Search results for: step potential
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13471

Search results for: step potential

12691 Extracellular Phytase from Lactobacillus fermentum spp KA1: Optimization of Enzyme Production and Its Application for Improving the Nutritional Quality of Rice Bran

Authors: Neha Sharma, Kanthi K. Kondepudi, Naveen Gupta

Abstract:

Phytases are phytate specific phosphatases catalyzing the step-wise dephosphorylation of phytate, which acts as an anti-nutritional factor in food due to its strong binding capacity to minerals. In recent years microbial phytases have been explored for improving nutritional quality of food. But the major limitation is acceptability of phytases from these microorganisms. Therefore, efforts are being made to isolate organisms which are generally regarded as safe for human consumption such as Lactic Acid Bacteria (LAB). Phytases from these organisms will have an edge over other phytase sources due to its probiotic attributes. Only few LAB have been reported to give phytase activity that too is generally seen as intracellular. LAB producing extracellular phytase will be more useful as it can degrade phytate more effectively. Moreover, enzyme from such isolate will have application in food processing also. Only few species of Lactobacillus producing extracellular phytase have been reported so far. This study reports the isolation of a probiotic strain of Lactobacillus fermentum spp KA1 which produces extracellular phytase. Conditions for the optimal production of phytase have been optimized and the enzyme production resulted in an approximately 13-fold increase in yield. The phytate degradation potential of extracellular phytase in rice bran has been explored and conditions for optimal degradation were optimized. Under optimal conditions, there was 43.26% release of inorganic phosphate and 6.45% decrease of phytate content.

Keywords: Lactobacillus, phytase, phytate reduction, rice bran

Procedia PDF Downloads 176
12690 Innovative Method for Treating Oil-Produced Water with Low Operating Cost

Authors: Maha Salman, Gada Al-Nuwaibit, Ahmed Al-Haji, Saleh Al-Haddad, Abbas Al-Mesri, Mansour Al-Rugeeb

Abstract:

The high salinity of oil-produced water and its complicated chemical composition, makes designing a suitable treatment system for oil-produced water is extremely difficult and costly. On the current study, a new innovative method was proposed to treat the complicated oil-produced water through a simple mixing with brine stream produced from waste water treatment plant. The proposal will investigate the scaling potential of oil-produce water, seawater and the selected brine water (BW) produced from Sulaibiya waste water treatment and reclamation plant (SWWTRP) before and after the mixing with oil-produced water, and will calculate the scaling potential of all expected precipitated salts using different conversion and different % of mixing to optimize the % of mixing between the oil-produced water and the selected stream. The result shows a great, feasible and economic solution to treat oil produced with a very low capital cost.

Keywords: brine water, oil-produced water, scaling potential, Sulaibiyah waste water and reclaminatin plant

Procedia PDF Downloads 428
12689 Design of the Compliant Mechanism of a Biomechanical Assistive Device for the Knee

Authors: Kevin Giraldo, Juan A. Gallego, Uriel Zapata, Fanny L. Casado

Abstract:

Compliant mechanisms are designed to deform in a controlled manner in response to external forces, utilizing the flexibility of their components to store potential elastic energy during deformation, gradually releasing it upon returning to its original form. This article explores the design of a knee orthosis intended to assist users during stand-up motion. The orthosis makes use of a compliant mechanism to balance the user’s weight, thereby minimizing the strain on leg muscles during standup motion. The primary function of the compliant mechanism is to store and exchange potential energy, so when coupled with the gravitational potential of the user, the total potential energy variation is minimized. The design process for the semi-rigid knee orthosis involved material selection and the development of a numerical model for the compliant mechanism seen as a spring. Geometric properties are obtained through the numerical modeling of the spring once the desired stiffness and safety factor values have been attained. Subsequently, a 3D finite element analysis was conducted. The study demonstrates a strong correlation between the maximum stress in the mathematical model (250.22 MPa) and the simulation (239.8 MPa), with a 4.16% error. Both analyses safety factors: 1.02 for the mathematical approach and 1.1 for the simulation, with a consistent 7.84% margin of error. The spring’s stiffness, calculated at 90.82 Nm/rad analytically and 85.71 Nm/rad in the simulation, exhibits a 5.62% difference. These results suggest significant potential for the proposed device in assisting patients with knee orthopedic restrictions, contributing to ongoing efforts in advancing the understanding and treatment of knee osteoarthritis.

Keywords: biomechanics, complaint mechanisms, gonarthrosis, orthoses

Procedia PDF Downloads 17
12688 Body Fluids Identification by Raman Spectroscopy and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

Authors: Huixia Shi, Can Hu, Jun Zhu, Hongling Guo, Haiyan Li, Hongyan Du

Abstract:

The identification of human body fluids during forensic investigations is a critical step to determine key details, and present strong evidence to testify criminal in a case. With the popularity of DNA and improved detection technology, the potential question must be revolved that whether the suspect’s DNA derived from saliva or semen, menstrual or peripheral blood, how to identify the red substance or aged blood traces on the spot is blood; How to determine who contribute the right one in mixed stains. In recent years, molecular approaches have been developing increasingly on mRNA, miRNA, DNA methylation and microbial markers, but appear expensive, time-consuming, and destructive disadvantages. Physicochemical methods are utilized frequently such us scanning electron microscopy/energy spectroscopy and X-ray fluorescence and so on, but results only showing one or two characteristics of body fluid itself and that out of working in unknown or mixed body fluid stains. This paper focuses on using chemistry methods Raman spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to discriminate species of peripheral blood, menstrual blood, semen, saliva, vaginal secretions, urine or sweat. Firstly, non-destructive, confirmatory, convenient and fast Raman spectroscopy method combined with more accurate matrix-assisted laser desorption/ionization time-of-flight mass spectrometry method can totally distinguish one from other body fluids. Secondly, 11 spectral signatures and specific metabolic molecules have been obtained by analysis results after 70 samples detected. Thirdly, Raman results showed peripheral and menstrual blood, saliva and vaginal have highly similar spectroscopic features. Advanced statistical analysis of the multiple Raman spectra must be requested to classify one to another. On the other hand, it seems that the lactic acid can differentiate peripheral and menstrual blood detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, but that is not a specific metabolic molecule, more sensitivity ones will be analyzed in a forward study. These results demonstrate the great potential of the developed chemistry methods for forensic applications, although more work is needed for method validation.

Keywords: body fluids, identification, Raman spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

Procedia PDF Downloads 118
12687 Improving Photocatalytic Efficiency of TiO2 Films Incorporated with Natural Geopolymer for Sunlight-Driven Water Purification

Authors: Satam Alotibi, Haya A. Al-Sunaidi, Almaymunah M. AlRoibah, Zahraa H. Al-Omaran, Mohammed Alyami, Fatehia S. Alhakami, Abdellah Kaiba, Mazen Alshaaer, Talal F. Qahtan

Abstract:

This research study presents a novel approach to harnessing the potential of natural geopolymer in conjunction with TiO₂ nanoparticles (TiO₂ NPs) for the development of highly efficient photocatalytic materials for water decontamination. The study begins with the formulation of a geopolymer paste derived from natural sources, which is subsequently applied as a coating on glass substrates and allowed to air-dry at room temperature. The result is a series of geopolymer-coated glass films, serving as the foundation for further experimentation. To enhance the photocatalytic capabilities of these films, a critical step involves immersing them in a suspension of TiO₂ nanoparticles (TiO₂ NPs) in water for varying durations. This immersion process yields geopolymer-loaded TiO₂ NPs films with varying concentrations, setting the stage for comprehensive characterization and analysis. A range of advanced analytical techniques, including UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM), were meticulously employed to assess the structural, morphological, and chemical properties of the geopolymer-based TiO₂ films. These analyses provided invaluable insights into the materials' composition and surface characteristics. The culmination of this research effort sees the geopolymer-based TiO₂ films being repurposed as immobilized photocatalytic reactors for water decontamination under natural sunlight irradiation. Remarkably, the results revealed exceptional photocatalytic performance that exceeded the capabilities of conventional TiO₂-based photocatalysts. This breakthrough underscores the significant potential of natural geopolymer as a versatile and highly effective matrix for enhancing the photocatalytic efficiency of TiO₂ nanoparticles in water treatment applications. In summary, this study represents a significant advancement in the quest for sustainable and efficient photocatalytic materials for environmental remediation. By harnessing the synergistic effects of natural geopolymer and TiO₂ nanoparticles, these geopolymer-based films exhibit outstanding promise in addressing water decontamination challenges and contribute to the development of eco-friendly solutions for a cleaner and healthier environment.

Keywords: geopolymer, TiO2 nanoparticles, photocatalytic materials, water decontamination, sustainable remediation

Procedia PDF Downloads 48
12686 Characterization of High Carbon Ash from Pulp and Paper mill for Potential Utilization

Authors: Ruma Rano, Firoza Sultana, Bishal Bhuyan, Nurul Alam Mazumder

Abstract:

Fly ash collected from Cachar Paper Mill, Assam, India has been thoroughly characterized in respect of its physico-chemical, morphological and mineralogical features were concerned by using density, LOI, FTIR, XRD, SEM-EDS etc. The results reveal that there is a striking difference in the features and properties of the coarser and finer fractions .The high carbon ash consists of large unburnt carbon (chars), irregular carbonaceous particles in the coarser fraction, which appear to be porous and may be used as domestic fuel. The percentage of char albeit the carbon content decreases with decrease in size of particles. The various fractions essentially contain quartz and mullite as the main mineral phases. For suggesting the potential utilization channels, number of experiments were performed correlating the total characteristic features. Water holding capacities of different size classified fractions were determined, the coarser fractions have unexpectedly higher water holding capacities than the finer ones. An attempt has been made to correlate the results obtained with potential use in agriculture. Another potential application of coarser particles is used as adsorbent for effluents containing waste organic materials. Thus thorough characterization leads to not only a definite direction about the uses of the value added components but also gives useful information regarding the prevailing combustion process.

Keywords: chars, porous, water holding capacity, combustion process

Procedia PDF Downloads 350
12685 Evaluation of Vehicle Classification Categories: Florida Case Study

Authors: Ren Moses, Jaqueline Masaki

Abstract:

This paper addresses the need for accurate and updated vehicle classification system through a thorough evaluation of vehicle class categories to identify errors arising from the existing system and proposing modifications. The data collected from two permanent traffic monitoring sites in Florida were used to evaluate the performance of the existing vehicle classification table. The vehicle data were collected and classified by the automatic vehicle classifier (AVC), and a video camera was used to obtain ground truth data. The Federal Highway Administration (FHWA) vehicle classification definitions were used to define vehicle classes from the video and compare them to the data generated by AVC in order to identify the sources of misclassification. Six types of errors were identified. Modifications were made in the classification table to improve the classification accuracy. The results of this study include the development of updated vehicle classification table with a reduction in total error by 5.1%, a step by step procedure to use for evaluation of vehicle classification studies and recommendations to improve FHWA 13-category rule set. The recommendations for the FHWA 13-category rule set indicate the need for the vehicle classification definitions in this scheme to be updated to reflect the distribution of current traffic. The presented results will be of interest to States’ transportation departments and consultants, researchers, engineers, designers, and planners who require accurate vehicle classification information for planning, designing and maintenance of transportation infrastructures.

Keywords: vehicle classification, traffic monitoring, pavement design, highway traffic

Procedia PDF Downloads 167
12684 Organic Geochemical Evaluation of the Ecca Group Shale: Implications for Hydrocarbon Potential

Authors: Temitope L. Baiyegunhi, Kuiwu Liu, Oswald Gwavava, Christopher Baiyegunhi

Abstract:

Shale gas has recently been the exploration focus for future energy resource in South Africa. Specifically, the black shales of the lower Ecca Group in the study area are considered to be one of the most prospective targets for shale gas exploration. Evaluation of this potential resource has been restricted due to the lack of exploration and scarcity of existing drill core data. Thus, only limited previous geochemical data exist for these formations. In this study, outcrop and core samples of the Ecca Group were analysed to assess their total organic carbon (TOC), organic matter type, thermal maturity and hydrocarbon generation potential (SP). The results show that these rocks have TOC ranging from 0.11 to 7.35 wt.%. The SP values vary from 0.09 to 0.53 mg HC/g, suggesting poor hydrocarbon generative potential. The plot of S1 versus TOC shows that the source rocks were characterized by autochthonous hydrocarbons. S2/S3 values range between 0.40 and 7.5, indicating Type- II/III, III, and IV kerogen. With the exception of one sample from the collingham formation which has HI value of 53 mg HC/g TOC, all other samples have HI values of less than 50 mg HC/g TOC, thus suggesting Type-IV kerogen, which is mostly derived from reworked organic matter (mainly dead carbon) with little or no potential for hydrocarbon generation. Tmax values range from 318 to 601℃, indicating immature to over-maturity of hydrocarbon. The vitrinite reflectance values range from 2.22 to 3.93%, indicating over-maturity of the kerogen. Binary plots of HI against OI and HI versus Tmax show that the shales are of Type II and mixed Type II-III kerogen, which are capable of generating both natural gas and minor oil at suitable burial depth. Based on the geochemical data, it can be inferred that the source rocks are immature to over-matured variable from localities and have potential of producing wet to dry gas at present-stage. Generally, the Whitehill formation of the Ecca Group is comparable to the Marcellus and Barnett Shales. This further supports the assumption that the Whitehill Formation has a high probability of being a profitable shale gas play, but only when explored in dolerite-free area and away from the Cape Fold Belt.

Keywords: source rock, organic matter type, thermal maturity, hydrocarbon generation potential, Ecca Group

Procedia PDF Downloads 125
12683 High-Intensity, Short-Duration Electric Pulses Induced Action Potential in Animal Nerves

Authors: Jiahui Song, Ravindra P. Joshi

Abstract:

The use of high-intensity, short-duration electric pulses is a promising development with many biomedical applications. The uses include irreversible electroporation for killing abnormal cells, reversible poration for drug and gene delivery, neuromuscular manipulation, and the shrinkage of tumors, etc. High intensity, short-duration electric pulses result in the creation of high-density, nanometer-sized pores in the cellular membrane. This electroporation amounts to localized modulation of the transverse membrane conductance, and effectively provides a voltage shunt. The electrically controlled changes in the trans-membrane conductivity could be used to affect neural traffic and action potential propagation. A rat was taken as the representative example in this research. The simulation study shows the pathway from the sensorimotor cortex down to the spinal motoneurons, and effector muscles could be reversibly blocked by using high-intensity, short-duration electrical pulses. Also, actual experimental observations were compared against simulation predictions.

Keywords: action potential, electroporation, high-intensity, short-duration

Procedia PDF Downloads 250
12682 A Life Cycle Assessment (LCA) of Aluminum Production Process

Authors: Alaa Al Hawari, Mohammad Khader, Wael El Hasan, Mahmoud Alijla, Ammar Manawi, Abdelbaki Benamour

Abstract:

The production of aluminium alloys and ingots -starting from the processing of alumina to aluminium, and the final cast product- was studied using a Life Cycle Assessment (LCA) approach. The studied aluminium supply chain consisted of a carbon plant, a reduction plant, a casting plant, and a power plant. In the LCA model, the environmental loads of the different plants for the production of 1 ton of aluminium metal were investigated. The impact of the aluminium production was assessed in eight impact categories. The results showed that for all of the impact categories the power plant had the highest impact only in the cases of Human Toxicity Potential (HTP) the reduction plant had the highest impact and in the Marine Aquatic Eco-Toxicity Potential (MAETP) the carbon plant had the highest impact. Furthermore, the impact of the carbon plant and the reduction plant combined was almost the same as the impact of the power plant in the case of the Acidification Potential (AP). The carbon plant had a positive impact on the environment when it comes to the Eutrophication Potential (EP) due to the production of clean water in the process. The natural gas based power plant used in the case study had 8.4 times less negative impact on the environment when compared to the heavy fuel based power plant and 10.7 times less negative impact when compared to the hard coal based power plant.

Keywords: life cycle assessment, aluminium production, supply chain, ecological impacts

Procedia PDF Downloads 511
12681 Potential of Lactic Acid Bacteria for Cadmium Removal from Aqueous Solution

Authors: Ana M. Guzman, Claudia M. Rodriguez, Pedro F. B. Brandao, Elianna Castillo

Abstract:

Cadmium (Cd) is a carcinogenic metal to which humans are exposed mainly due to its presence in the food chain. Lactic acid bacteria have the capability to bind cadmium and thus the potential to be used as probiotics to treat this metal toxicity in the human body. The main objective of this study is to evaluate the potential of native lactic acid bacteria, isolated from Colombian fermented cocoa, to remove cadmium from aqueous solutions. An initial screening was made with the Lactobacillus plantarum JCM 1055 type strain, and Cd was quantified by atomic absorption spectroscopy (AAS). Lb. plantarum JCM 1055 was grown in ½ MRS medium to follow growth kinetics during 32 h at 37 °C, by measuring optical density at 600 nm. Washed cells, grown for 18 h, were adjusted to obtain dry biomass concentrations of 1.5 g/L and 0.5 g/L for removal assays in 10 mL of Cd(NO₃)₂ solution with final concentrations of 10 mg/Kg or 1.0 mg/Kg. The assays were performed at two different pH values (2.0 and 5.0), and results showed better adsorption abilities at higher pH. After incubation for 1 h at 37 °C and 150 rpm, the removal percentages for 10 mg/Kg Cd with 1.5 g/L and 0.5 g/L biomass concentration at pH 5.0 were, respectively, 71% and 50%, while the efficiency was 9.15 and 4.52 mg Cd/g dry biomass, respectively. For the assay with 1.0 mg/Kg Cd at pH 5.0, the removal was 100% and 98%, respectively for the same biomass concentrations, and the efficiency was 1.63 and 0.56 mg Cd/g dry biomass, respectively. These results suggest the efficiency of Lactobacillus strains to remove cadmium and their potential to be used as probiotics to treat cadmium toxicity and reduce its accumulation in the human body.

Keywords: cadmium removal, fermented cocoa, lactic acid bacteria, probiotics

Procedia PDF Downloads 154
12680 Synthesizing an Artificial Loess for Geotechnical Investigations of Collapsible Soil Behavior

Authors: Hamed Sadeghi, Pouya A. Panahi, Hamed Nasiri, Mohammad Sadeghi

Abstract:

Collapsible soils like loess comprise an important category of problematic soils for construction purposes and sustainable development. As a result, research on both geological and geotechnical aspects of this type of soil have been in progress for decades. However, considerable natural variability in physical properties of in-situ loess strata even in a single block sample challenges the fundamental laboratory investigations. The reason behind this is that it is somehow impossible to remove the effect of a specific factor like void ratio from fair comparisons to come with a reliable conclusion. In order to cope with this limitation, two types of artificially made dispersive and calcareous loess are introduced which can be easily reproduced in any soil mechanics laboratory provided that all its compositions are known and controlled. The collapse potential is explored for a variety of soil water salinity and lime content and comparisons are made against the natural soil behavior. Trends are reported for the influence of pore water salinity on collapse potential under different osmotic flow conditions. The most important advantage of artificial loess is the ease of controlling cementing agent content like calcite or dispersive potential for studying their influence on mechanical soil behavior.

Keywords: artificial loess, unsaturated soils, collapse potential, dispersive clays, laboratory tests

Procedia PDF Downloads 173
12679 Fast Generation of High-Performance Driveshafts: A Digital Approach to Automated Linked Topology and Design Optimization

Authors: Willi Zschiebsch, Alrik Dargel, Sebastian Spitzer, Philipp Johst, Robert Böhm, Niels Modler

Abstract:

In this article, we investigate an approach that digitally links individual development process steps by using the drive shaft of an aircraft engine as a representative example of a fiber polymer composite. Such high-performance, lightweight composite structures have many adjustable parameters that influence the mechanical properties. Only a combination of optimal parameter values can lead to energy efficient lightweight structures. The development tools required for the Engineering Design Process (EDP) are often isolated solutions, and their compatibility with each other is limited. A digital framework is presented in this study, which allows individual specialised tools to be linked via the generated data in such a way that automated optimization across programs becomes possible. This is demonstrated using the example of linking geometry generation with numerical structural analysis. The proposed digital framework for automated design optimization demonstrates the feasibility of developing a complete digital approach to design optimization. The methodology shows promising potential for achieving optimal solutions in terms of mass, material utilization, eigenfrequency, and deformation under lateral load with less development effort. The development of such a framework is an important step towards promoting a more efficient design approach that can lead to stable and balanced results.

Keywords: digital linked process, composite, CFRP, multi-objective, EDP, NSGA-2, NSGA-3, TPE

Procedia PDF Downloads 58
12678 Design and Simulation of Low Cost Boost-Half- Bridge Microinverter with Grid Connection

Authors: P. Bhavya, P. R. Jayasree

Abstract:

This paper presents a low cost transformer isolated boost half bridge micro-inverter for single phase grid connected PV system. Since the output voltage of a single PV panel is as low as 20~50V, a high voltage gain inverter is required for the PV panel to connect to the single-phase grid. The micro-inverter has two stages, an isolated dc-dc converter stage and an inverter stage with a dc link. To achieve MPPT and to step up the PV voltage to the dc link voltage, a transformer isolated boost half bridge dc-dc converter is used. To output the synchronised sinusoidal current with unity power factor to the grid, a pulse width modulated full bridge inverter with LCL filter is used. Variable step size Maximum Power Point Tracking (MPPT) method is adopted such that fast tracking and high MPPT efficiency are both obtained. AC voltage as per grid requirement is obtained at the output of the inverter. High power factor (>0.99) is obtained at both heavy and light loads. This paper gives the results of computer simulation program of a grid connected solar PV system using MATLAB/Simulink and SIM Power System tool.

Keywords: boost-half-bridge, micro-inverter, maximum power point tracking, grid connection, MATLAB/Simulink

Procedia PDF Downloads 325
12677 Estimation of the Length and Location of Ground Surface Deformation Caused by the Reverse Faulting

Authors: Nader Khalafian, Mohsen Ghaderi

Abstract:

Field observations have revealed many examples of structures which were damaged due to ground surface deformation caused by the faulting phenomena. In this paper some efforts were made in order to estimate the length and location of the ground surface where large displacements were created due to the reverse faulting. This research has conducted in two steps; (1) in the first step, a 2D explicit finite element model were developed using ABAQUS software. A subroutine for Mohr-Coulomb failure criterion with strain softening model was developed by the authors in order to properly model the stress strain behavior of the soil in the fault rapture zone. The results of the numerical analysis were verified with the results of available centrifuge experiments. Reasonable coincidence was found between the numerical and experimental data. (2) In the second step, the effects of the fault dip angle (δ), depth of soil layer (H), dilation and friction angle of sand (ψ and φ) and the amount of fault offset (d) on the soil surface displacement and fault rupture path were investigated. An artificial neural network-based model (ANN), as a powerful prediction tool, was developed to generate a general model for predicting faulting characteristics. A properly sized database was created to train and test network. It was found that the length and location of the zone of displaced ground surface can be accurately estimated using the proposed model.

Keywords: reverse faulting, surface deformation, numerical, neural network

Procedia PDF Downloads 410
12676 Study on the Evaluation and Utilization of Space Renewal Potential under Bridge in Chongqing

Authors: Qin Xvelian

Abstract:

organic renewal" based on the development of existing resources in high-density urban areas has become the mainstream of urban development in the new era. As an important stock resource of public space in high-density urban areas, promoting its value remodeling is an effective way to alleviate the shortage of public space resources. However, due to the lack of evaluation links in the process of underpass space renewal, a large number of underpass space resources have been left idle, facing the problems of low space conversion efficiency, lack of accuracy in development decision-making, and low adaptability of functional positioning to citizens' needs. Therefore, it is of great practical significance to construct the evaluation system of under-bridge space renewal potential and explore the renewal mode. In this paper, some of the under-bridge spaces in the main urban area of Chongqing are selected as the research object. Through the questionnaire interviews with the users of the built excellent space under the bridge, three types of six levels and twenty-two potential evaluation indexes of "objective demand factor, construction feasibility factor and construction suitability factor" are selected, including six levels of land resources, infrastructure, accessibility, safety, space quality and ecological environment. The analytical hierarchy process and expert scoring method are used to determine the index weight, construct the potential evaluation system of the space under the bridge in high-density urban areas of Chongqing, and explore the direction of renewal and utilization of its suitability. To provide feasible theoretical basis and scientific decision support for the use of under bridge space in the future.

Keywords: high density urban area, potential evaluation, space under bridge, updated using

Procedia PDF Downloads 45
12675 Tomato-Weed Classification by RetinaNet One-Step Neural Network

Authors: Dionisio Andujar, Juan lópez-Correa, Hugo Moreno, Angela Ri

Abstract:

The increased number of weeds in tomato crops highly lower yields. Weed identification with the aim of machine learning is important to carry out site-specific control. The last advances in computer vision are a powerful tool to face the problem. The analysis of RGB (Red, Green, Blue) images through Artificial Neural Networks had been rapidly developed in the past few years, providing new methods for weed classification. The development of the algorithms for crop and weed species classification looks for a real-time classification system using Object Detection algorithms based on Convolutional Neural Networks. The site study was located in commercial corn fields. The classification system has been tested. The procedure can detect and classify weed seedlings in tomato fields. The input to the Neural Network was a set of 10,000 RGB images with a natural infestation of Cyperus rotundus l., Echinochloa crus galli L., Setaria italica L., Portulaca oeracea L., and Solanum nigrum L. The validation process was done with a random selection of RGB images containing the aforementioned species. The mean average precision (mAP) was established as the metric for object detection. The results showed agreements higher than 95 %. The system will provide the input for an online spraying system. Thus, this work plays an important role in Site Specific Weed Management by reducing herbicide use in a single step.

Keywords: deep learning, object detection, cnn, tomato, weeds

Procedia PDF Downloads 89
12674 Application and Verification of Regression Model to Landslide Susceptibility Mapping

Authors: Masood Beheshtirad

Abstract:

Identification of regions having potential for landslide occurrence is one of the basic measures in natural resources management. Different landslide hazard mapping models are proposed based on the environmental condition and goals. In this research landslide hazard map using multiple regression model were provided and applicability of this model is investigated in Baghdasht watershed. Dependent variable is landslide inventory map and independent variables consist of information layers as Geology, slope, aspect, distance from river, distance from road, fault and land use. For doing this, existing landslides have been identified and an inventory map made. The landslide hazard map is based on the multiple regression provided. The level of similarity potential hazard classes and figures of this model were compared with the landslide inventory map in the SPSS environments. Results of research showed that there is a significant correlation between the potential hazard classes and figures with area of the landslides. The multiple regression model is suitable for application in the Baghdasht Watershed.

Keywords: landslide, mapping, multiple model, regression

Procedia PDF Downloads 311
12673 Purpose-Driven Collaborative Strategic Learning

Authors: Mingyan Hong, Shuozhao Hou

Abstract:

Collaborative Strategic Learning (CSL) teaches students to use learning strategies while working cooperatively. Student strategies include the following steps: defining the learning task and purpose; conducting ongoing negotiation of the learning materials by deciding "click" (I get it and I can teach it – green card, I get it –yellow card) or "clunk" (I don't get it – red card) at the end of each learning unit; "getting the gist" of the most important parts of the learning materials; and "wrapping up" key ideas. Find out how to help students of mixed achievement levels apply learning strategies while learning content area in materials in small groups. The design of CSL is based on social-constructivism and Vygotsky’s best-known concept of the Zone of Proximal Development (ZPD). The definition of ZPD is the distance between the actual acquisition level as decided by individual problem solution case and the level of potential acquisition level, similar to Krashen (1980)’s i+1, as decided through the problem-solution case under the facilitator’s guidance, or in group work with other more capable members (Vygotsky, 1978). Vygotsky claimed that learners’ ideal learning environment is in the ZPD. An ideal teacher or more-knowledgable-other (MKO) should be able to recognize a learner’s ZPD and facilitates them to develop beyond it. Then the MKO is able to leave the support step by step until the learner can perform the task without aid. Steven Krashen (1980) proposed Input hypothesis including i+1 hypothesis. The input hypothesis models are the application of ZPD in second language acquisition and have been widely recognized until today. Krashen (2019)’s optimal language learning environment (2019) further developed the application of ZPD and added the component of strategic group learning. The strategic group learning is composed of desirable learning materials learners are motivated to learn and desirable group members who are more capable and are therefore able to offer meaningful input to the learners. Purpose-driven Collaborative Strategic Learning Model is a strategic integration of ZPD, i+1 hypothesis model, and Optimal Language Learning Environment Model. It is purpose driven to ensure group members are motivated. It is collaborative so that an optimal learning environment where meaningful input from meaningful conversation can be generated. It is strategic because facilitators in the model strategically assign each member a meaningful and collaborative role, e.g., team leader, technician, problem solver, appraiser, offer group learning instrument so that the learning process is structured, and integrate group learning and team building making sure holistic development of each participant. Using data collected from college year one and year two students’ English courses, this presentation will demonstrate how purpose-driven collaborative strategic learning model is implemented in the second/foreign language classroom, using the qualitative data from questionnaire and interview. Particular, this presentation will show how second/foreign language learners grow from functioning with facilitator or more capable peer’s aid to performing without aid. The implication of this research is that purpose-driven collaborative strategic learning model can be used not only in language learning, but also in any subject area.

Keywords: collaborative, strategic, optimal input, second language acquisition

Procedia PDF Downloads 111
12672 Enhanced Magnetoelastic Response near Morphotropic Phase Boundary in Ferromagnetic Materials: Experimental and Theoretical Analysis

Authors: Murtaza Adil, Sen Yang, Zhou Chao, Song Xiaoping

Abstract:

The morphotropic phase boundary (MPB) recently has attracted constant interest in ferromagnetic systems for obtaining enhanced large magnetoelastic response. In the present study, structural and magnetoelastic properties of MPB involved ferromagnetic Tb1-xGdxFe2 (0≤x≤1) system has been investigated. The change of easy magnetic direction from <111> to <100> with increasing x up MPB composition of x=0.9 is detected by step-scanned [440] synchrotron X-ray diffraction reflections. The Gd substitution for Tb changes the composition for the anisotropy compensation near MPB composition of x=0.9, which was confirmed by the analysis of detailed scanned XRD, magnetization curves and the calculation of the first anisotropy constant K1. The spin configuration diagram accompanied with different crystal structures for Tb1-xGdxFe2 was designed. The calculated first anisotropy constant K1 shows a minimum value at MPB composition of x=0.9. In addition, the large ratio between magnetostriction, and the absolute values of the first anisotropy constant │λS∕K1│ appears at MPB composition, which makes it a potential material for magnetostrictive application. Based on experimental results, a theoretically approach was also proposed to signify that the facilitated magnetization rotation and enhanced magnetoelastic effect near MPB composition are a consequence of the anisotropic flattening of free energy of ferromagnetic crystal. Our work specifies the universal existence of MPB in ferromagnetic materials which is important for substantial improvement of magnetic and magnetostrictive properties and may provide a new route to develop advanced functional materials.

Keywords: free energy, magnetic anisotropy, magnetostriction, morphotropic phase boundary (MPB)

Procedia PDF Downloads 263
12671 Comparative Life Cycle Analysis of Selected Modular Timber Construction and Assembly Typologies

Authors: Benjamin Goldsmith, Felix Heisel

Abstract:

The building industry must reduce its emissions in order to meet 2030 neutrality targets, and modular and/or offsite construction is seen as an alternative to conventional construction methods which could help achieve this goal. Modular construction has previously been shown to be less wasteful and has a lower global warming potential (GWP). While many studies have been conducted investigating the life cycle impacts of modular and conventional construction, few studies have compared different types of modular assembly and construction in order to determine which offer the greatest environmental benefits over their whole life cycle. This study seeks to investigate three different modular construction types -infill frame, core, and podium- in order to determine environmental impacts such as GWP as well as circularity indicators. The study will focus on the emissions of the production, construction, and end-of-life phases. The circularity of the various approaches will be taken into consideration in order to acknowledge the potential benefits of the ability to reuse and/or reclaim materials, products, and assemblies. The study will conduct hypothetical case studies for the three different modular construction types, and in doing so, control the parameters of location, climate, program, and client. By looking in-depth at the GWP of the beginning and end phases of various simulated modular buildings, it will be possible to make suggestions on which type of construction has the lowest global warming potential.

Keywords: modular construction, offsite construction, life cycle analysis, global warming potential, environmental impact, circular economy

Procedia PDF Downloads 154
12670 Novel Inference Algorithm for Gaussian Process Classification Model with Multiclass and Its Application to Human Action Classification

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we propose a novel inference algorithm for the multi-class Gaussian process classification model that can be used in the field of human behavior recognition. This algorithm can drive simultaneously both a posterior distribution of a latent function and estimators of hyper-parameters in a Gaussian process classification model with multi-class. Our algorithm is based on the Laplace approximation (LA) technique and variational EM framework. This is performed in two steps: called expectation and maximization steps. First, in the expectation step, using the Bayesian formula and LA technique, we derive approximately the posterior distribution of the latent function indicating the possibility that each observation belongs to a certain class in the Gaussian process classification model. Second, in the maximization step, using a derived posterior distribution of latent function, we compute the maximum likelihood estimator for hyper-parameters of a covariance matrix necessary to define prior distribution for latent function. These two steps iteratively repeat until a convergence condition satisfies. Moreover, we apply the proposed algorithm with human action classification problem using a public database, namely, the KTH human action data set. Experimental results reveal that the proposed algorithm shows good performance on this data set.

Keywords: bayesian rule, gaussian process classification model with multiclass, gaussian process prior, human action classification, laplace approximation, variational EM algorithm

Procedia PDF Downloads 318
12669 Electro Spinning in Nanotechnology

Authors: Mahoud Alfama, Meloud Yones, Abdelbaset Zroga, Abdelati Elalem

Abstract:

Electrospinning has been recognized as an efficient technique for the fabrication of polymer nanofibers. Various polymers have been successfully electrospun into ultrafine fibers in recent years mostly in solvent solution and some in melt form. Potential applications based on such fibers specifically their use as reinforcement in nanocomposite development have been realized. In this paper we examine -electrospinning by providing a brief description of the theory behind the process examining the effect of changing the process parameters on fiber morphology, and discussing the potential applications and impacts of electrospinning on the field of tissue engineering.

Keywords: nanotechnology, electro spinning, reinforced materials

Procedia PDF Downloads 271
12668 Generalized Hyperbolic Functions: Exponential-Type Quantum Interactions

Authors: Jose Juan Peña, J. Morales, J. García-Ravelo

Abstract:

In the search of potential models applied in the theoretical treatment of diatomic molecules, some of them have been constructed by using standard hyperbolic functions as well as from the so-called q-deformed hyperbolic functions (sc q-dhf) for displacing and modifying the shape of the potential under study. In order to transcend the scope of hyperbolic functions, in this work, a kind of generalized q-deformed hyperbolic functions (g q-dhf) is presented. By a suitable transformation, through the q deformation parameter, it is shown that these g q-dhf can be expressed in terms of their corresponding standard ones besides they can be reduced to the sc q-dhf. As a useful application of the proposed approach, and considering a class of exactly solvable multi-parameter exponential-type potentials, some new q-deformed quantum interactions models that can be used as interesting alternative in quantum physics and quantum states are presented. Furthermore, due that quantum potential models are conditioned on the q-dependence of the parameters that characterize to the exponential-type potentials, it is shown that many specific cases of q-deformed potentials are obtained as particular cases from the proposal.

Keywords: diatomic molecules, exponential-type potentials, hyperbolic functions, q-deformed potentials

Procedia PDF Downloads 168
12667 Investigating Al₂O₃ Nanofluid Based on Seawater and Effluent Water Mix for Water Injection Application; Sandstone

Authors: Meshal Al-Samhan, Abdullah Al-Marshed

Abstract:

Recently, there has been a tremendous increase in interest in nanotechnology applications and nanomaterials in the oilfield. In the last decade, the global increase in oil production resulted in large amounts of produced water, causing a significant problem for all producing countries and companies. This produced water deserves special attention and a study of its characteristics to understand and determine how it can be treated and later used for suitable applications such as water injection for Enhance Oil Recovery (EOR) without harming the environment. This work aims to investigate the prepared compatible mixed water (seawater and effluent water) response to nanoparticles for EOR water injection. The evaluation of different mix seawater/effluent water ratios (60/40,70/30) for their characteristics prior to nanofluid preparation using Inductive Couple Plasma (ICP) analysis, potential zeta test, and OLI software (the OLI Systems is a recognised leader in aqueous chemistry). This step of the work revealed the suitability of the water mix with a lower effluent-water ratio. Also, OLI predicted that the 60:40 mix needs to be balanced around temperatures of 70 ºC to avoid the mass accumulation of calcium sulfate and strontium sulfate. Later the prepared nanofluid was tested for interfacial tension (IFT) and wettability restoration in the sandstone rock; the Al2O3 nanofluid at 0.06 wt% concentration reduced the IFT by more than 16% with moderate water wet contact angle. The study concluded that the selected nanoparticle Al2O3 had demonstrated excellent performance in decreasing the interfacial tension with respect to the selected water mix type (60/40) at low nanoparticles wt%.

Keywords: nano AL2O3, sanstone, nanofluid, IFT, wettability

Procedia PDF Downloads 80
12666 Biohydrogen Production from Starch Residues

Authors: Francielo Vendruscolo

Abstract:

This review summarizes the potential of starch agroindustrial residues as substrate for biohydrogen production. Types of potential starch agroindustrial residues, recent developments and bio-processing conditions for biohydrogen production will be discussed. Biohydrogen is a clean energy source with great potential to be an alternative fuel, because it releases energy explosively in heat engines or generates electricity in fuel cells producing water as only by-product. Anaerobic hydrogen fermentation or dark fermentation seems to be more favorable, since hydrogen is yielded at high rates and various organic waste enriched with carbohydrates as substrate result in low cost for hydrogen production. Abundant biomass from various industries could be source for biohydrogen production where combination of waste treatment and energy production would be an advantage. Carbohydrate-rich nitrogen-deficient solid wastes such as starch residues can be used for hydrogen production by using suitable bioprocess technologies. Alternatively, converting biomass into gaseous fuels, such as biohydrogen is possibly the most efficient way to use these agroindustrial residues.

Keywords: biofuel, dark fermentation, starch residues, food waste

Procedia PDF Downloads 375
12665 The Light-Effect in Cylindrical Quantum Wire with an Infinite Potential for the Case of Electrons: Optical Phonon Scattering

Authors: Hoang Van Ngoc, Nguyen Vu Nhan, Nguyen Quang Bau

Abstract:

The light-effect in cylindrical quantum wire with an infinite potential for the case of electrons, optical phonon scattering, is studied based on the quantum kinetic equation. The density of the direct current in a cylindrical quantum wire by a linearly polarized electromagnetic wave, a DC electric field, and an intense laser field is calculated. Analytic expressions for the density of the direct current are studied as a function of the frequency of the laser radiation field, the frequency of the linearly polarized electromagnetic wave, the temperature of system, and the size of quantum wire. The density of the direct current in cylindrical quantum wire with an infinite potential for the case of electrons – optical phonon scattering is nonlinearly dependent on the frequency of the linearly polarized electromagnetic wave. The analytic expressions are numerically evaluated and plotted for a specific quantum wire, GaAs/GaAsAl.

Keywords: the light–effect, cylindrical quantum wire with an infinite potential, the density of the direct current, electrons-optical phonon scattering

Procedia PDF Downloads 323
12664 Measuring Firms’ Patent Management: Conceptualization, Validation, and Interpretation

Authors: Mehari Teshome, Lara Agostini, Anna Nosella

Abstract:

The current knowledge-based economy extends intellectual property rights (IPRs) legal research themes into a more strategic and organizational perspectives. From the diverse types of IPRs, patents are the strongest and well-known form of legal protection that influences commercial success and market value. Indeed, from our pilot survey, we understood that firms are less likely to manage their patents and actively used it as a tool for achieving competitive advantage rather they invest resource and efforts for patent application. To this regard, the literature also confirms that insights into how firms manage their patents from a holistic, strategic perspective, and how the portfolio value of patents can be optimized are scarce. Though patent management is an important business tool and there exist few scales to measure some dimensions of patent management, at the best of our knowledge, no systematic attempt has been made to develop a valid and comprehensive measure of it. Considering this theoretical and practical point of view, the aim of this article is twofold: to develop a framework for patent management encompassing all relevant dimensions with their respective constructs and measurement items, and to validate the measurement using survey data from practitioners. Methodology: We used six-step methodological approach (i.e., specify the domain of construct, item generation, scale purification, internal consistency assessment, scale validation, and replication). Accordingly, we carried out a systematic review of 182 articles on patent management, from ISI Web of Science. For each article, we mapped relevant constructs, their definition, and associated features, as well as items used to measure these constructs, when provided. This theoretical analysis was complemented by interviews with experts in patent management to get feedbacks that are more practical on how patent management is carried out in firms. Afterwards, we carried out a questionnaire survey to purify our scales and statistical validation. Findings: The analysis allowed us to design a framework for patent management, identifying its core dimensions (i.e., generation, portfolio-management, exploitation and enforcement, intelligence) and support dimensions (i.e., strategy and organization). Moreover, we identified the relevant activities for each dimension, as well as the most suitable items to measure them. For example, the core dimension generation includes constructs as: state-of-the-art analysis, freedom-to-operate analysis, patent watching, securing freedom-to-operate, patent potential and patent-geographical-scope. Originality and the Study Contribution: This study represents a first step towards the development of sound scales to measure patent management with an overarching approach, thus laying the basis for developing a recognized landmark within the research area of patent management. Practical Implications: The new scale can be used to assess the level of sophistication of the patent management of a company and compare it with other firms in the industry to evaluate their ability to manage the different activities involved in patent management. In addition, the framework resulting from this analysis can be used as a guide that supports managers to improve patent management in firms.

Keywords: patent, management, scale, development, intellectual property rights (IPRs)

Procedia PDF Downloads 129
12663 Electricity Sector's Status in Lebanon and Portfolio Optimization for the Future Electricity Generation Scenarios

Authors: Nour Wehbe

Abstract:

The Lebanese electricity sector is at the heart of a deep crisis. Electricity in Lebanon is supplied by Électricité du Liban (EdL) which has to suffer from technical and financial deficiencies for decades and proved to be insufficient and deficient as the demand still exceeds the supply. As a result, backup generation is widespread throughout Lebanon. The sector costs massive government resources and, on top of it, consumers pay massive additional amounts for satisfying their electrical needs. While the developed countries have been investing in renewable energy for the past two decades, the Lebanese government realizes the importance of adopting such energy sourcing strategies for the upgrade of the electricity sector in the country. The diversification of the national electricity generation mix has increased considerably in Lebanon's energy planning agenda, especially that a detailed review of the energy potential in Lebanon has revealed a great potential of solar and wind energy resources, a considerable potential of biomass resource, and an important hydraulic potential in Lebanon. This paper presents a review of the energy status of Lebanon, and illustrates a detailed review of the EDL structure with the existing problems and recommended solutions. In addition, scenarios reflecting implementation of policy projects are presented, and conclusions are drawn on the usefulness of a proposed evaluation methodology and the effectiveness of the adopted new energy policy for the electrical sector in Lebanon.

Keywords: EdL Electricite du Liban, portfolio optimization, electricity generation mix, mean-variance approach

Procedia PDF Downloads 231
12662 Implementation of a Paraconsistent-Fuzzy Digital PID Controller in a Level Control Process

Authors: H. M. Côrtes, J. I. Da Silva Filho, M. F. Blos, B. S. Zanon

Abstract:

In a modern society the factor corresponding to the increase in the level of quality in industrial production demand new techniques of control and machinery automation. In this context, this work presents the implementation of a Paraconsistent-Fuzzy Digital PID controller. The controller is based on the treatment of inconsistencies both in the Paraconsistent Logic and in the Fuzzy Logic. Paraconsistent analysis is performed on the signals applied to the system inputs using concepts from the Paraconsistent Annotated Logic with annotation of two values (PAL2v). The signals resulting from the paraconsistent analysis are two values defined as Dc - Degree of Certainty and Dct - Degree of Contradiction, which receive a treatment according to the Fuzzy Logic theory, and the resulting output of the logic actions is a single value called the crisp value, which is used to control dynamic system. Through an example, it was demonstrated the application of the proposed model. Initially, the Paraconsistent-Fuzzy Digital PID controller was built and tested in an isolated MATLAB environment and then compared to the equivalent Digital PID function of this software for standard step excitation. After this step, a level control plant was modeled to execute the controller function on a physical model, making the tests closer to the actual. For this, the control parameters (proportional, integral and derivative) were determined for the configuration of the conventional Digital PID controller and of the Paraconsistent-Fuzzy Digital PID, and the control meshes in MATLAB were assembled with the respective transfer function of the plant. Finally, the results of the comparison of the level control process between the Paraconsistent-Fuzzy Digital PID controller and the conventional Digital PID controller were presented.

Keywords: fuzzy logic, paraconsistent annotated logic, level control, digital PID

Procedia PDF Downloads 267