Search results for: electrolyte-supported model
8719 Machine Learning Framework: Competitive Intelligence and Key Drivers Identification of Market Share Trends among Healthcare Facilities
Authors: Anudeep Appe, Bhanu Poluparthi, Lakshmi Kasivajjula, Udai Mv, Sobha Bagadi, Punya Modi, Aditya Singh, Hemanth Gunupudi, Spenser Troiano, Jeff Paul, Justin Stovall, Justin Yamamoto
Abstract:
The necessity of data-driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a healthcare provider facility or a hospital (from here on termed as facility) market share is of key importance. This pilot study aims at developing a data-driven machine learning-regression framework which aids strategists in formulating key decisions to improve the facility’s market share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study, and the data spanning 60 key facilities in Washington State and about 3 years of historical data is considered. In the current analysis, market share is termed as the ratio of the facility’s encounters to the total encounters among the group of potential competitor facilities. The current study proposes a two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP, to quantify the relative importance of features impacting the market share. Typical techniques in literature to quantify the degree of competitiveness among facilities use an empirical method to calculate a competitive factor to interpret the severity of competition. The proposed method identifies a pool of competitors, develops Directed Acyclic Graphs (DAGs) and feature level word vectors, and evaluates the key connected components at the facility level. This technique is robust since its data-driven, which minimizes the bias from empirical techniques. The DAGs factor in partial correlations at various segregations and key demographics of facilities along with a placeholder to factor in various business rules (for ex. quantifying the patient exchanges, provider references, and sister facilities). Identified are the multiple groups of competitors among facilities. Leveraging the competitors' identified developed and fine-tuned Random Forest Regression model to predict the market share. To identify key drivers of market share at an overall level, permutation feature importance of the attributes was calculated. For relative quantification of features at a facility level, incorporated SHAP (SHapley Additive exPlanations), a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share. This approach proposes an amalgamation of the two popular and efficient modeling practices, viz., machine learning with graphs and tree-based regression techniques to reduce the bias. With these, we helped to drive strategic business decisions.Keywords: competition, DAGs, facility, healthcare, machine learning, market share, random forest, SHAP
Procedia PDF Downloads 918718 Simplified Modelling of Visco-Elastic Fluids for Use in Recoil Damping Systems
Authors: Prasad Pokkunuri
Abstract:
Visco-elastic materials combine the stress response properties of both solids and fluids and have found use in a variety of damping applications – both vibrational and acoustic. Defense and automotive applications, in particular, are subject to high impact and shock loading – for example: aircraft landing gear, firearms, and shock absorbers. Field responsive fluids – a class of smart materials – are the preferred choice of energy absorbents because of their controllability. These fluids’ stress response can be controlled by the application of a magnetic or electric field, in a closed loop. Their rheological properties – elasticity, plasticity, and viscosity – can be varied all the way from that of a liquid such as water to a hard solid. This work presents a simplified model to study the impulse response behavior of such fluids for use in recoil damping systems. The well-known Burger’s equation, in conjunction with various visco-elastic constitutive models, is used to represent fluid behavior. The Kelvin-Voigt, Upper Convected Maxwell (UCM), and Oldroyd-B constitutive models are implemented in this study. Using these models in a one-dimensional framework eliminates additional complexities due to geometry, pressure, body forces, and other source terms. Using a finite difference formulation to numerically solve the governing equation(s), the response to an initial impulse is studied. The disturbance is confined within the problem domain with no-inflow, no-outflow boundary conditions, and its decay characteristics studied. Visco-elastic fluids typically involve a time-dependent stress relaxation which gives rise to interesting behavior when subjected to an impulsive load. For particular values of viscous damping and elastic modulus, the fluid settles into a stable oscillatory state, absorbing and releasing energy without much decay. The simplified formulation enables a comprehensive study of different modes of system response, by varying relevant parameters. Using the insights gained from this study, extension to a more detailed multi-dimensional model is considered.Keywords: Burgers Equation, Impulse Response, Recoil Damping Systems, Visco-elastic Fluids
Procedia PDF Downloads 2928717 Hg Anomalies and Soil Temperature Distribution to Delineate Upflow and Outflow Zone in Bittuang Geothermal Prospect Area, south Sulawesi, Indonesia
Authors: Adhitya Mangala, Yobel
Abstract:
Bittuang geothermal prospect area located at Tana Toraja district, South Sulawesi. The geothermal system of the area related to Karua Volcano eruption product. This area has surface manifestation such as fumarole, hot springs, sinter silica and mineral alteration. Those prove that there are hydrothermal activities in the subsurface. However, the project and development of the area have not implemented yet. One of the important elements in geothermal exploration is to determine upflow and outflow zone. This information very useful to identify the target for geothermal wells and development which it is a risky task. The methods used in this research were Mercury (Hg) anomalies in soil, soil and manifestation temperature distribution and fault fracture density from 93 km² research area. Hg anomalies performed to determine the distribution of hydrothermal alteration. Soil and manifestation temperature distribution were conducted to estimate heat distribution. Fault fracture density (FFD) useful to determine fracture intensity and trend from surface observation. Those deliver Hg anomaly map, soil and manifestation temperature map that combined overlayed to fault fracture density map and geological map. Then, the conceptual model made from north – south, and east – west cross section to delineate upflow and outflow zone in this area. The result shows that upflow zone located in northern – northeastern of the research area with the increase of elevation and decrease of Hg anomalies and soil temperature. The outflow zone located in southern - southeastern of the research area which characterized by chloride, chloride - bicarbonate geothermal fluid type, higher soil temperature, and Hg anomalies. The range of soil temperature distribution from 16 – 19 °C in upflow and 19 – 26.5 °C in the outflow. The range of Hg from 0 – 200 ppb in upflow and 200 – 520 ppb in the outflow. Structural control of the area show northwest – southeast trend. The boundary between upflow and outflow zone in 1550 – 1650 m elevation. This research delivers the conceptual model with innovative methods that useful to identify a target for geothermal wells, project, and development in Bittuang geothermal prospect area.Keywords: Bittuang geothermal prospect area, Hg anomalies, soil temperature, upflow and outflow zone
Procedia PDF Downloads 3258716 Challenging Convections: Rethinking Literature Review Beyond Citations
Authors: Hassan Younis
Abstract:
Purpose: The objective of this study is to review influential papers in the sustainability and supply chain studies domain, leveraging insights from this review to develop a structured framework for academics and researchers. This framework aims to assist scholars in identifying the most impactful publications for their scholarly pursuits. Subsequently, the study will apply and trial the developed framework on selected scholarly articles within the sustainability and supply chain studies domain to evaluate its efficacy, practicality, and reliability. Design/Methodology/Approach: Utilizing the "Publish or Perish" tool, a search was conducted to locate papers incorporating "sustainability" and "supply chain" in their titles. After rigorous filtering steps, a panel of university professors identified five crucial criteria for evaluating research robustness: average yearly citation counts (25%), scholarly contribution (25%), alignment of findings with objectives (15%), methodological rigor (20%), and journal impact factor (15%). These five evaluation criteria are abbreviated as “ACMAJ" framework. Each paper then received a tiered score (1-3) for each criterion, normalized within its category, and summed using weighted averages to calculate a Final Normalized Score (FNS). This systematic approach allows for objective comparison and ranking of the research based on its impact, novelty, rigor, and publication venue. Findings: The study's findings highlight the lack of structured frameworks for assessing influential sustainability research in supply chain management, which often results in a dependence on citation counts. A complete model that incorporates five essential criteria has been suggested as a response. By conducting a methodical trial on specific academic articles in the field of sustainability and supply chain studies, the model demonstrated its effectiveness as a tool for identifying and selecting influential research papers that warrant additional attention. This work aims to fill a significant deficiency in existing techniques by providing a more comprehensive approach to identifying and ranking influential papers in the field. Practical Implications: The developed framework helps scholars identify the most influential sustainability and supply chain publications. Its validation serves the academic community by offering a credible tool and helping researchers, students, and practitioners find and choose influential papers. This approach aids field literature reviews and study suggestions. Analysis of major trends and topics deepens our grasp of this critical study area's changing terrain. Originality/Value: The framework stands as a unique contribution to academia, offering scholars an important and new tool to identify and validate influential publications. Its distinctive capacity to efficiently guide scholars, learners, and professionals in selecting noteworthy publications, coupled with the examination of key patterns and themes, adds depth to our understanding of the evolving landscape in this critical field of study.Keywords: supply chain management, sustainability, framework, model
Procedia PDF Downloads 528715 The On-Board Critical Message Transmission Design for Navigation Satellite Delay/Disruption Tolerant Network
Authors: Ji-yang Yu, Dan Huang, Guo-ping Feng, Xin Li, Lu-yuan Wang
Abstract:
The navigation satellite network, especially the Beidou MEO Constellation, can relay data effectively with wide coverage and is applied in navigation, detection, and position widely. But the constellation has not been completed, and the amount of satellites on-board is not enough to cover the earth, which makes the data-relay disrupted or delayed in the transition process. The data-relay function needs to tolerant the delay or disruption in some extension, which make the Beidou MEO Constellation a delay/disruption-tolerant network (DTN). The traditional DTN designs mainly employ the relay table as the basic of data path schedule computing. But in practical application, especially in critical condition, such as the war-time or the infliction heavy losses on the constellation, parts of the nodes may become invalid, then the traditional DTN design could be useless. Furthermore, when transmitting the critical message in the navigation system, the maximum priority strategy is used, but the nodes still inquiry the relay table to design the path, which makes the delay more than minutes. Under this circumstances, it needs a function which could compute the optimum data path on-board in real-time according to the constellation states. The on-board critical message transmission design for navigation satellite delay/disruption-tolerant network (DTN) is proposed, according to the characteristics of navigation satellite network. With the real-time computation of parameters in the network link, the least-delay transition path is deduced to retransmit the critical message in urgent conditions. First, the DTN model for constellation is established based on the time-varying matrix (TVM) instead of the time-varying graph (TVG); then, the least transition delay data path is deduced with the parameters of the current node; at last, the critical message transits to the next best node. For the on-board real-time computing, the time delay and misjudges of constellation states in ground stations are eliminated, and the residual information channel for each node can be used flexibly. Compare with the minute’s delay of traditional DTN; the proposed transmits the critical message in seconds, which improves the re-transition efficiency. The hardware is implemented in FPGA based on the proposed model, and the tests prove the validity.Keywords: critical message, DTN, navigation satellite, on-board, real-time
Procedia PDF Downloads 3438714 Rapid Strategic Consensus Building in Land Readjustment in Kabul
Authors: Nangialai Yousufzai, Eysosiyas Etana, Ikuo Sugiyama
Abstract:
Kabul population has been growing continually since 2001 and reaching six million in 2025 due to the rapid inflow from the neighboring countries. As a result of the population growth, lack of living facilities supported by infrastructure services is becoming serious in social and economic aspects. However, about 70% of the city is still occupied illegally and the government has little information on the infrastructure demands. To improve this situation, land readjustment is one of the powerful development tools, because land readjustment does not need a high governmental budget of itself. Instead, the method needs cooperation between stakeholders such as landowners, developers and a local government. So it is becoming crucial for both government and citizens to implement land readjustment for providing tidy urban areas with enough public services to realize more livable city as a whole. On the contrary, the traditional land readjustment tends to spend a long time until now to get consensus on the new plan between stakeholders. One of the reasons is that individual land area (land parcel) is decreased due to the contribution to public such as roads/parks/squares for improving the urban environment. The second reason is that the new plan is difficult for dwellers to imagine new life after the readjustment. Because the paper-based plan is made by an authority not for dwellers but for specialists to precede the project. This paper aims to shorten the time to realize quick consensus between stakeholders. The first improvement is utilizing questionnaire(s) to assess the demand and preference of the landowners. The second one is utilizing 3D model for dwellers to visualize the new environment easily after the readjustment. In additions, the 3D model is reflecting the demand and preference of the resident so that they could select a land parcel according to their sense value of life. The above-mentioned two improvements are carried out after evaluating total land prices of the new plans to select for maximizing the project value. The land price forecasting formula is derived from the current market ones in Kabul. Finally, it is stressed that the rapid consensus-building of land readjustment utilizing ICT and open data analysis is essential to redevelop slums and illegal occupied areas in Kabul.Keywords: land readjustment, consensus building, land price formula, 3D simulation
Procedia PDF Downloads 3328713 The Effect of Foot Progression Angle on Human Lower Extremity
Authors: Sungpil Ha, Ju Yong Kang, Sangbaek Park, Seung-Ju Lee, Soo-Won Chae
Abstract:
The growing number of obese patients in aging societies has led to an increase in the number of patients with knee medial osteoarthritis (OA). Artificial joint insertion is the most common treatment for knee medial OA. Surgery is effective for patients with serious arthritic symptoms, but it is costly and dangerous. It is also inappropriate way to prevent a disease as an early stage. Therefore Non-operative treatments such as toe-in gait are proposed recently. Toe-in gait is one of non-surgical interventions, which restrain the progression of arthritis and relieves pain by reducing knee adduction moment (KAM) to facilitate lateral distribution of load on to knee medial cartilage. Numerous studies have measured KAM in various foot progression angle (FPA), and KAM data could be obtained by motion analysis. However, variations in stress at knee cartilage could not be directly observed or evaluated by these experiments of measuring KAM. Therefore, this study applied motion analysis to major gait points (1st peak, mid –stance, 2nd peak) with regard to FPA, and to evaluate the effects of FPA on the human lower extremity, the finite element (FE) method was employed. Three types of gait analysis (toe-in, toe-out, baseline gait) were performed with markers placed at the lower extremity. Ground reaction forces (GRF) were obtained by the force plates. The forces associated with the major muscles were computed using GRF and marker trajectory data. MRI data provided by the Visible Human Project were used to develop a human lower extremity FE model. FE analyses for three types of gait simulations were performed based on the calculated muscle force and GRF. We observed the maximum stress point during toe-in gait was lower than the other types, by comparing the results of FE analyses at the 1st peak across gait types. This is the same as the trend exhibited by KAM, measured through motion analysis in other papers. This indicates that the progression of knee medial OA could be suppressed by adopting toe-in gait. This study integrated motion analysis with FE analysis. One advantage of this method is that re-modeling is not required even with changes in posture. Therefore another type of gait simulation or various motions of lower extremity can be easily analyzed using this method.Keywords: finite element analysis, gait analysis, human model, motion capture
Procedia PDF Downloads 3358712 Simulation the Effect of Temperature on the Residual Stress in Shot Peening Process Using FEM Method
Authors: M. Jalali Azizpour, H. Mohammadi Majd, A.R. Aboudi Asl, D. Sajedipour, V. Tawaf
Abstract:
Sandblasting is a generally used surface treatment technique to improve the residual stress and adhesion of coatings to substrate. The goal of this work is to study the effect of temperature on the residual stress in sandblasting AISI1045 substrate. For this purpose a two dimensional axisymmetric model of shot impacting on an AISI 1045 disc was generated using ABAQUS version 6.10. The result shows for sandblasting temperature there is an optimum condition. In addition there are other effective factors that influence the fatigue life of parts.Keywords: modeling, shot peen, residual stress, temperature
Procedia PDF Downloads 5868711 The Role of Optimization and Machine Learning in e-Commerce Logistics in 2030
Authors: Vincenzo Capalbo, Gianpaolo Ghiani, Emanuele Manni
Abstract:
Global e-commerce sales have reached unprecedented levels in the past few years. As this trend is only predicted to go up as we continue into the ’20s, new challenges will be faced by companies when planning and controlling e-commerce logistics. In this paper, we survey the related literature on Optimization and Machine Learning as well as on combined methodologies. We also identify the distinctive features of next-generation planning algorithms - namely scalability, model-and-run features and learning capabilities - that will be fundamental to cope with the scale and complexity of logistics in the next decade.Keywords: e-commerce, hardware acceleration, logistics, machine learning, mixed integer programming, optimization
Procedia PDF Downloads 2518710 From Linear to Circular Model: An Artificial Intelligence-Powered Approach in Fosso Imperatore
Authors: Carlotta D’Alessandro, Giuseppe Ioppolo, Katarzyna Szopik-Depczyńska
Abstract:
— The growing scarcity of resources and the mounting pressures of climate change, water pollution, and chemical contamination have prompted societies, governments, and businesses to seek ways to minimize their environmental impact. To combat climate change, and foster sustainability, Industrial Symbiosis (IS) offers a powerful approach, facilitating the shift toward a circular economic model. IS has gained prominence in the European Union's policy framework as crucial enabler of resource efficiency and circular economy practices. The essence of IS lies in the collaborative sharing of resources such as energy, material by-products, waste, and water, thanks to geographic proximity. It can be exemplified by eco-industrial parks (EIPs), which are natural environments for boosting cooperation and resource sharing between businesses. EIPs are characterized by group of businesses situated in proximity, connected by a network of both cooperative and competitive interactions. They represent a sustainable industrial model aimed at reducing resource use, waste, and environmental impact while fostering economic and social wellbeing. IS, combined with Artificial Intelligence (AI)-driven technologies, can further optimize resource sharing and efficiency within EIPs. This research, supported by the “CE_IPs” project, aims to analyze the potential for IS and AI, in advancing circularity and sustainability at Fosso Imperatore. The Fosso Imperatore Industrial Park in Nocera Inferiore, Italy, specializes in agriculture and the industrial transformation of agricultural products, particularly tomatoes, tobacco, and textile fibers. This unique industrial cluster, centered around tomato cultivation and processing, also includes mechanical engineering enterprises and agricultural packaging firms. To stimulate the shift from a traditional to a circular economic model, an AI-powered Local Development Plan (LDP) is developed for Fosso Imperatore. It can leverage data analytics, predictive modeling, and stakeholder engagement to optimize resource utilization, reduce waste, and promote sustainable industrial practices. A comprehensive SWOT analysis of the AI-powered LDP revealed several key factors influencing its potential success and challenges. Among the notable strengths and opportunities arising from AI implementation are reduced processing times, fewer human errors, and increased revenue generation. Furthermore, predictive analytics minimize downtime, bolster productivity, and elevate quality while mitigating workplace hazards. However, the integration of AI also presents potential weaknesses and threats, including significant financial investment, since implementing and maintaining AI systems can be costly. The widespread adoption of AI could lead to job losses in certain sectors. Lastly, AI systems are susceptible to cyberattacks, posing risks to data security and operational continuity. Moreover, an Analytic Hierarchy Process (AHP) analysis was employed to yield a prioritized ranking of the outlined AI-driven LDP practices based on the stakeholder input, ensuring a more comprehensive and representative understanding of their relative significance for achieving sustainability in Fosso Imperatore Industrial Park. While this study provides valuable insights into the potential of AIpowered LDP at the Fosso Imperatore, it is important to note that the findings may not be directly applicable to all industrial parks, particularly those with different sizes, geographic locations, or industry compositions. Additional study is necessary to scrutinize the generalizability of these results and to identify best practices for implementing AI-driven LDP in diverse contexts.Keywords: artificial intelligence, climate change, Fosso Imperatore, industrial park, industrial symbiosis
Procedia PDF Downloads 258709 Is Socio-Economic Characteristic is Associated with Health-Related Quality of Life among Elderly: Evidence from SAGE Data in India
Authors: Mili Dutta, Lokender Prashad
Abstract:
Introduction: Population ageing is a phenomenon that can be observed around the globe. The health-related quality of life (HRQOL) is a measurement of health status of an individual, and it describes the effect of physical and mental health disorders on the well-being of a person. The present study is aimed to describe the influence of socio-economic characteristics of elderly on their health-related quality of life in India. Methods: EQ-5D instrument and population-based EQ-5D index score has been measured to access the HRQOL among elderly. Present study utilized the Study on Global Ageing and Adult Health (SAGE) data which was conducted in 2007 in India. Multiple Logistic Regression model and Multivariate Linear Regression model has been employed. Result: In the present study, it was found that the female are more likely to have problems in mobility (OR=1.41, 95% Cl: 1.14 to 1.74), self-care (OR=1.26, 95% Cl: 1.01 to 1.56) and pain or discomfort (OR=1.50, 95% Cl: 1.16 to 1.94). Elderly residing in rural area are more likely to have problems in pain/discomfort (OR=1.28, 95% Cl: 1.01 to 1.62). More older and non-working elderly are more likely whereas higher educated and highest wealth quintile elderly are less likely to have problems in all the dimensions of EQ-5D viz. mobility, self-care, usual activity, pain/discomfort and anxiety/depression. The present study has also shown that oldest old people, residing in rural area and currently not working elderly are more likely to report low EQ-5D index score whereas elderly with high education level and high wealth quintile are more likely to report high EQ-5D index score than their counterparts. Conclusion: The present study has found EQ-5D instrument as the valid measure for assessing the HRQOL of elderly in India. The study indicates socio-economic characteristics of elderly such as female, more older people, residing in rural area, non-educated, poor and currently non-working as the major risk groups of having poor HRQOL in India. Findings of the study will be helpful for the programmes and policy makers, researchers, academician and social workers who are working in the field of ageing.Keywords: ageing, HRQOL, India, EQ-5D, SAGE, socio-economic characteristics
Procedia PDF Downloads 4008708 A Comprehensive Framework for Fraud Prevention and Customer Feedback Classification in E-Commerce
Authors: Samhita Mummadi, Sree Divya Nagalli, Harshini Vemuri, Saketh Charan Nakka, Sumesh K. J.
Abstract:
One of the most significant challenges faced by people in today’s digital era is an alarming increase in fraudulent activities on online platforms. The fascination with online shopping to avoid long queues in shopping malls, the availability of a variety of products, and home delivery of goods have paved the way for a rapid increase in vast online shopping platforms. This has had a major impact on increasing fraudulent activities as well. This loop of online shopping and transactions has paved the way for fraudulent users to commit fraud. For instance, consider a store that orders thousands of products all at once, but what’s fishy about this is the massive number of items purchased and their transactions turning out to be fraud, leading to a huge loss for the seller. Considering scenarios like these underscores the urgent need to introduce machine learning approaches to combat fraud in online shopping. By leveraging robust algorithms, namely KNN, Decision Trees, and Random Forest, which are highly effective in generating accurate results, this research endeavors to discern patterns indicative of fraudulent behavior within transactional data. Introducing a comprehensive solution to this problem in order to empower e-commerce administrators in timely fraud detection and prevention is the primary motive and the main focus. In addition to that, sentiment analysis is harnessed in the model so that the e-commerce admin can tailor to the customer’s and consumer’s concerns, feedback, and comments, allowing the admin to improve the user’s experience. The ultimate objective of this study is to ramp up online shopping platforms against fraud and ensure a safer shopping experience. This paper underscores a model accuracy of 84%. All the findings and observations that were noted during our work lay the groundwork for future advancements in the development of more resilient and adaptive fraud detection systems, which will become crucial as technologies continue to evolve.Keywords: behavior analysis, feature selection, Fraudulent pattern recognition, imbalanced classification, transactional anomalies
Procedia PDF Downloads 278707 Long-Term Exposure Assessments for Cooking Workers Exposed to Polycyclic Aromatic Hydrocarbons and Aldehydes Containing in Cooking Fumes
Authors: Chun-Yu Chen, Kua-Rong Wu, Yu-Cheng Chen, Perng-Jy Tsai
Abstract:
Cooking fumes are known containing polycyclic aromatic hydrocarbons (PAHs) and aldehydes, and some of them have been proven carcinogenic or possibly carcinogenic to humans. Considering their chronic health effects, long-term exposure data is required for assessing cooking workers’ lifetime health risks. Previous exposure assessment studies, due to both time and cost constraints, mostly were based on the cross-sectional data. Therefore, establishing a long-term exposure data has become an important issue for conducting health risk assessment for cooking workers. An approach was proposed in this study. Here, the generation rates of both PAHs and aldehydes from a cooking process were determined by placing a sampling train exactly under the under the exhaust fan under the both the total enclosure condition and normal operating condition, respectively. Subtracting the concentration collected by the former (representing the total emitted concentration) from that of the latter (representing the hood collected concentration), the fugitive emitted concentration was determined. The above data was further converted to determine the generation rates based on the flow rates specified for the exhaust fan. The determinations of the above generation rates were conducted in a testing chamber with a selected cooking process (deep-frying chicken nuggets under 3 L peanut oil at 200°C). The sampling train installed under the exhaust fan consisted respectively an IOM inhalable sampler with a glass fiber filter for collecting particle-phase PAHs, followed by a XAD-2 tube for gas-phase PAHs. The above was also used to sample aldehydes, however, installed with a filter pre-coated with DNPH, and followed by a 2,4-DNPH-cartridge for collecting particle-phase and gas-phase aldehydes, respectively. PAHs and aldehydes samples were analyzed by GC/MS-MS (Agilent 7890B), and HPLC-UV (HITACHI L-7100), respectively. The obtained generation rates of both PAHs and aldehydes were applied to the near-field/ far-field exposure model to estimate the exposures of cooks (the estimated near-field concentration), and helpers (the estimated far-field concentration). For validating purposes, both PAHs and aldehydes samplings were conducted simultaneously using the same sampling train at both near-field and far-field sites of the testing chamber. The sampling results, together with the use of the mixed-effect model, were used to calibrate the estimated near-field/ far-field exposures. In the present study, the obtained emission rates were further converted to emission factor of both PAHs and aldehydes according to the amount of food oil consumed. Applying the long-term food oil consumption records, the emission rates for both PAHs and aldehydes were determined, and the long-term exposure databanks for cooks (the estimated near-field concentration), and helpers (the estimated far-field concentration) were then determined. Results show that the proposed approach was adequate to determine the generation rates of both PAHs and aldehydes under various fan exhaust flow rate conditions. The estimated near-field/ far-field exposures, though were significantly different from that obtained from the field, can be calibrated using the mixed effect model. Finally, the established long-term data bank could provide a useful basis for conducting long-term exposure assessments for cooking workers exposed to PAHs and aldehydes.Keywords: aldehydes, cooking oil fumes, long-term exposure assessment, modeling, polycyclic aromatic hydrocarbons (PAHs)
Procedia PDF Downloads 1428706 Determination of Potential Agricultural Lands Using Landsat 8 OLI Images and GIS: Case Study of Gokceada (Imroz) Turkey
Authors: Rahmi Kafadar, Levent Genc
Abstract:
In present study, it was aimed to determine potential agricultural lands (PALs) in Gokceada (Imroz) Island of Canakkale province, Turkey. Seven-band Landsat 8 OLI images acquired on July 12 and August 13, 2013, and their 14-band combination image were used to identify current Land Use Land Cover (LULC) status. Principal Component Analysis (PCA) was applied to three Landsat datasets in order to reduce the correlation between the bands. A total of six Original and PCA images were classified using supervised classification method to obtain the LULC maps including 6 main classes (“Forest”, “Agriculture”, “Water Surface”, “Residential Area-Bare Soil”, “Reforestation” and “Other”). Accuracy assessment was performed by checking the accuracy of 120 randomized points for each LULC maps. The best overall accuracy and Kappa statistic values (90.83%, 0.8791% respectively) were found for PCA images which were generated from 14-bands combined images called 3-B/JA. Digital Elevation Model (DEM) with 15 m spatial resolution (ASTER) was used to consider topographical characteristics. Soil properties were obtained by digitizing 1:25000 scaled soil maps of rural services directorate general. Potential Agricultural Lands (PALs) were determined using Geographic information Systems (GIS). Procedure was applied considering that “Other” class of LULC map may be used for agricultural purposes in the future properties. Overlaying analysis was conducted using Slope (S), Land Use Capability Class (LUCC), Other Soil Properties (OSP) and Land Use Capability Sub-Class (SUBC) properties. A total of 901.62 ha areas within “Other” class (15798.2 ha) of LULC map were determined as PALs. These lands were ranked as “Very Suitable”, “Suitable”, “Moderate Suitable” and “Low Suitable”. It was determined that the 8.03 ha were classified as “Very Suitable” while 18.59 ha as suitable and 11.44 ha as “Moderate Suitable” for PALs. In addition, 756.56 ha were found to be “Low Suitable”. The results obtained from this preliminary study can serve as basis for further studies.Keywords: digital elevation model (DEM), geographic information systems (GIS), gokceada (Imroz), lANDSAT 8 OLI-TIRS, land use land cover (LULC)
Procedia PDF Downloads 3538705 Computational Approach to Cyclin-Dependent Kinase 2 Inhibitors Design and Analysis: Merging Quantitative Structure-Activity Relationship, Absorption, Distribution, Metabolism, Excretion, and Toxicity, Molecular Docking, and Molecular Dynamics Simulations
Authors: Mohamed Moussaoui, Mouna Baassi, Soukayna Baammi, Hatim Soufi, Mohammed Salah, Rachid Daoud, Achraf EL Allali, Mohammed Elalaoui Belghiti, Said Belaaouad
Abstract:
The present study aims to investigate the quantitative structure-activity relationship (QSAR) of a series of Thiazole derivatives reported as anticancer agents (hepatocellular carcinoma), using principally the electronic descriptors calculated by the density functional theory (DFT) method and by applying the multiple linear regression method. The developed model showed good statistical parameters (R²= 0.725, R²ₐ𝒹ⱼ= 0.653, MSE = 0.060, R²ₜₑₛₜ= 0.827, Q²𝒸ᵥ = 0.536). The energy of the highest occupied molecular orbital (EHOMO) orbital, electronic energy (TE), shape coefficient (I), number of rotatable bonds (NROT), and index of refraction (n) were revealed to be the main descriptors influencing the anti-cancer activity. Additional Thiazole derivatives were then designed and their activities and pharmacokinetic properties were predicted using the validated QSAR model. These designed molecules underwent evaluation through molecular docking (MD) and molecular dynamic (MD) simulations, with binding affinity calculated using the MMPBSA script according to a 100 ns simulation trajectory. This process aimed to study both their affinity and stability towards Cyclin-Dependent Kinase 2 (CDK2), a target protein for cancer disease treatment. The research concluded by identifying four CDK2 inhibitors - A1, A3, A5, and A6 - displaying satisfactory pharmacokinetic properties. MDs results indicated that the designed compound A5 remained stable in the active center of the CDK2 protein, suggesting its potential as an effective inhibitor for the treatment of hepatocellular carcinoma. The findings of this study could contribute significantly to the development of effective CDK2 inhibitors.Keywords: QSAR, ADMET, Thiazole, anticancer, molecular docking, molecular dynamic simulations, MMPBSA calculation
Procedia PDF Downloads 1078704 Coach-Created Motivational Climate and the Coach-Athlete Relationship
Authors: Kamila Irena Szpunar
Abstract:
The central idea of the study is considered from two perspectives. The first perspective includes the interpersonal relationships formed by coach and athlete. Another perspective is connected with motivational environment which is created by the coach in team. This study will show the interplay between the perceived motivational climate created by the coach and the interpersonal dynamics between coaches and athletes. It is important because it will supply knowledge of the interpersonal conditions that can foster adaptive or maladaptive behavior in sport conditions. It also ensures implications for understanding how the perceived motivational atmosphere in a team is manifested at the level of coach – athlete relationship and interactions. The primary purpose of the study was to identify the association between coach-athlete relationship and athletes' perception of the motivational climate in team sports. The secondary purposes examined the differences between female and male athletes in perceiving of the motivational climate and the coach athlete-relationship. To check coach-athlete relationship Polish translation of The Coach-Athlete Relationship Questionnaire will be used. It measures athletes' perceptions of coach- athlete relationship defined by 3+1 Cs conceptual model of the coach-athlete relationship. From this model were used three constructs such as closeness (feelings of trust, respect etc.), commitment (thoughts about the future of the relationship), and complementarity (co-operative interactions during practice sessions). To check perceived motivational climate will be used Polish translation of The Perceived Motivational Climate in Sport Questionnaire-2 (PMCSQ-2). PMCSQ-2 was created to assess athletes' perceptions of the motivational climates in their teams. The questionnaire includes two general dimensions, the perceived task-involving climate and the perceived ego-involving climate; each contains three subscales. To check the associations between elements the motivational climate and coach-athlete relationship was used canonical correlation analysis. Student's t-test was used to check gender differences in athletes' perceptions of the motivational climate and the coach-athlete relationship. The findings suggest that in Polish athletes' perceptions of the coach-athlete relationship have motivational significance and that there are gender differences between female and male athletes in both variables – coach-athlete relationship and kind of motivational climate. According to the author's knowledge, such kind of study has not been conducted in Polish conditions before and is the first study on the subject of the motivational climate and the coach-athlete relationship in Poland. Information from this study can be useful for the development of interventions for enhancing the quality of coach- athlete relationship and its associated outcomes connected with motivational climate.Keywords: coach-athlete relationship, ego-involving climate, motivational climate, task-involving climate
Procedia PDF Downloads 1988703 A Proposal of a Strategic Framework for the Development of Smart Cities: The Argentinian Case
Authors: Luis Castiella, Mariano Rueda, Catalina Palacio
Abstract:
The world’s rapid urbanisation represents an excellent opportunity to implement initiatives that are oriented towards a country’s general development. However, this phenomenon has created considerable pressure on current urban models, pushing them nearer to a crisis. As a result, several factors usually associated with underdevelopment have been steadily rising. Moreover, actions taken by public authorities have not been able to keep up with the speed of urbanisation, which has impeded them from meeting the demands of society, responding with reactionary policies instead of with coordinated, organised efforts. In contrast, the concept of a Smart City which emerged around two decades ago, in principle, represents a city that utilises innovative technologies to remedy the everyday issues of the citizen, empowering them with the newest available technology and information. This concept has come to adopt a wider meaning, including human and social capital, as well as productivity, economic growth, quality of life, environment and participative governance. These developments have also disrupted the management of institutions such as academia, which have become key in generating scientific advancements that can solve pressing problems, and in forming a specialised class that is able to follow up on these breakthroughs. In this light, the Ministry of Modernisation of the Argentinian Nation has created a model that is rooted in the concept of a ‘Smart City’. This effort considered all the dimensions that are at play in an urban environment, with careful monitoring of each sub-dimensions in order to establish the government’s priorities and improving the effectiveness of its operations. In an attempt to ameliorate the overall efficiency of the country’s economic and social development, these focused initiatives have also encouraged citizen participation and the cooperation of the private sector: replacing short-sighted policies with some that are coherent and organised. This process was developed gradually. The first stage consisted in building the model’s structure; the second, at applying the method created on specific case studies and verifying that the mechanisms used respected the desired technical and social aspects. Finally, the third stage consists in the repetition and subsequent comparison of this experiment in order to measure the effects on the ‘treatment group’ over time. The first trial was conducted on 717 municipalities and evaluated the dimension of Governance. Results showed that levels of governmental maturity varied sharply with relation to size: cities with less than 150.000 people had a strikingly lower level of governmental maturity than cities with more than 150.000 people. With the help of this analysis, some important trends and target population were made apparent, which enabled the public administration to focus its efforts and increase its probability of being successful. It also permitted to cut costs, time, and create a dynamic framework in tune with the population’s demands, improving quality of life with sustained efforts to develop social and economic conditions within the territorial structure.Keywords: composite index, comprehensive model, smart cities, strategic framework
Procedia PDF Downloads 1768702 Combustion Variability and Uniqueness in Cylinders of a Radial Aircraft Piston Engine
Authors: Michal Geca, Grzegorz Baranski, Ksenia Siadkowska
Abstract:
The work is a part of the project which aims at developing innovative power and control systems for the high power aircraft piston engine ASz62IR. Developed electronically controlled ignition system will reduce emissions of toxic compounds as a result of lowered fuel consumption, optimized combustion and engine capability of efficient combustion of ecological fuels. The tested unit is an air-cooled four-stroke gasoline engine of 9 cylinders in a radial setup, mechanically charged by a radial compressor powered by the engine crankshaft. The total engine cubic capac-ity is 29.87 dm3, and the compression ratio is 6.4:1. The maximum take-off power is 1000 HP at 2200 rpm. The maximum fuel consumption is 280 kg/h. Engine powers aircrafts: An-2, M-18 „Dromader”, DHC-3 „OTTER”, DC-3 „Dakota”, GAF-125 „HAWK” i Y5. The main problems of the engine includes the imbalanced work of cylinders. The non-uniformity value in each cylinder results in non-uniformity of their work. In radial engine cylinders arrangement causes that the mixture movement that takes place in accordance (lower cylinder) or the opposite (upper cylinders) to the direction of gravity. Preliminary tests confirmed the presence of uneven workflow of individual cylinders. The phenomenon is most intense at low speed. The non-uniformity is visible on the waveform of cylinder pressure. Therefore two studies were conducted to determine the impact of this phenomenon on the engine performance: simulation and real tests. Simplified simulation was conducted on the element of the intake system coated with fuel film. The study shows that there is an effect of gravity on the movement of the fuel film inside the radial engine intake channels. Both in the lower and the upper inlet channels the film flows downwards. It follows from the fact that gravity assists the movement of the film in the lower cylinder channels and prevents the movement in the upper cylinder channels. Real tests on aircraft engine ASz62IR was conducted in transients condition (rapid change of the excess air in each cylinder were performed. Calculations were conducted for mass of fuel reaching the cylinders theoretically and really and on this basis, the factors of fuel evaporation “x” were determined. Therefore a simplified model of the fuel supply to cylinder was adopted. Model includes time constant of the fuel film τ, the number of engine transport cycles of non-evaporating fuel along the intake pipe γ and time between next cycles Δt. The calculation results of identification of the model parameters are presented in the form of radar graphs. The figures shows the averages declines and increases of the injection time and the average values for both types of stroke. These studies shown, that the change of the position of the cylinder will cause changes in the formation of fuel-air mixture and thus changes in the combustion process. Based on the results of the work of simulation and experiments was possible to develop individual algorithms for ignition control. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.Keywords: radial engine, ignition system, non-uniformity, combustion process
Procedia PDF Downloads 3668701 Enhancing Cultural Heritage Data Retrieval by Mapping COURAGE to CIDOC Conceptual Reference Model
Authors: Ghazal Faraj, Andras Micsik
Abstract:
The CIDOC Conceptual Reference Model (CRM) is an extensible ontology that provides integrated access to heterogeneous and digital datasets. The CIDOC-CRM offers a “semantic glue” intended to promote accessibility to several diverse and dispersed sources of cultural heritage data. That is achieved by providing a formal structure for the implicit and explicit concepts and their relationships in the cultural heritage field. The COURAGE (“Cultural Opposition – Understanding the CultuRal HeritAGE of Dissent in the Former Socialist Countries”) project aimed to explore methods about socialist-era cultural resistance during 1950-1990 and planned to serve as a basis for further narratives and digital humanities (DH) research. This project highlights the diversity of flourished alternative cultural scenes in Eastern Europe before 1989. Moreover, the dataset of COURAGE is an online RDF-based registry that consists of historical people, organizations, collections, and featured items. For increasing the inter-links between different datasets and retrieving more relevant data from various data silos, a shared federated ontology for reconciled data is needed. As a first step towards these goals, a full understanding of the CIDOC CRM ontology (target ontology), as well as the COURAGE dataset, was required to start the work. Subsequently, the queries toward the ontology were determined, and a table of equivalent properties from COURAGE and CIDOC CRM was created. The structural diagrams that clarify the mapping process and construct queries are on progress to map person, organization, and collection entities to the ontology. Through mapping the COURAGE dataset to CIDOC-CRM ontology, the dataset will have a common ontological foundation with several other datasets. Therefore, the expected results are: 1) retrieving more detailed data about existing entities, 2) retrieving new entities’ data, 3) aligning COURAGE dataset to a standard vocabulary, 4) running distributed SPARQL queries over several CIDOC-CRM datasets and testing the potentials of distributed query answering using SPARQL. The next plan is to map CIDOC-CRM to other upper-level ontologies or large datasets (e.g., DBpedia, Wikidata), and address similar questions on a wide variety of knowledge bases.Keywords: CIDOC CRM, cultural heritage data, COURAGE dataset, ontology alignment
Procedia PDF Downloads 1458700 Performance Evaluation of a Wireless 433 MHz Link in Underwater-Freshwater Communication
Authors: Xavi Vilajosana Guillen, Emilio José Pérez Salgado
Abstract:
This document presents experimental results obtained in a realistic environment using an underwater LoRa link. It aims to analyze the behavior of electromagnetic waves underwater and determine this communication capability. With this it has been tried to empirically evaluate the results obtained in the mathematical model using a commercial device with low cost and low consumption that works at frequency 433Mhz. The mathematical results obtained for wireless communication at 433Mhz underwater indicate that a communication of up to 7.5 m is possible, however experimentally 8 m has been achieved.Keywords: 433Mhz link, internet of things, LoRa link, underwater communication
Procedia PDF Downloads 658699 Lumped Parameter Models for Numerical Simulation of The Dynamic Response of Hoisting Appliances
Authors: Candida Petrogalli, Giovanni Incerti, Luigi Solazzi
Abstract:
This paper describes three lumped parameters models for the study of the dynamic behaviour of a boom crane. The models proposed here allow evaluating the fluctuations of the load arising from the rope and structure elasticity and from the type of the motion command imposed by the winch. A calculation software was developed in order to determine the actual acceleration of the lifted mass and the dynamic overload during the lifting phase. Some application examples are presented, with the aim of showing the correlation between the magnitude of the stress and the type of the employed motion command.Keywords: crane, dynamic model, overloading condition, vibration
Procedia PDF Downloads 5758698 Self-Tuning Power System Stabilizer Based on Recursive Least Square Identification and Linear Quadratic Regulator
Authors: J. Ritonja
Abstract:
Available commercial applications of power system stabilizers assure optimal damping of synchronous generator’s oscillations only in a small part of operating range. Parameters of the power system stabilizer are usually tuned for the selected operating point. Extensive variations of the synchronous generator’s operation result in changed dynamic characteristics. This is the reason that the power system stabilizer tuned for the nominal operating point does not satisfy preferred damping in the overall operation area. The small-signal stability and the transient stability of the synchronous generators have represented an attractive problem for testing different concepts of the modern control theory. Of all the methods, the adaptive control has proved to be the most suitable for the design of the power system stabilizers. The adaptive control has been used in order to assure the optimal damping through the entire synchronous generator’s operating range. The use of the adaptive control is possible because the loading variations and consequently the variations of the synchronous generator’s dynamic characteristics are, in most cases, essentially slower than the adaptation mechanism. The paper shows the development and the application of the self-tuning power system stabilizer based on recursive least square identification method and linear quadratic regulator. Identification method is used to calculate the parameters of the Heffron-Phillips model of the synchronous generator. On the basis of the calculated parameters of the synchronous generator’s mathematical model, the synthesis of the linear quadratic regulator is carried-out. The identification and the synthesis are implemented on-line. In this way, the self-tuning power system stabilizer adapts to the different operating conditions. A purpose of this paper is to contribute to development of the more effective power system stabilizers, which would replace currently used linear stabilizers. The presented self-tuning power system stabilizer makes the tuning of the controller parameters easier and assures damping improvement in the complete operating range. The results of simulations and experiments show essential improvement of the synchronous generator’s damping and power system stability.Keywords: adaptive control, linear quadratic regulator, power system stabilizer, recursive least square identification
Procedia PDF Downloads 2478697 Slosh Investigations on a Spacecraft Propellant Tank for Control Stability Studies
Authors: Sarath Chandran Nair S, Srinivas Kodati, Vasudevan R, Asraff A. K
Abstract:
Spacecrafts generally employ liquid propulsion for their attitude and orbital maneuvers or raising it from geo-transfer orbit to geosynchronous orbit. Liquid propulsion systems use either mono-propellant or bi-propellants for generating thrust. These propellants are generally stored in either spherical tanks or cylindrical tanks with spherical end domes. The propellant tanks are provided with a propellant acquisition system/propellant management device along with vanes and their conical mounting structure to ensure propellant availability in the outlet for thrust generation even under a low/zero-gravity environment. Slosh is the free surface oscillations in partially filled containers under external disturbances. In a spacecraft, these can be due to control forces and due to varying acceleration. Knowledge of slosh and its effect due to internals is essential for understanding its stability through control stability studies. It is mathematically represented by a pendulum-mass model. It requires parameters such as slosh frequency, damping, sloshes mass and its location, etc. This paper enumerates various numerical and experimental methods used for evaluating the slosh parameters required for representing slosh. Numerical methods like finite element methods based on linear velocity potential theory and computational fluid dynamics based on Reynolds Averaged Navier Stokes equations are used for the detailed evaluation of slosh behavior in one of the spacecraft propellant tanks used in an Indian space mission. Experimental studies carried out on a scaled-down model are also discussed. Slosh parameters evaluated by different methods matched very well and finalized their dispersion bands based on experimental studies. It is observed that the presence of internals such as propellant management devices, including conical support structure, alters slosh parameters. These internals also offers one order higher damping compared to viscous/ smooth wall damping. It is an advantage factor for the stability of slosh. These slosh parameters are given for establishing slosh margins through control stability studies and finalize the spacecraft control system design.Keywords: control stability, propellant tanks, slosh, spacecraft, slosh spacecraft
Procedia PDF Downloads 2458696 Fabrication of Antimicrobial Dental Model Using Digital Light Processing (DLP) Integrated with 3D-Bioprinting Technology
Authors: Rana Mohamed, Ahmed E. Gomaa, Gehan Safwat, Ayman Diab
Abstract:
Background: Bio-fabrication is a multidisciplinary research field that combines several principles, fabrication techniques, and protocols from different fields. The open-source-software movement is a movement that supports the use of open-source licenses for some or all software as part of the broader notion of open collaboration. Additive manufacturing is the concept of 3D printing, where it is a manufacturing method through adding layer-by-layer using computer-aided designs (CAD). There are several types of AM system used, and they can be categorized by the type of process used. One of these AM technologies is Digital light processing (DLP) which is a 3D printing technology used to rapidly cure a photopolymer resin to create hard scaffolds. DLP uses a projected light source to cure (Harden or crosslinking) the entire layer at once. Current applications of DLP are focused on dental and medical applications. Other developments have been made in this field, leading to the revolutionary field 3D bioprinting. The open-source movement was started to spread the concept of open-source software to provide software or hardware that is cheaper, reliable, and has better quality. Objective: Modification of desktop 3D printer into 3D bio-printer and the integration of DLP technology and bio-fabrication to produce an antibacterial dental model. Method: Modification of a desktop 3D printer into a 3D bioprinter. Gelatin hydrogel and sodium alginate hydrogel were prepared with different concentrations. Rhizome of Zingiber officinale, Flower buds of Syzygium aromaticum, and Bulbs of Allium sativum were extracted, and extractions were selected on different levels (Powder, aqueous extracts, total oils, and Essential oils) prepared for antibacterial bioactivity. Agar well diffusion method along with the E. coli have been used to perform the sensitivity test for the antibacterial activity of the extracts acquired by Zingiber officinale, Syzygium aromaticum, and Allium sativum. Lastly, DLP printing was performed to produce several dental models with the natural extracted combined with hydrogel to represent and simulate the Hard and Soft tissues. Result: The desktop 3D printer was modified into 3D bioprinter using open-source software Marline and modified custom-made 3D printed parts. Sodium alginate hydrogel and gelatin hydrogel were prepared at 5% (w/v), 10% (w/v), and 15%(w/v). Resin integration with the natural extracts of Rhizome of Zingiber officinale, Flower buds of Syzygium aromaticum, and Bulbs of Allium sativum was done following the percentage 1- 3% for each extract. Finally, the Antimicrobial dental model was printed; exhibits the antimicrobial activity, followed by merging with sodium alginate hydrogel. Conclusion: The open-source movement was successful in modifying and producing a low-cost Desktop 3D Bioprinter showing the potential of further enhancement in such scope. Additionally, the potential of integrating the DLP technology with bioprinting is a promising step toward the usage of the antimicrobial activity using natural products.Keywords: 3D printing, 3D bio-printing, DLP, hydrogel, antibacterial activity, zingiber officinale, syzygium aromaticum, allium sativum, panax ginseng, dental applications
Procedia PDF Downloads 948695 A Computational Fluid Dynamics Simulation of Single Rod Bundles with 54 Fuel Rods without Spacers
Authors: S. K. Verma, S. L. Sinha, D. K. Chandraker
Abstract:
The Advanced Heavy Water Reactor (AHWR) is a vertical pressure tube type, heavy water moderated and boiling light water cooled natural circulation based reactor. The fuel bundle of AHWR contains 54 fuel rods arranged in three concentric rings of 12, 18 and 24 fuel rods. This fuel bundle is divided into a number of imaginary interacting flow passage called subchannels. Single phase flow condition exists in reactor rod bundle during startup condition and up to certain length of rod bundle when it is operating at full power. Prediction of the thermal margin of the reactor during startup condition has necessitated the determination of the turbulent mixing rate of coolant amongst these subchannels. Thus, it is vital to evaluate turbulent mixing between subchannels of AHWR rod bundle. With the remarkable progress in the computer processing power, the computational fluid dynamics (CFD) methodology can be useful for investigating the thermal–hydraulic characteristics phenomena in the nuclear fuel assembly. The present report covers the results of simulation of pressure drop, velocity variation and turbulence intensity on single rod bundle with 54 rods in circular arrays. In this investigation, 54-rod assemblies are simulated with ANSYS Fluent 15 using steady simulations with an ANSYS Workbench meshing. The simulations have been carried out with water for Reynolds number 9861.83. The rod bundle has a mean flow area of 4853.0584 mm2 in the bare region with the hydraulic diameter of 8.105 mm. In present investigation, a benchmark k-ε model has been used as a turbulence model and the symmetry condition is set as boundary conditions. Simulation are carried out to determine the turbulent mixing rate in the simulated subchannels of the reactor. The size of rod and the pitch in the test has been same as that of actual rod bundle in the prototype. Water has been used as the working fluid and the turbulent mixing tests have been carried out at atmospheric condition without heat addition. The mean velocity in the subchannel has been varied from 0-1.2 m/s. The flow conditions are found to be closer to the actual reactor condition.Keywords: AHWR, CFD, single-phase turbulent mixing rate, thermal–hydraulic
Procedia PDF Downloads 3208694 Applied Theory Building to Achieve Success in Iran Municipalities
Authors: Morteza Rahiminejad
Abstract:
There are over 1200 cities and municipalities all around Iran, including 30 mega cities, which municipal organizations, Interior ministries, and city councils supervise. Even so, there has been neither any research about the process of success nor performance assessment in municipalities. In this research an attempt is made to build a comprehensive theory (or model) to show the reasons or success process among the local governments. The present research is based on the contingency approach in which the relevant circumstances are important, and both environment and situations call for their own management methods. The methodology of research is grounded theory, which uses Atlas.ti software as a tool.Keywords: success, municipality, Iran, theory building
Procedia PDF Downloads 378693 National Culture, Personal Values, and Supervisors’ Ethical Behavior: Examining a Partial Mediation Model of Merton’s Anomie Theory
Authors: Kristine Tuliao
Abstract:
Although it is of primary concern to ensure that supervisors behave appropriately, research shows that unethical behaviors are prevalent and may cost organizations’ economic and reputational damages. Nevertheless, few studies have considered the roles of the different levels of values in shaping one’s ethicality, and the examination of the possible mediation in the process of their influence has been rarely done. To address this gap, this research employs Merton’s anomie theory in designing a mediation analysis to test the direct impacts of national cultural values on supervisors’ justification of unethical behaviors as well as their indirect impacts through personal values. According to Merton’s writings, individual behaviors are affected by the society’s culture given its role in defining the members’ goals as well as the acceptable methods of attaining those goals. Also, Merton’s framework suggests that individuals develop their personal values depending on the assimilation of their society’s culture. Using data of 9,813 supervisors across 30 countries, results of hierarchical linear modeling (HLM) indicated that national cultural values, specifically assertiveness, performance orientation, in-group collectivism, and humane orientation, positively affect supervisors’ unethical inclination. Some cultural values may encourage unethical tendencies, especially if they urge and pressure individuals to attain purely monetary success. In addition, some of the influence of national cultural values went through personal monetary and non-monetary success values, indicating partial mediation. These findings substantiated the assertions of Merton’s anomie theory that national cultural values influence supervisors’ ethics through their integration with personal values. Given that some of the results contradict Merton’s anomie theory propositions, complementary arguments, such as incomplete assimilation of culture, and the probable impact of job position in perceptions, values, and behaviors, could be the plausible rationale for these outcomes. Consequently, this paper advances the understanding of differences in national and personal values and how these factors impact supervisors’ justification of unethical behaviors. Alongside these contributions, suggestions are presented for the public and organizations to craft policies and procedures that will minimize the tendency of supervisors to commit unethical acts.Keywords: mediation model, national culture, personal values, supervisors' ethics
Procedia PDF Downloads 1988692 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection
Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy
Abstract:
Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks
Procedia PDF Downloads 748691 Single Stage Holistic Interventions: The Impact on Well-Being
Authors: L. Matthewman, J. Nowlan
Abstract:
Background: Holistic or Integrative Psychology emphasizes the interdependence of physiological, spiritual and psychological dynamics. Studying “wholeness and well-being” from a systems perspective combines innovative psychological science interventions with Eastern orientated healing wisdoms and therapies. The literature surrounding holistic/integrative psychology focuses on multi-stage interventions in attempts to enhance the mind-body experiences of well-being for participants. This study proposes a new single stage model as an intervention for UG/PG students, time-constrained workplace employees and managers/leaders for improved well-being and life enhancement. The main research objective was to investigate participants’ experiences of holistic and mindfulness interventions for impact on emotional well-being. The main research question asked was if single stage holistic interventions could impact on psychological well-being. This is of consequence because many people report that a reason for not taking part in mind-body or wellness programmes is that they believe that they do not have sufficient time to engage in such pursuits. Experimental Approach: The study employed a mixed methods pre-test/post-test research design. Data was analyzed using descriptive statistics and interpretative phenomenological analysis. Purposive sampling methods were employed. An adapted mindfulness measurement questionnaire (MAAS) was administered to 20 volunteer final year UG student participants prior to the single stage intervention and following the intervention. A further post-test longitudinal follow-up took place one week later. Intervention: The single stage model intervention consisted of a half hour session of mindfulness, yoga stretches and head and neck massage in the following sequence: Mindful awareness of the breath, yoga stretches 1, mindfulness of the body, head and neck massage, mindfulness of sounds, yoga stretches 2 and finished with pure awareness mindfulness. Results: The findings on the pre-test indicated key themes concerning: “being largely unaware of feelings”, “overwhelmed with final year exams”, “juggling other priorities” , “not feeling in control”, “stress” and “negative emotional display episodes”. Themes indicated on the post-test included: ‘more aware of self’, ‘in more control’, ‘immediately more alive’ and ‘just happier’ compared to the pre-test. Themes from post-test 2 indicated similar findings to post-test 1 in terms of themes. but on a lesser scale when scored for intensity. Interestingly, the majority of participants reported that they would now seek other similar interventions in the future and would be likely to engage with a multi-stage intervention type on a longer-term basis. Overall, participants reported increased psychological well-being after the single stage intervention. Conclusion: A single stage one-off intervention model can be effective to help towards the wellbeing of final year UG students. There is little indication to suggest that this would not be generalizable to others in different areas of life and business. However this study must be taken with caution due to low participant numbers. Implications: Single stage one-off interventions can be used to enhance peoples’ lives who might not otherwise sign up for a longer multi-stage intervention. In addition, single stage interventions can be utilized to help participants progress onto longer multiple stage interventions. Finally, further research into one stage well-being interventions is encouraged.Keywords: holistic/integrative psychology, mindfulness, well-being, yoga
Procedia PDF Downloads 3538690 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction
Authors: Yan Zhang
Abstract:
Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.Keywords: Internet of Things, machine learning, predictive maintenance, streaming data
Procedia PDF Downloads 386