures recorded throughout the day, at different times of the year. The results obtained make it possible to propose bituminous mixtures whose characteristics can contribute to the reduction of urban heat islands. Among the most outstanding results is the mixture made with synthetic bitumen, white limestone aggregate and a small percentage of titanium dioxide, which would be the most suitable for urban surfaces without road traffic, given its high reflectance and the greater temperature reduction it offers. With this solution, a surface temperature reduction of 9.7°C is achieved at the beginning of the night in the summer season with the highest radiation. As for luminescent pavements, paints with different contents of strontium aluminate and glass microspheres have been applied to asphalt mixtures, and the luminance of all the applications designed has been measured by exciting them with electric bulbs that simulate the effect of sunlight. The results obtained at this stage confirm the ability of all the designed dosages to emit light for a certain time, varying according to the proportions used. Not only the effect of the strontium aluminate and microsphere content has been observed, but also the influence of the colour of the base on which the paint is applied; the lighter the base, the higher the luminance. Ongoing studies are focusing on the evaluation of the durability of the designed solutions in order to determine their lifetime.Keywords: heat island, luminescent paints, reflective pavement, temperature reduction
Procedia PDF Downloads 30398 Source-Detector Trajectory Optimization for Target-Based C-Arm Cone Beam Computed Tomography
Authors: S. Hatamikia, A. Biguri, H. Furtado, G. Kronreif, J. Kettenbach, W. Birkfellner
Abstract:
Nowadays, three dimensional Cone Beam CT (CBCT) has turned into a widespread clinical routine imaging modality for interventional radiology. In conventional CBCT, a circular sourcedetector trajectory is used to acquire a high number of 2D projections in order to reconstruct a 3D volume. However, the accumulated radiation dose due to the repetitive use of CBCT needed for the intraoperative procedure as well as daily pretreatment patient alignment for radiotherapy has become a concern. It is of great importance for both health care providers and patients to decrease the amount of radiation dose required for these interventional images. Thus, it is desirable to find some optimized source-detector trajectories with the reduced number of projections which could therefore lead to dose reduction. In this study we investigate some source-detector trajectories with the optimal arbitrary orientation in the way to maximize performance of the reconstructed image at particular regions of interest. To achieve this approach, we developed a box phantom consisting several small target polytetrafluoroethylene spheres at regular distances through the entire phantom. Each of these spheres serves as a target inside a particular region of interest. We use the 3D Point Spread Function (PSF) as a measure to evaluate the performance of the reconstructed image. We measured the spatial variance in terms of Full-Width-Half-Maximum (FWHM) of the local PSFs each related to a particular target. The lower value of FWHM shows the better spatial resolution of reconstruction results at the target area. One important feature of interventional radiology is that we have very well-known imaging targets as a prior knowledge of patient anatomy (e.g. preoperative CT) is usually available for interventional imaging. Therefore, we use a CT scan from the box phantom as the prior knowledge and consider that as the digital phantom in our simulations to find the optimal trajectory for a specific target. Based on the simulation phase we have the optimal trajectory which can be then applied on the device in real situation. We consider a Philips Allura FD20 Xper C-arm geometry to perform the simulations and real data acquisition. Our experimental results based on both simulation and real data show our proposed optimization scheme has the capacity to find optimized trajectories with minimal number of projections in order to localize the targets. Our results show the proposed optimized trajectories are able to localize the targets as good as a standard circular trajectory while using just 1/3 number of projections. Conclusion: We demonstrate that applying a minimal dedicated set of projections with optimized orientations is sufficient to localize targets, may minimize radiation.Keywords: CBCT, C-arm, reconstruction, trajectory optimization
Procedia PDF Downloads 132397 The Community Stakeholders’ Perspectives on Sexual Health Education for Young Adolescents in Western New York, USA: A Qualitative Descriptive Study
Authors: Sadandaula Rose Muheriwa Matemba, Alexander Glazier, Natalie M. LeBlanc
Abstract:
In the United States, up to 10% of girls and 22 % of boys 10-14 years have had sex, 5% of them had their first sex before 11 years, and the age of first sexual encounter is reported to be 8 years. Over 4,000 adolescent girls, 10-14 years, become pregnant every year, and 2.6% of the abortions in 2019 were among adolescents below 15 years. Despite these negative outcomes, little research has been conducted to understand the sexual health education offered to young adolescents ages 10-14. Early sexual health education is one of the most effective strategies to help lower the rate of early pregnancies, HIV infections, and other sexually transmitted. Such knowledge is necessary to inform best practices for supporting the healthy sexual development of young adolescents and prevent adverse outcomes. This qualitative descriptive study was conducted to explore the community stakeholders’ experiences in sexual health education for young adolescents ages 10-14 and ascertain the young adolescents’ sexual health support needs. Maximum variation purposive sampling was used to recruit a total sample of 13 community stakeholders, including health education teachers, members of youth-based organizations, and Adolescent Clinic providers in Rochester, New York State, in the United States of America from April to June 2022. Data were collected through semi-structured individual in-depth interviews and were analyzed using MAXQDA following a conventional content analysis approach. Triangulation, team analysis, and respondent validation to enhance rigor were also employed to enhance study rigor. The participants were predominantly female (92.3%) and comprised of Caucasians (53.8%), Black/African Americans (38.5%), and Indian-American (7.7%), with ages ranging from 23-59. Four themes emerged: the perceived need for early sexual health education, preferred timing to initiate sexual health conversations, perceived age-appropriate content for young adolescents, and initiating sexual health conversations with young adolescents. The participants described encouraging and concerning experiences. Most participants were concerned that young adolescents are living in a sexually driven environment and are not given the sexual health education they need, even though they are open to learning sexual health materials. There was consensus on the need to initiate sexual health conversations early at 4 years or younger, standardize sexual health education in schools and make age-appropriate sexual health education progressive. These results show that early sexual health education is essential if young adolescents are to delay sexual debut, prevent early pregnancies, and if the goal of ending the HIV epidemic is to be achieved. However, research is needed on a larger scale to understand how best to implement sexual health education among young adolescents and to inform interventions for implementing contextually-relevant sexuality education for this population. These findings call for increased multidisciplinary efforts in promoting early sexual health education for young adolescents.Keywords: community stakeholders’ perspectives, sexual development, sexual health education, young adolescents
Procedia PDF Downloads 78396 Unification of Lactic Acid Bacteria and Aloe Vera for Healthy Gut
Authors: Pavitra Sharma, Anuradha Singh, Nupur Mathur
Abstract:
There exist more than 100 trillion bacteria in the digestive system of human-beings. Such bacteria are referred to as gut microbiota. Gut microbiota comprises around 75% of our immune system. The bacteria that comprise the gut microbiota are unique to every individual and their composition keeps changing with time owing to factors such as the host’s age, diet, genes, environment, and external medication. Of these factors, the variable easiest to control is one’s diet. By modulating one’s diet, one can ensure an optimal composition of the gut microbiota yielding several health benefits. Prebiotics and probiotics are two compounds that have been considered as viable options to modulate the host’s diet. Prebiotics are basically plant products that support the growth of good bacteria in the host’s gut. Examples include garden asparagus, aloe vera etc. Probiotics are living microorganisms that exist in our intestines and play an integral role in promoting digestive health and supporting our immune system in general. Examples include yogurt, kimchi, kombucha etc. In the context of modulating the host’s diet, the key attribute of prebiotics is that they support the growth of probiotics. By developing the right combination of prebiotics and probiotics, food products or supplements can be created to enhance the host’s health. An effective combination of prebiotics and probiotics that yields health benefits to the host is referred to as synbiotics. Synbiotics comprise of an optimal proportion of prebiotics and probiotics, their application benefits the host’s health more than the application of prebiotics and probiotics used in isolation. When applied to food supplements, synbiotics preserve the beneficial probiotic bacteria during storage period and during the bacteria’s passage through the intestinal tract. When applied to the gastrointestinal tract, the composition of the synbiotics assumes paramount importance. Reason being that for synbiotics to be effective in the gastrointestinal tract, the chosen probiotic must be able to survive in the stomach’s acidic environment and manifest tolerance towards bile and pancreatic secretions. Further, not every prebiotic stimulates the growth of a particular probiotic. The prebiotic chosen should be one that not only maintains 2 balance in the host’s digestive system, but also provides the required nutrition to probiotics. Hence in each application of synbiotics, the prebiotic-probiotic combination needs to be carefully selected. Once the combination is finalized, the exact proportion of prebiotics and probiotics to be used needs to be considered. When determining this proportion, only that amount of a prebiotic should be used that activates metabolism of the required number of probiotics. It was observed that while probiotics are active is both the small and large intestine, the effect of prebiotics is observed primarily in the large intestine. Hence in the host’s small intestine, synbiotics are likely to have the maximum efficacy. In small intestine, prebiotics not only assist in the growth of probiotics, but they also enable probiotics to exhibit a higher tolerance to pH levels, oxygenation, and intestinal temperatureKeywords: microbiota, probiotics, prebiotics, synbiotics
Procedia PDF Downloads 135395 Potential for Massive Use of Biodiesel for Automotive in Italy
Authors: Domenico Carmelo Mongelli
Abstract:
The context of this research is that of the Italian reality, which, in order to adapt to the EU Directives that prohibit the production of internal combustion engines in favor of electric mobility from 2035, is extremely concerned about the significant loss of jobs resulting from the difficulty of the automotive industry in converting in such a short time and due to the reticence of potential buyers in the face of such an epochal change. The aim of the research is to evaluate for Italy the potential of the most valid alternative to this transition to electric: leaving the current production of diesel engines unchanged, no longer powered by gasoil, imported and responsible for greenhouse gas emissions, but powered entirely by a nationally produced and eco-sustainable fuel such as biodiesel. Today in Italy, the percentage of biodiesel mixed with gasoil for diesel engines is too low (around 10%); for this reason, this research aims to evaluate the functioning of current diesel engines powered 100% by biodiesel and the ability of the Italian production system to cope to this hypothesis. The research geographically identifies those abandoned lands in Italy, now out of the food market, which is best suited to an energy crop for the final production of biodiesel. The cultivation of oilseeds is identified, which for the Italian agro-industrial reality allows maximizing the agricultural and industrial yields of the transformation of the agricultural product into a final energy product and minimizing the production costs of the entire agro-industrial chain. To achieve this objective, specific databases are used, and energy and economic balances are prepared for the different agricultural product alternatives. Solutions are proposed and tested that allow the optimization of all production phases in both the agronomic and industrial phases. The biodiesel obtained from the most feasible of the alternatives examined is analyzed, and its compatibility with current diesel engines is identified, and from the evaluation of its thermo-fluid-dynamic properties, the engineering measures that allow the perfect functioning of current internal combustion engines are examined. The results deriving from experimental tests on the engine bench are evaluated to evaluate the performance of different engines fueled with biodiesel alone in terms of power, torque, specific consumption and useful thermal efficiency and compared with the performance of engines fueled with the current mixture of fuel on the market. The results deriving from experimental tests on the engine bench are evaluated to evaluate the polluting emissions of engines powered only by biodiesel and compared with current emissions. At this point, we proceed with the simulation of the total replacement of gasoil with biodiesel as a fuel for the current fleet of diesel vehicles in Italy, drawing the necessary conclusions in technological, energy, economic, and environmental terms and in terms of social and employment implications. The results allow us to evaluate the potential advantage of a total replacement of diesel fuel with biodiesel for powering road vehicles with diesel cycle internal combustion engines without significant changes to the current vehicle fleet and without requiring future changes to the automotive industry.Keywords: biodiesel, economy, engines, environment
Procedia PDF Downloads 75394 Predicting Food Waste and Losses Reduction for Fresh Products in Modified Atmosphere Packaging
Authors: Matar Celine, Gaucel Sebastien, Gontard Nathalie, Guilbert Stephane, Guillard Valerie
Abstract:
To increase the very short shelf life of fresh fruits and vegetable, Modified Atmosphere Packaging (MAP) allows an optimal atmosphere composition to be maintained around the product and thus prevent its decay. This technology relies on the modification of internal packaging atmosphere due to equilibrium between production/consumption of gases by the respiring product and gas permeation through the packaging material. While, to the best of our knowledge, benefit of MAP for fresh fruits and vegetable has been widely demonstrated in the literature, its effect on shelf life increase has never been quantified and formalized in a clear and simple manner leading difficult to anticipate its economic and environmental benefit, notably through the decrease of food losses. Mathematical modelling of mass transfers in the food/packaging system is the basis for a better design and dimensioning of the food packaging system. But up to now, existing models did not permit to estimate food quality nor shelf life gain reached by using MAP. However, shelf life prediction is an indispensable prerequisite for quantifying the effect of MAP on food losses reduction. The objective of this work is to propose an innovative approach to predict shelf life of MAP food product and then to link it to a reduction of food losses and wastes. In this purpose, a ‘Virtual MAP modeling tool’ was developed by coupling a new predictive deterioration model (based on visual surface prediction of deterioration encompassing colour, texture and spoilage development) with models of the literature for respiration and permeation. A major input of this modelling tool is the maximal percentage of deterioration (MAD) which was assessed from dedicated consumers’ studies. Strawberries of the variety Charlotte were selected as the model food for its high perishability, high respiration rate; 50-100 ml CO₂/h/kg produced at 20°C, allowing it to be a good representative of challenging post-harvest storage. A value of 13% was determined as a limit of acceptability for the consumers, permitting to define products’ shelf life. The ‘Virtual MAP modeling tool’ was validated in isothermal conditions (5, 10 and 20°C) and in dynamic temperature conditions mimicking commercial post-harvest storage of strawberries. RMSE values were systematically lower than 3% for respectively, O₂, CO₂ and deterioration profiles as a function of time confirming the goodness of model fitting. For the investigated temperature profile, a shelf life gain of 0.33 days was obtained in MAP compared to the conventional storage situation (no MAP condition). Shelf life gain of more than 1 day could be obtained for optimized post-harvest conditions as numerically investigated. Such shelf life gain permitted to anticipate a significant reduction of food losses at the distribution and consumer steps. This food losses' reduction as a function of shelf life gain has been quantified using a dedicated mathematical equation that has been developed for this purpose.Keywords: food losses and wastes, modified atmosphere packaging, mathematical modeling, shelf life prediction
Procedia PDF Downloads 183393 Preliminary Design, Production and Characterization of a Coral and Alginate Composite for Bone Engineering
Authors: Sthephanie A. Colmenares, Fabio A. Rojas, Pablo A. Arbeláez, Johann F. Osma, Diana Narvaez
Abstract:
The loss of functional tissue is a ubiquitous and expensive health care problem, with very limited treatment options for these patients. The golden standard for large bone damage is a cadaveric bone as an allograft with stainless steel support; however, this solution only applies to bones with simple morphologies (long bones), has a limited material supply and presents long term problems regarding mechanical strength, integration, differentiation and induction of native bone tissue. Therefore, the fabrication of a scaffold with biological, physical and chemical properties similar to the human bone with a fabrication method for morphology manipulation is the focus of this investigation. Towards this goal, an alginate and coral matrix was created using two production techniques; the coral was chosen because of its chemical composition and the alginate due to its compatibility and mechanical properties. In order to construct the coral alginate scaffold the following methodology was employed; cleaning of the coral, its pulverization, scaffold fabrication and finally the mechanical and biological characterization. The experimental design had: mill method and proportion of alginate and coral, as the two factors, with two and three levels each, using 5 replicates. The coral was cleaned with sodium hypochlorite and hydrogen peroxide in an ultrasonic bath. Then, it was milled with both a horizontal and a ball mill in order to evaluate the morphology of the particles obtained. After this, using a combination of alginate and coral powder and water as a binder, scaffolds of 1cm3 were printed with a SpectrumTM Z510 3D printer. This resulted in solid cubes that were resistant to small compression stress. Then, using a ESQUIM DP-143 silicon mold, constructs used for the mechanical and biological assays were made. An INSTRON 2267® was implemented for the compression tests; the density and porosity were calculated with an analytical balance and the biological tests were performed using cell cultures with VERO fibroblast, and Scanning Electron Microscope (SEM) as visualization tool. The Young’s moduli were dependent of the pulverization method, the proportion of coral and alginate and the interaction between these factors. The maximum value was 5,4MPa for the 50/50 proportion of alginate and horizontally milled coral. The biological assay showed more extracellular matrix in the scaffolds consisting of more alginate and less coral. The density and porosity were proportional to the amount of coral in the powder mix. These results showed that this composite has potential as a biomaterial, but its behavior is elastic with a small Young’s Modulus, which leads to the conclusion that the application may not be for long bones but for tissues similar to cartilage.Keywords: alginate, biomaterial, bone engineering, coral, Porites asteroids, SEM
Procedia PDF Downloads 254392 Association of Body Composition Parameters with Lower Limb Strength and Upper Limb Functional Capacity in Quilombola Remnants
Authors: Leonardo Costa Pereira, Frederico Santos Santana, Mauro Karnikowski, Luís Sinésio Silva Neto, Aline Oliveira Gomes, Marisete Peralta Safons, Margô Gomes De Oliveira Karnikowski
Abstract:
In Brazil, projections of population aging follow all world projections, the birth rate tends to be surpassed by the mortality rate around the year 2045. Historically, the population of Brazilian blacks suffered for several centuries from the oppression of dominant classes. A group, especially of blacks, stands out in relation to territorial, historical and social aspects, and for centuries they have isolated themselves in small communities, in order to maintain their freedom and culture. The isolation of the Quilombola communities generated socioeconomic effects as well as the health of these blacks. Thus, the objective of the present study is to verify the association of body composition parameters with lower and upper limb strength and functional capacity in Quilombola remnants. The research was approved by ethics committee (1,771,159). Anthropometric evaluations of hip and waist circumference, body mass and height were performed. In order to verify the body composition, the relationship between stature and body mass (BM) was performed, generating the body mass index (BMI), as well as the dual-energy X-ray absorptiometry (DEXA) test. The Time Up and Go (TUG) test was used to evaluate the functional capacity, and a maximum repetition test (1MR) for knee extension and handgrip (HG) was applied for strength magnitude analysis. Statistical analysis was performed using the statistical package SPSS 22.0. Shapiro Wilk's normality test was performed. For the possible correlations, the suggestions of the Pearson or Spearman tests were adopted. The results obtained after the interpretation identified that the sample (n = 18) was composed of 66.7% of female individuals with mean age of 66.07 ± 8.95 years. The sample’s body fat percentage (%BF) (35.65 ± 10.73) exceeds the recommendations for age group, as well as the anthropometric parameters of hip (90.91 ± 8.44cm) and waist circumference (80.37 ± 17.5cm). The relationship between height (1.55 ± 0.1m) and body mass (63.44 ± 11.25Kg) generated a BMI of 24.16 ± 7.09Kg/m2, that was considered normal. The TUG performance was 10.71 ± 1.85s. In the 1MR test, 46.67 ± 13.06Kg and in the HG 23.93±7.96Kgf were obtained, respectively. Correlation analyzes were characterized by the high frequency of significant correlations for height, dominant arm mass (DAM), %BF, 1MR and HG variables. In addition, correlations between HG and BM (r = 0.67, p = 0.005), height (r = 0.51, p = 0.004) and DAM (r = 0.55, p = 0.026) were also observed. The strength of the lower limbs correlates with BM (r = 0.69, p = 0.003), height (r = 0.62, p = 0.01) and DAM (r = 0.772, p = 0.001). In this way, we can conclude that not only the simple spatial relationship of mass and height can influence in predictive parameters of strength or functionality, being important the verification of the conditions of the corporal composition. For this population, height seems to be a good predictor of strength and body composition.Keywords: African Continental Ancestry Group, body composition, functional capacity, strength
Procedia PDF Downloads 276391 Finite Element Analysis of the Anaconda Device: Efficiently Predicting the Location and Shape of a Deployed Stent
Authors: Faidon Kyriakou, William Dempster, David Nash
Abstract:
Abdominal Aortic Aneurysm (AAA) is a major life-threatening pathology for which modern approaches reduce the need for open surgery through the use of stenting. The success of stenting though is sometimes jeopardized by the final position of the stent graft inside the human artery which may result in migration, endoleaks or blood flow occlusion. Herein, a finite element (FE) model of the commercial medical device AnacondaTM (Vascutek, Terumo) has been developed and validated in order to create a numerical tool able to provide useful clinical insight before the surgical procedure takes place. The AnacondaTM device consists of a series of NiTi rings sewn onto woven polyester fabric, a structure that despite its column stiffness is flexible enough to be used in very tortuous geometries. For the purposes of this study, a FE model of the device was built in Abaqus® (version 6.13-2) with the combination of beam, shell and surface elements; the choice of these building blocks was made to keep the computational cost to a minimum. The validation of the numerical model was performed by comparing the deployed position of a full stent graft device inside a constructed AAA with a duplicate set-up in Abaqus®. Specifically, an AAA geometry was built in CAD software and included regions of both high and low tortuosity. Subsequently, the CAD model was 3D printed into a transparent aneurysm, and a stent was deployed in the lab following the steps of the clinical procedure. Images on the frontal and sagittal planes of the experiment allowed the comparison with the results of the numerical model. By overlapping the experimental and computational images, the mean and maximum distances between the rings of the two models were measured in the longitudinal, and the transverse direction and, a 5mm upper bound was set as a limit commonly used by clinicians when working with simulations. The two models showed very good agreement of their spatial positioning, especially in the less tortuous regions. As a result, and despite the inherent uncertainties of a surgical procedure, the FE model allows confidence that the final position of the stent graft, when deployed in vivo, can also be predicted with significant accuracy. Moreover, the numerical model run in just a few hours, an encouraging result for applications in the clinical routine. In conclusion, the efficient modelling of a complicated structure which combines thin scaffolding and fabric has been demonstrated to be feasible. Furthermore, the prediction capabilities of the location of each stent ring, as well as the global shape of the graft, has been shown. This can allow surgeons to better plan their procedures and medical device manufacturers to optimize their designs. The current model can further be used as a starting point for patient specific CFD analysis.Keywords: AAA, efficiency, finite element analysis, stent deployment
Procedia PDF Downloads 191390 Drivetrain Comparison and Selection Approach for Armored Wheeled Hybrid Vehicles
Authors: Çağrı Bekir Baysal, Göktuğ Burak Çalık
Abstract:
Armored vehicles may have different traction layouts as a result of terrain capabilities and mobility needs. Two main categories of layouts can be separated as wheeled and tracked. Tracked vehicles have superior off-road capabilities but what they gain on terrain performance they lose on mobility front. Wheeled vehicles on the other hand do not have as good terrain capabilities as tracked vehicles but they have superior mobility capabilities such as top speed, range and agility with respect to tracked vehicles. Conventional armored vehicles employ a diesel ICE as main power source. In these vehicles ICE is mechanically connected to the powertrain. This determines the ICE rpm as a result of speed and torque requested by the driver. ICE efficiency changes drastically with torque and speed required and conventional vehicles suffer in terms of fuel consumption because of this. Hybrid electric vehicles employ at least one electric motor in order to improve fuel efficiency. There are different types of hybrid vehicles but main types are Series Hybrid, Parallel Hybrid and Series-Parallel Hybrid. These vehicles introduce an electric motor for traction and also can have a generator electric motor for range extending purposes. Having an electric motor as the traction power source brings the flexibility of either using the ICE as an alternative traction source while it is in efficient range or completely separating the ICE from traction and using it solely considering efficiency. Hybrid configurations have additional advantages for armored vehicles in addition to fuel efficiency. Heat signature, silent operation and prolonged stationary missions can be possible with the help of the high-power battery pack that will be present in the vehicle for hybrid drivetrain. Because of the reasons explained, hybrid armored vehicles are becoming a target area for military and also for vehicle suppliers. In order to have a better idea and starting point when starting a hybrid armored vehicle design, hybrid drivetrain configuration has to be selected after performing a trade-off study. This study has to include vehicle mobility simulations, integration level, vehicle level and performance level criteria. In this study different hybrid traction configurations possible for an 8x8 vehicle is compared using above mentioned criteria set. In order to compare hybrid traction configurations ease of application, cost, weight advantage, reliability, maintainability, redundancy and performance criteria have been used. Performance criteria points have been defined with the help of vehicle simulations and tests. Results of these simulations and tests also help determining required tractive power for an armored vehicle including conditions like trench and obstacle crossing, gradient climb. With the method explained in this study, each configuration is assigned a point for each criterion. This way, correct configuration can be selected objectively for every application. Also, key aspects of armored vehicles, mine protection and ballistic protection will be considered for hybrid configurations. Results are expected to vary for different types of vehicles but it is observed that having longitudinal differential locking capability improves mobility and having high motor count increases complexity in general.Keywords: armored vehicles, electric drivetrain, electric mobility, hybrid vehicles
Procedia PDF Downloads 86389 A Machine Learning Approach for Assessment of Tremor: A Neurological Movement Disorder
Authors: Rajesh Ranjan, Marimuthu Palaniswami, A. A. Hashmi
Abstract:
With the changing lifestyle and environment around us, the prevalence of the critical and incurable disease has proliferated. One such condition is the neurological disorder which is rampant among the old age population and is increasing at an unstoppable rate. Most of the neurological disorder patients suffer from some movement disorder affecting the movement of their body parts. Tremor is the most common movement disorder which is prevalent in such patients that infect the upper or lower limbs or both extremities. The tremor symptoms are commonly visible in Parkinson’s disease patient, and it can also be a pure tremor (essential tremor). The patients suffering from tremor face enormous trouble in performing the daily activity, and they always need a caretaker for assistance. In the clinics, the assessment of tremor is done through a manual clinical rating task such as Unified Parkinson’s disease rating scale which is time taking and cumbersome. Neurologists have also affirmed a challenge in differentiating a Parkinsonian tremor with the pure tremor which is essential in providing an accurate diagnosis. Therefore, there is a need to develop a monitoring and assistive tool for the tremor patient that keep on checking their health condition by coordinating them with the clinicians and caretakers for early diagnosis and assistance in performing the daily activity. In our research, we focus on developing a system for automatic classification of tremor which can accurately differentiate the pure tremor from the Parkinsonian tremor using a wearable accelerometer-based device, so that adequate diagnosis can be provided to the correct patient. In this research, a study was conducted in the neuro-clinic to assess the upper wrist movement of the patient suffering from Pure (Essential) tremor and Parkinsonian tremor using a wearable accelerometer-based device. Four tasks were designed in accordance with Unified Parkinson’s disease motor rating scale which is used to assess the rest, postural, intentional and action tremor in such patient. Various features such as time-frequency domain, wavelet-based and fast-Fourier transform based cross-correlation were extracted from the tri-axial signal which was used as input feature vector space for the different supervised and unsupervised learning tools for quantification of severity of tremor. A minimum covariance maximum correlation energy comparison index was also developed which was used as the input feature for various classification tools for distinguishing the PT and ET tremor types. An automatic system for efficient classification of tremor was developed using feature extraction methods, and superior performance was achieved using K-nearest neighbors and Support Vector Machine classifiers respectively.Keywords: machine learning approach for neurological disorder assessment, automatic classification of tremor types, feature extraction method for tremor classification, neurological movement disorder, parkinsonian tremor, essential tremor
Procedia PDF Downloads 154388 Knowledge and Practices on Waste Disposal Management Among Medical Technology Students at National University – Manila
Authors: John Peter Dacanay, Edison Ramos, Cristopher James Dicang
Abstract:
Waste management is a global concern due to increasing waste production from changing consumption patterns and population growth. Proper waste disposal management is a critical aspect of public health and environmental protection. In the healthcare industry, medical waste is generated in large quantities, and if not disposed of properly, it poses a significant threat to human health and the environment. Efficient waste management conserves natural resources and prevents harm to human health, and implementing an effective waste management system can save human lives. The study aimed to assess the level of awareness and practices on waste disposal management, highlighting the understanding of proper disposal, potential hazards, and environmental implications among Medical Technology students. This would help to provide more recommendations for improving waste management practices in healthcare settings as well as for better waste management practices in educational institutions. From the collected data, a female of 21 years of age stands out among the respondents. With the frequency and percentage of medical technology students' knowledge of laboratory waste management being high, it indicates that all respondents demonstrated a solid understanding of proper disposal methods, regulations, risks, and handling procedures related to laboratory waste. That said, the findings emphasize the significance of education and awareness programs in equipping individuals involved in laboratory practices with the necessary knowledge to handle and dispose of hazardous and infectious waste properly. Most respondents demonstrate positive practices or are highly mannered in laboratory waste management, including proper segregation and disposal in designated containers. However, there are concerns about the occasional mixing of waste types, emphasizing the reiteration of proper waste segregation. Students show a strong commitment to using personal protective equipment and promptly cleaning up spills. Some students admit to improper disposal due to rushing, highlighting the importance of time management and safety prioritization. Overall, students follow protocols for hazardous waste disposal, indicating a responsible approach. The school's waste management system is perceived as adequate, but continuous assessment and improvement are necessary. Encouraging reporting of issues and concerns is crucial for ongoing improvement and risk mitigation. The analysis reveals a moderate positive relationship between the respondents' knowledge and practices regarding laboratory waste management. The statistically significant correlation with a p-value of 0.26 (p-value 0.05) suggests that individuals with higher levels of knowledge tend to exhibit better practices. These findings align with previous research emphasizing the pivotal role of knowledge in influencing individuals' behaviors and practices concerning laboratory waste management. When individuals possess a comprehensive understanding of proper procedures, regulations, and potential risks associated with laboratory waste, they are more inclined to adopt appropriate practices. Therefore, fostering knowledge through education and training is essential in promoting responsible and effective waste management in laboratory settings.Keywords: waste disposal management, knowledge, attitude, practices
Procedia PDF Downloads 101387 Supply Chain Improvement of the Halal Goat Industry in the Autonomous Region in Muslim Mindanao
Authors: Josephine R. Migalbin
Abstract:
Halal is an Arabic word meaning "lawful" or "permitted". When it comes to food and consumables, Halal is the dietary standard of Muslims. The Autonomous Region in Muslim Mindanao (ARMM) has a comparative advantage when it comes to Halal Industry because it is the only Muslim region in the Philippines and the natural starting point for the establishment of a halal industry in the country. The region has identified goat production not only for domestic consumption but for export market. Goat production is one of its strengths due to cultural compatibility. There is a high demand for goats during Ramadhan and Eid ul-Adha. The study aimed to provide an overview of the ARMM Halal Goat Industry; to map out the specific supply chain of halal goat, and to analyze the performance of the halal goat supply chain in terms of efficiency, flexibility, and overall responsiveness. It also aimed to identify areas for improvement in the supply chain such as behavioural, institutional, and process to provide recommendations for improvement in the supply chain towards efficient and effective production and marketing of halal goats, subsequently improving the plight of the actors in the supply chain. Generally, the raising of goats is characterized by backyard production (92.02%). There are four interrelated factors affecting significantly the production of goats which are breeding prolificacy, prevalence of diseases, feed abundance and pre-weaning mortality rate. The institutional buyers are mostly traders, restaurants/eateries, supermarkets, and meat shops, among others. The municipalities of Midsayap and Pikit in another region and Parang are the major goat sources and the municipalities in ARMM among others. In addition to the major supply centers, Siquijor, an island province in the Visayas is becoming a key source of goats. Goats are usually gathered by traders/middlemen and brought to the public markets. Meat vendors purchase them directly from raisers, slaughtered and sold fresh in wet markets. It was observed that there is increased demand at 2%/year and that supply is not enough to meet the demand. Farm gate price is 2.04 USD to 2.11 USD/kg liveweight. Industry information is shared by three key participants - raisers, traders and buyers. All respondents reported that information is through personal built-upon past experiences and that there is no full disclosure of information among the key participants in the chain. The information flow in the industry is fragmented in nature such that no total industry picture exists. In the last five years, numerous local and foreign agencies had undertaken several initiatives for the development of the halal goat industry in ARMM. The major issues include productivity which is the greatest challenge, difficulties in accessing technical support channels and lack of market linkage and consolidation. To address the various issues and concerns of the various industry players, there is a need to intensify appropriate technology transfer through extension activities, improve marketing channels by grouping producers, strengthen veterinary services and provide capital windows to improve facilities and reduce logistics and transaction costs in the entire supply chain.Keywords: autonomous region in Muslim Mindanao, halal, halal goat industry, supply chain improvement
Procedia PDF Downloads 335386 Improved Food Security and Alleviation of Cyanide Intoxication through Commercialization and Utilization of Cassava Starch by Tanzania Industries
Authors: Mariam Mtunguja, Henry Laswai, Yasinta Muzanilla, Joseph Ndunguru
Abstract:
Starchy tuberous roots of cassava provide food for people but also find application in various industries. Recently there has been the focus of concentrated research efforts to fully exploit its potential as a sustainable multipurpose crop. High starch yield is the important trait for commercial cassava production for the starch industries. Furthermore, cyanide present in cassava root poses a health challenge in the use of cassava for food. Farming communities where cassava is a staple food, prefer bitter (high cyanogenic) varieties as protection from predators and thieves. As a result, food insecure farmers prefer growing bitter cassava. This has led to cyanide intoxication to this farming communities. Cassava farmers can benefit from marketing cassava to starch producers thereby improving their income and food security. This will decrease dependency on cassava as staple food as a result of increased income and be able to afford other food sources. To achieve this, adequate information is required on the right cassava cultivars and appropriate harvesting period so as to maximize cassava production and profitability. This study aimed at identifying suitable cassava cultivars and optimum time of harvest to maximize starch production. Six commonly grown cultivars were identified and planted in a complete random block design and further analysis was done to assess variation in physicochemical characteristics, starch yield and cyanogenic potentials across three environments. The analysis showed that there is a difference in physicochemical characteristics between landraces (p ≤ 0.05), and can be targeted to different industrial applications. Among landraces, dry matter (30-39%), amylose (11-19%), starch (74-80%) and reducing sugars content (1-3%) varied when expressed on a dry weight basis (p ≤ 0.05); however, only one of the six genotypes differed in crystallinity and mean starch granule particle size, while glucan chain distribution and granule morphology were the same. In contrast, the starch functionality features measured: swelling power, solubility, syneresis, and digestibility differed (p ≤ 0.05). This was supported by Partial least square discriminant analysis (PLS-DA), which highlighted the divergence among the cassavas based on starch functionality, permitting suggestions for the targeted uses of these starches in diverse industries. The study also illustrated genotypic difference in starch yield and cyanogenic potential. Among landraces, Kiroba showed potential for maximum starch yield (12.8 t ha-1) followed by Msenene (12.3 t ha-1) and third was Kilusungu (10.2 t ha-1). The cyanide content of cassava landraces was between 15 and 800 ppm across all trial sites. GGE biplot analysis further confirmed that Kiroba was a superior cultivar in terms of starch yield. Kilusungu had the highest cyanide content and average starch yield, therefore it can also be suitable for use in starch production.Keywords: cyanogen, cassava starch, food security, starch yield
Procedia PDF Downloads 220385 Assessing the Risk of Socio-economic Drought: A Case Study of Chuxiong Yi Autonomous Prefecture, China
Authors: Mengdan Guo, Zongmin Wang, Haibo Yang
Abstract:
Drought is one of the most complex and destructive natural disasters, with a huge impact on both nature and society. In recent years, adverse climate conditions and uncontrolled human activities have exacerbated the occurrence of global droughts, among which socio-economic droughts are closely related to human survival. The study of socio-economic drought risk assessment is crucial for sustainable social development. Therefore, this study comprehensively considered the risk of disaster causing factors, the exposure level of the disaster-prone environment, and the vulnerability of the disaster bearing body to construct a socio-economic drought risk assessment model for Chuxiong Prefecture in Yunnan Province. Firstly, a threedimensional frequency analysis of intensity area duration drought was conducted, followed by a statistical analysis of the drought risk of the socio-economic system. Secondly, a grid analysis model was constructed to assess the exposure levels of different agents and study the effects of drought on regional crop growth, industrial economic growth, and human consumption thresholds. Thirdly, an agricultural vulnerability model for different irrigation levels was established by using the DSSAT crop model. Industrial economic vulnerability and domestic water vulnerability under the impact of drought were investigated by constructing a standardized socio-economic drought index and coupling water loss. Finally, the socio-economic drought risk was assessed by combining hazard, exposure, and vulnerability. The results show that the frequency of drought occurrence in Chuxiong Prefecture, Yunnan Province is relatively high, with high population and economic exposure concentrated in urban areas of various counties and districts, and high agricultural exposure concentrated in mountainous and rural areas. Irrigation can effectively reduce agricultural vulnerability in Chuxiong, and the yield loss rate under the 20mm winter irrigation scenario decreased by 10.7% compared to the rain fed scenario. From the perspective of comprehensive risk, the distribution of long-term socio-economic drought risk in Chuxiong Prefecture is relatively consistent, with the more severe areas mainly concentrated in Chuxiong City and Lufeng County, followed by counties such as Yao'an, Mouding and Yuanmou. Shuangbai County has the lowest socio-economic drought risk, which is basically consistent with the economic distribution trend of Chuxiong Prefecture. And in June, July, and August, the drought risk in Chuxiong Prefecture is generally high. These results can provide constructive suggestions for the allocation of water resources and the construction of water conservancy facilities in Chuxiong Prefecture, and provide scientific basis for more effective drought prevention and control. Future research is in the areas of data quality and availability, climate change impacts, human activity impacts, and countermeasures for a more comprehensive understanding and effective response to drought risk in Chuxiong Prefecture.Keywords: DSSAT model, risk assessment, socio-economic drought, standardized socio-economic drought index
Procedia PDF Downloads 51384 Comparison of Equivalent Linear and Non-Linear Site Response Model Performance in Kathmandu Valley
Authors: Sajana Suwal, Ganesh R. Nhemafuki
Abstract:
Evaluation of ground response under earthquake shaking is crucial in geotechnical earthquake engineering. Damage due to seismic excitation is mainly correlated to local geological and geotechnical conditions. It is evident from the past earthquakes (e.g. 1906 San Francisco, USA, 1923 Kanto, Japan) that the local geology has strong influence on amplitude and duration of ground motions. Since then significant studies has been conducted on ground motion amplification revealing the importance of influence of local geology on ground. Observations from the damaging earthquakes (e.g. Nigata and San Francisco, 1964; Irpinia, 1980; Mexico, 1985; Kobe, 1995; L’Aquila, 2009) divulged that non-uniform damage pattern, particularly in soft fluvio-lacustrine deposit is due to the local amplification of seismic ground motion. Non-uniform damage patterns are also observed in Kathmandu Valley during 1934 Bihar Nepal earthquake and recent 2015 Gorkha earthquake seemingly due to the modification of earthquake ground motion parameters. In this study, site effects resulting from amplification of soft soil in Kathmandu are presented. A large amount of subsoil data was collected and used for defining the appropriate subsoil model for the Kathamandu valley. A comparative study of one-dimensional total-stress equivalent linear and non-linear site response is performed using four strong ground motions for six sites of Kathmandu valley. In general, one-dimensional (1D) site-response analysis involves the excitation of a soil profile using the horizontal component and calculating the response at individual soil layers. In the present study, both equivalent linear and non-linear site response analyses were conducted using the computer program DEEPSOIL. The results show that there is no significant deviation between equivalent linear and non-linear site response models until the maximum strain reaches to 0.06-0.1%. Overall, it is clearly observed from the results that non-linear site response model perform better as compared to equivalent linear model. However, the significant deviation between two models is resulted from other influencing factors such as assumptions made in 1D site response, lack of accurate values of shear wave velocity and nonlinear properties of the soil deposit. The results are also presented in terms of amplification factors which are predicted to be around four times more in case of non-linear analysis as compared to equivalent linear analysis. Hence, the nonlinear behavior of soil prevails the urgent need of study of dynamic characteristics of the soft soil deposit that can specifically represent the site-specific design spectra for the Kathmandu valley for building resilient structures from future damaging earthquakes.Keywords: deep soil, equivalent linear analysis, non-linear analysis, site response
Procedia PDF Downloads 291383 Understanding Governance of Biodiversity-Supporting and Edible Landscapes Using Network Analysis in a Fast Urbanising City of South India
Authors: M. Soubadra Devy, Savitha Swamy, Chethana V. Casiker
Abstract:
Sustainable smart cities are emerging as an important concept in response to the exponential rise in the world’s urbanizing population. While earlier, only technical, economic and governance based solutions were considered, more and more layers are being added in recent times. With the prefix of 'sustainability', solutions which help in judicious use of resources without negatively impacting the environment have become critical. We present a case study of Bangalore city which has transformed from being a garden city and pensioners' paradise to being an IT city with a huge, young population from different regions and diverse cultural backgrounds. This has had a big impact on the green spaces in the city and the biodiversity that they support, as well as on farming/gardening practices. Edible landscapes comprising farms lands, home gardens and neighbourhood parks (NPs henceforth) were examined. The land prices of areas having NPs were higher than those that did not indicate an appreciation of their aesthetic value. NPs were part of old and new residential areas largely managed by the municipality. They comprised manicured gardens which were similar in vegetation structure and composition. Results showed that NPs that occurred in higher density supported reasonable levels of biodiversity. In situations where NPs occurred in lower density, the presence of a larger green space such as a heritage park or botanical garden enhanced the biodiversity of these parks. In contrast, farm lands and home gardens which were common within the city are being lost at an unprecedented scale to developmental projects. However, there is also the emergence of a 'neo-culture' of home-gardening that promotes 'locovory' or consumption of locally grown food as a means to a sustainable living and reduced carbon footprint. This movement overcomes the space constraint by using vertical and terrace gardening techniques. Food that is grown within cities comprises of vegetables and fruits which are largely pollinator dependent. This goes hand in hand with our landscape-level study that has shown that cities support pollinator diversity. Maintaining and improving these man-made ecosystems requires analysing the functioning and characteristics of the existing structures of governance. Social network analysis tool was applied to NPs to examine relationships, between actors and ties. The management structures around NPs, gaps, and means to strengthen the networks from the current state to a near-ideal state were identified for enhanced services. Learnings from NPs were used to build a hypothetical governance structure and functioning of integrated governance of NPs and edible landscapes to enhance ecosystem services such as biodiversity support, food production, and aesthetic value. They also contribute to the sustainability axis of smart cities.Keywords: biodiversity support, ecosystem services, edible green spaces, neighbourhood parks, sustainable smart city
Procedia PDF Downloads 138382 Identifying Biomarker Response Patterns to Vitamin D Supplementation in Type 2 Diabetes Using K-means Clustering: A Meta-Analytic Approach to Glycemic and Lipid Profile Modulation
Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei
Abstract:
Background and Aims: This meta-analysis aimed to evaluate the effect of vitamin D supplementation on key metabolic and cardiovascular parameters, such as glycated hemoglobin (HbA1C), fasting blood sugar (FBS), low-density lipoprotein (LDL), high-density lipoprotein (HDL), systolic blood pressure (SBP), and total vitamin D levels in patients with Type 2 diabetes mellitus (T2DM). Methods: A systematic search was performed across databases, including PubMed, Scopus, Embase, Web of Science, Cochrane Library, and ClinicalTrials.gov, from January 1990 to January 2024. A total of 4,177 relevant studies were initially identified. Using an unsupervised K-means clustering algorithm, publications were grouped based on common text features. Maximum entropy classification was then applied to filter studies that matched a pre-identified training set of 139 potentially relevant articles. These selected studies were manually screened for relevance. A parallel manual selection of all initially searched studies was conducted for validation. The final inclusion of studies was based on full-text evaluation, quality assessment, and meta-regression models using random effects. Sensitivity analysis and publication bias assessments were also performed to ensure robustness. Results: The unsupervised K-means clustering algorithm grouped the patients based on their responses to vitamin D supplementation, using key biomarkers such as HbA1C, FBS, LDL, HDL, SBP, and total vitamin D levels. Two primary clusters emerged: one representing patients who experienced significant improvements in these markers and another showing minimal or no change. Patients in the cluster associated with significant improvement exhibited lower HbA1C, FBS, and LDL levels after vitamin D supplementation, while HDL and total vitamin D levels increased. The analysis showed that vitamin D supplementation was particularly effective in reducing HbA1C, FBS, and LDL within this cluster. Furthermore, BMI, weight gain, and disease duration were identified as factors that influenced cluster assignment, with patients having lower BMI and shorter disease duration being more likely to belong to the improvement cluster. Conclusion: The findings of this machine learning-assisted meta-analysis confirm that vitamin D supplementation can significantly improve glycemic control and reduce the risk of cardiovascular complications in T2DM patients. The use of automated screening techniques streamlined the process, ensuring the comprehensive evaluation of a large body of evidence while maintaining the validity of traditional manual review processes.Keywords: HbA1C, T2DM, SBP, FBS
Procedia PDF Downloads 13381 Calculation of Organ Dose for Adult and Pediatric Patients Undergoing Computed Tomography Examinations: A Software Comparison
Authors: Aya Al Masri, Naima Oubenali, Safoin Aktaou, Thibault Julien, Malorie Martin, Fouad Maaloul
Abstract:
Introduction: The increased number of performed 'Computed Tomography (CT)' examinations raise public concerns regarding associated stochastic risk to patients. In its Publication 102, the ‘International Commission on Radiological Protection (ICRP)’ emphasized the importance of managing patient dose, particularly from repeated or multiple examinations. We developed a Dose Archiving and Communication System that gives multiple dose indexes (organ dose, effective dose, and skin-dose mapping) for patients undergoing radiological imaging exams. The aim of this study is to compare the organ dose values given by our software for patients undergoing CT exams with those of another software named "VirtualDose". Materials and methods: Our software uses Monte Carlo simulations to calculate organ doses for patients undergoing computed tomography examinations. The general calculation principle consists to simulate: (1) the scanner machine with all its technical specifications and associated irradiation cases (kVp, field collimation, mAs, pitch ...) (2) detailed geometric and compositional information of dozens of well identified organs of computational hybrid phantoms that contain the necessary anatomical data. The mass as well as the elemental composition of the tissues and organs that constitute our phantoms correspond to the recommendations of the international organizations (namely the ICRP and the ICRU). Their body dimensions correspond to reference data developed in the United States. Simulated data was verified by clinical measurement. To perform the comparison, 270 adult patients and 150 pediatric patients were used, whose data corresponds to exams carried out in France hospital centers. The comparison dataset of adult patients includes adult males and females for three different scanner machines and three different acquisition protocols (Head, Chest, and Chest-Abdomen-Pelvis). The comparison sample of pediatric patients includes the exams of thirty patients for each of the following age groups: new born, 1-2 years, 3-7 years, 8-12 years, and 13-16 years. The comparison for pediatric patients were performed on the “Head” protocol. The percentage of the dose difference were calculated for organs receiving a significant dose according to the acquisition protocol (80% of the maximal dose). Results: Adult patients: for organs that are completely covered by the scan range, the maximum percentage of dose difference between the two software is 27 %. However, there are three organs situated at the edges of the scan range that show a slightly higher dose difference. Pediatric patients: the percentage of dose difference between the two software does not exceed 30%. These dose differences may be due to the use of two different generations of hybrid phantoms by the two software. Conclusion: This study shows that our software provides a reliable dosimetric information for patients undergoing Computed Tomography exams.Keywords: adult and pediatric patients, computed tomography, organ dose calculation, software comparison
Procedia PDF Downloads 163380 The Model of Open Cooperativism: The Case of Open Food Network
Authors: Vangelis Papadimitropoulos
Abstract:
This paper is part of the research program “Techno-Social Innovation in the Collaborative Economy”, funded by the Hellenic Foundation for Research and Innovation (H.F.R.I.) for the years 2022-2024. The paper showcases the Open Food Network (OFN) as an open-sourced digital platform supporting short food supply chains in local agricultural production and consumption. The paper outlines the research hypothesis, the theoretical framework, and the methodology of research as well as the findings and conclusions. Research hypothesis: The model of open cooperativism as a vehicle for systemic change in the agricultural sector. Theoretical framework: The research reviews the OFN as an illustrative case study of the three-zoned model of open cooperativism. The OFN is considered a paradigmatic case of the model of open cooperativism inasmuch as it produces commons, it consists of multiple stakeholders including ethical market entities, and it is variously supported by local authorities across the globe, the latter prefiguring the mini role of a partner state. Methodology: Research employs Ernesto Laclau and Chantal Mouffe’s discourse analysis -elements, floating signifiers, nodal points, discourses, logics of equivalence and difference- to analyse the breadth of empirical data gathered through literature review, digital ethnography, a survey, and in-depth interviews with core OFN members. Discourse analysis classifies OFN floating signifiers, nodal points, and discourses into four themes: value proposition, governance, economic policy, and legal policy. Findings: OFN floating signifiers align around the following nodal points and discourses: “digital commons”, “short food supply chains”, “sustainability”, “local”, “the elimination of intermediaries” and “systemic change”. The current research identifies a lack of common ground of what the discourse of “systemic change” signifies on the premises of the OFN’s value proposition. The lack of a common mission may be detrimental to the formation of a common strategy that would be perhaps deemed necessary to bring about systemic change in agriculture. Conclusions: Drawing on Laclau and Mouffe’s discourse theory of hegemony, research introduces a chain of equivalence by aligning discourses such as “agro-ecology”, “commons-based peer production”, “partner state” and “ethical market entities” under the model of open cooperativism, juxtaposed against the current hegemony of neoliberalism, which articulates discourses such as “market fundamentalism”, “privatization”, “green growth” and “the capitalist state” to promote corporatism and entrepreneurship. Research makes the case that for OFN to further agroecology and challenge the current hegemony of industrial agriculture, it is vital that it opens up its supply chains into equivalent sectors of the economy, civil society, and politics to form a chain of equivalence linking together ethical market entities, the commons and a partner state around the model of open cooperativism.Keywords: sustainability, the digital commons, open cooperativism, innovation
Procedia PDF Downloads 72379 Evaluation of Rheological Properties, Anisotropic Shrinkage, and Heterogeneous Densification of Ceramic Materials during Liquid Phase Sintering by Numerical-Experimental Procedure
Authors: Hamed Yaghoubi, Esmaeil Salahi, Fateme Taati
Abstract:
The effective shear and bulk viscosity, as well as dynamic viscosity, describe the rheological properties of the ceramic body during the liquid phase sintering process. The rheological parameters depend on the physical and thermomechanical characteristics of the material such as relative density, temperature, grain size, and diffusion coefficient and activation energy. The main goal of this research is to acquire a comprehensive understanding of the response of an incompressible viscose ceramic material during liquid phase sintering process such as stress-strain relations, sintering and hydrostatic stress, the prediction of anisotropic shrinkage and heterogeneous densification as a function of sintering time by including the simultaneous influence of gravity field, and frictional force. After raw materials analysis, the standard hard porcelain mixture as a ceramic body was designed and prepared. Three different experimental configurations were designed including midpoint deflection, sinter bending, and free sintering samples. The numerical method for the ceramic specimens during the liquid phase sintering process are implemented in the CREEP user subroutine code in ABAQUS. The numerical-experimental procedure shows the anisotropic behavior, the complete difference in spatial displacement through three directions, the incompressibility for ceramic samples during the sintering process. The anisotropic shrinkage factor has been proposed to investigate the shrinkage anisotropy. It has been shown that the shrinkage along the normal axis of casting sample is about 1.5 times larger than that of casting direction, the gravitational force in pyroplastic deformation intensifies the shrinkage anisotropy more than the free sintering sample. The lowest and greatest equivalent creep strain occurs at the intermediate zone and around the central line of the midpoint distorted sample, respectively. In the sinter bending test sample, the equivalent creep strain approaches to the maximum near the contact area with refractory support. The inhomogeneity in Von-Misses, pressure, and principal stress intensifies the relative density non-uniformity in all samples, except in free sintering one. The symmetrical distribution of stress around the center of free sintering sample, cause to hinder the pyroplastic deformations. Densification results confirmed that the effective bulk viscosity was well-defined with relative density values. The stress analysis confirmed that the sintering stress is more than the hydrostatic stress from start to end of sintering time so, from both theoretically and experimentally point of view, the sintering process occurs completely.Keywords: anisotropic shrinkage, ceramic material, liquid phase sintering process, rheological properties, numerical-experimental procedure
Procedia PDF Downloads 341378 Distribution Routs Redesign through the Vehicle Problem Routing in Havana Distribution Center
Authors: Sonia P. Marrero Duran, Lilian Noya Dominguez, Lisandra Quintana Alvarez, Evert Martinez Perez, Ana Julia Acevedo Urquiaga
Abstract:
Cuban business and economic policy are in the constant update as well as facing a client ever more knowledgeable and demanding. For that reason become fundamental for companies competitiveness through the optimization of its processes and services. One of the Cuban’s pillars, which has been sustained since the triumph of the Cuban Revolution back in 1959, is the free health service to all those who need it. This service is offered without any charge under the concept of preserving human life, but it implied costly management processes and logistics services to be able to supply the necessary medicines to all the units who provide health services. One of the key actors on the medicine supply chain is the Havana Distribution Center (HDC), which is responsible for the delivery of medicines in the province; as well as the acquisition of medicines from national and international producers and its subsequent transport to health care units and pharmacies in time, and with the required quality. This HDC also carries for all distribution centers in the country. Given the eminent need to create an actor in the supply chain that specializes in the medicines supply, the possibility of centralizing this operation in a logistics service provider is analyzed. Based on this decision, pharmacies operate as clients of the logistic service center whose main function is to centralize all logistics operations associated with the medicine supply chain. The HDC is precisely the logistic service provider in Havana and it is the center of this research. In 2017 the pharmacies had affectations in the availability of medicine due to deficiencies in the distribution routes. This is caused by the fact that they are not based on routing studies, besides the long distribution cycle. The distribution routs are fixed, attend only one type of customer and there respond to a territorial location by the municipality. Taking into consideration the above-mentioned problem, the objective of this research is to optimize the routes system in the Havana Distribution Center. To accomplish this objective, the techniques applied were document analysis, random sampling, statistical inference and tools such as Ishikawa diagram and the computerized software’s: ArcGis, Osmand y MapIfnfo. As a result, were analyzed four distribution alternatives; the actual rout, by customer type, by the municipality and the combination of the two last. It was demonstrated that the territorial location alternative does not take full advantage of the transportation capacities or the distance of the trips, which leads to elevated costs breaking whit the current ways of distribution and the currents characteristics of the clients. The principal finding of the investigation was the optimum option distribution rout is the 4th one that is formed by hospitals and the join of pharmacies, stomatology clinics, polyclinics and maternal and elderly homes. This solution breaks the territorial location by the municipality and permits different distribution cycles in dependence of medicine consumption and transport availability.Keywords: computerized geographic software, distribution, distribution routs, vehicle problem routing (VPR)
Procedia PDF Downloads 160377 Hybrid Renewable Energy Systems for Electricity and Hydrogen Production in an Urban Environment
Authors: Same Noel Ngando, Yakub Abdulfatai Olatunji
Abstract:
Renewable energy micro-grids, such as those powered by solar or wind energy, are often intermittent in nature. This means that the amount of energy generated by these systems can vary depending on weather conditions or other factors, which can make it difficult to ensure a steady supply of power. To address this issue, energy storage systems have been developed to increase the reliability of renewable energy micro-grids. Battery systems have been the dominant energy storage technology for renewable energy micro-grids. Batteries can store large amounts of energy in a relatively small and compact package, making them easy to install and maintain in a micro-grid setting. Additionally, batteries can be quickly charged and discharged, allowing them to respond quickly to changes in energy demand. However, the process involved in recycling batteries is quite costly and difficult. An alternative energy storage system that is gaining popularity is hydrogen storage. Hydrogen is a versatile energy carrier that can be produced from renewable energy sources such as solar or wind. It can be stored in large quantities at low cost, making it suitable for long-distance mass storage. Unlike batteries, hydrogen does not degrade over time, so it can be stored for extended periods without the need for frequent maintenance or replacement, allowing it to be used as a backup power source when the micro-grid is not generating enough energy to meet demand. When hydrogen is needed, it can be converted back into electricity through a fuel cell. Energy consumption data is got from a particular residential area in Daegu, South Korea, and the data is processed and analyzed. From the analysis, the total energy demand is calculated, and different hybrid energy system configurations are designed using HOMER Pro (Hybrid Optimization for Multiple Energy Resources) and MATLAB software. A techno-economic and environmental comparison and life cycle assessment (LCA) of the different configurations using battery and hydrogen as storage systems are carried out. The various scenarios included PV-hydrogen-grid system, PV-hydrogen-grid-wind, PV-hydrogen-grid-biomass, PV-hydrogen-wind, PV-hydrogen-biomass, biomass-hydrogen, wind-hydrogen, PV-battery-grid-wind, PV- battery -grid-biomass, PV- battery -wind, PV- battery -biomass, and biomass- battery. From the analysis, the least cost system for the location was the PV-hydrogen-grid system, with a net present cost of about USD 9,529,161. Even though all scenarios were environmentally friendly, taking into account the recycling cost and pollution involved in battery systems, all systems with hydrogen as a storage system produced better results. In conclusion, hydrogen is becoming a very prominent energy storage solution for renewable energy micro-grids. It is easier to store compared with electric power, so it is suitable for long-distance mass storage. Hydrogen storage systems have several advantages over battery systems, including flexibility, long-term stability, and low environmental impact. The cost of hydrogen storage is still relatively high, but it is expected to decrease as more hydrogen production, and storage infrastructure is built. With the growing focus on renewable energy and the need to reduce greenhouse gas emissions, hydrogen is expected to play an increasingly important role in the energy storage landscape.Keywords: renewable energy systems, microgrid, hydrogen production, energy storage systems
Procedia PDF Downloads 94