Search results for: stationary satellite
326 Numerical Simulation of Aeroelastic Influence Exerted by Kinematic and Geometrical Parameters on Oscillations' Frequencies and Phase Shift Angles in a Simulated Compressor of Gas Transmittal Unit
Authors: Liliia N. Butymova, Vladimir Y. Modorsky, Nikolai A. Shevelev
Abstract:
Prediction of vibration processes in gas transmittal units (GTU) is an urgent problem. Despite numerous scientific publications on the problem of vibrations in general, there are not enough works concerning FSI-modeling interaction processes between several deformable blades in gas-dynamic flow. Since it is very difficult to solve the problem in full scope, with all factors considered, a unidirectional dynamic coupled 1FSI model is suggested for use at the first stage, which would include, from symmetry considerations, two blades, which might be considered as the first stage of solving more general bidirectional problem. ANSYS CFX programmed multi-processor was chosen as a numerical computation tool. The problem was solved on PNRPU high-capacity computer complex. At the first stage of the study, blades were believed oscillating with the same frequency, although oscillation phases could be equal and could be different. At that non-stationary gas-dynamic forces distribution over the blades surfaces is calculated in run of simulation experiment. Oscillations in the “gas — structure” dynamic system are assumed to increase if the resultant of these gas-dynamic forces is in-phase with blade oscillation, and phase shift (φ=0). Provided these oscillation occur with phase shift, then oscillations might increase or decrease, depending on the phase shift value. The most important results are as follows: the angle of phase shift in inter-blade oscillation and the gas-dynamic force depends on the flow velocity, the specific inter-blade gap, and the shaft rotation speed; a phase shift in oscillation of adjacent blades does not always correspond to phase shift of gas-dynamic forces affecting the blades. Thus, it was discovered, that asynchronous oscillation of blades might cause either attenuation or intensification of oscillation. It was revealed that clocking effect might depend not only on the mutual circumferential displacement of blade rows and the gap between the blades, but also on the blade dynamic deformation nature.Keywords: aeroelasticity, ANSYS CFX, oscillation, phase shift, clocking effect, vibrations
Procedia PDF Downloads 269325 Path Planning for Unmanned Aerial Vehicles in Constrained Environments for Locust Elimination
Authors: Aadiv Shah, Hari Nair, Vedant Mittal, Alice Cheeran
Abstract:
Present-day agricultural practices such as blanket spraying not only lead to excessive usage of pesticides but also harm the overall crop yield. This paper introduces an algorithm to optimize the traversal of an unmanned aerial vehicle (UAV) in constrained environments. The proposed system focuses on the agricultural application of targeted spraying for locust elimination. Given a satellite image of a farm, target zones that are prone to locust swarm formation are detected through the calculation of the normalized difference vegetation index (NDVI). This is followed by determining the optimal path for traversal of a UAV through these target zones using the proposed algorithm in order to perform pesticide spraying in the most efficient manner possible. Unlike the classic travelling salesman problem involving point-to-point optimization, the proposed algorithm determines an optimal path for multiple regions, independent of its geometry. Finally, the paper explores the idea of implementing reinforcement learning to model complex environmental behaviour and make the path planning mechanism for UAVs agnostic to external environment changes. This system not only presents a solution to the enormous losses incurred due to locust attacks but also an efficient way to automate agricultural practices across the globe in order to improve farmer ergonomics.Keywords: locust, NDVI, optimization, path planning, reinforcement learning, UAV
Procedia PDF Downloads 248324 The Investigation of Oil Price Shocks by Using a Dynamic Stochastic General Equilibrium: The Case of Iran
Authors: Bahram Fathi, Karim Alizadeh, Azam Mohammadbagheri
Abstract:
The aim of this paper is to investigate the role of oil price shocks in explaining business cycles in Iran using a dynamic stochastic general equilibrium approach. This model incorporates both productivity and oil revenue shocks. The results indicate that productivity shocks are relatively more important to business cycles than oil shocks. The model with two shocks produces different values for volatility, but these values have the same ranking as that of the actual data for most variables. In addition, the actual data are close to the ratio of standard deviations to the output obtained from the model with two shocks. The results indicate that productivity shocks are relatively more important to business cycles than the oil shocks. The model with only a productivity shock produces the most similar figures in term of volatility magnitude to that of the actual data. Next, we use the Impulse Response Functions (IRF) to evaluate the capability of the model. The IRF shows no effect of an oil shock on the capital stocks and on labor hours, which is a feature of the model. When the log-linearized system of equations is solved numerically, investment and labor hours were not found to be functions of the oil shock. This research recommends using different techniques to compare the model’s robustness. One method by which to do this is to have all decision variables as a function of the oil shock by inducing the stationary to the model differently. Another method is to impose a bond adjustment cost. This study intends to fill that gap. To achieve this objective, we derive a DSGE model that allows for the world oil price and productivity shocks. Second, we calibrate the model to the Iran economy. Next, we compare the moments from the theoretical model with both single and multiple shocks with that obtained from the actual data to see the extent to which business cycles in Iran can be explained by total oil revenue shock. Then, we use an impulse response function to evaluate the role of world oil price shocks. Finally, I present implications of the findings and interpretations in accordance with economic theory.Keywords: oil price, shocks, dynamic stochastic general equilibrium, Iran
Procedia PDF Downloads 438323 Variability of the Snowline Altitude at Different Region in the Eastern Tibetan Plateau in Recent 20 Years
Authors: Zhen Li, Chang Liu, Ping Zhang
Abstract:
These Glaciers are thought of as natural water reservoirs and are of vital importance to hydrological models and industrial production, and glacial changes act as significant indicators of climate change. The glacier snowline can be used as an indicator of the equilibrium line, which may be a key parameter to study the effect of climate change on glaciers. Using Google Earth Engine, we select optical satellite imageries and implement the Otsu thresholding method on a near-infrared band to detect snowline altitudes (SLAs) of 26 glaciers in three regions of the eastern Tibetan Plateau. Three different study regions in the eastern Tibetan Plateau have different climate regimes, which are Sepu Kangri (SK, maritime glacier), Bu’Gyai Kangri (BK, continental glacier) and west of Qiajajima (WQ, continental glacier), along a latitudinal transect from south to north. We analyzed the effects of climatic factors on the SLA changes from 1995 to 2016. SLAs are fluctuating upward, and the rising values are 100 m, 60 m, and 34 m from south to north during the 22 years. We also observed that the climatic factor that affects the variability of SLA gradually changes from precipitation to temperature from south to north. The northern continental glaciers are mainly affected by temperature, and the southern maritime glaciers affected by precipitation. Owing to the influence of primary climatic factors, continental glaciers are found to have higher SLAs on the south slope, while maritime glaciers have higher SLAs on the north slope.Keywords: climate change, glacier, snowline altitude, tibetan plateau
Procedia PDF Downloads 150322 Study of the Middle and Upper Atmosphere during Sudden Stratospheric Warming Episodes
Authors: Jinee Gogoi, Som K. Sharma, Kalyan Bhuyan
Abstract:
The atmospheric layers are coupled to each other with the different dynamical, electrical, radiative and chemical processes. A large scale thermodynamical phenomenon in winter polar regions which affects the middle atmosphere vigorously is Sudden Stratospheric Warming (SSW). Two major SSW events were occurred during 1998-1999; one in December 1998 which is associated with vortex displacement and another in February- March 1999 associated with vortex splitting. Lidar study of these two major events from Mt. Abu (24.36⁰N, 72.45⁰E, ~1670 m amsl) has shown that though SSWs are mostly observed over high and mid latitudes, their effects can also be seen over India. We have studied ionospheric variations (primarily fₒF₂, h’F and hpF₂) over Ahmedabad (23.1⁰N, 72.58⁰E) during these events. Ionospheric disturbances have been found after four-five days of peak temperature. An increase (decrease) in critical frequency (fₒF₂) during morning (afternoon) has been noticed which may be in response to the updrift (down drift). Effects are stronger during displacement event (1998) than during the splitting event (1999). We have also studied some recent events occurred during 2006 (January), 2009 (January) and 2013 (January) using temperature data from Sounding of Atmosphere using Broadband Emission Radiometry (SABER) satellite. Though some modeling work supports the hypothesis that planetary waves are responsible for atmosphere-ionosphere coupling, there is still more significant works to do to understand how exactly the coupling can take place.Keywords: sudden stratospheric warming (SSW), polar vortex, ionosphere, critical frequency
Procedia PDF Downloads 249321 KTiPO4F: The Negative Electrode Material for Potassium Batteries
Authors: Vahid Ramezankhani, Keith J. Stevenson, Stanislav. S. Fedotov
Abstract:
Lithium-ion batteries (LIBs) play a pivotal role in achieving the key objective “zero-carbon emission” as countries agreed to reach a 1.5ᵒC global warming target according to the Paris agreement. Nowadays, due to the tremendous mobile and stationary consumption of small/large-format LIBs, the demand and consequently the price for such energy storage devices have been raised. The aforementioned challenges originate from the shrinkage of the major applied critical materials in these batteries, such as cobalt (Co), nickel (Ni), Lithium (Li), graphite (G), and manganese (Mn). Therefore, it is imperative to consider alternative elements to address issues corresponding to the limitation of resources around the globe. Potassium (K) is considered an effective alternative to Li since K is a more abundant element, has a higher operating potential, a faster diffusion rate, and the lowest stokes radius in comparison to the closest neighbors in the periodic table (Li and Na). Among all reported materials for metal-ion batteries, some of them possess the general formula AMXO4L [A = Li, Na, K; M = Fe, Ti, V; X = P, S, Si; L= O, F, OH] is of potential to be applied both as anode and cathode and enable researchers to investigate them in the full symmetric battery format. KTiPO4F (KTP structural material) has been previously reported by our group as a promising cathode with decent electronic properties. Herein, we report a synthesis, crystal structure characterization, morphology, as well as K-ion storage properties of KTiPO4F. Our investigation reveals that KTiPO4F delivers discharge capacity > 150 mAh/g at 26.6 mA/g (C/5 current rate) in the potential window of 0.001-3 V. Surprisingly, the cycling performance of C-KTiPO4F//K cell is stable for 1000 cycles at 130 mA/g (C current rate), presenting capacity > 130 mAh/g. More interestingly, we achieved to assemble full symmetric batteries where carbon-coated KTiPO4F serves as both negative and positive electrodes, delivering >70 mAh/g in the potential range of 0.001-4.2V.Keywords: anode material, potassium battery, chemical characterization, electrochemical properties
Procedia PDF Downloads 220320 The Impact of Vertical Velocity Parameter Conditions and Its Relationship with Weather Parameters in the Hail Event
Authors: Nadine Ayasha
Abstract:
Hail happened in Sukabumi (August 23, 2020), Sekadau (August 22, 2020), and Bogor (September 23, 2020), where this extreme weather phenomenon occurred in the dry season. This study uses the ERA5 reanalysis model data, it aims to examine the vertical velocity impact on the hail occurrence in the dry season, as well as its relation to other weather parameters such as relative humidity, streamline, and wind velocity. Moreover, HCAI product satellite data is used as supporting data for the convective cloud development analysis. Based on the results of graphs, contours, and Hovmoller vertical cut from ERA5 modeling, the vertical velocity values in the 925 Mb-300 Mb layer in Sukabumi, Sekadau, and Bogor before the hail event ranged between -1.2-(-0.2), -1.5-(-0.2), -1-0 Pa/s. A negative value indicates that there is an upward motion from the air mass that trigger the convective cloud growth, which produces hail. It is evidenced by the presence of Cumulonimbus cloud on HCAI product when the hail falls. Therefore, the vertical velocity has significant effect on the hail event. In addition, the relative humidity in the 850-700 Mb layer is quite wet, which ranges from 80-90%. Meanwhile, the streamline and wind velocity in the three regions show the convergence with slowing wind velocity ranging from 2-4 knots. These results show that the upward motion of the vertical velocity is enough to form the wet atmospheric humidity and form a convergence for the growth of the convective cloud, which produce hail in the dry season.Keywords: hail, extreme weather, vertical velocity, relative humidity, streamline
Procedia PDF Downloads 159319 Landslide Vulnerability Assessment in Context with Indian Himalayan
Authors: Neha Gupta
Abstract:
Landslide vulnerability is considered as the crucial parameter for the assessment of landslide risk. The term vulnerability defined as the damage or degree of elements at risk of different dimensions, i.e., physical, social, economic, and environmental dimensions. Himalaya region is very prone to multi-hazard such as floods, forest fires, earthquakes, and landslides. With the increases in fatalities rates, loss of infrastructure, and economy due to landslide in the Himalaya region, leads to the assessment of vulnerability. In this study, a methodology to measure the combination of vulnerability dimension, i.e., social vulnerability, physical vulnerability, and environmental vulnerability in one framework. A combined result of these vulnerabilities has rarely been carried out. But no such approach was applied in the Indian Scenario. The methodology was applied in an area of east Sikkim Himalaya, India. The physical vulnerability comprises of building footprint layer extracted from remote sensing data and Google Earth imaginary. The social vulnerability was assessed by using population density based on land use. The land use map was derived from a high-resolution satellite image, and for environment vulnerability assessment NDVI, forest, agriculture land, distance from the river were assessed from remote sensing and DEM. The classes of social vulnerability, physical vulnerability, and environment vulnerability were normalized at the scale of 0 (no loss) to 1 (loss) to get the homogenous dataset. Then the Multi-Criteria Analysis (MCA) was used to assign individual weights to each dimension and then integrate it into one frame. The final vulnerability was further classified into four classes from very low to very high.Keywords: landslide, multi-criteria analysis, MCA, physical vulnerability, social vulnerability
Procedia PDF Downloads 301318 Random Vertical Seismic Vibrations of the Long Span Cantilever Beams
Authors: Sergo Esadze
Abstract:
Seismic resistance norms require calculation of cantilevers on vertical components of the base seismic acceleration. Long span cantilevers, as a rule, must be calculated as a separate construction element. According to the architectural-planning solution, functional purposes and environmental condition of a designing buildings/structures, long span cantilever construction may be of very different types: both by main bearing element (beam, truss, slab), and by material (reinforced concrete, steel). A choice from these is always linked with bearing construction system of the building. Research of vertical seismic vibration of these constructions requires individual approach for each (which is not specified in the norms) in correlation with model of seismic load. The latest may be given both as deterministic load and as a random process. Loading model as a random process is more adequate to this problem. In presented paper, two types of long span (from 6m – up to 12m) reinforcement concrete cantilever beams have been considered: a) bearing elements of cantilevers, i.e., elements in which they fixed, have cross-sections with large sizes and cantilevers are made with haunch; b) cantilever beam with load-bearing rod element. Calculation models are suggested, separately for a) and b) types. They are presented as systems with finite quantity degree (concentrated masses) of freedom. Conditions for fixing ends are corresponding with its types. Vertical acceleration and vertical component of the angular acceleration affect masses. Model is based on assumption translator-rotational motion of the building in the vertical plane, caused by vertical seismic acceleration. Seismic accelerations are considered as random processes and presented by multiplication of the deterministic envelope function on stationary random process. Problem is solved within the framework of the correlation theory of random process. Solved numerical examples are given. The method is effective for solving the specific problems.Keywords: cantilever, random process, seismic load, vertical acceleration
Procedia PDF Downloads 188317 Development of Fixture for Pipe to Pipe Friction Stir Welding of Dissimilar Materials
Authors: Aashutosh A. Tadse, Kush Mehta, Hardik Vyas
Abstract:
Friction Stir Welding is a process in which an FSW tool produces friction heat and thus penetrates through the junction and upon rotation carries out the weld by exchange of material within the 2 metals being welded. It involves holding the workpieces stiff enough to bear the force of the tool moving across the junction to carry out a successful weld. The weld that has flat plates as workpieces, has a quite simpler geometry in terms of fixture holding them. In the case of FSW of pipes, the pipes need to be held firm with the chucks and jaws according to the diameter of the pipes being welded; the FSW tool is then revolved around the pipes to carry out the weld. Machine requires a larger area and it becomes more costly because of such a setup. To carry out the weld on the Milling machine, the newly designed fixture must be set-up on the table of milling machine and must facilitate rotation of pipes by the motor being shafted to one end of the fixture, and the other end automatically rotated because of the rotating jaws held tight enough with the pipes. The set-up has tapered cones as the jaws that would go in the pipes thus holding it with the help of its knurled surface providing the required grip. The process has rotation of pipes with the stationary rotating tool penetrating into the junction. The FSW on pipes in this process requires a very low RPM of pipes to carry out a fine weld and the speed shall change with every combination of material and diameter of pipes, so a variable speed setting motor shall serve the purpose. To withstand the force of the tool, an attachment to the shaft is provided which will be diameter specific that will resist flow of material towards the center during the weld. The welded joint thus carried out will be proper to required standards and specifications. Current industrial requirements state the need of space efficient, cost-friendly and more generalized form of fixtures and set-ups of machines to be put up. The proposed design considers every mentioned factor and thus proves to be positive in the same.Keywords: force of tool, friction stir welding, milling machine, rotation of pipes, tapered cones
Procedia PDF Downloads 113316 Irrigation Potential Assessment for Eastern Ganga Canal, India Using Geographic Information System
Authors: Deepak Khare, Radha Krishan, Bhaskar Nikam
Abstract:
The present study deals with the results of the Ortho-rectified Cartosat-1 PAN (2.5 m resolution) satellite data analysis for the extraction of canal networks under the Eastern Ganga Canal (EGC) command. Based on the information derived through the remote sensing data, in terms of the number of canals, their physical status and hydraulic connectivity from the source, irrigation potential (IP) created in the command was assessed by comparing with planned/design canal-wise irrigation potentials. All the geospatial information generated in the study is organized in a geodatabase. The EGC project irrigates the command through one main canal, five branch canals, 36 distributaries and 186 minors. The study was conducted with the main objectives of inventory and mapping of irrigation infrastructure using geographic information system (GIS), remote sensing and field data. Likewise, the assessment of irrigation potential created using the mapped infrastructure was performed as on March 2017. Results revealed that the canals were not only pending but were also having gap/s, and hydraulically disconnected in each branch canal and also in minors of EGC. A total of 16622.3 ha of commands were left untouched with canal water just due to the presence of gaps in the EGC project. The sum of all the gaps present in minor canals was 11.92 km, while in distributary, it was 2.63 km. This is a very good scenario that balances IP can be achieved by working on the gaps present in minor canals. Filling the gaps in minor canals can bring most of the area under irrigation, especially the tail reaches command.Keywords: canal command, GIS, hydraulic connectivity, irrigation potential
Procedia PDF Downloads 146315 A Comparative Study of Various Control Methods for Rendezvous of a Satellite Couple
Authors: Hasan Basaran, Emre Unal
Abstract:
Formation flying of satellites is a mission that involves a relative position keeping of different satellites in the constellation. In this study, different control algorithms are compared with one another in terms of ΔV, velocity increment, and tracking error. Various control methods, covering continuous and impulsive approaches are implemented and tested for satellites flying in low Earth orbit. Feedback linearization, sliding mode control, and model predictive control are designed and compared with an impulsive feedback law, which is based on mean orbital elements. Feedback linearization and sliding mode control approaches have identical mathematical models that include second order Earth oblateness effects. The model predictive control, on the other hand, does not include any perturbations and assumes circular chief orbit. The comparison is done with 4 different initial errors and achieved with velocity increment, root mean square error, maximum steady state error, and settling time. It was observed that impulsive law consumed the least ΔV, while produced the highest maximum error in the steady state. The continuous control laws, however, consumed higher velocity increments and produced lower amounts of tracking errors. Finally, the inversely proportional relationship between tracking error and velocity increment was established.Keywords: chief-deputy satellites, feedback linearization, follower-leader satellites, formation flight, fuel consumption, model predictive control, rendezvous, sliding mode
Procedia PDF Downloads 104314 Introducing New and Less Known Sources of Geomorphosites for Geotourism Development, with Examples from Misho-dagh Mountain in Northwestern Iran
Authors: Davoud Mokhtari
Abstract:
One of the factors behind the increasing development of geotourism is the identification and introduction of new facets of amazing geosphere phenomena. The Misho-Dagh Mountains in northwestern Iran are one of the rich geodiversity areas. The presence of some rare and interesting phenomena in this mountain has increased the potential of this region for geotourism development. Active pressure ridges, arcuate valleys, sag Ponds, granite complexes, glacial rock springs, and displaced habitats due to tectonic activity are among the most significant phenomena in the study area. The research is based on the literature review of geotourism and personal research experiences on geomorphosites of the northwest of Iran. Monitoring the changes of geomorphosites and evaluation of corresponding changes in the geomorphosite̕s location and their capabilities using satellite images and fieldwork is done. In this study, six geomorphosite were introduced, each with special characteristics and with one of the geotourism topics. Selection of this location of northwestern Iran is due to the focus of author of this paper is on this part of the country, and there is no doubt that such places, even with higher values of geotourism, there are in various parts of Iran and the world that could be interested in this field of emerging science. From in situ observations taken in the field and estimating a level of impact, employing assessment techniques, and then finally extrapolating the resultant factors across all case studies, we have been able to generate a geotourism map for future planning purposes. Accordingly, it should be noted that we are not just part of the landscape of the geomorphosites. The geomorphosites are also part of our landscape. It is hoped that the findings of this paper can open a new world of geotourism that, if is not associated with geomorphological processes, will be very short.Keywords: geotourism, sources of geotourism, geotouristic areas, mishow_dagh, northwest of Iran
Procedia PDF Downloads 93313 Algorithm for Automatic Real-Time Electrooculographic Artifact Correction
Authors: Norman Sinnigen, Igor Izyurov, Marina Krylova, Hamidreza Jamalabadi, Sarah Alizadeh, Martin Walter
Abstract:
Background: EEG is a non-invasive brain activity recording technique with a high temporal resolution that allows the use of real-time applications, such as neurofeedback. However, EEG data are susceptible to electrooculographic (EOG) and electromyography (EMG) artifacts (i.e., jaw clenching, teeth squeezing and forehead movements). Due to their non-stationary nature, these artifacts greatly obscure the information and power spectrum of EEG signals. Many EEG artifact correction methods are too time-consuming when applied to low-density EEG and have been focusing on offline processing or handling one single type of EEG artifact. A software-only real-time method for correcting multiple types of EEG artifacts of high-density EEG remains a significant challenge. Methods: We demonstrate an improved approach for automatic real-time EEG artifact correction of EOG and EMG artifacts. The method was tested on three healthy subjects using 64 EEG channels (Brain Products GmbH) and a sampling rate of 1,000 Hz. Captured EEG signals were imported in MATLAB with the lab streaming layer interface allowing buffering of EEG data. EMG artifacts were detected by channel variance and adaptive thresholding and corrected by using channel interpolation. Real-time independent component analysis (ICA) was applied for correcting EOG artifacts. Results: Our results demonstrate that the algorithm effectively reduces EMG artifacts, such as jaw clenching, teeth squeezing and forehead movements, and EOG artifacts (horizontal and vertical eye movements) of high-density EEG while preserving brain neuronal activity information. The average computation time of EOG and EMG artifact correction for 80 s (80,000 data points) 64-channel data is 300 – 700 ms depending on the convergence of ICA and the type and intensity of the artifact. Conclusion: An automatic EEG artifact correction algorithm based on channel variance, adaptive thresholding, and ICA improves high-density EEG recordings contaminated with EOG and EMG artifacts in real-time.Keywords: EEG, muscle artifacts, ocular artifacts, real-time artifact correction, real-time ICA
Procedia PDF Downloads 178312 Numerical Investigation of Fluid Outflow through a Retinal Hole after Scleral Buckling
Authors: T. Walczak, J. K. Grabski, P. Fritzkowski, M. Stopa
Abstract:
Objectives of the study are i) to perform numerical simulations that permit an analysis of the dynamics of subretinal fluid when an implant has induced scleral intussusception and ii) assess the impact of the physical parameters of the model on the flow rate. Computer simulations were created using finite element method (FEM) based on a model that takes into account the interaction of a viscous fluid (subretinal fluid) with a hyperelastic body (retina). The purpose of the calculation was to investigate the dependence of the flow rate of subretinal fluid through a hole in the retina on different factors such as viscosity of subretinal fluid, material parameters of the retina, and the offset of the implant from the retina’s hole. These simulations were performed for different speeds of eye movement that reflect the behavior of the eye when reading, REM, and saccadic movements. Similar to other works in the field of subretinal fluid flow, it was assumed stationary, single sided, forced fluid flow in the considered area simulating the subretinal space. Additionally, a hyperelastic material model of the retina and parameterized geometry of the considered model was adopted. The calculations also examined the influence the direction of the force of gravity due to the position of the patient’s head on the trend of outflow of fluid. The simulations revealed that fluid outflow from the retina becomes significant with eyeball movement speed of 100°/sec. This speed is greater than in the case of reading but is four times less than saccadic movement. The increase of viscosity of the fluid increased beneficial effect. Further, the simulation results suggest that moderate eye movement speed is optimal and that the conventional prescription of the avoidance of routine eye movement following retinal detachment surgery should be relaxed. Additionally, to verify numerical results, some calculations were repeated with use of meshless method (method of fundamental solutions), which is relatively fast and easy to implement. The paper has been supported by 02/21/DSPB/3477 grant.Keywords: CFD simulations, FEM analysis, meshless method, retinal detachment
Procedia PDF Downloads 343311 India and Space Insurance Policy: An Analytical Insight
Authors: Shreyas Jayasimha, Suneel Anand Sundharesan, Rohan Tigadi
Abstract:
In the recent past, the United States of America and Russia were the only two dominant players in the field of space exploration and had a virtual monopoly in the field of space and technology. However, this has changed over the past few years. Many other nation states such as India, China, and the UK have made significant progress in this field. Amongst these nations, the growth and development of the Indian space program have been nothing short of a miracle. Starting recently, India has successfully launched a series of satellites including its much acclaimed Mangalyaan mission, which placed a satellite in Mars’ orbit. The fact that India was able to attain this feat in its attempt demonstrates the enormous growth potential and promise that the Indian space program holds for the coming years. However, unlike other space-faring nations, India does not have a comprehensive and consolidated space insurance policy. In this regard, it is pertinent to note that, the costs and risks involved in a administering a space program are enormous. Therefore, in the absence of a comprehensive space insurance policy, any losses from an unsuccessful will have to be borne by the state exchequer. Thus, in order to ensure that Indian space program continues on its upward trajectory, the Indian establishment should seriously consider formulating a comprehensive insurance policy. This paper intends to analyze the international best practices followed by other space-faring nations in relation to space insurance policy. Thereafter, the authors seek to examine the current regime in India relating to space insurance policy. Finally, the authors will conclude by providing a series of recommendations regarding the essential elements that should be part of any Indian space insurance policy regime.Keywords: India, space insurance policy, space law, Indian space research organization
Procedia PDF Downloads 227310 Simulation of Climatic Change Effects on the Potential Fishing Zones of Dorado Fish (Coryphaena hippurus L.) in the Colombian Pacific under Scenarios RCP Using CMIP5 Model
Authors: Adriana Martínez-Arias, John Josephraj Selvaraj, Luis Octavio González-Salcedo
Abstract:
In the Colombian Pacific, Dorado fish (Coryphaena hippurus L.) fisheries is of great commercial interest. However, its habitat and fisheries may be affected by climatic change especially by the actual increase in sea surface temperature. Hence, it is of interest to study the dynamics of these species fishing zones. In this study, we developed Artificial Neural Networks (ANN) models to predict Catch per Unit Effort (CPUE) as an indicator of species abundance. The model was based on four oceanographic variables (Chlorophyll a, Sea Surface Temperature, Sea Level Anomaly and Bathymetry) derived from satellite data. CPUE datasets for model training and cross-validation were obtained from logbooks of commercial fishing vessel. Sea surface Temperature for Colombian Pacific were projected under Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5 using Coupled Model Intercomparison Project Phase 5 (CMIP5) and CPUE maps were created. Our results indicated that an increase in sea surface temperature reduces the potential fishing zones of this species in the Colombian Pacific. We conclude that ANN is a reliable tool for simulation of climate change effects on the potential fishing zones. This research opens a future agenda for other species that have been affected by climate change.Keywords: climatic change, artificial neural networks, dorado fish, CPUE
Procedia PDF Downloads 243309 Renovate to nZEB of an Existing Building in the Mediterranean Area: Analysis of the Use of Renewable Energy Sources for the HVAC System
Authors: M. Baratieri, M. Beccali, S. Corradino, B. Di Pietra, C. La Grassa, F. Monteleone, G. Morosinotto, G. Puglisi
Abstract:
The energy renovation of existing buildings represents an important opportunity to increase the decarbonization and the sustainability of urban environments. In this context, the work carried out has the objective of demonstrating the technical and economic feasibility of an energy renovate of a public building destined for offices located on the island of Lampedusa in the Mediterranean Sea. By applying the Italian transpositions of European Directives 2010/31/EU and 2009/28/EC, the building has been renovated from the current energy requirements of 111.7 kWh/m² to 16.4 kWh/m². The result achieved classifies the building as nZEB (nearly Zero Energy Building) according to the Italian national definition. The analysis was carried out using in parallel a quasi-stationary software, normally used in the professional field, and a dynamic simulation model often used in the academic world. The proposed interventions cover the components of the building’s envelope, the heating-cooling system and the supply of energy from renewable sources. In these latter points, the analysis has focused more on assessing two aspects that affect the supply of renewable energy. The first concerns the use of advanced logic control systems for air conditioning units in order to increase photovoltaic self-consumption. With these adjustments, a considerable increase in photovoltaic self-consumption and a decrease in the electricity exported to the Island's electricity grid have been obtained. The second point concerned the evaluation of the building's energy classification considering the real efficiency of the heating-cooling plant. Normally the energy plants have lower operational efficiency than the designed one due to multiple reasons; the decrease in the energy classification of the building for this factor has been quantified. This study represents an important example for the evaluation of the best interventions for the energy renovation of buildings in the Mediterranean Climate and a good description of the correct methodology to evaluate the resulting improvements.Keywords: heat pumps, HVAC systems, nZEB renovation, renewable energy sources
Procedia PDF Downloads 451308 Integrated Free Space Optical Communication and Optical Sensor Network System with Artificial Intelligence Techniques
Authors: Yibeltal Chanie Manie, Zebider Asire Munyelet
Abstract:
5G and 6G technology offers enhanced quality of service with high data transmission rates, which necessitates the implementation of the Internet of Things (IoT) in 5G/6G architecture. In this paper, we proposed the integration of free space optical communication (FSO) with fiber sensor networks for IoT applications. Recently, free-space optical communications (FSO) are gaining popularity as an effective alternative technology to the limited availability of radio frequency (RF) spectrum. FSO is gaining popularity due to flexibility, high achievable optical bandwidth, and low power consumption in several applications of communications, such as disaster recovery, last-mile connectivity, drones, surveillance, backhaul, and satellite communications. Hence, high-speed FSO is an optimal choice for wireless networks to satisfy the full potential of 5G/6G technology, offering 100 Gbit/s or more speed in IoT applications. Moreover, machine learning must be integrated into the design, planning, and optimization of future optical wireless communication networks in order to actualize this vision of intelligent processing and operation. In addition, fiber sensors are important to achieve real-time, accurate, and smart monitoring in IoT applications. Moreover, we proposed deep learning techniques to estimate the strain changes and peak wavelength of multiple Fiber Bragg grating (FBG) sensors using only the spectrum of FBGs obtained from the real experiment.Keywords: optical sensor, artificial Intelligence, Internet of Things, free-space optics
Procedia PDF Downloads 63307 Travel Delay and Modal Split Analysis: A Case Study
Authors: H. S. Sathish, H. S. Jagadeesh, Skanda Kumar
Abstract:
Journey time and delay study is used to evaluate the quality of service, the travel time and study can also be used to evaluate the quality of traffic movement along the route and to determine the location types and extent of traffic delays. Components of delay are boarding and alighting, issue of tickets, other causes and distance between each stops. This study investigates the total journey time required to travel along the stretch and the influence the delays. The route starts from Kempegowda Bus Station to Yelahanka Satellite Station of Bangalore City. The length of the stretch is 16.5 km. Modal split analysis has been done for this stretch. This stretch has elevated highway connecting to Bangalore International Airport and the extension of metro transit stretch. From the regression analysis of total journey time it is affected by delay due to boarding and alighting moderately, Delay due to issue of tickets affects the journey time to a higher extent. Some of the delay factors affecting significantly the journey time are evident from F-test at 10 percent level of confidence. Along this stretch work trips are more prevalent as indicated by O-D study. Modal shift analysis indicates about 70 percent of commuters are ready to shift from current system to Metro Rail System. Metro Rail System carries maximum number of trips compared to private mode. Hence Metro is a highly viable choice of mode for Bangalore Metropolitan City.Keywords: delay, journey time, modal choice, regression analysis
Procedia PDF Downloads 496306 Investigation of the Low-Level Jet Role in Transportation of Shamal Dust Storms in Southwest Iran
Authors: Nasim Hossein Hamzeh, Abbas Ranjbar Saadat Abadi, Maggie Chel Gee Ooi, Steven Soon-Kai Kong, Christian Opp
Abstract:
Dust storm is one of the most important natural disasters in the world, where the Middle East suffers frequently due to the existence of the dust belt region. As a country in the Middle East, Iran mostly is affected by the dust storms from some internal and also external dust sources, mostly originating from deserts in Iraq, Syria, and Saudi Arabia. In this study, some severe Shamal dust storms were investigated in Southwest Iran. The measured 〖PM〗_10 reached up to 834 μg m-3 in some stations in west Iran and Iran-Iraq borders, while the measured 〖PM〗_10 reached up to 4947 μg m-3 SW stations in northern shores of the Persian Gulf. During these severe dust storms, a low-level jet was observed at 930hPa atmospheric level in north Iraq and south Iraq. the jet core and its width were about 16 ms-1 and 100 km, respectively, in the cases where it is located in the NW regions of Iraq and northeastern Syria (at 35°N and 40-41°E), So the jet was stronger at higher latitudes (34°N - 35°N) than at lower latitudes (32°N). Therefore, suitable conditions have been created for lifting of dust sources located in northwestern Iraq and northeastern Syria. The topography surrounding the Mesopotamia and north of the Persian Gulf play a major role in the development of the Low-Level Jet through the interaction of meteorological conditions and mountain forcing. Also, the output of CALIPSO satellite images show dust rising to higher than 5 km in these dust cases, that confirming the influence of Shamal wind on the dust storm occurrence.Keywords: dust storm, shamal wind, the persian gulf, southwest Iran
Procedia PDF Downloads 94305 Estimation of Natural Pozzolan Reserves in the Volcanic Province of the Moroccan Middle Atlas Using a Geographic Information System in Order to Valorize Them
Authors: Brahim Balizi, Ayoub Aziz, Abdelilah Bellil, Abdellali El Khadiri, Jamal Mabrouki
Abstract:
Mio-polio-quaternary volcanism of the Tabular Middle Atlas, which corresponds to prospective levels of exploitable usable raw minerals, is a feature of Morocco's Middle Atlas, especially the Azrou-Timahdite region. Given their importance in national policy in terms of human development by supporting the sociological and economic component, this area has consequently been the focus of various research and prospecting of these levels in order to develop these reserves. The outcome of this labor is a massive amount of data that needs to be managed appropriately because it comes from multiple sources and formats, including side points, contour lines, geology, hydrogeology, hydrology, geological and topographical maps, satellite photos, and more. In this regard, putting in place a Geographic Information System (GIS) is essential to be able to offer a side plan that makes it possible to see the most recent topography of the area being exploited, to compute the volume of exploitation that occurs every day, and to make decisions with the fewest possible restrictions in order to use the reserves for the realization of ecological light mortars The three sites' mining will follow the contour lines in five steps that are six meters high and decline. It is anticipated that each quarry produces about 90,000 m3/year. For a single quarry, this translates to a daily production of about 450 m3 (200 days/year). About 3,540,240 m3 and 10,620,720 m3, respectively, represent the possible net exploitable volume in place for a single quarry and the three exploitable zones.Keywords: GIS, topography, exploitation, quarrying, lightweight mortar
Procedia PDF Downloads 26304 Satellites and Drones: Integrating Two Systems for Monitoring Air Quality and the Stress of the Plants
Authors: Bernabeo R. Alberto
Abstract:
Unmanned aerial vehicles (UAV) platforms or remotely piloted aircraft system (Rpas) - with dedicated sensors - are fundamental support to the planning, running, and control of the territory in which public safety is or may be at risk for post-disaster assessments such as flooding or landslides, for searching lost people, for crime and accident scene photography, for assisting traffic control at major events, for teaching geography, history, natural science and all those subjects that require a continuous cyclical process of observation, evaluation and interpretation. Through the use of proximal remote sensing information related to anthropic landscape and nature integration, there is an opportunity to improve knowledge and management decision-making for the safeguarding of the environment, for farming, wildlife management, land management, mapping, glacier monitoring, atmospheric monitoring, for the conservation of archeological, historical, artistic and architectural sites, allowing an exact delimitation of the site in the territory. This paper will go over many different mission types. Within each mission type, it will give a broad overview to familiarize the reader but not make them an expert. It will also give detailed information on the payloads and other testing parameters the Unmanned Aerial Vehicles (UAV) use to complete a mission. The project's goal is to improve satellite maps about the stress of the plants, air quality monitoring, and related health issues.Keywords: proximal remote sensing, remotely piloted aircraft system, risk, safety, unmanned aerial vehicle
Procedia PDF Downloads 21303 Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data Towards Mapping Fruit Plantations in Highly Heterogenous Landscapes
Authors: Yingisani Chabalala, Elhadi Adam, Khalid Adem Ali
Abstract:
Mapping smallholder fruit plantations using optical data is challenging due to morphological landscape heterogeneity and crop types having overlapped spectral signatures. Furthermore, cloud covers limit the use of optical sensing, especially in subtropical climates where they are persistent. This research assessed the effectiveness of Sentinel-1 (S1) and Sentinel-2 (S2) data for mapping fruit trees and co-existing land-use types by using support vector machine (SVM) and random forest (RF) classifiers independently. These classifiers were also applied to fused data from the two sensors. Feature ranks were extracted using the RF mean decrease accuracy (MDA) and forward variable selection (FVS) to identify optimal spectral windows to classify fruit trees. Based on RF MDA and FVS, the SVM classifier resulted in relatively high classification accuracy with overall accuracy (OA) = 0.91.6% and kappa coefficient = 0.91% when applied to the fused satellite data. Application of SVM to S1, S2, S2 selected variables and S1S2 fusion independently produced OA = 27.64, Kappa coefficient = 0.13%; OA= 87%, Kappa coefficient = 86.89%; OA = 69.33, Kappa coefficient = 69. %; OA = 87.01%, Kappa coefficient = 87%, respectively. Results also indicated that the optimal spectral bands for fruit tree mapping are green (B3) and SWIR_2 (B10) for S2, whereas for S1, the vertical-horizontal (VH) polarization band. Including the textural metrics from the VV channel improved crop discrimination and co-existing land use cover types. The fusion approach proved robust and well-suited for accurate smallholder fruit plantation mapping.Keywords: smallholder agriculture, fruit trees, data fusion, precision agriculture
Procedia PDF Downloads 54302 Spatial Variation of Nitrogen, Phosphorus and Potassium Contents of Tomato (Solanum lycopersicum L.) Plants Grown in Greenhouses (Springs) in Elmali-Antalya Region
Authors: Namik Kemal Sonmez, Sahriye Sonmez, Hasan Rasit Turkkan, Hatice Tuba Selcuk
Abstract:
In this study, the spatial variation of plant and soil nutrition contents of tomato plants grown in greenhouses was investigated in Elmalı region of Antalya. For this purpose, total of 19 sampling points were determined. Coordinates of each sampling points were recorded by using a hand-held GPS device and were transferred to satellite data in GIS. Soil samples were collected from two different depths, 0-20 and 20-40 cm, and leaf were taken from different tomato greenhouses. The soil and plant samples were analyzed for N, P and K. Then, attribute tables were created with the analyses results by using GIS. Data were analyzed and semivariogram models and parameters (nugget, sill and range) of variables were determined by using GIS software. Kriged maps of variables were created by using nugget, sill and range values with geostatistical extension of ArcGIS software. Kriged maps of the N, P and K contents of plant and soil samples showed patchy or a relatively smooth distribution in the study areas. As a result, the N content of plants were sufficient approximately 66% portion of the tomato productions. It was determined that the P and K contents were sufficient of 70% and 80% portion of the areas, respectively. On the other hand, soil total K contents were generally adequate and available N and P contents were found to be highly good enough in two depths (0-20 and 20-40 cm) 90% portion of the areas.Keywords: Elmali, nutrients, springs greenhouses, spatial variation, tomato
Procedia PDF Downloads 243301 Impacts and Management of Oil Spill Pollution along the Chabahar Bay by ESI Mapping, Iran
Authors: M. Sanjarani, A. Danehkar, A. Mashincheyan, A. H. Javid, S. M. R. Fatemi
Abstract:
The oil spill in marine water has direct impact on coastal resources and community. Environmental Sensitivity Index (ESI) map is the first step to assess the potential impact of an oil spill and minimize the damage of coastal resources. In order to create Environmental Sensitivity Maps for the Chabahar bay (Iran), information has been collected in three different layers (Shoreline Classification, Biological and Human- uses resources) by means of field observations and measurements of beach morphology, personal interviews with professionals of different areas and the collection of bibliographic information. In this paper an attempt made to prepare an ESI map for sensitivity to oil spills of Chabahar bay coast. The Chabahar bay is subjected to high threaten to oil spill because of port, dense mangrove forest,only coral spot in Oman Sea and many industrial activities. Mapping the coastal resources, shoreline and coastal structures was carried out using Satellite images and GIS technology. The coastal features classified into three major categories as: Shoreline Classification, Biological and Human uses resources. The important resources classified into mangrove, Exposed tidal flats, sandy beach, etc. The sensitivity of shore was ranked as low to high (1 = low sensitivity,10 = high sensitivity) based on geomorphology of Chabahar bay coast using NOAA standards (sensitivity to oil, ease of clean up, etc). Eight ESI types were found in the area namely; ESI 1A, 1C, 3A, 6B, 7, 8B,9A and 10D. Therefore, in the study area, 50% were defined as High sensitivity, less than 1% as Medium, and 49% as low sensitivity areas. The ESI maps are useful to the oil spill responders, coastal managers and contingency planners. The overall ESI mapping product can provide a valuable management tool not only for oil spill response but for better integrated coastal zone management.Keywords: ESI, oil spill, GIS, Chabahar Bay, Iran
Procedia PDF Downloads 364300 Rising Levels of Greenhouse Gases: Implication for Global Warming in Anambra State South Eastern Nigeria
Authors: Chikwelu Edward Emenike, Ogbuagu Uchenna Fredrick
Abstract:
About 34% of the solar radiant energy reaching the earth is immediately reflected back to space as incoming radiation by clouds, chemicals, dust in the atmosphere and by the earth’s surface. Most of the remaining 66% warms the atmosphere and land. Most of the incoming solar radiation not reflect away is degraded into low-quality heat and flows into space. The rate at which this energy returns to space as low-quality heat is affected by the presence of molecules of greenhouse gases. Gaseous emission was measured with the aid of Growen gas Analyzer with a digital readout. Total measurements of eight parameters of twelve selected sample locations taken at two different seasons within two months were made. The ambient air quality investigation in Anambra State has shown the overall mean concentrations of gaseous emission at twelve (12) locations. The mean gaseous emissions showed (NO2=0.66ppm, SO2=0.30ppm, CO=43.93ppm, H2S=2.17ppm, CH4=1.27ppm, CFC=1.59ppb, CO2=316.33ppm, N2O=302.67ppb and O3=0.37ppm). These values do not conform to the National Ambient Air Quality Standard (NAAQS) and thus contribute significantly to the global warming. Because some of these gaseous emissions (SO2, NO2) are oxidizing agents, they act as irritants that damage delicate tissues in the eyes and respiratory passages. These can impair lung function and trigger cardiovascular problems as the heart tries to compensate for lack of Oxygen by pumping faster and harder. The major sources of air pollution are transportation, industrial processes, stationary fuel combustion and solid waste disposal, thus much is yet to be done in a developing country like Nigeria. Air pollution control using pollution-control equipment to reduce the major conventional pollutants, relocating people who live very close to dumpsites, processing and treatment of gases to produce electricity, heat, fuel and various chemical components should be encouraged.Keywords: ambient air, atmosphere, greenhouse gases, anambra state
Procedia PDF Downloads 432299 Sizing of Drying Processes to Optimize Conservation of the Nuclear Power Plants on Stationary
Authors: Assabo Mohamed, Bile Mohamed, Ali Farah, Isman Souleiman, Olga Alos Ramos, Marie Cadet
Abstract:
The life of a nuclear power plant is regularly punctuated by short or long period outages to carry out maintenance operations and/or nuclear fuel reloading. During these stops periods, it is essential to conserve all the secondary circuit equipment to avoid corrosion priming. This kind of circuit is one of the main components of a nuclear reactor. Indeed, the conservation materials on shutdown of a nuclear unit improve circuit performance and reduce the maintenance cost considerably. This study is a part of the optimization of the dry preservation of equipment from the water station of the nuclear reactor. The main objective is to provide tools to guide Electricity Production Nuclear Centre (EPNC) in order to achieve the criteria required by the chemical specifications of conservation materials. A theoretical model of drying exchangers of water station is developed by the software Engineering Equation Solver (EES). It used to size requirements and air quality needed for dry conservation of equipment. This model is based on heat transfer and mass transfer governing the drying operation. A parametric study is conducted to know the influence of aerothermal factor taking part in the drying operation. The results show that the success of dry conservation of equipment of the secondary circuit of nuclear reactor depends strongly on the draining, the quality of drying air and the flow of air injecting in the secondary circuit. Finally, theoretical case study performed on EES highlights the importance of mastering the entire system to balance the air system to provide each exchanger optimum flow depending on its characteristics. From these results, recommendations to nuclear power plants can be formulated to optimize drying practices and achieve good performance in the conservation of material from the water at the stop position.Keywords: dry conservation, optimization, sizing, water station
Procedia PDF Downloads 262298 Land-Use Suitability Analysis for Merauke Agriculture Estates
Authors: Sidharta Sahirman, Ardiansyah, Muhammad Rifan, Edy-Melmambessy
Abstract:
Merauke district in Papua, Indonesia has a strategic position and natural potential for the development of agricultural industry. The development of agriculture in this region is being accelerated as part of Indonesian Government’s declaration announcing Merauke as one of future national food barns. Therefore, land-use suitability analysis for Merauke need to be performed. As a result, the mapping for future agriculture-based industries can be done optimally. In this research, a case study is carried out in Semangga sub district. The objective of this study is to determine the suitability of Merauke land for some food crops. A modified agro-ecological zoning is applied to reach the objective. In this research, land cover based on satellite imagery is combined with soil, water and climate survey results to come up with preliminary zoning. Considering the special characteristics of Merauke community, the agricultural zoning maps resulted based on those inputs will be combined with socio-economic information and culture to determine the final zoning map for agricultural industry in Merauke. Examples of culture are customary rights of local residents and the rights of local people and their own local food patterns. This paper presents the results of first year of the two-year research project funded by The Indonesian Government through MP3EI schema. It shares the findings of land cover studies, the distribution of soil physical and chemical parameters, as well as suitability analysis of Semangga sub-district for five different food plants.Keywords: agriculture, agro-ecological, Merauke, zoning
Procedia PDF Downloads 311297 Quantification of NDVI Variation within the Major Plant Formations in Nunavik
Authors: Anna Gaspard, Stéphane Boudreau, Martin Simard
Abstract:
Altered temperature and precipitation regimes associated with climate change generally result in improved conditions for plant growth. For Arctic and sub-Arctic ecosystems, this new climatic context favours an increase in primary productivity, a phenomenon often referred to as "greening". The development of an erect shrub cover has been identified as the main driver of Arctic greening. Although this phenomenon has been widely documented at the circumpolar scale, little information is available at the scale of plant communities, the basic unit of the Arctic, and sub-Arctic landscape mosaic. The objective of this study is to quantify the variation of NDVI within the different plant communities of Nunavik, which will allow us to identify the plant formations that contribute the most to the increase in productivity observed in this territory. To do so, the variation of NDVI extracted from Landsat images for the period 1984 to 2020 was quantified. From the Landsat scenes, annual summer NDVI mosaics with a resolution of 30 m were generated. The ecological mapping of Northern Quebec vegetation was then overlaid on the time series of NDVI maps to calculate the average NDVI per vegetation polygon for each year. Our results show that NDVI increases are more important for the bioclimatic domains of forest tundra and erect shrub tundra, and shrubby formations. Surface deposits, variations in mean annual temperature, and variations in winter precipitation are involved in NDVI variations. This study has thus allowed us to quantify changes in Nunavik's vegetation communities, using fine spatial resolution satellite imagery data.Keywords: climate change, latitudinal gradient, plant communities, productivity
Procedia PDF Downloads 182