Search results for: traveling wave
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1594

Search results for: traveling wave

814 Single-Crystal Kerfless 2D Array Transducer for Volumetric Medical Imaging: Theoretical Study

Authors: Jurij Tasinkiewicz

Abstract:

The aim of this work is to present a theoretical analysis of a 2D ultrasound transducer comprised of crossed arrays of metal strips placed on both sides of thin piezoelectric layer (a). Such a structure is capable of electronic beam-steering of generated wave beam both in elevation and azimuth. In this paper, a semi-analytical model of the considered transducer is developed. It is based on generalization of the well-known BIS-expansion method. Specifically, applying the electrostatic approximation, the electric field components on the surface of the layer are expanded into fast converging series of double periodic spatial harmonics with corresponding amplitudes represented by the properly chosen Legendre polynomials. The problem is reduced to numerical solving of certain system of linear equations for unknown expansion coefficients.

Keywords: beamforming, transducer array, BIS-expansion, piezoelectric layer

Procedia PDF Downloads 423
813 The Design of Broadband 8x2 Phased Array 5G Antenna MIMO 28 GHz for Base Station

Authors: Muhammad Saiful Fadhil Reyhan, Yusnita Rahayu, Fadhel Muhammadsyah

Abstract:

This paper proposed a design of 16 elements, 8x2 linear fed patch antenna array with 16 ports, for 28 GHz, mm-wave band 5G for base station. The phased array covers along the azimuth plane to provide the coverage to the users in omnidirectional. The proposed antenna is designed RT Duroid 5880 substrate with the overall size of 85x35.6x0.787 mm3. The array is operating from 27.43 GHz to 28.34 GHz with a 910 MHz impedance bandwidth. The gain of the array is 18.3 dB, while the suppression of the side lobes is -1.0 dB. The main lobe direction of the array is 15 deg. The array shows a high array gain throughout the impedance bandwidth with overall of VSWR is below 1.12. The design will be proposed in single element and 16 elements antenna.

Keywords: 5G antenna, 28 GHz, MIMO, omnidirectional, phased array, base station, broadband

Procedia PDF Downloads 250
812 Conjugate Free Convection in a Square Cavity Filled with Nanofluid and Heated from Below by Spatial Wall Temperature

Authors: Ishak Hashim, Ammar Alsabery

Abstract:

The problem of conjugate free convection in a square cavity filled with nanofluid and heated from below by spatial wall temperature is studied numerically using the finite difference method. Water-based nanofluid with copper nanoparticles are chosen for the investigation. Governing equations are solved over a wide range of nanoparticle volume fraction (0 ≤ φ ≤ 0.2), wave number ((0 ≤ λ ≤ 4) and thermal conductivity ratio (0.44 ≤ Kr ≤ 6). The results presented for values of the governing parameters in terms of streamlines, isotherms and average Nusselt number. It is found that the flow behavior and the heat distribution are clearly enhanced with the increment of the non-uniform heating.

Keywords: conjugate free convection, square cavity, nanofluid, spatial temperature

Procedia PDF Downloads 362
811 Design of H-Shape X-band Application Electrically Small Antenna

Authors: Riki H. Patel, Arpan H. Desai, Trushit Upadhyaya

Abstract:

This paper presents a new small electrically antenna rectangular X- band micro-strip patch antenna loaded with material Rogers RT/duroid 5870 (tm). The present discussion focuses on small Electrically antenna which are electrically small compared to wave length the performance of electrically small antenna are closely related to their electrical size, the gain can be increased to maintain the efficiency of the radiator. Basically micro-strip Patch antennas have been used in satellite communications and for their good characteristics such as lightness, low cost, and so on. Here in the design H- shape folded dipole, which increase the band width of the antenna.

Keywords: electrically small antennas, X-band application, antenna, micro-strip patch, frequency antenna, feed, gain

Procedia PDF Downloads 466
810 Covariance and Quantum Cosmology: A Comparison of Two Matter Clocks

Authors: Theodore Halnon, Martin Bojowald

Abstract:

In relativity, time is relative between reference frames. However, quantum mechanics requires a specific time coordinate in order to write an evolution equation for wave functions. This difference between the two theories leads to the problem of time in quantum gravity. One method to study quantum relativity is to interpret the dynamics of a matter field as a clock. In order to test the relationship between different reference frames, an isotropic cosmological model with two matter ingredients is introduced. One is given by a scalar field and one by vacuum energy or a cosmological constant. There are two matter fields, and thus two different Hamiltonians are derived from the respective clock rates. Semi-classical solutions are found for these equations and a comparison is made of the physical predictions that they imply.

Keywords: cosmology, deparameterization, general relativity, quantum mechanics

Procedia PDF Downloads 308
809 Signal On-Off Ratio and Output Frequency Analysis of Semiconductor Electron-Interference Device

Authors: Tomotaka Aoki, Isao Tomita

Abstract:

We examined the on-off ratio and frequency components of output signals from an electron-interference device made of GaAs/AlₓGa₁₋ₓAs by solving the time-dependent Schrödinger's equation on conducting electrons in the channel waveguide of the device. For electron-wave modulation, a periodic voltage of frequency f was applied to the channel. Furthermore, we examined the voltage-amplitude dependence of the signals in time and frequency domains and found that large applied voltage deformed the output-signal waveform and created additional side modes (frequencies) near the modulation frequency f and that there was a trade-off between on-off ratio and side-mode creation.

Keywords: electrical conduction, electron interference, frequency spectrum, on-off ratio

Procedia PDF Downloads 121
808 The Structural, Elastic, Thermal, Electronic, and Magnetic Properties of Intermetallic rmn₂ge₂ (R=CA, Y, ND)

Authors: I. Benkaddour, Y. Benkaddour, A. Benk Addour

Abstract:

The structural, elastic, Thermal, electronic, and magnetic properties of intermetallic RMn₂Ge₂ (R= Ca, Y, Nd) are investigated by density functional theory (DFT), using the full potential –linearised augmented plane wave method (FP-LAPW). In this approach, the local-density approximation (LDA) is used for the exchange-correlation (XC) potential. The equilibrium lattice constant and magnetic moment agree well with the experiment. The density of states shows that these phases are conductors, with contribution predominantly from the R and Mn d states. We have determined the elastic constants C₁₁, C₁₂, C₁₃, C₄₄, C₃₃, andC₆₆ at ambient conditions in, which have not been established neither experimentally nor theoretically. Thermal properties, including the relative expansion coefficients and the heat capacity, have been estimated using a quasi-harmonic Debye model.

Keywords: RMn₂Ge₂, intermetallic, first-principles, density of states, mechanical properties

Procedia PDF Downloads 90
807 Effects of Charge Fluctuating Positive Dust on Linear Dust-Acoustic Waves

Authors: Sanjit Kumar Paul, A. A. Mamun, M. R. Amin

Abstract:

The Linear propagation of the dust-acoustic wave in a dusty plasma consisting of Boltzmann distributed electrons and ions and mobile charge fluctuating positive dust grains has been investigated by employing the reductive perturbation method. It has been shown that the dust charge fluctuation is a source of dissipation and its responsible for the formation of the dust-acoustic waves in such a dusty plasma. The basic features of such dust-acoustic waves have been identified. It has been proposed to design a new laboratory experiment which will be able to identify the basic features of the dust-acoustic waves predicted in this theoretical investigation.

Keywords: dust acoustic waves, dusty plasma, Boltzmann distributed electrons, charge fluctuation

Procedia PDF Downloads 639
806 Theoretical Prediction of the Structural, Elastic, Electronic, Optical, and Thermal Properties of Cubic Perovskites CsXF3 (X = Ca, Sr, and Hg) under Pressure Effect

Authors: M. A. Ghebouli, A. Bouhemadou, H. Choutri, L. Louaila

Abstract:

Some physical properties of the cubic perovskites CsXF3 (X = Sr, Ca, and Hg) have been investigated using pseudopotential plane–wave (PP-PW) method based on the density functional theory (DFT). The calculated lattice constants within GGA (PBE) and LDA (CA-PZ) agree reasonably with the available experiment data. The elastic constants and their pressure derivatives are predicted using the static finite strain technique. We derived the bulk and shear moduli, Young’s modulus, Poisson’s ratio and Lamé’s constants for ideal polycrystalline aggregates. The analysis of B/G ratio indicates that CsXF3 (X = Ca, Sr, and Hg) are ductile materials. The thermal effect on the volume, bulk modulus, heat capacities CV, CP, and Debye temperature was predicted.

Keywords: perovskite, PP-PW method, elastic constants, electronic band structure

Procedia PDF Downloads 437
805 Acoustic Room Impulse Response Computation with Image Sources and Frequency Dependent Boundary Reflection Coefficients

Authors: Pratik Gandhi, Kavitha Chandra, Charles Thompson

Abstract:

A computational model of the acoustic room impulse response between transmitters and receivers located in an enclosed cavity under the influence of frequency-dependent reflection coefficients of the walls is presented. The characteristic features of the impulse responses that differentiate these results from frequency-independent reflecting surfaces are discussed. The image-source model is derived from the first principle solution to Green's function of the acoustic wave equation. The post-processing of the computed impulse response with a band-pass filter to better represents the response of a loud-speaker is demonstrated.

Keywords: acoustic room impulse response, frequency dependent reflection coefficients, Green's function, image model

Procedia PDF Downloads 235
804 Quantitative Evaluation of Efficiency of Surface Plasmon Excitation with Grating-Assisted Metallic Nanoantenna

Authors: Almaz R. Gazizov, Sergey S. Kharintsev, Myakzyum Kh. Salakhov

Abstract:

This work deals with background signal suppression in tip-enhanced near-field optical microscopy (TENOM). The background appears because an optical signal is detected not only from the subwavelength area beneath the tip but also from a wider diffraction-limited area of laser’s waist that might contain another substance. The background can be reduced by using a taper probe with a grating on its lateral surface where an external illumination causes surface plasmon excitation. It requires the grating with parameters perfectly matched with a given incident light for effective light coupling. This work is devoted to an analysis of the light-grating coupling and a quest of grating parameters to enhance a near-field light beneath the tip apex. The aim of this work is to find the figure of merit of plasmon excitation depending on grating period and location of grating in respect to the apex. In our consideration the metallic grating on the lateral surface of the tapered plasmonic probe is illuminated by a plane wave, the electric field is perpendicular to the sample surface. Theoretical model of efficiency of plasmon excitation and propagation toward the apex is tested by fdtd-based numerical simulation. An electric field of the incident light is enhanced on the grating by every single slit due to lightning rod effect. Hence, grating causes amplitude and phase modulation of the incident field in various ways depending on geometry and material of grating. The phase-modulating grating on the probe is a sort of metasurface that provides manipulation by spatial frequencies of the incident field. The spatial frequency-dependent electric field is found from the angular spectrum decomposition. If one of the components satisfies the phase-matching condition then one can readily calculate the figure of merit of plasmon excitation, defined as a ratio of the intensities of the surface mode and the incident light. During propagation towards the apex, surface wave undergoes losses in probe material, radiation losses, and mode compression. There is an optimal location of the grating in respect to the apex. One finds the value by matching quadratic law of mode compression and the exponential law of light extinction. Finally, performed theoretical analysis and numerical simulations of plasmon excitation demonstrate that various surface waves can be effectively excited by using the overtones of a period of the grating or by phase modulation of the incident field. The gratings with such periods are easy to fabricate. Tapered probe with the grating effectively enhances and localizes the incident field at the sample.

Keywords: angular spectrum decomposition, efficiency, grating, surface plasmon, taper nanoantenna

Procedia PDF Downloads 283
803 Public Procurement Development Stages in Georgia

Authors: Giorgi Gaprindashvili

Abstract:

One of the best examples, in evolution of the public procurement, from post-soviet countries are reforms carried out in Georgia, which brought them close to international standards of procurement. In Georgia, public procurement legislation started functioning in 1998. The reform has passed several stages and came in the form as it is today. It should also be noted, that countries with economy in transition, including Georgia, implemented all the reforms in public procurement based on recommendations and support of World Bank, the United Nations and other international organizations. The first law on public procurement in Georgia was adopted on December 9, 1998 which aimed regulation of the procurement process of budget-organizations, transparent and competitive environment for private companies to access state funds legally. The priorities were identified quite clearly in the wording of the law, but operation/function of this law could not be reached on its level, because of some objective and subjective reasons. The high level of corruption in all levels of governance, can be considered as a main obstacle reason and of course, it is natural, that it had direct impact on the procurement process, as well as on transparency and rational use of state funds. This circumstances were the reasons that reforms in this sphere continued, to improve procurement process, in particular, the first wave of reforms began in 2001. Public procurement agency carried out reform with World Bank with main purpose of smartening the procurement legislation and its harmonization with international treaties and agreements. Also with the support of World Bank various activities were carried out to raise awareness of participants involved in procurement system. Further major changes in the legislation were filed in May 2005, which was also directed towards the improvement and smarten of the procurement process. The third wave of the reform began in 2010, which more or less guaranteed the transparency of the procurement process, which later became the basis for the rational spending of state funds. The reform of the procurement system completely changed the procedures. Carried out reform in Georgia resulted in introducing new electronic tendering system, which benefit the transparency of the process, after this became the basis for the further development of a competitive environment, which become a prerequisite for the state rational spending. Increased number of supplier organizations participating in the procurement process resulted in reduction of the estimated cost and the actual cost from 20% up to 40%, it is quite large saving for the procuring organizations and allows them to use the freed-up funds for their other needs. Assessment of the reforms in Georgia in the field of public procurement can be concluded, that proper regulation of the sector and relevant policy may proceed to rational and transparent spending of the budget from country’s state institutions. Also, the business sector has the opportunity to work in competitive market conditions and to make a preliminary analysis, which is a prerequisite for future strategy and development.

Keywords: public administration, public procurement, reforms, transparency

Procedia PDF Downloads 369
802 Measurement of Acoustic Loss in Nano-Layered Coating Developed for Thermal Noise Reduction

Authors: E. Cesarini, M. Lorenzini, R. Cardarelli, S. Chao, E. Coccia, V. Fafone, Y. Minenkow, I. Nardecchia, I. M. Pinto, A. Rocchi, V. Sequino, C. Taranto

Abstract:

Structural relaxation processes in optical coatings represent a fundamental limit to the sensitivity of gravitational waves detectors, MEMS, optical metrology and entangled state experiments. To face this problem, many research lines are now active, in particular the characterization of new materials and novel solutions to be employed as coatings in future gravitational wave detectors. Nano-layered coating deposition is among the most promising techniques. We report on the measurement of acoustic loss of nm-layered composites (Ti2O/SiO2), performed with the GeNS nodal suspension, compared with sputtered λ/4 thin films nowadays employed.

Keywords: mechanical measurement, nanomaterials, optical coating, thermal noise

Procedia PDF Downloads 424
801 The Unsteady Non-Equilibrium Distribution Function and Exact Equilibrium Time for a Dilute Gas Affected by Thermal Radiation Field

Authors: Taha Zakaraia Abdel Wahid

Abstract:

The behavior of the unsteady non-equilibrium distribution function for a dilute gas under the effect of non-linear thermal radiation field is presented. For the best of our knowledge this is done for the first time at all. The distinction and comparisons between the unsteady perturbed and the unsteady equilibrium velocity distribution functions are illustrated. The equilibrium time for the dilute gas is determined for the first time. The non-equilibrium thermodynamic properties of the system (gas+the heated plate) are investigated. The results are applied to the Argon gas, for various values of radiation field intensity. 3D-Graphics illustrating the calculated variables are drawn to predict their behavior. The results are discussed.

Keywords: dilute gas, radiation field, exact solutions, travelling wave method, unsteady BGK model, irreversible thermodynamics, unsteady non-equilibrium distribution functions

Procedia PDF Downloads 496
800 New Hardy Type Inequalities of Two-Dimensional on Time Scales via Steklov Operator

Authors: Wedad Albalawi

Abstract:

The mathematical inequalities have been the core of mathematical study and used in almost all branches of mathematics as well in various areas of science and engineering. The inequalities by Hardy, Littlewood and Polya were the first significant composition of several science. This work presents fundamental ideas, results and techniques, and it has had much influence on research in various branches of analysis. Since 1934, various inequalities have been produced and studied in the literature. Furthermore, some inequalities have been formulated by some operators; in 1989, weighted Hardy inequalities have been obtained for integration operators. Then, they obtained weighted estimates for Steklov operators that were used in the solution of the Cauchy problem for the wave equation. They were improved upon in 2011 to include the boundedness of integral operators from the weighted Sobolev space to the weighted Lebesgue space. Some inequalities have been demonstrated and improved using the Hardy–Steklov operator. Recently, a lot of integral inequalities have been improved by differential operators. Hardy inequality has been one of the tools that is used to consider integrity solutions of differential equations. Then, dynamic inequalities of Hardy and Coposon have been extended and improved by various integral operators. These inequalities would be interesting to apply in different fields of mathematics (functional spaces, partial differential equations, mathematical modeling). Some inequalities have been appeared involving Copson and Hardy inequalities on time scales to obtain new special version of them. A time scale is an arbitrary nonempty closed subset of the real numbers. Then, the dynamic inequalities on time scales have received a lot of attention in the literature and has become a major field in pure and applied mathematics. There are many applications of dynamic equations on time scales to quantum mechanics, electrical engineering, neural networks, heat transfer, combinatorics, and population dynamics. This study focuses on Hardy and Coposon inequalities, using Steklov operator on time scale in double integrals to obtain special cases of time-scale inequalities of Hardy and Copson on high dimensions. The advantage of this study is that it uses the one-dimensional classical Hardy inequality to obtain higher dimensional on time scale versions that will be applied in the solution of the Cauchy problem for the wave equation. In addition, the obtained inequalities have various applications involving discontinuous domains such as bug populations, phytoremediation of metals, wound healing, maximization problems. The proof can be done by introducing restriction on the operator in several cases. The concepts in time scale version such as time scales calculus will be used that allows to unify and extend many problems from the theories of differential and of difference equations. In addition, using chain rule, and some properties of multiple integrals on time scales, some theorems of Fubini and the inequality of H¨older.

Keywords: time scales, inequality of hardy, inequality of coposon, steklov operator

Procedia PDF Downloads 97
799 Optimization of Acid Treatments by Assessing Diversion Strategies in Carbonate and Sandstone Formations

Authors: Ragi Poyyara, Vijaya Patnana, Mohammed Alam

Abstract:

When acid is pumped into damaged reservoirs for damage removal/stimulation, distorted inflow of acid into the formation occurs caused by acid preferentially traveling into highly permeable regions over low permeable regions, or (in general) into the path of least resistance. This can lead to poor zonal coverage and hence warrants diversion to carry out an effective placement of acid. Diversion is desirably a reversible technique of temporarily reducing the permeability of high perm zones, thereby forcing the acid into lower perm zones. The uniqueness of each reservoir can pose several challenges to engineers attempting to devise optimum and effective diversion strategies. Diversion techniques include mechanical placement and/or chemical diversion of treatment fluids, further sub-classified into ball sealers, bridge plugs, packers, particulate diverters, viscous gels, crosslinked gels, relative permeability modifiers (RPMs), foams, and/or the use of placement techniques, such as coiled tubing (CT) and the maximum pressure difference and injection rate (MAPDIR) methodology. It is not always realized that the effectiveness of diverters greatly depends on reservoir properties, such as formation type, temperature, reservoir permeability, heterogeneity, and physical well characteristics (e.g., completion type, well deviation, length of treatment interval, multiple intervals, etc.). This paper reviews the mechanisms by which each variety of diverter functions and discusses the effect of various reservoir properties on the efficiency of diversion techniques. Guidelines are recommended to help enhance productivity from zones of interest by choosing the best methods of diversion while pumping an optimized amount of treatment fluid. The success of an overall acid treatment often depends on the effectiveness of the diverting agents.

Keywords: diversion, reservoir, zonal coverage, carbonate, sandstone

Procedia PDF Downloads 432
798 One Dimensional Magneto-Plasmonic Structure Based On Metallic Nano-Grating

Authors: S. M. Hamidi, M. Zamani

Abstract:

Magneto-plasmonic (MP) structures have turned into essential tools for the amplification of magneto-optical (MO) responses via the combination of MO activity and surface Plasmon resonance (SPR). Both the plasmonic and the MO properties of the resulting MP structure become interrelated because the SPR of the metallic medium. This interconnection can be modified the wave vector of surface plasmon polariton (SPP) in MP multilayer [1] or enhanced the MO activity [2- 3] and also modified the sensor responses [4]. There are several types of MP structures which are studied to enhance MO response in miniaturized configuration. In this paper, we propose a new MP structure based on the nano-metal grating and we investigate the MO and optical properties of this new structure. Our new MP structure fabricate by DC magnetron sputtering method and our home made MO experimental setup use for characterization of the structure.

Keywords: Magneto-plasmonic structures, magneto-optical effect, nano-garting

Procedia PDF Downloads 564
797 Bi-Directional Impulse Turbine for Thermo-Acoustic Generator

Authors: A. I. Dovgjallo, A. B. Tsapkova, A. A. Shimanov

Abstract:

The paper is devoted to one of engine types with external heating – a thermoacoustic engine. In thermoacoustic engine heat energy is converted to an acoustic energy. Further, acoustic energy of oscillating gas flow must be converted to mechanical energy and this energy in turn must be converted to electric energy. The most widely used way of transforming acoustic energy to electric one is application of linear generator or usual generator with crank mechanism. In both cases, the piston is used. Main disadvantages of piston use are friction losses, lubrication problems and working fluid pollution which cause decrease of engine power and ecological efficiency. Using of a bidirectional impulse turbine as an energy converter is suggested. The distinctive feature of this kind of turbine is that the shock wave of oscillating gas flow passing through the turbine is reflected and passes through the turbine again in the opposite direction. The direction of turbine rotation does not change in the process. Different types of bidirectional impulse turbines for thermoacoustic engines are analyzed. The Wells turbine is the simplest and least efficient of them. A radial impulse turbine has more complicated design and is more efficient than the Wells turbine. The most appropriate type of impulse turbine was chosen. This type is an axial impulse turbine, which has a simpler design than that of a radial turbine and similar efficiency. The peculiarities of the method of an impulse turbine calculating are discussed. They include changes in gas pressure and velocity as functions of time during the generation of gas oscillating flow shock waves in a thermoacoustic system. In thermoacoustic system pressure constantly changes by a certain law due to acoustic waves generation. Peak values of pressure are amplitude which determines acoustic power. Gas, flowing in thermoacoustic system, periodically changes its direction and its mean velocity is equal to zero but its peak values can be used for bi-directional turbine rotation. In contrast with feed turbine, described turbine operates on un-steady oscillating flows with direction changes which significantly influence the algorithm of its calculation. Calculated power output is 150 W with frequency 12000 r/min and pressure amplitude 1,7 kPa. Then, 3-d modeling and numerical research of impulse turbine was carried out. As a result of numerical modeling, main parameters of the working fluid in turbine were received. On the base of theoretical and numerical data model of impulse turbine was made on 3D printer. Experimental unit was designed for numerical modeling results verification. Acoustic speaker was used as acoustic wave generator. Analysis if the acquired data shows that use of the bi-directional impulse turbine is advisable. By its characteristics as a converter, it is comparable with linear electric generators. But its lifetime cycle will be higher and engine itself will be smaller due to turbine rotation motion.

Keywords: acoustic power, bi-directional pulse turbine, linear alternator, thermoacoustic generator

Procedia PDF Downloads 378
796 Analytical Approximations of the Differential Elastic Scattering Cross-Sections for Slow Electrons and Positrons Transport in Solids: A Comparative Study

Authors: A. Bentabet, A. Aydin, N. Fenineche

Abstract:

In this work, we try to determine the best analytical approximation of differential cross sections, used generally in Monte Carlo simulation, to study the electron/positron slowing down in solid targets in the energy range up to 10 keV. Actually, our comparative study was carried out on the angular distribution of the scattering angle, the elastic total and the first transport cross sections which are the essential quantities used generally in the electron/positron transport study by using both stochastic and deterministic methods. Indeed, the obtained results using the relativistic partial wave expansion method and the backscattering coefficient experimental data are used as criteria to evaluate the used model.

Keywords: differential cross-section, backscattering coefficient, Rutherford cross-section, Vicanek and Urbassek theory

Procedia PDF Downloads 565
795 Detection of Change Points in Earthquakes Data: A Bayesian Approach

Authors: F. A. Al-Awadhi, D. Al-Hulail

Abstract:

In this study, we applied the Bayesian hierarchical model to detect single and multiple change points for daily earthquake body wave magnitude. The change point analysis is used in both backward (off-line) and forward (on-line) statistical research. In this study, it is used with the backward approach. Different types of change parameters are considered (mean, variance or both). The posterior model and the conditional distributions for single and multiple change points are derived and implemented using BUGS software. The model is applicable for any set of data. The sensitivity of the model is tested using different prior and likelihood functions. Using Mb data, we concluded that during January 2002 and December 2003, three changes occurred in the mean magnitude of Mb in Kuwait and its vicinity.

Keywords: multiple change points, Markov Chain Monte Carlo, earthquake magnitude, hierarchical Bayesian mode

Procedia PDF Downloads 458
794 A Distinct Approach Towards Relativity and Time Dilation

Authors: Vipin Choudhary

Abstract:

Time Dilation is the difference in the amount of time two clocks measure in the same inertial frame. Many studies have explored the relativity of time dilation using various approaches. However, the scientific and mathematical explanation of time dilation of moving things and light pulse clocks still has limited research. Therefore, this article examines relativity by utilizing scientific and mathematical approaches; the experience of moving things and light pulse clock ticks have been examined. The study revealed that the time elapsed for the same process is different for the different observers. Here, it showed that the time can be expressed in the form of a wave. In addition, the relative distance changes between the observers, and the observing subject time flows differently for the observer relative to the observing subject.

Keywords: Einstein's special theory of relativity, reference frame, time dilation, length contraction, Lorentz transformation.

Procedia PDF Downloads 36
793 Thrust Vectoring Control of Supersonic Flow through an Orifice Injector

Authors: I. Mnafeg, A. Abichou, L. Beji

Abstract:

Traditional mechanical control systems in thrust vectoring are efficient in rocket thrust guidance but their costs and their weights are excessive. The fluidic injection in the nozzle divergent constitutes an alternative procedure to achieve the goal. In this paper, we present a 3D analytical model for fluidic injection in a supersonic nozzle integrating an orifice. The fluidic vectoring uses a sonic secondary injection in the divergent. As a result, the flow and interaction between the main and secondary jet has built in order to express the pressure fields from which the forces and thrust vectoring are deduced. Under various separation criteria, the present analytical model results are compared with the existing numerical and experimental data from the literature.

Keywords: flow separation, fluidic thrust vectoring, nozzle, secondary jet, shock wave

Procedia PDF Downloads 297
792 Design, Simulation and Construction of 2.4GHz Microstrip Patch Antenna for Improved Wi-Fi Reception

Authors: Gabriel Ugalahi, Dominic S. Nyitamen

Abstract:

This project seeks to improve Wi-Fi reception by utilizing the properties of directional microstrip patch antennae. Where there is a dense population of Wi-Fi signal, several signal sources transmitting on the same frequency band and indeed channel constitutes interference to each other. The time it takes for request to be received, resolved and response given between a user and the resource provider is increased considerably. By deploying a directional patch antenna with a narrow bandwidth, the range of frequency received is reduced and should help in limiting the reception of signal from unwanted sources. A rectangular microstrip patch antenna (RMPA) is designed to operate at the Industrial Scientific and Medical (ISM) band (2.4GHz) commonly used in Wi-Fi network deployment. The dimensions of the antenna are calculated and these dimensions are used to generate a model on Advanced Design System (ADS), a microwave simulator. Simulation results are then analyzed and necessary optimization is carried out to further enhance the radiation quality so as to achieve desired results. Impedance matching at 50Ω is also obtained by using the inset feed method. Final antenna dimensions obtained after simulation and optimization are then used to implement practical construction on an FR-4 double sided copper clad printed circuit board (PCB) through a chemical etching process using ferric chloride (Fe2Cl). Simulation results show an RMPA operating at a centre frequency of 2.4GHz with a bandwidth of 40MHz. A voltage standing wave ratio (VSWR) of 1.0725 is recorded on a return loss of -29.112dB at input port showing an appreciable match in impedance to a source of 50Ω. In addition, a gain of 3.23dBi and directivity of 6.4dBi is observed during far-field analysis. On deployment, signal reception from wireless devices is improved due to antenna gain. A test source with a received signal strength indication (RSSI) of -80dBm without antenna installed on the receiver was improved to an RSSI of -61dBm. In addition, the directional radiation property of the RMPA prioritizes signals by pointing in the direction of a preferred signal source thus, reducing interference from undesired signal sources. This was observed during testing as rotation of the antenna on its axis resulted to the gain of signal in-front of the patch and fading of signals away from the front.

Keywords: advanced design system (ADS), inset feed, received signal strength indicator (RSSI), rectangular microstrip patch antenna (RMPA), voltage standing wave ratio (VSWR), wireless fidelity (Wi-Fi)

Procedia PDF Downloads 223
791 60 GHz Multi-Sector Antenna Array with Switchable Radiation-Beams for Small Cell 5G Networks

Authors: N. Ojaroudi Parchin, H. Jahanbakhsh Basherlou, Y. Al-Yasir, A. M. Abdulkhaleq, R. A. Abd-Alhameed, P. S. Excell

Abstract:

A compact design of multi-sector patch antenna array for 60 GHz applications is presented and discussed in details. The proposed design combines five 1×8 linear patch antenna arrays, referred to as sectors, in a multi-sector configuration. The coaxial-fed radiation elements of the multi-sector array are designed on 0.2 mm Rogers RT5880 dielectrics. The array operates in the frequency range of 58-62 GHz and provides switchable directional/omnidirectional radiation beams with high gain and high directivity characteristics. The designed multi-sector array exhibits good performances and could be used in the fifth generation (5G) cellular networks.

Keywords: mm-wave communications, multi-sector array, patch antenna, small cell networks

Procedia PDF Downloads 159
790 Asymptotic Expansion of the Korteweg-de Vries-Burgers Equation

Authors: Jian-Jun Shu

Abstract:

It is common knowledge that many physical problems (such as non-linear shallow-water waves and wave motion in plasmas) can be described by the Korteweg-de Vries (KdV) equation, which possesses certain special solutions, known as solitary waves or solitons. As a marriage of the KdV equation and the classical Burgers (KdVB) equation, the Korteweg-de Vries-Burgers (KdVB) equation is a mathematical model of waves on shallow water surfaces in the presence of viscous dissipation. Asymptotic analysis is a method of describing limiting behavior and is a key tool for exploring the differential equations which arise in the mathematical modeling of real-world phenomena. By using variable transformations, the asymptotic expansion of the KdVB equation is presented in this paper. The asymptotic expansion may provide a good gauge on the validation of the corresponding numerical scheme.

Keywords: asymptotic expansion, differential equation, Korteweg-de Vries-Burgers (KdVB) equation, soliton

Procedia PDF Downloads 253
789 Structural, Electronic and Optical Properties of LiₓNa1-ₓH for Hydrogen Storage

Authors: B. Bahloul

Abstract:

This study investigates the structural, electronic, and optical properties of LiH and NaH compounds, as well as their ternary mixed crystals LiₓNa1-ₓH, adopting a face-centered cubic structure with space group Fm-3m (number 225). The structural and electronic characteristics are examined using density functional theory (DFT), while empirical methods, specifically the modified Moss relation, are employed for analyzing optical properties. The exchange-correlation potential is determined through the generalized gradient approximation (PBEsol-GGA) within the density functional theory (DFT) framework, utilizing the projected augmented wave pseudopotentials (PAW) approach. The Quantum Espresso code is employed for conducting these calculations. The calculated lattice parameters at equilibrium volume and the bulk modulus for x=0 and x=1 exhibit good agreement with existing literature data. Additionally, the LiₓNa1-ₓH alloys are identified as having a direct band gap.

Keywords: DFT, structural, electronic, optical properties

Procedia PDF Downloads 73
788 Experimental Study Analysis of Flow over Pickup Truck’s Cargo Area Using Bed Covers

Authors: Jonathan Rodriguez, Dominga Guerrero, Surupa Shaw

Abstract:

Automobiles are modeled in various forms, and they interact with air when in motion. Aerodynamics is the study of such interactions where solid bodies affect the way air moves around them. The shape of solid bodies can impact the ease at which they move against the flow of air; due to which any additional freightage, or loads, impact its aerodynamics. It is important to transport people and cargo safely. Despite the various safety measures, there are a large number of vehicle-related accidents. This study precisely explores the effects an automobile experiences, with added cargo and covers. The addition of these items changes the original vehicle shape and the approved design for safe driving. This paper showcases the effects of the changed vehicle shape and design via experimental testing conducted on a physical 1:27 scale and CAD model of an F-150 pickup truck, the most common pickup truck in the United States, with differently shaped loads and weight traveling at a constant speed. The additional freightage produces unwanted drag or lift resulting in lower fuel efficiencies and unsafe driving conditions. This study employs an adjustable external shell on the F-150 pickup truck to create a controlled aerodynamic geometry to combat the detrimental effects of additional freightage. The results utilize colored powder [ which acts as a visual medium for the interaction of air with the vehicle], to highlight the impact of the additional freight on the automobile’s external shell. This will be done along with simulation models using Altair CFD software of twelve cases regarding the effects of an added load onto an F-150 pickup truck. This paper is an attempt toward standardizing the geometric design of the external shell, given the uniqueness of every load and its placement on the vehicle; while providing real-time data to be compared to simulation results from the existing literature.

Keywords: aerodynamics, CFD, freightage, pickup cover

Procedia PDF Downloads 169
787 Relation between Energy Absorption and Box Dimension of Rock Fragments under Impact Loading

Authors: Li Hung-Hui, Chen Chi-Chieh, Yang Zon-Yee

Abstract:

This study aims to explore the impact energy absorption in the fragmented processes of rock samples during the split-Hopkinson-pressure-bar tests. Three kinds of rock samples including granite, marble and sandstone were tested. The impact energy absorptions were calculated according to the incident, reflected and transmitted strain wave histories measured by a oscilloscope. The degree of fragment rocks after tests was quantified by the box dimension of the fractal theory. The box dimension of rock fragments was obtained from the particle size distribution curve by the sieve analysis. The results can be concluded that: (1) the degree of rock fragments after tests can be well described by the value of box dimension; (2) with the impact energy absorption increasing, the degrees of rock fragments are varied from the very large fragments to very small fragments, and the corresponding box dimension varies from 2.9 to 1.2.

Keywords: SHPB test, energy absorption, rock fragments, impact loading, box dimension

Procedia PDF Downloads 451
786 Effect of Viscosity in Void Structure with Interacting Variable Charge Dust Grains

Authors: Nebbat El Amine

Abstract:

The void is a dust free region inside the dust cloud in the plasma. It is found that the dust grain charge variation lead to the extension of the void. Moreover, for bigger dust grains, it is seen that the wave-like structure recedes when charge variation is dealt with. Furthermore, as the grain-grain distance is inversely proportional to density, the grain-grain interaction gets more important for a denser dust population and is to be included in momentum equation. For the result indicate above, the plasma is considered non viscous. But in fact, it’s not always true. Some authors measured experimentally the viscosity of this background and found that the viscosity of dusty plasma increase with background gas pressure. In this paper, we tack account the viscosity of the fluid, and we compare the result with that found in the recent work.

Keywords: voids, dusty plasmas, variable charge, viscosity

Procedia PDF Downloads 89
785 Patients' Out-Of-Pocket Expenses-Effectiveness Analysis of Presurgical Teledermatology

Authors: Felipa De Mello-Sampayo

Abstract:

Background: The aim of this study is to undertake, from a patient perspective, an economic analysis of presurgical teledermatology, comparing it with a conventional referral system. Store-and-forward teledermatology allows surgical planning, saving both time and number of visits involving travel, thereby reducing patients’ out-of-pocket expenses, i.e., costs that patients incur when traveling to and from health providers for treatment, visits’ fees, and the opportunity cost of time spent in visits. Method: Patients’ out-of-pocket expenses-effectiveness of presurgical teledermatology were analyzed in the setting of a public hospital during two years. The mean delay in surgery was used to measure effectiveness. The teledermatology network covering the area served by the Hospital Garcia da Horta (HGO), Portugal, linked the primary care centers of 24 health districts with the hospital’s dermatology department. The patients’ opportunity cost of visits, travel costs, and visits’ fee of each presurgical modality (teledermatology and conventional referral), the cost ratio between the most and least expensive alternative, and the incremental cost-effectiveness ratio were calculated from initial primary care visit until surgical intervention. Two groups of patients: those with squamous cell carcinoma and those with basal cell carcinoma were distinguished in order to compare the effectiveness according to the dermatoses. Results: From a patient perspective, the conventional system was 2.15 times more expensive than presurgical teledermatology. Teledermatology had an incremental out-of-pocket expenses-effectiveness ratio of €1.22 per patient and per day of delay avoided. This saving was greater in patients with squamous cell carcinoma than in patients with basal cell carcinoma. Conclusion: From a patient economic perspective, teledermatology used for presurgical planning and preparation is the dominant strategy in terms of out-of-pocket expenses-effectiveness than the conventional referral system, especially for patients with severe dermatoses.

Keywords: economic analysis, out-of-pocket expenses, opportunity cost, teledermatology, waiting time

Procedia PDF Downloads 141