Search results for: sudden stratospheric warming (SSW)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 853

Search results for: sudden stratospheric warming (SSW)

73 CO₂ Recovery from Biogas and Successful Upgrading to Food-Grade Quality: A Case Study

Authors: Elisa Esposito, Johannes C. Jansen, Loredana Dellamuzia, Ugo Moretti, Lidietta Giorno

Abstract:

The reduction of CO₂ emission into the atmosphere as a result of human activity is one of the most important environmental challenges to face in the next decennia. Emission of CO₂, related to the use of fossil fuels, is believed to be one of the main causes of global warming and climate change. In this scenario, the production of biomethane from organic waste, as a renewable energy source, is one of the most promising strategies to reduce fossil fuel consumption and greenhouse gas emission. Unfortunately, biogas upgrading still produces the greenhouse gas CO₂ as a waste product. Therefore, this work presents a case study on biogas upgrading, aimed at the simultaneous purification of methane and CO₂ via different steps, including CO₂/methane separation by polymeric membranes. The original objective of the project was the biogas upgrading to distribution grid quality methane, but the innovative aspect of this case study is the further purification of the captured CO₂, transforming it from a useless by-product to a pure gas with food-grade quality, suitable for commercial application in the food and beverage industry. The study was performed on a pilot plant constructed by Tecno Project Industriale Srl (TPI) Italy. This is a model of one of the largest biogas production and purification plants. The full-scale anaerobic digestion plant (Montello Spa, North Italy), has a digestive capacity of 400.000 ton of biomass/year and can treat 6.250 m3/hour of biogas from FORSU (organic fraction of solid urban waste). The entire upgrading process consists of a number of purifications steps: 1. Dehydration of the raw biogas by condensation. 2. Removal of trace impurities such as H₂S via absorption. 3.Separation of CO₂ and methane via a membrane separation process. 4. Removal of trace impurities from CO₂. The gas separation with polymeric membranes guarantees complete simultaneous removal of microorganisms. The chemical purity of the different process streams was analysed by a certified laboratory and was compared with the guidelines of the European Industrial Gases Association and the International Society of Beverage Technologists (EIGA/ISBT) for CO₂ used in the food industry. The microbiological purity was compared with the limit values defined in the European Collaborative Action. With a purity of 96-99 vol%, the purified methane respects the legal requirements for the household network. At the same time, the CO₂ reaches a purity of > 98.1% before, and 99.9% after the final distillation process. According to the EIGA/ISBT guidelines, the CO₂ proves to be chemically and microbiologically sufficiently pure to be suitable for food-grade applications.

Keywords: biogas, CO₂ separation, CO2 utilization, CO₂ food grade

Procedia PDF Downloads 212
72 Sea Surface Trend over the Arabian Sea and Its Influence on the South West Monsoon Rainfall Variability over Sri Lanka

Authors: Sherly Shelton, Zhaohui Lin

Abstract:

In recent decades, the inter-annual variability of summer precipitation over the India and Sri Lanka has intensified significantly with an increased frequency of both abnormally dry and wet summers. Therefore prediction of the inter-annual variability of summer precipitation is crucial and urgent for water management and local agriculture scheduling. However, none of the hypotheses put forward so far could understand the relationship to monsoon variability and related factors that affect to the South West Monsoon (SWM) variability in Sri Lanka. This study focused to identify the spatial and temporal variability of SWM rainfall events from June to September (JJAS) over Sri Lanka and associated trend. The monthly rainfall records covering 1980-2013 over the Sri Lanka are used for 19 stations to investigate long-term trends in SWM rainfall over Sri Lanka. The linear trends of atmospheric variables are calculated to understand the drivers behind the changers described based on the observed precipitation, sea surface temperature and atmospheric reanalysis products data for 34 years (1980–2013). Empirical orthogonal function (EOF) analysis was applied to understand the spatial and temporal behaviour of seasonal SWM rainfall variability and also investigate whether the trend pattern is the dominant mode that explains SWM rainfall variability. The spatial and stations based precipitation over the country showed statistically insignificant decreasing trends except few stations. The first two EOFs of seasonal (JJAS) mean of rainfall explained 52% and 23 % of the total variance and first PC showed positive loadings of the SWM rainfall for the whole landmass while strongest positive lording can be seen in western/ southwestern part of the Sri Lanka. There is a negative correlation (r ≤ -0.3) between SMRI and SST in the Arabian Sea and Central Indian Ocean which indicate that lower temperature in the Arabian Sea and Central Indian Ocean are associated with greater rainfall over the country. This study also shows that consistently warming throughout the Indian Ocean. The result shows that the perceptible water over the county is decreasing with the time which the influence to the reduction of precipitation over the area by weakening drawn draft. In addition, evaporation is getting weaker over the Arabian Sea, Bay of Bengal and Sri Lankan landmass which leads to reduction of moisture availability required for the SWM rainfall over Sri Lanka. At the same time, weakening of the SST gradients between Arabian Sea and Bay of Bengal can deteriorate the monsoon circulation, untimely which diminish SWM over Sri Lanka. The decreasing trends of moisture, moisture transport, zonal wind, moisture divergence with weakening evaporation over Arabian Sea, during the past decade having an aggravating influence on decreasing trends of monsoon rainfall over the Sri Lanka.

Keywords: Arabian Sea, moisture flux convergence, South West Monsoon, Sri Lanka, sea surface temperature

Procedia PDF Downloads 132
71 Antiplatelets and Anticoagulants in Rural Emergency General Surgery

Authors: Jeong-Moh John Yahng, Angelika Na

Abstract:

Introduction: Increasing numbers of general surgical patients are being prescribed antiplatelet and anticoagulant medications (APAC) for various cardiovascular and cerebrovascular conditions. Surgical patients who are on APAC present a management challenge as bleeding risk needs to be balanced with thromboembolic risk. Although guidelines exist in regards to APAC management in elective surgery, there is a lack of guidelines in the emergency surgery setting. In this study we aim to characterise APAC usage in emergency general surgical patients admitted to a rural hospital. We also assess the impact of APAC usage on clinical management of these patients. Methods: Prospective study of emergency general surgical admissions at Northeast Health Wangaratta (Victoria) from 2 July to 25 Oct 2014. Questionnaire collected demographics data, admission diagnosis, APAC usage, anaesthesia techniques, operation types, transfusion requirement and morbidity / mortality data. Results: During the 4 month study, 118 patients were classified into two groups: non-APAC (n=96, 81%) and APAC (n=22, 19%). Patients in the APAC group were older compared to the non-APAC patients (mean age 72 vs 42 years old). Amongst patients younger than 60 years old, only 1% of them were on APAC. In contrast, 49% of patients older than 60 years old were on APAC (p<0.001). Patients who were admitted with a bleeding problem were more likely to be on APAC (p<0.05). 19% of emergency general surgery patients were on APAC. The majority (91%) of them were on antiplatelet medication, with two patients being on dual antiplatelet agents (aspirin + clopidogrel or ticagrelor). 15% of emergency general surgical patients requiring operations were on APAC. 11% of all laparotomies and 33% of gastroscopy for haematemesis/melaena patients were on APAC. Both of the patients operated for bleeding following surgery at another hospital were in the APAC group. In regards to impact on clinical management, 59% of APAC patients had their medications interrupted or ceased, on average by 3.5 days (range 1-13 days). 2 out of 75 operations were delayed due to APAC usage. There was no difference in the use of central venous or arterial line for increased monitoring (p=0.14) or in the use of warming blanket (Bair Hugger™) (p=0.94). Overall, transfusion rate was higher amongst APAC patients (14% vs 3%) (p 0.04). The recorded morbidity (n=2) and mortality (n=1) in this study were all in the APAC group. Discussion: Nineteen percent of emergency general surgical admissions and fifteen percent of operated patients were on APAC. The prevalence of APAC usage was higher in those aged sixty and above. General surgical patients who were admitted with a bleeding problem were more likely to be on APAC. Two patients who were operated for bleeding following surgery at another hospital were in the APAC group. Note that there was no patient in the non-APAC group who was admitted for post-operative bleeding. We observed two cases in which operation was delayed due to APAC usage. Transfusion, morbidity and mortality rate were higher in the APAC group. Conclusion: In this study, nineteen percent of emergency general surgical admissions were on APAC. The use of APAC is more prevalent in the older age group, particularly those aged sixty and above. Higher proportion of APAC compared to non-APAC patients were admitted and operated for bleeding problems. There is an urgent need for clinical guidelines regarding APAC management in emergency general surgical patients.

Keywords: antiplatelet, anticoagulants, emergency general surgery, rural general surgery, morbidity, mortality

Procedia PDF Downloads 134
70 Characteristics of Plasma Synthetic Jet Actuator in Repetitive Working Mode

Authors: Haohua Zong, Marios Kotsonis

Abstract:

Plasma synthetic jet actuator (PSJA) is a new concept of zero net mass flow actuator which utilizes pulsed arc/spark discharge to rapidly pressurize gas in a small cavity under constant-volume conditions. The unique combination of high exit jet velocity (>400 m/s) and high actuation frequency (>5 kHz) provides a promising solution for high-speed high-Reynolds-number flow control. This paper focuses on the performance of PSJA in repetitive working mode which is more relevant to future flow control applications. A two-electrodes PSJA (cavity volume: 424 mm3, orifice diameter: 2 mm) together with a capacitive discharge circuit (discharge energy: 50 mJ-110 mJ) is designed to enable repetitive operation. Time-Resolved Particle Imaging Velocimetry (TR-PIV) system working at 10 kHz is exploited to investigate the influence of discharge frequency on performance of PSJA. In total, seven cases are tested, covering a wide range of discharge frequencies (20 Hz-560 Hz). The pertinent flow features (shock wave, vortex ring and jet) remain the same for single shot mode and repetitive working mode. Shock wave is issued prior to jet eruption. Two distinct vortex rings are formed in one cycle. The first one is produced by the starting jet whereas the second one is related with the shock wave reflection in cavity. A sudden pressure rise is induced at the throat inlet by the reflection of primary shock wave, promoting the shedding of second vortex ring. In one cycle, jet exit velocity first increases sharply, then decreases almost linearly. Afterwards, an alternate occurrence of multiple jet stages and refresh stages is observed. By monitoring the dynamic evolution of exit velocity in one cycle, some integral performance parameters of PSJA can be deduced. As frequency increases, the jet intensity in steady phase decreases monotonically. In the investigated frequency range, jet duration time drops from 250 µs to 210 µs and peak jet velocity decreases from 53 m/s to approximately 39 m/s. The jet impulse and the expelled gas mass (0.69 µN∙s and 0.027 mg at 20 Hz) decline by 48% and 40%, respectively. However, the electro-mechanical efficiency of PSJA defined by the ratio of jet mechanical energy to capacitor energy doesn’t show significant difference (o(0.01%)). Fourier transformation of the temporal exit velocity signal indicates two dominant frequencies. One corresponds to the discharge frequency, while the other accounts for the alternation frequency of jet stage and refresh stage in one cycle. The alternation period (300 µs approximately) is independent of discharge frequency, and possibly determined intrinsically by the actuator geometry. A simple analytical model is established to interpret the alternation of jet stage and refresh stage. Results show that the dynamic response of exit velocity to a small-scale disturbance (jump in cavity pressure) can be treated as a second-order under-damping system. Oscillation frequency of the exit velocity, namely alternation frequency, is positively proportional to exit area, but inversely proportional to cavity volume and throat length. Theoretical value of alternation period (305 µs) agrees well with the experimental value.

Keywords: plasma, synthetic jet, actuator, frequency effect

Procedia PDF Downloads 252
69 Acceleration and Deceleration Behavior in the Vicinity of a Speed Camera, and Speed Section Control

Authors: Jean Felix Tuyisingize

Abstract:

Speeding or inappropriate speed is a major problem worldwide, contributing to 10-15% of road crashes and 30% of fatal injury crashes. The consequences of speeding put the driver's life at risk and the lives of other road users like motorists, cyclists, and pedestrians. To control vehicle speeds, governments, and traffic authorities enforced speed regulations through speed cameras and speed section control, which monitor all vehicle speeds and detect plate numbers to levy penalties. However, speed limit violations are prevalent, even on motorways with speed cameras. The problem with speed cameras is that they alter driver behaviors, and their effect declines with increasing distance from the speed camera location. Drivers decelerate short distances before the camera and vigorously accelerate above the speed limit just after passing by the camera. The sudden decelerating near cameras causes the drivers to try to make up for lost time after passing it, and they do this by speeding up, resulting in a phenomenon known as the "Kangaroo jump" or "V-profile" around camera/ASSC areas. This study investigated the impact of speed enforcement devices, specifically Average Speed Section Control (ASSCs) and fixed cameras, on acceleration and deceleration events within their vicinity. The research employed advanced statistical and Geographic Information System (GIS) analysis on naturalistic driving data, to uncover speeding patterns near the speed enforcement systems. The study revealed a notable concentration of events within a 600-meter radius of enforcement devices, suggesting their influence on driver behaviors within a specific range. However, most of these events are of low severity, suggesting that drivers may not significantly alter their speed upon encountering these devices. This behavior could be attributed to several reasons, such as consistently maintaining safe speeds or using real-time in-vehicle intervention systems. The complexity of driver behavior is also highlighted, indicating the potential influence of factors like traffic density, road conditions, weather, time of day, and driver characteristics. Further, the study highlighted that high-severity events often occurred outside speed enforcement zones, particularly around intersections, indicating these as potential hotspots for drastic speed changes. These findings call for a broader perspective on traffic safety interventions beyond reliance on speed enforcement devices. However, the study acknowledges certain limitations, such as its reliance on a specific geographical focus, which may impact the broad applicability of the findings. Additionally, the severity of speed modification events was categorized into low, medium, and high, which could oversimplify the continuum of speed changes and potentially mask trends within each category. This research contributes valuable insights to traffic safety and driver behavior literature, illuminating the complexity of driver behavior and the potential influence of factors beyond the presence of speed enforcement devices. Future research directions may employ various categories of event severity. They may also explore the role of in-vehicle technologies, driver characteristics, and a broader set of environmental variables in driving behavior and traffic safety.

Keywords: acceleration, deceleration, speeding, inappropriate speed, speed enforcement cameras

Procedia PDF Downloads 32
68 Convective Boiling of CO₂/R744 in Macro and Micro-Channels

Authors: Adonis Menezes, J. C. Passos

Abstract:

The current panorama of technology in heat transfer and the scarcity of information about the convective boiling of CO₂ and hydrocarbon in small diameter channels motivated the development of this work. Among non-halogenated refrigerants, CO₂/ R744 has distinct thermodynamic properties compared to other fluids. The R744 presents significant differences in operating pressures and temperatures, operating at higher values compared to other refrigerants, and this represents a challenge for the design of new evaporators, as the original systems must normally be resized to meet the specific characteristics of the R744, which creates the need for a new design and optimization criteria. To carry out the convective boiling tests of CO₂, an experimental apparatus capable of storing (m= 10kg) of saturated CO₂ at (T = -30 ° C) in an accumulator tank was used, later this fluid was pumped using a positive displacement pump with three pistons, and the outlet pressure was controlled and could reach up to (P = 110bar). This high-pressure saturated fluid passed through a Coriolis type flow meter, and the mass velocities varied between (G = 20 kg/m².s) up to (G = 1000 kg/m².s). After that, the fluid was sent to the first test section of circular cross-section in diameter (D = 4.57mm), where the inlet and outlet temperatures and pressures, were controlled and the heating was promoted by the Joule effect using a source of direct current with a maximum heat flow of (q = 100 kW/m²). The second test section used a cross-section with multi-channels (seven parallel channels) with a square cross-section of (D = 2mm) each; this second test section has also control of temperature and pressure at the inlet and outlet as well as for heating a direct current source was used, with a maximum heat flow of (q = 20 kW/m²). The fluid in a biphasic situation was directed to a parallel plate heat exchanger so that it returns to the liquid state, thus being able to return to the accumulator tank, continuing the cycle. The multi-channel test section has a viewing section; a high-speed CMOS camera was used for image acquisition, where it was possible to view the flow patterns. The experiments carried out and presented in this report were conducted in a rigorous manner, enabling the development of a database on the convective boiling of the R744 in macro and micro channels. The analysis prioritized the processes from the beginning of the convective boiling until the drying of the wall in a subcritical regime. The R744 resurfaces as an excellent alternative to chlorofluorocarbon refrigerants due to its negligible ODP (Ozone Depletion Potential) and GWP (Global Warming Potential) rates, among other advantages. The results found in the experimental tests were very promising for the use of CO₂ in micro-channels in convective boiling and served as a basis for determining the flow pattern map and correlation for determining the heat transfer coefficient in the convective boiling of CO₂.

Keywords: convective boiling, CO₂/R744, macro-channels, micro-channels

Procedia PDF Downloads 143
67 Financial Policies in the Process of Global Crisis: Case Study Kosovo, Case Kosovo

Authors: Shpetim Rezniqi

Abstract:

Financial Policies in the process of global crisis the current crisis has swept the world with special emphasis, most developed countries, those countries which have most gross -product world and you have a high level of living.Even those who are not experts can describe the consequences of the crisis to see the reality that is seen, but how far will it go this crisis is impossible to predict. Even the biggest experts have conjecture and large divergence, but agree on one thing: - The devastating effects of this crisis will be more severe than ever before and can not be predicted.Long time, the world was dominated economic theory of free market laws. With the belief that the market is the regulator of all economic problems. The market, as river water will flow to find the best and will find the necessary solution best. Therefore much less state market barriers, less state intervention and market itself is an economic self-regulation. Free market economy became the model of global economic development and progress, it transcends national barriers and became the law of the development of the entire world economy. Globalization and global market freedom were principles of development and international cooperation. All international organizations like the World Bank, states powerful economic, development and cooperation principles laid free market economy and the elimination of state intervention. The less state intervention much more freedom of action was this market- leading international principle. We live in an era of financial tragic. Financial markets and banking in particular economies are in a state of thy good, US stock markets fell about 40%, in other words, this time, was one of the darkest moments 5 since 1920. Prior to her rank can only "collapse" of the stock of Wall Street in 1929, technological collapse of 2000, the crisis of 1973 after the Yom Kippur war, while the price of oil quadrupled and famous collapse of 1937 / '38, when Europe was beginning World war II In 2000, even though it seems like the end of the world was the corner, the world economy survived almost intact. Of course, that was small recessions in the United States, Europe, or Japan. Much more difficult the situation was at crisis 30s, or 70s, however, succeeded the world. Regarding the recent financial crisis, it has all the signs to be much sharper and with more consequences. The decline in stock prices is more a byproduct of what is really happening. Financial markets began dance of death with the credit crisis, which came as a result of the large increase in real estate prices and household debt. It is these last two phenomena can be matched very well with the gains of the '20s, a period during which people spent fists as if there was no tomorrow. All is not away from the mouth of the word recession, that fact no longer a sudden and abrupt. But as much as the financial markets melt, the greater is the risk of a problematic economy for years to come. Thus, for example, the banking crisis in Japan proved to be much more severe than initially expected, partly because the assets which were based more loans had, especially the land that falling in value. The price of land in Japan is about 15 years that continues to fall. (ADRI Nurellari-Published in the newspaper "Classifieds"). At this moment, it is still difficult to çmosh to what extent the crisis has affected the economy and what would be the consequences of the crisis. What we know is that many banks will need more time to reduce the award of credit, but banks have this primary function, this means huge loss.

Keywords: globalisation, finance, crisis, recomandation, bank, credits

Procedia PDF Downloads 389
66 Modelling of Reactive Methodologies in Auto-Scaling Time-Sensitive Services With a MAPE-K Architecture

Authors: Óscar Muñoz Garrigós, José Manuel Bernabeu Aubán

Abstract:

Time-sensitive services are the base of the cloud services industry. Keeping low service saturation is essential for controlling response time. All auto-scalable services make use of reactive auto-scaling. However, reactive auto-scaling has few in-depth studies. This presentation shows a model for reactive auto-scaling methodologies with a MAPE-k architecture. Queuing theory can compute different properties of static services but lacks some parameters related to the transition between models. Our model uses queuing theory parameters to relate the transition between models. It associates MAPE-k related times, the sampling frequency, the cooldown period, the number of requests that an instance can handle per unit of time, the number of incoming requests at a time instant, and a function that describes the acceleration in the service's ability to handle more requests. This model is later used as a solution to horizontally auto-scale time-sensitive services composed of microservices, reevaluating the model’s parameters periodically to allocate resources. The solution requires limiting the acceleration of the growth in the number of incoming requests to keep a constrained response time. Business benefits determine such limits. The solution can add a dynamic number of instances and remains valid under different system sizes. The study includes performance recommendations to improve results according to the incoming load shape and business benefits. The exposed methodology is tested in a simulation. The simulator contains a load generator and a service composed of two microservices, where the frontend microservice depends on a backend microservice with a 1:1 request relation ratio. A common request takes 2.3 seconds to be computed by the service and is discarded if it takes more than 7 seconds. Both microservices contain a load balancer that assigns requests to the less loaded instance and preemptively discards requests if they are not finished in time to prevent resource saturation. When load decreases, instances with lower load are kept in the backlog where no more requests are assigned. If the load grows and an instance in the backlog is required, it returns to the running state, but if it finishes the computation of all requests and is no longer required, it is permanently deallocated. A few load patterns are required to represent the worst-case scenario for reactive systems: the following scenarios test response times, resource consumption and business costs. The first scenario is a burst-load scenario. All methodologies will discard requests if the rapidness of the burst is high enough. This scenario focuses on the number of discarded requests and the variance of the response time. The second scenario contains sudden load drops followed by bursts to observe how the methodology behaves when releasing resources that are lately required. The third scenario contains diverse growth accelerations in the number of incoming requests to observe how approaches that add a different number of instances can handle the load with less business cost. The exposed methodology is compared against a multiple threshold CPU methodology allocating/deallocating 10 or 20 instances, outperforming the competitor in all studied metrics.

Keywords: reactive auto-scaling, auto-scaling, microservices, cloud computing

Procedia PDF Downloads 93
65 Predictability of Kiremt Rainfall Variability over the Northern Highlands of Ethiopia on Dekadal and Monthly Time Scales Using Global Sea Surface Temperature

Authors: Kibrom Hadush

Abstract:

Countries like Ethiopia, whose economy is mainly rain-fed dependent agriculture, are highly vulnerable to climate variability and weather extremes. Sub-seasonal (monthly) and dekadal forecasts are hence critical for crop production and water resource management. Therefore, this paper was conducted to study the predictability and variability of Kiremt rainfall over the northern half of Ethiopia on monthly and dekadal time scales in association with global Sea Surface Temperature (SST) at different lag time. Trends in rainfall have been analyzed on annual, seasonal (Kiremt), monthly, and dekadal (June–September) time scales based on rainfall records of 36 meteorological stations distributed across four homogenous zones of the northern half of Ethiopia for the period 1992–2017. The results from the progressive Mann–Kendall trend test and the Sen’s slope method shows that there is no significant trend in the annual, Kiremt, monthly and dekadal rainfall total at most of the station's studies. Moreover, the rainfall in the study area varies spatially and temporally, and the distribution of the rainfall pattern increases from the northeast rift valley to northwest highlands. Methods of analysis include graphical correlation and multiple linear regression model are employed to investigate the association between the global SSTs and Kiremt rainfall over the homogeneous rainfall zones and to predict monthly and dekadal (June-September) rainfall using SST predictors. The results of this study show that in general, SST in the equatorial Pacific Ocean is the main source of the predictive skill of the Kiremt rainfall variability over the northern half of Ethiopia. The regional SSTs in the Atlantic and the Indian Ocean as well contribute to the Kiremt rainfall variability over the study area. Moreover, the result of the correlation analysis showed that the decline of monthly and dekadal Kiremt rainfall over most of the homogeneous zones of the study area are caused by the corresponding persistent warming of the SST in the eastern and central equatorial Pacific Ocean during the period 1992 - 2017. It is also found that the monthly and dekadal Kiremt rainfall over the northern, northwestern highlands and northeastern lowlands of Ethiopia are positively correlated with the SST in the western equatorial Pacific, eastern and tropical northern the Atlantic Ocean. Furthermore, the SSTs in the western equatorial Pacific and Indian Oceans are positively correlated to the Kiremt season rainfall in the northeastern highlands. Overall, the results showed that the prediction models using combined SSTs at various ocean regions (equatorial and tropical) performed reasonably well in the prediction (With R2 ranging from 30% to 65%) of monthly and dekadal rainfall and recommends it can be used for efficient prediction of Kiremt rainfall over the study area to aid with systematic and informed decision making within the agricultural sector.

Keywords: dekadal, Kiremt rainfall, monthly, Northern Ethiopia, sea surface temperature

Procedia PDF Downloads 140
64 Carbon-Supported Pd Nano-Particles as Green Catalysts for the Production of Fuels from Biomass

Authors: Andrea Dragu, Solen Kinayyigit, Valerie Colliere, Karin Karin Philippot, Camelia Bala, Vasile I. Parvulescu

Abstract:

The production of transportation fuels from biomass has gained a growing attention due to diminishing fossil fuel reserves, rising petroleum prices and increasing concern about global warming. In recent years, renewable hydrocarbons that are completely fungible with fossil fuels have been suggested to be efficiently produced by catalytic deoxygenation of fatty acids and their derivatives viadecarboxylation / decarbonylation. Several triglycerides (tall oil fatty acids) and saturated/unsaturated fatty acids and their corresponding esters were used as feedstocks. Their impact together with the influence of the reaction conditions and the catalyst composition on the nature of the reaction pathways of the deoxygenation of vegetable oils and their derivatives were recently reviewed. Following this state of the art the aim of the present study was the investigation of Pd NPs deposited onto mesoporous carbon supports as active and stable catalysts for the deoxygenation of oleic acid. The catalysts were prepared by the deposition of Pd NPs synthesised following an organometallic route on mesoporous carbons with different characteristics. Experiments were carried out under both batch and flow conditions. They demonstrated that under batch conditions (200 atm; 573K), the extent of the reaction depended, firstly, on the Pd loading and then on the metal dispersion and the oxidation state of palladium, both influenced by the way the support has been treated before the NPs deposition and by the preparation/stabilization methodology of Pd NPs. No aromatic compounds were detected in the reaction products but octadecanol and octadecane were observed in large extents. Under flow conditions (4 atm; 573 K), the conversion of stearic acid was superior to that observed in batch conditions. The product mixture contained over 20% heptadecane. No octadecanol, octadecane, and aromatic compounds were detected. The maxima in performances are obtained after only 0.5 h. After that, the yields in heptadecane suffer from a severe decrease until 3h reaction time. However, at that time, stopping feeding the reactor with oleic acid and flushing the catalyst only with mesitylene recovered the activity and the selectivity of the catalysts. With the complete removal of H2, the analysis revealed the presence of heptadecene in high excess compared to heptadecane (almost 7 to 1), thus suggesting decarbonylation as the main route. ICP-OES measurements indicated no leaching of palladium and simple washing of catalysts with mesitylene allowed recycling without any change in conversion or product distribution. Noteworthy, mesitylene as solvent exhibited no effect in this reaction. In conclusion, this study demonstrates the feasibility of such catalysts for the green production of fuels from biomass.

Keywords: fuels from biomass, green catalyst, Pd nano-particles , recycble catalyst

Procedia PDF Downloads 302
63 Zinc Oxide Varistor Performance: A 3D Network Model

Authors: Benjamin Kaufmann, Michael Hofstätter, Nadine Raidl, Peter Supancic

Abstract:

ZnO varistors are the leading overvoltage protection elements in today’s electronic industry. Their highly non-linear current-voltage characteristics, very fast response times, good reliability and attractive cost of production are unique in this field. There are challenges and questions unsolved. Especially, the urge to create even smaller, versatile and reliable parts, that fit industry’s demands, brings manufacturers to the limits of their abilities. Although, the varistor effect of sintered ZnO is known since the 1960’s, and a lot of work was done on this field to explain the sudden exponential increase of conductivity, the strict dependency on sinter parameters, as well as the influence of the complex microstructure, is not sufficiently understood. For further enhancement and down-scaling of varistors, a better understanding of the microscopic processes is needed. This work attempts a microscopic approach to investigate ZnO varistor performance. In order to cope with the polycrystalline varistor ceramic and in order to account for all possible current paths through the material, a preferably realistic model of the microstructure was set up in the form of three-dimensional networks where every grain has a constant electric potential, and voltage drop occurs only at the grain boundaries. The electro-thermal workload, depending on different grain size distributions, was investigated as well as the influence of the metal-semiconductor contact between the electrodes and the ZnO grains. A number of experimental methods are used, firstly, to feed the simulations with realistic parameters and, secondly, to verify the obtained results. These methods are: a micro 4-point probes method system (M4PPS) to investigate the current-voltage characteristics between single ZnO grains and between ZnO grains and the metal electrode inside the varistor, micro lock-in infrared thermography (MLIRT) to detect current paths, electron back scattering diffraction and piezoresponse force microscopy to determine grain orientations, atom probe to determine atomic substituents, Kelvin probe force microscopy for investigating grain surface potentials. The simulations showed that, within a critical voltage range, the current flow is localized along paths which represent only a tiny part of the available volume. This effect could be observed via MLIRT. Furthermore, the simulations exhibit that the electric power density, which is inversely proportional to the number of active current paths, since this number determines the electrical active volume, is dependent on the grain size distribution. M4PPS measurements showed that the electrode-grain contacts behave like Schottky diodes and are crucial for asymmetric current path development. Furthermore, evaluation of actual data suggests that current flow is influenced by grain orientations. The present results deepen the knowledge of influencing microscopic factors on ZnO varistor performance and can give some recommendations on fabrication for obtaining more reliable ZnO varistors.

Keywords: metal-semiconductor contact, Schottky diode, varistor, zinc oxide

Procedia PDF Downloads 281
62 Peak Constituent Fluxes from Small Arctic Rivers Generated by Late Summer Episodic Precipitation Events

Authors: Shawn G. Gallaher, Lilli E. Hirth

Abstract:

As permafrost thaws with the continued warming of the Alaskan North Slope, a progressively thicker active thaw layer is evidently releasing previously sequestered nutrients, metals, and particulate matter exposed to fluvial transport. In this study, we estimate material fluxes on the North Slope of Alaska during the 2019-2022 melt seasons. The watershed of the Alaskan North Slope can be categorized into three regions: mountains, tundra, and coastal plain. Precipitation and discharge data were collected from repeat visits to 14 sample sites for biogeochemical surface water samples, 7 point discharge measurements, 3 project deployed meteorology stations, and 2 U. S. Geological Survey (USGS) continuous discharge observation sites. The timing, intensity, and spatial distribution of precipitation determine the material flux composition in the Sagavanirktok and surrounding bodies of water, with geogenic constituents (e.g., dissolved inorganic carbon (DIC)) expected from mountain flushed events and biogenic constituents (e.g., dissolved organic compound (DOC)) expected from transitional tundra precipitation events. Project goals include connecting late summer precipitation events to peak discharge to determine the responses of the watershed to localized atmospheric forcing. Field study measurements showed widespread precipitation in August 2019, generating an increase in total suspended solids, dissolved organic carbon, and iron fluxes from the tundra, shifting the main-stem mountain river biogeochemistry toward tundra source characteristics typically only observed during the spring floods. Intuitively, a large-scale precipitation event (as defined by this study as exceeding 12.5 mm of precipitation on a single observation day) would dilute a body of water; however, in this study, concentrations increased with higher discharge responses on several occasions. These large-scale precipitation events continue to produce peak constituent fluxes as the thaw layer increases in depth and late summer precipitation increases, evidenced by 6 large-scale events in July 2022 alone. This increase in late summer events is in sharp contrast to the 3 or fewer large events in July in each of the last 10 years. Changes in precipitation intensity, timing, and location have introduced late summer peak constituent flux events previously confined to the spring freshet.

Keywords: Alaska North Slope, arctic rivers, material flux, precipitation

Procedia PDF Downloads 75
61 The Effect of Regulation and Investment in Sustainable Practices on Environmental Performance and Consumer Trust: a Time Series Analysis of the Dominant Companies within the Energy Sector

Authors: Sempiga Olivier, Dominika Latusek-Jurczak

Abstract:

Climate change has allegedly been attributed to a high consumption of fossil fuels, leading to severe environmental problems. The energy sector has been among the most polluting sectors for many decades. Consequently, there is a lack of trust in several energy firms, especially those in fossil fuels and nuclear energy. A robust regulatory framework is needed, and more investment in renewable energy sources is paramount for a better environmental outcome. Given the significant environmental impact of energy production and consumption in the energy sector, sustainable marketing practices have become increasingly important. Although the latter has had the lion’s share in polluting the environment, much effort has been made recently to move away from fossil fuels and privilege renewable energy sources. How this shift would help rebuild trust in the energy industry is unclear. For the shift to have lasting effects, it may be essential that regulatory agencies examine how energy firms engage in sustainable investment. There is little empirical evidence on whether adopting regulating marketing practices and investment initiatives can help different organizations reduce their environmental impact and promote sustainable development. Little is known about how and whether the environmental value in firms goes beyond rhetoric, greenwashing and publicity to translate into economic gains and environmental performance. The study investigates how regulatory agencies can help energy firms invest sustainably and take sustainable initiatives even amid the energy crisis caused by the Russia-Ukraine conflict and how these sustainable practices relate to renewed consumer trust. Using data from Corporate Knights, the study, through time series, analyses the relationship between sustainable regulation, sustainable practices of energy firms from around the world and their relation to consumer trust and environmental performance over the past 20 years. It examines how their sustainable investment, energy, and carbon productivity relate to environmental sustainability and consumer trust. This longitudinal study provides empirical evidence of the interplay between regulation, trust and environmental performance. The research is grounded in institutional trust theory, which emphasizes the role of regulatory frameworks and organizational practices in shaping public perceptions of fairness, transparency, and legitimacy. Results show that organizations in the energy sector, supported by robust regulatory tools, can overcome the negative image of polluters and compete with other companies in the fight against climate change and global warming. However, to do so, energy firms should consider investing more in renewable energy sources and implementing sustainable strategies and practices that go beyond greenwashing to improve their environmental performance, thereby rebuilding consumer trust in the energy sector. Results allow regulatory regimes and organizations to learn why it is crucial for energy firms to invest in renewable energy sources and engage in various sustainable initiatives and practices to contribute to better environmental outcomes and higher levels of trust.

Keywords: consumer trust, energy, environmental performance, regulation, renewable energy sources, sustainable practices

Procedia PDF Downloads 9
60 Slipping Through the Net: Women’s Experiences of Maternity Services and Social Support in the UK During the COVID-19 Pandemic

Authors: Freya Harding, Anne Gatuguta, Chi Eziefula

Abstract:

Introduction Research shows the quality of experiences of pregnancy, birth, and postpartum impacts the health and well-being of the mother and baby. This is recognised by the WHO in their recommendations ‘Intrapartum care for a positive childbirth experience’. The COVID-19 pandemic saw the transformation of the NHS Maternity services to prevent the transmission of COVID-19. Physical and social isolation may have affected women’s experiences of pregnancy, birth and postpartum; especially those of healthcare. Examples of such changes made to the NHS include both the reduction in volume of face-to-face consultations and restrictions to visitor time in hospitals. One notable detriment due to these changes was the absence of a partner during certain stages of birth. The aim of this study was to explore women’s experiences of pregnancy, birth, and postnatal period during the COVID-19 pandemic in the UK. Methods We collected qualitative data from women who had given birth during the COVID-19 pandemic. In-depth, semi-structured interviews were conducted with twelve participants recruited from mother and baby groups in Southeast England. Data were audio-recorded, transcribed verbatim, and analysed thematically using both inductive and deductive approaches. Ethics permission was granted from Brighton and Sussex Medical School (ER/BSMS9A83/1). Results Interviews were conducted with 12 women who gave birth between May 2020 and February 2021. Ages of the participants ranged between 28 and 42 years, most of which were white British, with one being Asian British. All participants were heterosexual and either married or co-habiting with their partner. Five participants worked in the NHS, and all participants had professional occupations. Women felt inadequately supported both socially and medically. An appropriate sense of control over their own birthing experience was lacking. Safety mechanisms, such as in-person visits from the midwife, had no suitable alternatives in place. Serious health issues were able to “slip through the net.” Mental health conditions in some of those interviewed worsened or developed. Similarly, reduced support from partners during birth and during the immediate postpartum period at the hospital, coupled with reduced ward staffing, resulted in some traumatic experiences; particularly for women who had undergone caesarean section. However, some unexpected positive effects were reported; one example being that partners were able to spend more time with their baby due to furlough schemes and working from home. Similarly, emergency care was not felt to have been compromised. Overall, six themes emerged: (1) Self-reported traumatic experiences, (2) Challenges of caring for a baby with reduced medical and social support, (3) Unexpected benefits to the parenting experience, (4) The effects of a sudden change in medical management (5) Poor communication from healthcare professionals (6) Social change; with subthemes of support accessing medical care, the workplace, family and friends, and antenatal & baby groups. Conclusions The results indicate that the healthcare system was unable to adequately deliver maternity care to facilitate positive pregnancy, birth, and postnatal experiences during the heights of the pandemic. The poor quality of such experiences has been linked an increased risk of long-term health complications in both the mother and child.

Keywords: pregnancy, birth, postpartum, postnatal, COVID-19, maternity, social support, qualitative, pandemic

Procedia PDF Downloads 138
59 Potential Impacts of Climate Change on Hydrological Droughts in the Limpopo River Basin

Authors: Nokwethaba Makhanya, Babatunde J. Abiodun, Piotr Wolski

Abstract:

Climate change possibly intensifies hydrological droughts and reduces water availability in river basins. Despite this, most research on climate change effects in southern Africa has focused exclusively on meteorological droughts. This thesis projects the potential impact of climate change on the future characteristics of hydrological droughts in the Limpopo River Basin (LRB). The study uses regional climate model (RCM) measurements (from the Coordinated Regional Climate Downscaling Experiment, CORDEX) and a combination of hydrological simulations (using the Soil and Water Assessment Tool Plus model, SWAT+) to predict the impacts at four global warming levels (GWLs: 1.5℃, 2.0℃, 2.5℃, and 3.0℃) under the RCP8.5 future climate scenario. The SWAT+ model was calibrated and validated with a streamflow dataset observed over the basin, and the sensitivity of model parameters was investigated. The performance of the SWAT+LRB model was verified using the Nash-Sutcliffe efficiency (NSE), Percent Bias (PBIAS), Root Mean Square Error (RMSE), and coefficient of determination (R²). The Standardized Precipitation Evapotranspiration Index (SPEI) and the Standardized Precipitation Index (SPI) have been used to detect meteorological droughts. The Soil Water Index (SSI) has been used to define agricultural drought, while the Water Yield Drought Index (WYLDI), the Surface Run-off Index (SRI), and the Streamflow Index (SFI) have been used to characterise hydrological drought. The performance of the SWAT+ model simulations over LRB is sensitive to the parameters CN2 (initial SCS runoff curve number for moisture condition II) and ESCO (soil evaporation compensation factor). The best simulation generally performed better during the calibration period than the validation period. In calibration and validation periods, NSE is ≤ 0.8, while PBIAS is ≥ ﹣80.3%, RMSE ≥ 11.2 m³/s, and R² ≤ 0.9. The simulations project a future increase in temperature and potential evapotranspiration over the basin, but they do not project a significant future trend in precipitation and hydrological variables. However, the spatial distribution of precipitation reveals a projected increase in precipitation in the southern part of the basin and a decline in the northern part of the basin, with the region of reduced precipitation projected to increase with GWLs. A decrease in all hydrological variables is projected over most parts of the basin, especially over the eastern part of the basin. The simulations predict meteorological droughts (i.e., SPEI and SPI), agricultural droughts (i.e., SSI), and hydrological droughts (i.e., WYLDI, SRI) would become more intense and severe across the basin. SPEI-drought has a greater magnitude of increase than SPI-drought, and agricultural and hydrological droughts have a magnitude of increase between the two. As a result, this research suggests that future hydrological droughts over the LRB could be more severe than the SPI-drought projection predicts but less severe than the SPEI-drought projection. This research can be used to mitigate the effects of potential climate change on basin hydrological drought.

Keywords: climate change, CORDEX, drought, hydrological modelling, Limpopo River Basin

Procedia PDF Downloads 128
58 Investigation into the Socio-ecological Impact of Migration of Fulani Herders in Anambra State of Nigeria Through a Climate Justice Lens

Authors: Anselm Ego Onyimonyi, Maduako Johnpaul O.

Abstract:

The study was designed to investigate into the socio-ecological impact of migration of Fulani herders in Anambra state of Nigeria, through a climate justice lens. Nigeria is one of the world’s most densely populated countries with a population of over 284 million people, half of which are considered to be in abject poverty. There is no doubt that livestock production provides sustainable contributions to food security and poverty reduction to Nigeria economy, but not without some environmental implications like any other economic activities. Nigeria is recognized as being vulnerable to climate change. Climate change and global warming if left unchecked will cause adverse effects on livelihoods in Nigeria, such as livestock production, crop production, fisheries, forestry and post-harvest activities, because the rainfall regimes and patterns will be altered, floods which devastate farmlands would occur, increase in temperature and humidity which increases pest and disease would occur and other natural disasters like desertification, drought, floods, ocean and storm surges, which not only damage Nigerians’ livelihood but also cause harm to life and property, would occur. This and other climatic issue as it affects Fulani herdsmen was what this study investigated. In carrying out this research, a survey research design was adopted. A simple sampling technique was used. One local government area (LGA) was selected purposively from each of the four agricultural zone in the state based on its predominance of Fulani herders. For appropriate sampling, 25 respondents from each of the four Agricultural zones in the state were randomly selected making up the 100 respondent being sampled. Primary data were generated by using a set of structured 5-likert scale questionnaire. Data generated were analyzed using SPSS and the result presented using descriptive statistics. From the data analyzed, the study indentified; Unpredicted rainfall (mean = 3.56), Forest fire (mean = 4.63), Drying Water Source (mean = 3.99), Dwindling Grazing (mean 4.43), Desertification (mean = 4.44), Fertile land scarcity (mean = 3.42) as major factor predisposing Fulani herders to migrate southward while rejecting Natural inclination to migrate (mean = 2.38) and migration to cause trouble as a factor. On the reason why Fulani herders are trying to establish a permanent camp in Anambra state; Moderate temperature (mean= 3.60), Avoiding overgrazing (4.42), Search for fodder and water (mean = 4.81) and (mean = 4.70) respectively, Need for market (4.28), Favorable environment (mean = 3.99) and Access to fertile land (3.96) were identified. It was concluded that changing climatic variables necessitated the migration of herders from Northern Nigeria to areas in the South were the variables are most favorable to the herders and their animals.

Keywords: socio-ecological, migration, fulani, climate, justice, lens

Procedia PDF Downloads 43
57 Integrating High-Performance Transport Modes into Transport Networks: A Multidimensional Impact Analysis

Authors: Sarah Pfoser, Lisa-Maria Putz, Thomas Berger

Abstract:

In the EU, the transport sector accounts for roughly one fourth of the total greenhouse gas emissions. In fact, the transport sector is one of the main contributors of greenhouse gas emissions. Climate protection targets aim to reduce the negative effects of greenhouse gas emissions (e.g. climate change, global warming) worldwide. Achieving a modal shift to foster environmentally friendly modes of transport such as rail and inland waterways is an important strategy to fulfill the climate protection targets. The present paper goes beyond these conventional transport modes and reflects upon currently emerging high-performance transport modes that yield the potential of complementing future transport systems in an efficient way. It will be defined which properties describe high-performance transport modes, which types of technology are included and what is their potential to contribute to a sustainable future transport network. The first step of this paper is to compile state-of-the-art information about high-performance transport modes to find out which technologies are currently emerging. A multidimensional impact analysis will be conducted afterwards to evaluate which of the technologies is most promising. This analysis will be performed from a spatial, social, economic and environmental perspective. Frequently used instruments such as cost-benefit analysis and SWOT analysis will be applied for the multidimensional assessment. The estimations for the analysis will be derived based on desktop research and discussions in an interdisciplinary team of researchers. For the purpose of this work, high-performance transport modes are characterized as transport modes with very fast and very high throughput connections that could act as efficient extension to the existing transport network. The recently proposed hyperloop system represents a potential high-performance transport mode which might be an innovative supplement for the current transport networks. The idea of hyperloops is that persons and freight are shipped in a tube at more than airline speed. Another innovative technology consists in drones for freight transport. Amazon already tests drones for their parcel shipments, they aim for delivery times of 30 minutes. Drones can, therefore, be considered as high-performance transport modes as well. The Trans-European Transport Networks program (TEN-T) addresses the expansion of transport grids in Europe and also includes high speed rail connections to better connect important European cities. These services should increase competitiveness of rail and are intended to replace aviation, which is known to be a polluting transport mode. In this sense, the integration of high-performance transport modes as described above facilitates the objectives of the TEN-T program. The results of the multidimensional impact analysis will reveal potential future effects of the integration of high-performance modes into transport networks. Building on that, a recommendation on the following (research) steps can be given which are necessary to ensure the most efficient implementation and integration processes.

Keywords: drones, future transport networks, high performance transport modes, hyperloops, impact analysis

Procedia PDF Downloads 332
56 Recovery of Food Waste: Production of Dog Food

Authors: K. Nazan Turhan, Tuğçe Ersan

Abstract:

The population of the world is approximately 8 billion, and it increases uncontrollably and irrepressibly, leading to an increase in consumption. This situation causes crucial problems, and food waste is one of these. The Food and Agriculture Organization of the United Nations (FAO) defines food waste as the discarding or alternative utilization of food that is safe and nutritious for the consumption of humans along the entire food supply chain, from primary production to end household consumer level. In addition, according to the estimation of FAO, one-third of all food produced for human consumption is lost or wasted worldwide every year. Wasting food endangers natural resources and causes hunger. For instance, excessive amounts of food waste cause greenhouse gas emissions, contributing to global warming. Therefore, waste management has been gaining significance in the last few decades at both local and global levels due to the expected scarcity of resources for the increasing population of the world. There are several ways to recover food waste. According to the United States Environmental Protection Agency’s Food Recovery Hierarchy, food waste recovery ways are source reduction, feeding hungry people, feeding animals, industrial uses, composting, and landfill/incineration from the most preferred to the least preferred, respectively. Bioethanol, biodiesel, biogas, agricultural fertilizer and animal feed can be obtained from food waste that is generated by different food industries. In this project, feeding animals was selected as a food waste recovery method and food waste of a plant was used to provide ingredient uniformity. Grasshoppers were used as a protein source. In other words, the project was performed to develop a dog food product by recovery of the plant’s food waste after following some steps. The collected food waste and purchased grasshoppers were sterilized, dried and pulverized. Then, they were all mixed with 60 g agar-agar solution (4%w/v). 3 different aromas were added, separately to the samples to enhance flavour quality. Since there are differences in the required amounts of different species of dogs, fulfilling all nutritional needs is one of the problems. In other words, there is a wide range of nutritional needs in terms of carbohydrates, protein, fat, sodium, calcium, and so on. Furthermore, the requirements differ depending on age, gender, weight, height, and species. Therefore, the product that was developed contains average amounts of each substance so as not to cause any deficiency or surplus. On the other hand, it contains more protein than similar products in the market. The product was evaluated in terms of contamination and nutritional content. For contamination risk, detection of E. coli and Salmonella experiments were performed, and the results were negative. For the nutritional value test, protein content analysis was done. The protein contents of different samples vary between 33.68% and 26.07%. In addition, water activity analysis was performed, and the water activity (aw) values of different samples ranged between 0.2456 and 0.4145.

Keywords: food waste, dog food, animal nutrition, food waste recovery

Procedia PDF Downloads 63
55 Engineering Design of a Chemical Launcher: An Interdisciplinary Design Activity

Authors: Mei Xuan Tan, Gim-Yang Maggie Pee, Mei Chee Tan

Abstract:

Academic performance, in the form of scoring high grades in enrolled subjects, is not the only significant trait in achieving success. Engineering graduates with experience in working on hands-on projects in a team setting are highly sought after in industry upon graduation. Such projects are typically real world problems that require the integration and application of knowledge and skills from several disciplines. In a traditional university setting, subjects are taught in a silo manner with no cross participation from other departments or disciplines. This may lead to knowledge compartmentalization and students are unable to understand and connect the relevance and applicability of the subject. University instructors thus see this integration across disciplines as a challenging task as they aim to better prepare students in understanding and solving problems for work or future studies. To improve students’ academic performance and to cultivate various skills such as critical thinking, there has been a gradual uptake in the use of an active learning approach in introductory science and engineering courses, where lecturing is traditionally the main mode of instruction. This study aims to discuss the implementation and experience of a hands-on, interdisciplinary project that involves all the four core subjects taught during the term at the Singapore University of Technology Design (SUTD). At SUTD, an interdisciplinary design activity, named 2D, is integrated into the curriculum to help students reinforce the concepts learnt. A student enrolled in SUTD experiences his or her first 2D in Term 1. This activity. which spans over one week in Week 10 of Term 1, highlights the application of chemistry, physics, mathematics, humanities, arts and social sciences (HASS) in designing an engineering product solution. The activity theme for Term 1 2D revolved around “work and play”. Students, in teams of 4 or 5, used a scaled-down model of a chemical launcher to launch a projectile across the room. It involved the use of a small chemical combustion reaction between ethanol (a highly volatile fuel) and oxygen. This reaction generated a sudden and large increase in gas pressure built up in a closed chamber, resulting in rapid gas expansion and ejection of the projectile out of the launcher. Students discussed and explored the meaning of play in their lives in HASS class while the engineering aspects of a combustion system to launch an object using underlying principles of energy conversion and projectile motion were revisited during the chemistry and physics classes, respectively. Numerical solutions on the distance travelled by the projectile launched by the chemical launcher, taking into account drag forces, was developed during the mathematics classes. At the end of the activity, students developed skills in report writing, data collection and analysis. Specific to this 2D activity, students gained an understanding and appreciation on the application and interdisciplinary nature of science, engineering and HASS. More importantly, students were exposed to design and problem solving, where human interaction and discussion are important yet challenging in a team setting.

Keywords: active learning, collaborative learning, first year undergraduate, interdisciplinary, STEAM

Procedia PDF Downloads 122
54 Bio-Inspired Information Complexity Management: From Ant Colony to Construction Firm

Authors: Hamza Saeed, Khurram Iqbal Ahmad Khan

Abstract:

Effective information management is crucial for any construction project and its success. Primary areas of information generation are either the construction site or the design office. There are different types of information required at different stages of construction involving various stakeholders creating complexity. There is a need for effective management of information flows to reduce uncertainty creating complexity. Nature provides a unique perspective in terms of dealing with complexity, in particular, information complexity. System dynamics methodology provides tools and techniques to address complexity. It involves modeling and simulation techniques that help address complexity. Nature has been dealing with complex systems since its creation 4.5 billion years ago. It has perfected its system by evolution, resilience towards sudden changes, and extinction of unadaptable and outdated species that are no longer fit for the environment. Nature has been accommodating the changing factors and handling complexity forever. Humans have started to look at their natural counterparts for inspiration and solutions for their problems. This brings forth the possibility of using a biomimetics approach to improve the management practices used in the construction sector. Ants inhabit different habitats. Cataglyphis and Pogonomyrmex live in deserts, Leafcutter ants reside in rainforests, and Pharaoh ants are native to urban developments of tropical areas. Detailed studies have been done on fifty species out of fourteen thousand discovered. They provide the opportunity to study the interactions in diverse environments to generate collective behavior. Animals evolve to better adapt to their environment. The collective behavior of ants emerges from feedback through interactions among individuals, based on a combination of three basic factors: The patchiness of resources in time and space, operating cost, environmental stability, and the threat of rupture. If resources appear in patches through time and space, the response is accelerating and non-linear, and if resources are scattered, the response follows a linear pattern. If the acquisition of energy through food is faster than energy spent to get it, the default is to continue with an activity unless it is halted for some reason. If the energy spent is rather higher than getting it, the default changes to stay put unless activated. Finally, if the environment is stable and the threat of rupture is low, the activation and amplification rate is slow but steady. Otherwise, it is fast and sporadic. To further study the effects and to eliminate the environmental bias, the behavior of four different ant species were studied, namely Red Harvester ants (Pogonomyrmex Barbatus), Argentine ants (Linepithema Humile), Turtle ants (Cephalotes Goniodontus), Leafcutter ants (Genus: Atta). This study aims to improve the information system in the construction sector by providing a guideline inspired by nature with a systems-thinking approach, using system dynamics as a tool. Identified factors and their interdependencies were analyzed in the form of a causal loop diagram (CLD), and construction industry professionals were interviewed based on the developed CLD, which was validated with significance response. These factors and interdependencies in the natural system corresponds with the man-made systems, providing a guideline for effective use and flow of information.

Keywords: biomimetics, complex systems, construction management, information management, system dynamics

Procedia PDF Downloads 137
53 Belarus Rivers Runoff: Current State, Prospects

Authors: Aliaksandr Volchak, Мaryna Barushka

Abstract:

The territory of Belarus is studied quite well in terms of hydrology but runoff fluctuations over time require more detailed research in order to forecast changes in rivers runoff in future. Generally, river runoff is shaped by natural climatic factors, but man-induced impact has become so big lately that it can be compared to natural processes in forming runoffs. In Belarus, a heavy man load on the environment was caused by large-scale land reclamation in the 1960s. Lands of southern Belarus were reclaimed most, which contributed to changes in runoff. Besides, global warming influences runoff. Today we observe increase in air temperature, decrease in precipitation, changes in wind velocity and direction. These result from cyclic climate fluctuations and, to some extent, the growth of concentration of greenhouse gases in the air. Climate change affects Belarus’s water resources in different ways: in hydropower industry, other water-consuming industries, water transportation, agriculture, risks of floods. In this research we have done an assessment of river runoff according to the scenarios of climate change and global climate forecast presented in the 4th and 5th Assessment Reports conducted by Intergovernmental Panel on Climate Change (IPCC) and later specified and adjusted by experts from Vilnius Gediminas Technical University with the use of a regional climatic model. In order to forecast changes in climate and runoff, we analyzed their changes from 1962 up to now. This period is divided into two: from 1986 up to now in comparison with the changes observed from 1961 to 1985. Such a division is a common world-wide practice. The assessment has revealed that, on the average, changes in runoff are insignificant all over the country, even with its irrelevant increase by 0.5 – 4.0% in the catchments of the Western Dvina River and north-eastern part of the Dnieper River. However, changes in runoff have become more irregular both in terms of the catchment area and inter-annual distribution over seasons and river lengths. Rivers in southern Belarus (the Pripyat, the Western Bug, the Dnieper, the Neman) experience reduction of runoff all year round, except for winter, when their runoff increases. The Western Bug catchment is an exception because its runoff reduces all year round. Significant changes are observed in spring. Runoff of spring floods reduces but the flood comes much earlier. There are different trends in runoff changes in spring, summer, and autumn. Particularly in summer, we observe runoff reduction in the south and west of Belarus, with its growth in the north and north-east. Our forecast of runoff up to 2035 confirms the trend revealed in 1961 – 2015. According to it, in the future, there will be a strong difference between northern and southern Belarus, between small and big rivers. Although we predict irrelevant changes in runoff, it is quite possible that they will be uneven in terms of seasons or particular months. Especially, runoff can change in summer, but decrease in the rest seasons in the south of Belarus, whereas in the northern part the runoff is predicted to change insignificantly.

Keywords: assessment, climate fluctuation, forecast, river runoff

Procedia PDF Downloads 121
52 A Study for Effective CO2 Sequestration of Hydrated Cement by Direct Aqueous Carbonation

Authors: Hyomin Lee, Jinhyun Lee, Jinyeon Hwang, Younghoon Choi, Byeongseo Son

Abstract:

Global warming is a world-wide issue. Various carbon capture and storage (CCS) technologies for reducing CO2 concentration in the atmosphere have been increasingly studied. Mineral carbonation is one of promising method for CO2 sequestration. Waste cement generating from aggregate recycling processes of waste concrete is potentially a good raw material containing reactive components for mineral carbonation. The major goal of our long-term project is to developed effective methods for CO2 sequestration using waste cement. In the present study, the carbonation characteristics of hydrated cement were examined by conducting two different direct aqueous carbonation experiments. We also evaluate the influence of NaCl and MgCl2 as additives to increase mineral carbonation efficiency of hydrated cement. Cement paste was made with W:C= 6:4 and stored for 28 days in water bath. The prepared cement paste was pulverized to the size less than 0.15 mm. 15 g of pulverized cement paste and 200 ml of solutions containing additives were reacted in ambient temperature and pressure conditions. 1M NaCl and 0.25 M MgCl2 was selected for additives after leaching test. Two different sources of CO2 was applied for direct aqueous carbonation experiment: 0.64 M NaHCO3 was used for CO2 donor in method 1 and pure CO2 gas (99.9%) was bubbling into reacting solution at the flow rate of 20 ml/min in method 2. The pH and Ca ion concentration were continuously measured with pH/ISE Multiparameter to observe carbonation behaviors. Material characterization of reacted solids was performed by TGA, XRD, SEM/EDS analyses. The carbonation characteristics of hydrated cement were significantly different with additives. Calcite was a dominant calcium carbonate mineral after the two carbonation experiments with no additive and NaCl additive. The significant amount of aragonite and vaterite as well as very fine calcite of poorer crystallinity was formed with MgCl2 additive. CSH (calcium silicate hydrate) in hydrated cement were changed to MSH (magnesium silicate hydrate). This transformation contributed to the high carbonation efficiency. Carbonation experiment with method 1 revealed that that the carbonation of hydrated cement took relatively long time in MgCl2 solution compared to that in NaCl solution and the contents of aragonite and vaterite were increased as increasing reaction time. In order to maximize carbonation efficiency in direct aqueous carbonation with CO2 gas injection (method 2), the control of solution pH was important. The solution pH was decreased with injection of CO2 gas. Therefore, the carbonation efficiency in direct aqueous carbonation was closely related to the stability of calcium carbonate minerals with pH changes. With no additive and NaCl additive, the maximum carbonation was achieved when the solution pH was greater than 11. Calcium carbonate form by mineral carbonation seemed to be re-dissolved as pH decreased below 11 with continuous CO2 gas injection. The type of calcium carbonate mineral formed during carbonation in MgCl2 solution was closely related to the variation of solution pH caused by CO2 gas injection. The amount of aragonite significantly increased with decreasing solution pH, whereas the amount of calcite decreased.

Keywords: CO2 sequestration, Mineral carbonation, Cement and concrete, MgCl2 and NaCl

Procedia PDF Downloads 379
51 Advancements in Arthroscopic Surgery Techniques for Anterior Cruciate Ligament (ACL) Reconstruction

Authors: Islam Sherif, Ahmed Ashour, Ahmed Hassan, Hatem Osman

Abstract:

Anterior Cruciate Ligament (ACL) injuries are common among athletes and individuals participating in sports with sudden stops, pivots, and changes in direction. Arthroscopic surgery is the gold standard for ACL reconstruction, aiming to restore knee stability and function. Recent years have witnessed significant advancements in arthroscopic surgery techniques, graft materials, and technological innovations, revolutionizing the field of ACL reconstruction. This presentation delves into the latest advancements in arthroscopic surgery techniques for ACL reconstruction and their potential impact on patient outcomes. Traditionally, autografts from the patellar tendon, hamstring tendon, or quadriceps tendon have been commonly used for ACL reconstruction. However, recent studies have explored the use of allografts, synthetic scaffolds, and tissue-engineered grafts as viable alternatives. This abstract evaluates the benefits and potential drawbacks of each graft type, considering factors such as graft incorporation, strength, and risk of graft failure. Moreover, the application of augmented reality (AR) and virtual reality (VR) technologies in surgical planning and intraoperative navigation has gained traction. AR and VR platforms provide surgeons with detailed 3D anatomical reconstructions of the knee joint, enhancing preoperative visualization and aiding in graft tunnel placement during surgery. We discuss the integration of AR and VR in arthroscopic ACL reconstruction procedures, evaluating their accuracy, cost-effectiveness, and overall impact on surgical outcomes. Beyond graft selection and surgical navigation, patient-specific planning has gained attention in recent research. Advanced imaging techniques, such as MRI-based personalized planning, enable surgeons to tailor ACL reconstruction procedures to each patient's unique anatomy. By accounting for individual variations in the femoral and tibial insertion sites, this personalized approach aims to optimize graft placement and potentially improve postoperative knee kinematics and stability. Furthermore, rehabilitation and postoperative care play a crucial role in the success of ACL reconstruction. This abstract explores novel rehabilitation protocols, emphasizing early mobilization, neuromuscular training, and accelerated recovery strategies. Integrating technology, such as wearable sensors and mobile applications, into postoperative care can facilitate remote monitoring and timely intervention, contributing to enhanced rehabilitation outcomes. In conclusion, this presentation provides an overview of the cutting-edge advancements in arthroscopic surgery techniques for ACL reconstruction. By embracing innovative graft materials, augmented reality, patient-specific planning, and technology-driven rehabilitation, orthopedic surgeons and sports medicine specialists can achieve superior outcomes in ACL injury management. These developments hold great promise for improving the functional outcomes and long-term success rates of ACL reconstruction, benefitting athletes and patients alike.

Keywords: arthroscopic surgery, ACL, autograft, allograft, graft materials, ACL reconstruction, synthetic scaffolds, tissue-engineered graft, virtual reality, augmented reality, surgical planning, intra-operative navigation

Procedia PDF Downloads 92
50 Physiological Effects during Aerobatic Flights on Science Astronaut Candidates

Authors: Pedro Llanos, Diego García

Abstract:

Spaceflight is considered the last frontier in terms of science, technology, and engineering. But it is also the next frontier in terms of human physiology and performance. After more than 200,000 years humans have evolved under earth’s gravity and atmospheric conditions, spaceflight poses environmental stresses for which human physiology is not adapted. Hypoxia, accelerations, and radiation are among such stressors, our research involves suborbital flights aiming to develop effective countermeasures in order to assure sustainable human space presence. The physiologic baseline of spaceflight participants is subject to great variability driven by age, gender, fitness, and metabolic reserve. The objective of the present study is to characterize different physiologic variables in a population of STEM practitioners during an aerobatic flight. Cardiovascular and pulmonary responses were determined in Science Astronaut Candidates (SACs) during unusual attitude aerobatic flight indoctrination. Physiologic data recordings from 20 subjects participating in high-G flight training were analyzed. These recordings were registered by wearable sensor-vest that monitored electrocardiographic tracings (ECGs), signs of dysrhythmias or other electric disturbances during all the flight. The same cardiovascular parameters were also collected approximately 10 min pre-flight, during each high-G/unusual attitude maneuver and 10 min after the flights. The ratio (pre-flight/in-flight/post-flight) of the cardiovascular responses was calculated for comparison of inter-individual differences. The resulting tracings depicting the cardiovascular responses of the subjects were compared against the G-loads (Gs) during the aerobatic flights to analyze cardiovascular variability aspects and fluid/pressure shifts due to the high Gs. In-flight ECG revealed cardiac variability patterns associated with rapid Gs onset in terms of reduced heart rate (HR) and some scattered dysrhythmic patterns (15% premature ventricular contractions-type) that were considered as triggered physiological responses to high-G/unusual attitude training and some were considered as instrument artifact. Variation events were observed in subjects during the +Gz and –Gz maneuvers and these may be due to preload and afterload, sudden shift. Our data reveal that aerobatic flight influenced the breathing rate of the subject, due in part by the various levels of energy expenditure due to the increased use of muscle work during these aerobatic maneuvers. Noteworthy was the high heterogeneity in the different physiological responses among a relatively small group of SACs exposed to similar aerobatic flights with similar Gs exposures. The cardiovascular responses clearly demonstrated that SACs were subjected to significant flight stress. Routine ECG monitoring during high-G/unusual attitude flight training is recommended to capture pathology underlying dangerous dysrhythmias in suborbital flight safety. More research is currently being conducted to further facilitate the development of robust medical screening, medical risk assessment approaches, and suborbital flight training in the context of the evolving commercial human suborbital spaceflight industry. A more mature and integrative medical assessment method is required to understand the physiology state and response variability among highly diverse populations of prospective suborbital flight participants.

Keywords: g force, aerobatic maneuvers, suborbital flight, hypoxia, commercial astronauts

Procedia PDF Downloads 129
49 Development of Wound Dressing System Based on Hydrogel Matrix Incorporated with pH-Sensitive Nanocarrier-Drug Systems

Authors: Dagmara Malina, Katarzyna Bialik-Wąs, Klaudia Pluta

Abstract:

The growing significance of transdermal systems, in which skin is a route for systemic drug delivery, has generated a considerable amount of data which has resulted in a deeper understanding of the mechanisms of transport across the skin in the context of the controlled and prolonged release of active substances. One of such solutions may be the use of carrier systems based on intelligent polymers with different physicochemical properties. In these systems, active substances, e.g. drugs, can be conjugated (attached), immobilized, or encapsulated in a polymer matrix that is sensitive to specific environmental conditions (e.g. pH or temperature changes). Intelligent polymers can be divided according to their sensitivity to specific environmental stimuli such as temperature, pH, light, electric, magnetic, sound, or electromagnetic fields. Materials & methods—The first stage of the presented research concerned the synthesis of pH-sensitive polymeric carriers by a radical polymerization reaction. Then, the selected active substance (hydrocortisone) was introduced into polymeric carriers. In a further stage, bio-hybrid sodium alginate/poly(vinyl alcohol) – SA/PVA-based hydrogel matrices modified with various carrier-drug systems were prepared with the chemical cross-linking method. The conducted research included the assessment of physicochemical properties of obtained materials i.e. degree of hydrogel swelling and degradation studies as a function of pH in distilled water and phosphate-buffered saline (PBS) at 37°C in time. The gel fraction represents the insoluble gel fraction as a result of inter-molecule cross-linking formation was also measured. Additionally, the chemical structure of obtained hydrogels was confirmed using FT-IR spectroscopic technique. The dynamic light scattering (DLS) technique was used for the analysis of the average particle size of polymer-carriers and carrier-drug systems. The nanocarriers morphology was observed using SEM microscopy. Results & Discussion—The analysis of the encapsulated polymeric carriers showed that it was possible to obtain the time-stable empty pH-sensitive carrier with an average size 479 nm and the encapsulated system containing hydrocortisone with an average 543 nm, which was introduced into hydrogel structure. Bio-hybrid hydrogel matrices are stable materials, and the presence of an additional component: pH-sensitive carrier – hydrocortisone system, does not reduce the degree of cross-linking of the matrix nor its swelling ability. Moreover, the results of swelling tests indicate that systems containing higher concentrations of the drug have a slightly higher sorption capacity in each of the media used. All analyzed materials show stable and statically changing swelling values in simulated body fluids - there is no sudden fluid uptake and no rapid release from the material. The analysis of FT-IR spectra confirms the chemical structure of the obtained bio-hybrid hydrogel matrices. In the case of modifications with a pH-sensitive carrier, a much more intense band can be observed in the 3200-3500 cm⁻¹ range, which most likely originates from the strong hydrogen interactions that occur between individual components.

Keywords: hydrogels, polymer nanocarriers, sodium alginate/poly(vinyl alcohol) matrices, wound dressings.

Procedia PDF Downloads 146
48 Biogas Production Using Water Hyacinth as a Means of Waste Management Control at Hartbeespoort Dam, South Africa

Authors: Trevor Malambo Simbayi, Diane Hildebrandt, Tonderayi Matambo

Abstract:

The rapid growth of population in recent decades has resulted in an increased need for energy to meet human activities. As energy demands increase, the need for other sources of energy other than fossil fuels, increases in turn. Furthermore, environmental concerns such as global warming due to the use of fossil fuels, depleting fossil fuel reserves and the rising cost of oil have contributed to an increased interest in renewables sources of energy. Biogas is a renewable source of energy produced through the process of anaerobic digestion (AD) and it offers a two-fold solution; it provides an environmentally friendly source of energy and its production helps to reduce the amount of organic waste taken to landfills. This research seeks to address the waste management problem caused by an aquatic weed called water hyacinth (Eichhornia crassipes) at the Hartbeespoort (Harties) Dam in the North West Province of South Africa, through biogas production of the weed. Water hyacinth is a category 1 invasive species and it is deemed to be the most problematic aquatic weed. This weed is said to double its size in the space of five days. Eutrophication in the Hartbeespoort Dam has manifested itself through the excessive algae bloom and water hyacinth infestation. A large amount of biomass from water hyacinth and algae are generated per annum from the two hundred hectare surface area of the dam exposed to the sun. This biomass creates a waste management problem. Water hyacinth when in full bloom can cover nearly half of the surface of Hartbeespoort Dam. The presence of water hyacinth in the dam has caused economic and environmental problems. Economic activities such as fishing, boating, and recreation, are hampered by the water hyacinth’s prolific growth. This research proposes the use of water hyacinth as a feedstock or substrate for biogas production in order to find an economic and environmentally friendly means of waste management for the communities living around the Hartbeespoort Dam. In order to achieve this objective, water hyacinth will be collected from the dam and it will be mechanically pretreated before anaerobic digestion. Pretreatment is required for lignocellulosic materials like water hyacinth because such materials are called recalcitrant solid materials. Cow manure will be employed as a source of microorganisms needed for biogas production to occur. Once the water hyacinth and the cow dung are mixed, they will be placed in laboratory anaerobic reactors. Biogas production will be monitored daily through the downward displacement of water. Characterization of the substrates (cow manure and water hyacinth) to determine the nitrogen, sulfur, carbon and hydrogen, total solids (TS) and volatile solids (VS). Liquid samples from the anaerobic digesters will be collected and analyzed for volatile fatty acids (VFAs) composition by means of a liquid gas chromatography machine.

Keywords: anaerobic digestion, biogas, waste management, water hyacinth

Procedia PDF Downloads 195
47 Monitoring Future Climate Changes Pattern over Major Cities in Ghana Using Coupled Modeled Intercomparison Project Phase 5, Support Vector Machine, and Random Forest Modeling

Authors: Stephen Dankwa, Zheng Wenfeng, Xiaolu Li

Abstract:

Climate change is recently gaining the attention of many countries across the world. Climate change, which is also known as global warming, referring to the increasing in average surface temperature has been a concern to the Environmental Protection Agency of Ghana. Recently, Ghana has become vulnerable to the effect of the climate change as a result of the dependence of the majority of the population on agriculture. The clearing down of trees to grow crops and burning of charcoal in the country has been a contributing factor to the rise in temperature nowadays in the country as a result of releasing of carbon dioxide and greenhouse gases into the air. Recently, petroleum stations across the cities have been on fire due to this climate changes and which have position Ghana in a way not able to withstand this climate event. As a result, the significant of this research paper is to project how the rise in the average surface temperature will be like at the end of the mid-21st century when agriculture and deforestation are allowed to continue for some time in the country. This study uses the Coupled Modeled Intercomparison Project phase 5 (CMIP5) experiment RCP 8.5 model output data to monitor the future climate changes from 2041-2050, at the end of the mid-21st century over the ten (10) major cities (Accra, Bolgatanga, Cape Coast, Koforidua, Kumasi, Sekondi-Takoradi, Sunyani, Ho, Tamale, Wa) in Ghana. In the models, Support Vector Machine and Random forest, where the cities as a function of heat wave metrics (minimum temperature, maximum temperature, mean temperature, heat wave duration and number of heat waves) assisted to provide more than 50% accuracy to predict and monitor the pattern of the surface air temperature. The findings identified were that the near-surface air temperature will rise between 1°C-2°C (degrees Celsius) over the coastal cities (Accra, Cape Coast, Sekondi-Takoradi). The temperature over Kumasi, Ho and Sunyani by the end of 2050 will rise by 1°C. In Koforidua, it will rise between 1°C-2°C. The temperature will rise in Bolgatanga, Tamale and Wa by 0.5°C by 2050. This indicates how the coastal and the southern part of the country are becoming hotter compared with the north, even though the northern part is the hottest. During heat waves from 2041-2050, Bolgatanga, Tamale, and Wa will experience the highest mean daily air temperature between 34°C-36°C. Kumasi, Koforidua, and Sunyani will experience about 34°C. The coastal cities (Accra, Cape Coast, Sekondi-Takoradi) will experience below 32°C. Even though, the coastal cities will experience the lowest mean temperature, they will have the highest number of heat waves about 62. Majority of the heat waves will last between 2 to 10 days with the maximum 30 days. The surface temperature will continue to rise by the end of the mid-21st century (2041-2050) over the major cities in Ghana and so needs to be addressed to the Environmental Protection Agency in Ghana in order to mitigate this problem.

Keywords: climate changes, CMIP5, Ghana, heat waves, random forest, SVM

Procedia PDF Downloads 200
46 Triassic and Liassic Paleoenvironments during the Central Atlantic Magmatique Province (CAMP) Effusion in the Moroccan Coastal Meseta: The Mohammedia-Benslimane-El Gara-Berrechid Basin

Authors: Rachid Essamoud, Abdelkrim Afenzar, Ahmed Belqadi

Abstract:

During the Early Mesozoic, the northwestern part of the African continent was affected by initial fracturing associated with the early stages of the opening of the Central Atlantic (Atlantic Rift). During this rifting phase, the Moroccan Meseta experienced an extensive tectonic regime. This extension favored the formation of a set of rift-type basins, including the Mohammedia-Benslimane-ElGara-Berrechid basin. Thus, it is essential to know the nature of the deposits in this basin and their evolution over time as well as their relationship with the basaltic effusion of the Central Atlantic Magmatic Province (CAMP). These deposits are subdivided into two large series: The Lower clay-salt series attributed to the Triassic and the Upper clay-salt series attributed to the Liassic. The two series are separated by the Upper Triassic-Lower Liassic basaltic complex. The detailed sedimentological analysis made it possible to characterize four mega-sequences, fifteen types of facies and eight architectural elements and facies associations in the Triassic series. A progressive decrease observed in paleo-slope over time led to the evolution of the paleoenvironment from a proximal system of alluvial fans to a braided fluvial style, then to an anastomosed system. These environments eventually evolved into an alluvial plain associated with a coastal plain where playa lakes, mudflats and lagoons had developed. The pure and massive halitic facies at the top of the series probably indicate an evolution of the depositional environment towards a shallow subtidal environment. The presence of these evaporites indicates a climate that favored their precipitation, in this case, a fairly hot and humid climate. The sedimentological analysis of the supra-basaltic part shows that during the Lower Liassic, the paleopente after basaltic effusion remained weak with distal environments. The faciological analysis revealed the presence of four major sandstone, silty, clayey and evaporitic lithofacies organized in two mega-sequences: the sedimentation of the first rock-salt mega-sequence took place in a brine depression system free, followed by saline mudflats under continental influences. The upper clay mega-sequence displays facies documenting sea level fluctuations from the final transgression of the Tethys or the opening Atlantic. Saliferous sedimentation is therefore favored from the Upper Triassic, but experienced a sudden rupture by the emission of basaltic flows which are interstratified in the azoic salt clays of very shallow seas. This basaltic emission which belongs to the CAMP would come from a fissural volcanism probably carried out through transfer faults located in the NW and SE of the basin. Their emplacement is probably subaquatic to subaerial. From a chronological and paleogeographic point of view, this main volcanism, dated between the Upper Triassic and the Lower Liassic (180-200 MA), is linked to the fragmentation of Pangea and managed by a progressive expansion triggered in the West in close relation with the initial phases of Central Atlantic rifting and seems to coincide with the major mass extinction at the Triassic-Jurassic boundary.

Keywords: Basalt, CAMP, Liassic, sedimentology, Triassic, Morocco

Procedia PDF Downloads 75
45 Gis Based Flash Flood Runoff Simulation Model of Upper Teesta River Besin - Using Aster Dem and Meteorological Data

Authors: Abhisek Chakrabarty, Subhraprakash Mandal

Abstract:

Flash flood is one of the catastrophic natural hazards in the mountainous region of India. The recent flood in the Mandakini River in Kedarnath (14-17th June, 2013) is a classic example of flash floods that devastated Uttarakhand by killing thousands of people.The disaster was an integrated effect of high intensityrainfall, sudden breach of Chorabari Lake and very steep topography. Every year in Himalayan Region flash flood occur due to intense rainfall over a short period of time, cloud burst, glacial lake outburst and collapse of artificial check dam that cause high flow of river water. In Sikkim-Derjeeling Himalaya one of the probable flash flood occurrence zone is Teesta Watershed. The Teesta River is a right tributary of the Brahmaputra with draining mountain area of approximately 8600 Sq. km. It originates in the Pauhunri massif (7127 m). The total length of the mountain section of the river amounts to 182 km. The Teesta is characterized by a complex hydrological regime. The river is fed not only by precipitation, but also by melting glaciers and snow as well as groundwater. The present study describes an attempt to model surface runoff in upper Teesta basin, which is directly related to catastrophic flood events, by creating a system based on GIS technology. The main object was to construct a direct unit hydrograph for an excess rainfall by estimating the stream flow response at the outlet of a watershed. Specifically, the methodology was based on the creation of a spatial database in GIS environment and on data editing. Moreover, rainfall time-series data collected from Indian Meteorological Department and they were processed in order to calculate flow time and the runoff volume. Apart from the meteorological data, background data such as topography, drainage network, land cover and geological data were also collected. Clipping the watershed from the entire area and the streamline generation for Teesta watershed were done and cross-sectional profiles plotted across the river at various locations from Aster DEM data using the ERDAS IMAGINE 9.0 and Arc GIS 10.0 software. The analysis of different hydraulic model to detect flash flood probability ware done using HEC-RAS, Flow-2D, HEC-HMS Software, which were of great importance in order to achieve the final result. With an input rainfall intensity above 400 mm per day for three days the flood runoff simulation models shows outbursts of lakes and check dam individually or in combination with run-off causing severe damage to the downstream settlements. Model output shows that 313 Sq. km area were found to be most vulnerable to flash flood includes Melli, Jourthang, Chungthang, and Lachung and 655sq. km. as moderately vulnerable includes Rangpo,Yathang, Dambung,Bardang, Singtam, Teesta Bazarand Thangu Valley. The model was validated by inserting the rain fall data of a flood event took place in August 1968, and 78% of the actual area flooded reflected in the output of the model. Lastly preventive and curative measures were suggested to reduce the losses by probable flash flood event.

Keywords: flash flood, GIS, runoff, simulation model, Teesta river basin

Procedia PDF Downloads 317
44 Mapping Vulnerabilities: A Social and Political Study of Disasters in Eastern Himalayas, Region of Darjeeling

Authors: Shailendra M. Pradhan, Upendra M. Pradhan

Abstract:

Disasters are perennial features of human civilization. The recurring earthquakes, floods, cyclones, among others, that result in massive loss of lives and devastation, is a grim reminder of the fact that, despite all our success stories of development, and progress in science and technology, human society is perennially at risk to disasters. The apparent threat of climate change and global warming only severe our disaster risks. Darjeeling hills, situated along Eastern Himalayan region of India, and famous for its three Ts – tea, tourism and toy-train – is also equally notorious for its disasters. The recurring landslides and earthquakes, the cyclone Aila, and the Ambootia landslides, considered as the largest landslide in Asia, are strong evidence of the vulnerability of Darjeeling hills to natural disasters. Given its geographical location along the Hindu-Kush Himalayas, the region is marked by rugged topography, geo-physically unstable structure, high-seismicity, and fragile landscape, making it prone to disasters of different kinds and magnitudes. Most of the studies on disasters in Darjeeling hills are, however, scientific and geographical in orientation that focuses on the underlying geological and physical processes to the neglect of social and political conditions. This has created a tendency among the researchers and policy-makers to endorse and promote a particular type of discourse that does not consider the social and political aspects of disasters in Darjeeling hills. Disaster, this paper argues, is a complex phenomenon, and a result of diverse factors, both physical and human. The hazards caused by the physical and geological agents, and the vulnerabilities produced and rooted in political, economic, social and cultural structures of a society, together result in disasters. In this sense, disasters are as much a result of political and economic conditions as it is of physical environment. The human aspect of disasters, therefore, compels us to address intricating social and political challenges that ultimately determine our resilience and vulnerability to disasters. Set within the above milieu, the aims of the paper are twofold: a) to provide a political and sociological account of disasters in Darjeeling hills; and, b) to identify and address the root causes of its vulnerabilities to disasters. In situating disasters in Darjeeling Hills, the paper adopts the Pressure and Release Model (PAR) that provides a theoretical insight into the study of social and political aspects of disasters, and to examine myriads of other related issues therein. The PAR model conceptualises risk as a complex combination of vulnerabilities, on the one hand, and hazards, on the other. Disasters, within the PAR framework, occur when hazards interact with vulnerabilities. The root causes of vulnerability, in turn, could be traced to social and political structures such as legal definitions of rights, gender relations, and other ideological structures and processes. In this way, the PAR model helps the present study to identify and unpack the root causes of vulnerabilities and disasters in Darjeeling hills that have largely remained neglected in dominant discourses, thereby providing a more nuanced and sociologically sensitive understanding of disasters.

Keywords: Darjeeling, disasters, PAR, vulnerabilities

Procedia PDF Downloads 273