Search results for: reduction reaction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6914

Search results for: reduction reaction

6134 Comparative Investigation of Miniaturized Antennas Based on Chiral Slotted Ground Plane

Authors: Oussema Tabbabi, Mondher Laabidi, Fethi Choubani, J. David

Abstract:

This study presents a miniaturized antenna based on chiral metamaterials slotted ground plane. To decrease resonant frequency while keeping the antennas physical dimensions the same, we propose a two novel patch antennas with double Z and cross slots on the ground plane. The length of the each type of slot are also altered to investigate the effect on miniaturization performance. Resonance frequency reduction has been achieved nearly to 30% and 23% as well as size reduction of almost 28% and 22% for the double Z and the cross shape respectively.

Keywords: chiral metamaterials, miniaturized antenna, miniaturization, resonance frequency

Procedia PDF Downloads 444
6133 Graphene-Reinforced Silicon Oxycarbide Composite with Lamellar Structures Prepared by the Phase Transfer Method

Authors: Min Yu, Olivier T. Picot, Theo Graves Saunders, Ivo Dlouhy, Amit Mahajan, Michael J. Reece

Abstract:

Graphene was successfully introduced into a polymer-derived silicon oxycarbide (SiOC) matrix by phase transfer of graphene oxide (GO) from an aqueous (GO dispersed in water) to an organic phase (copolymer as SiOC precursor in diethyl ether). With GO concentrations increasing up to 2 vol%, graphene-containing flakes self-assembled into a lamellar structure in the matrix leading to composite with the anisotropic property. Spark plasma sintering (SPS) was applied to densify the composites with four different GO concentrations (0, 0.5, 1 and 2 vol%) up to ~2.3 g/cm3. The fracture toughness of SiOC-2 vol% GO composites was significantly increased by ~91% (from 0.70 to 1.34 MPa·m¹/²), at the expense of a decrease in the flexural strength (from 85MPa to 55MPa), compared to SiOC-0 vol% GO composites. Moreover, the electrical conductivity in the perpendicular direction (σ┴=3×10⁻¹ S/cm) in SiOC-2 vol% GO composite was two orders of magnitude higher than the parallel direction (σ║=4.7×10⁻³ S/cm) owing to the self-assembled lamellar structure of graphene in the SiOC matrix. The composites exhibited increased electrical conductivity (σ┴) from 8.4×10⁻³ to 3×10⁻¹ S/cm, with the increasing GO content from 0.5 to 2 vol%. The SiOC-2 vol% GO composites further showed the better electrochemical performance of oxygen reduction reaction (ORR) than pure graphene, exhibiting a similar onset potential (~0.75V vs. RHE) and more positive half-wave potential (~0.6V vs. RHE).

Keywords: composite, fracture toughness, flexural strength, electrical conductivity, electrochemical performance

Procedia PDF Downloads 154
6132 Evaluation of the Operating Parameters for Biodiesel Production Using a Membrane Reactor

Authors: S. S. L. Andrade, E. A. Souza, L. C. L. Santos, C. Moraes, A. K. C. L. Lobato

Abstract:

Biodiesel production using membrane reactor has become increasingly studied, because this process minimizes some of the main problems encountered in the biodiesel purification. The membrane reactor tries to minimize post-treatment steps, resulting in cost savings and enabling the competitiveness of biodiesel produced by homogeneous alkaline catalysis. This is due to the reaction and product separation may occur simultaneously. In order to evaluate the production of biodiesel from soybean oils using a tubular membrane reactor, a factorial experimental design was conducted (2³) to evaluate the influence of following variables: temperature (45 to 60 °C), catalyst concentration (0.5 to 1% by weight) and molar ratio of oil/methanol (1/6 to 1/9). In addition, the parametric sensitivity was evaluated by the analysis of variance and model through the response surface. The results showed a tendency of influence of the variables in the reaction conversion. The significance effect was higher for the catalyst concentration followed by the molar ratio of oil/methanol and finally the temperature. The best result was obtained under the conditions of 1% catalyst (KOH), molar ratio oil/methanol of 1/9 and temperature of 60 °C, resulting in an ester content of 99.07%.

Keywords: biodiesel production, factorial design, membrane reactor, soybean oil

Procedia PDF Downloads 362
6131 Steel Dust as a Coating Agent for Iron Ore Pellets at Ironmaking

Authors: M. Bahgat, H. Hanafy, H. Al-Tassan

Abstract:

Cluster formation is an essential phenomenon during direct reduction processes at shaft furnaces. Decreasing the reducing temperature to avoid this problem can cause a significant drop in throughput. In order to prevent sticking of pellets, a coating material basically inactive under the reducing conditions prevailing in the shaft furnace, should be applied to cover the outer layer of the pellets. In the present work, steel dust is used as coating material for iron ore pellets to explore dust coating effectiveness and determines the best coating conditions. Steel dust coating is applied for iron ore pellets in various concentrations. Dust slurry concentrations of 5.0-30% were used to have a coated steel dust amount of 1.0-5.0 kg per ton iron ore. Coated pellets with various concentrations were reduced isothermally in weight loss technique with simulated gas mixture to the composition of reducing gases at shaft furnaces. The influences of various coating conditions on the reduction behavior and the morphology were studied. The optimum reduced samples were comparatively applied for sticking index measurement. It was found that the optimized steel dust coating condition that achieve higher reducibility with lower sticking index was 30% steel dust slurry concentration with 3.0 kg steel dust/ton ore.

Keywords: reduction, ironmaking, steel dust, coating

Procedia PDF Downloads 291
6130 Evaluating the Social Learning Processes Involved in Developing Community-Informed Wildfire Risk Reduction Strategies in the Prince Albert Forest Management Area

Authors: Carly Madge, Melanie Zurba, Ryan Bullock

Abstract:

The Boreal Forest has experienced some of the most drastic climate change-induced temperature rises in Canada, with average winter temperatures increasing by 3°C since 1948. One of the main concerns of the province of Saskatchewan, and particularly wildfire managers, is the increased risk of wildfires due to climate change. With these concerns in mind Sakaw Askiy Management Inc., a forestry corporation located in Prince Albert, Saskatchewan with operations in the Boreal Forest biome, is developing wildfire risk reduction strategies that are supported by the shareholders of the corporation as well as the stakeholders of the Prince Albert Forest Management Area (which includes citizens, hunters, trappers, cottage owners, and outfitters). In the past, wildfire management strategies implemented through harvesting have been received with skepticism by some community members of Prince Albert. Engagement of the stakeholders of the Prince Albert Management Area through the development of the wildfire risk reduction strategies aims to reduce this skepticism and rebuild some of the trust that has been lost between industry and community. This research project works with the framework of social learning, which is defined as the learning that occurs when individuals come together to form a group with the purpose of understanding environmental challenges and determining appropriate responses to them. The project evaluates the social learning processes that occur through the development of the risk reduction strategies and how the learning has allowed Sakaw to work towards implementing the strategies into their forest harvesting plans. The incorporation of wildfire risk reduction strategies works to increase the adaptive capacity of Sakaw, which in this case refers to the ability to adjust to climate change, moderate potential damages, take advantage of opportunities, and cope with consequences. Using semi-structured interviews and wildfire workshop meetings shareholders and stakeholders shared their knowledge of wildfire, their main wildfire concerns, and changes they would like to see made in the Prince Albert Forest Management Area. Interviews and topics discussed in the workshops were inductively coded for themes related to learning, adaptive capacity, areas of concern, and preferred methods of wildfire risk reduction strategies. Analysis determined that some of the learning that has occurred has resulted through social interactions and the development of networks oriented towards wildfire and wildfire risk reduction strategies. Participants have learned new knowledge and skills regarding wildfire risk reduction. The formation of wildfire networks increases access to information on wildfire and the social capital (trust and strengthened relations) of wildfire personnel. Both factors can be attributed to increases in adaptive capacity. Interview results were shared with the General Manager of Sakaw, where the areas of concern and preferred strategies of wildfire risk reduction will be considered and accounted for in the implementation of new harvesting plans. This research also augments the growing conceptual and empirical evidence of the important role of learning and networks in regional wildfire risk management efforts.

Keywords: adaptive capacity, community-engagement, social learning, wildfire risk reduction

Procedia PDF Downloads 126
6129 Reducing Weight and Fuel Consumption of Civil Aircraft by EML

Authors: Luca Bertola, Tom Cox, Pat Wheeler, Seamus Garvey, Herve Morvan

Abstract:

Electromagnetic launch systems have been proposed for military applications to accelerate jet planes on aircraft carriers. This paper proposes the implementation of similar technology to aid civil aircraft take-off, which can provide significant economic, environmental and technical benefits. Assisted launch has the potential of reducing ground noise and emissions near airports and improving overall aircraft efficiency through reducing engine thrust requirements. This paper presents a take-off performance analysis for an Airbus A320-200 taking off with and without the assistance of the electromagnetic catapult. Assisted take-off allows for a significant reduction in take-off field length, giving more capacity with existing airport footprints and reducing the necessary footprint of new airports, which will both reduce costs and increase the number of suitable sites. The electromagnetic catapult may allow the installation of smaller engines with lower rated thrust. The consequent fuel consumption and operational cost reduction are estimated. The potential of reducing the aircraft operational costs and the runway length required making electromagnetic launch system an attractive solution to the air traffic growth in busy airports.

Keywords: electromagnetic launch, fuel consumption, take-off analysis, weight reduction

Procedia PDF Downloads 319
6128 Energy Consumption in Biodiesel Production at Various Kinetic Reaction of Transesterification

Authors: Sariah Abang, S. M. Anisuzzaman, Awang Bono, D. Krishnaiah, S. Rasmih

Abstract:

Biodiesel is a potential renewable energy due to biodegradable and non-toxic. The challenge of its commercialization is associated with high production cost due to its feedstock also useful in various food products. Non-competitive feedstock such as waste cooking oils normally contains a large amount of free fatty acids (FFAs). Large amount of fatty acid degrades the alkaline catalyst in the biodiesel production, thereby decreasing the biodiesel production rate. Generally, biodiesel production processes including esterification and trans-esterification are conducting in a mixed system, in which the hydrodynamic effect on the reaction could not be completely defined. The aim of this study was to investigate the effect of variation rate constant and activation energy on energy consumption of biodiesel production. Usually, the changes of rate constant and activation energy depend on the operating temperature and the degradation of catalyst. By varying the activation energy and kinetic rate constant, the effects can be seen on the energy consumption of biodiesel production. The result showed that the energy consumption of biodiesel is dependent on the changes of rate constant and activation energy. Furthermore, this study was simulated using Aspen HYSYS.

Keywords: methanol, palm oil, simulation, transesterification, triolein

Procedia PDF Downloads 305
6127 Analysis on Greenhouse Gas Emissions Potential by Deploying the Green Cars in Korean Road Transport Sector

Authors: Sungjun Hong, Yanghon Chung, Nyunbae Park, Sangyong Park

Abstract:

South Korea, as the 7th largest greenhouse gas emitting country in 2011, announced that the national reduction target of greenhouse gas emissions was 30% based on BAU (Business As Usual) by 2020. And the reduction rate of the transport sector is 34.3% which is the highest figure among all sectors. This paper attempts to analyze the environmental effect on deploying the green cars in Korean road transport sector. In order to calculate the greenhouse gas emissions, the LEAP model is applied in this study.

Keywords: green car, greenhouse gas, LEAP model, road transport sector

Procedia PDF Downloads 600
6126 Participatory Approach of Flood Disaster Risk Reduction

Authors: Laxman Budhathoki, Lal Bahadur Shrestha, K. C. Laxman

Abstract:

Hundreds of people are being lost their life by flood disaster in Nepal every year. Community-based disaster management committee has formed to formulate the disaster management plan including the component of EWS like EWS tower, rain gauge station, flood gauge station, culverts, boats, ropes, life jackets, a communication mechanism, emergency shelter, Spur, dykes, dam, evacuation route, emergency dry food management etc. Now EWS become a successful tool to decrease the human casualty from 13 to 0 every year in Rapti River of Chitwan District.

Keywords: disaster risk reduction, early warning system, flood, participatory approach

Procedia PDF Downloads 337
6125 Finite Element Modelling of Log Wall Corner Joints

Authors: Reza Kalantari, Ghazanfarah Hafeez

Abstract:

The paper presents outcomes of the numerical research performed on standard and dovetail corner joints under lateral loads. An overview of the past research on log shear walls is also presented. To the authors’ best knowledge, currently, there are no specific design guidelines available in the code for the design of log shear walls, implying the need to investigate the performance of log shear walls. This research explores the performance of the log shear wall corner joint system of standard joint and dovetail types using numerical methods based on research available in the literature. A parametric study is performed to study the effect of gap size provided between two orthogonal logs and the presence of wood and steel dowels provided as joinery between log courses on the performance of such a structural system. The research outcomes are the force-displacement curves. 8% variability is seen in the reaction forces with the change of gap size for the case of the standard joint, while a variation of 10% is observed in the reaction forces for the dovetail joint system.

Keywords: dovetail joint, finite element modelling, log shear walls, standard joint

Procedia PDF Downloads 200
6124 Comparison between Torsional Ultrasonic Assisted Drilling and Conventional Drilling of Bone: An in vitro Study

Authors: Nikoo Soleimani

Abstract:

Background: Reducing torque during bone drilling is one of the effective factors in reaching to an optimal drilling process. Methods: 15 bovine femurs were drilled in vitro with a drill bit with a diameter of 4 mm using two methods of torsional ultrasonic assisted drilling (T-UAD) and convent conventional drilling (CD) and the effects of changing the feed rate and rotational speed on the torque were compared in both methods. Results: There was no significant difference in the thrust force measured in both methods due to the direction of vibrations. Results showed that using T-UAD method for bone drilling at feed rates of 0.16, 0.24 and 0.32 mm/rev led for all rotational speeds to a decrease of at least 16.3% in torque compared to the CD method. Further, using T-UAD at rotational speeds of 355~1000 rpm with various feed rates resulted in a torque reduction of 16.3~50.5% compared to CD method. Conclusions: Reducing the feed rate and increasing the rotational speed, except for the rotational speed of 500 rpm and a feed rate of 0.32 mm/rev, resulted generally in torque reduction in both methods. However, T-UAD is a more effective and desirable option for bone drilling considering its significant torque reduction.

Keywords: torsional ultrasonic assisted drilling, torque, bone drilling, rotational speed, feed rate

Procedia PDF Downloads 144
6123 Intensification of Ethyl Esters Synthesis Using a Packed-Bed Tubular Reactor at Supercritical Conditions

Authors: Camila da Silva, Simone Belorte de Andrade, Vitor Augusto dos Santos Garcia, Vladimir Ferreira Cabral, J. Vladimir Oliveira Lúcio Cardozo-Filho

Abstract:

In the present study, the non-catalytic transesterification of soybean oil in continuous mode using supercritical ethanol were investigated. Experiments were performed in a packed-bed tubular reactor (PBTR) and variable studied were reaction temperature (523 K to 598 K), pressure (10 MPa to 20 MPa), oil to ethanol molar ratio (1:10 to 1:40) and water concentration (0 wt% to 10 wt% in ethanol). Results showed that ethyl esters yields obtained in the PBTR were higher (> 20 wt%) than those verified in a tubular reactor (TR), due to improved mass transfer conditions attained in the PBTR. Results demonstrated that temperature, pressure, oil to ethanol molar ratio and water concentration had a positive effect on fatty acid ethyl esters (FAEE) production in the experimental range investigated, with appreciable reaction yields (90 wt%) achieved at 598 K, 20 MPa, oil to ethanol molar ratio of 1:40 and 10 wt% of water concentration.

Keywords: packed bed reactor, ethyl esters, continuous process, catalyst-free process

Procedia PDF Downloads 510
6122 Tornado Disaster Impacts and Management: Learning from the 2016 Tornado Catastrophe in Jiangsu Province, China

Authors: Huicong Jia, Donghua Pan

Abstract:

As a key component of disaster reduction management, disaster emergency relief and reconstruction is an important process. Based on disaster system theory, this study analyzed the Jiangsu tornado from the formation mechanism of disasters, through to the economic losses, loss of life, and social infrastructure losses along the tornado disaster chain. The study then assessed the emergency relief and reconstruction efforts, based on an analytic hierarchy process method. The results were as follows: (1) An unstable weather system was the root cause of the tornado. The potentially hazardous local environment, acting in concert with the terrain and the river network, was able to gather energy from the unstable atmosphere. The wind belt passed through a densely populated district, with vulnerable infrastructure and other hazard-prone elements, which led to an accumulative disaster situation and the triggering of a catastrophe. (2) The tornado was accompanied by a hailstorm, which is an important triggering factor for a tornado catastrophe chain reaction. (3) The evaluation index (EI) of the emergency relief and reconstruction effect for the ‘‘6.23’’ tornado disaster in Yancheng was 91.5. Compared to other relief work in areas affected by disasters of the same magnitude, there was a more successful response than has previously been experienced. The results provide new insights for studies of disaster systems and the recovery measures in response to tornado catastrophe in China.

Keywords: China, disaster system, emergency relief, tornado catastrophe

Procedia PDF Downloads 252
6121 Synthesis, Characterization, and Catalytic Application of Modified Hierarchical Zeolites

Authors: A. Feliczak Guzik, I. Nowak

Abstract:

Zeolites, classified as microporous materials, are a large group of crystalline aluminosilicate materials commonly used in the chemical industry. These materials are characterized by large specific surface area, high adsorption capacity, hydrothermal and thermal stability. However, the micropores present in them impose strong mass transfer limitations, resulting in low catalytic performance. Consequently, mesoporous (hierarchical) zeolites have attracted considerable attention from researchers. These materials possess additional porosity in the mesopore size region (2-50 nm according to IUPAC). Mesoporous zeolites, based on commercial MFI-type zeolites modified with silver, were synthesized as follows: 0.5 g of zeolite was dispersed in a mixture containing CTABr (template), water, ethanol, and ammonia under ultrasound for 30 min at 65°C. The silicon source, which was tetraethyl orthosilicate, was then added and stirred for 4 h. After this time, silver(I) nitrate was added. In a further step, the whole mixture was filtered and washed with water: ethanol mixture. The template was removed by calcination at 550°C for 5h. All the materials obtained were characterized by the following techniques: X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherms, FTIR spectroscopy. X-ray diffraction and low-temperature nitrogen adsorption/desorption isotherms revealed additional secondary porosity. Moreover, the structure of the commercial zeolite was preserved during most of the material syntheses. The aforementioned materials were used in the epoxidation reaction of cyclohexene using conventional heating and microwave radiation heating. The composition of the reaction mixture was analyzed every 1 h by gas chromatography. As a result, about 60% conversion of cyclohexene and high selectivity to the desired reaction products i.e., 1,2-epoxy cyclohexane and 1,2-cyclohexane diol, were obtained.

Keywords: catalytic application, characterization, epoxidation, hierarchical zeolites, synthesis

Procedia PDF Downloads 75
6120 Highlighting of the Factors and Policies affecting CO2 Emissions level in Malaysian Transportation Sector

Authors: Siti Indati Mustapa, Hussain Ali Bekhet

Abstract:

Global CO2 emission and increasing fuel consumption to meet energy demand requirement has become a threat in recent decades. Effort to reduce the CO2 emission is now a matter of priority in most countries of the world including Malaysia. Transportation has been identified as the most intensive sector of carbon-based fuels and achievement of the voluntary target to meet 40% carbon intensity reduction set at the 15th Conference of the Parties (COP15) means that the emission from the transport sector must be reduced accordingly. This posed a great challenge to Malaysia and effort has to be made to embrace suitable and appropriate energy policy for sustainable energy and emission reduction of this sector. The focus of this paper is to analyse the trends of Malaysia’s energy consumption and emission of four different transport sub-sectors (road, rail, aviation and maritime). Underlying factors influencing the growth of energy consumption and emission trends are discussed. Besides, technology status towards energy efficiency in transportation sub-sectors is presented. By reviewing the existing policies and trends of energy used, the paper highlights prospective policy options towards achieving emission reduction in the transportation sector.

Keywords: CO2 emissions, transportation sector, fuel consumption, energy policy, Malaysia

Procedia PDF Downloads 450
6119 Development of Prediction Tool for Sound Absorption and Sound Insulation for Sound Proof Properties

Authors: Yoshio Kurosawa, Takao Yamaguchi

Abstract:

High frequency automotive interior noise above 500 Hz considerably affects automotive passenger comfort. To reduce this noise, sound insulation material is often laminated on body panels or interior trim panels. For a more effective noise reduction, the sound reduction properties of this laminated structure need to be estimated. We have developed a new calculate tool that can roughly calculate the sound absorption and insulation properties of laminate structure and handy for designers. In this report, the outline of this tool and an analysis example applied to floor mat are introduced.

Keywords: automobile, acoustics, porous material, transfer matrix method

Procedia PDF Downloads 496
6118 CFD Study on the Effect of Primary Air on Combustion of Simulated MSW Process in the Fixed Bed

Authors: Rui Sun, Tamer M. Ismail, Xiaohan Ren, M. Abd El-Salam

Abstract:

Incineration of municipal solid waste (MSW) is one of the key scopes in the global clean energy strategy. A computational fluid dynamics (CFD) model was established. In order to reveal these features of the combustion process in a fixed porous bed of MSW. Transporting equations and process rate equations of the waste bed were modeled and set up to describe the incineration process, according to the local thermal conditions and waste property characters. Gas phase turbulence was modeled using k-ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The heterogeneous reaction rates were determined using Arrhenius eddy dissipation and the Arrhenius-diffusion reaction rates. The effects of primary air flow rate and temperature in the burning process of simulated MSW are investigated experimentally and numerically. The simulation results in bed are accordant with experimental data well. The model provides detailed information on burning processes in the fixed bed, which is otherwise very difficult to obtain by conventional experimental techniques.

Keywords: computational fluid dynamics (CFD) model, waste incineration, municipal solid waste (MSW), fixed bed, primary air

Procedia PDF Downloads 389
6117 The Effect of Visual Access to Greenspace and Urban Space on a False Memory Learning Task

Authors: Bryony Pound

Abstract:

This study investigated how views of green or urban space affect learning performance. It provides evidence of the value of visual access to greenspace in work and learning environments, and builds on the extensive research into the cognitive and learning-related benefits of access to green and natural spaces, particularly in learning environments. It demonstrates that benefits of visual access to natural spaces whilst learning can produce statistically significant faster responses than those facing urban views after only 5 minutes. The primary hypothesis of this research was that a greenspace view would improve short-term learning. Participants were randomly assigned to either a view of parkland or of urban buildings from the same room. They completed a psychological test of two stages. The first stage consisted of a presentation of words from eight different categories (four manmade and four natural). Following this a 2.5 minute break was given; participants were not prompted to look out of the window, but all were observed doing so. The second stage of the test involved a word recognition/false memory test of three types. Type 1 was presented words from each category; Type 2 was non-presented words from those same categories; and Type 3 was non-presented words from different categories. Participants were asked to respond with whether they thought they had seen the words before or not. Accuracy of responses and reaction times were recorded. The key finding was that reaction times for Type 2 words (highest difficulty) were significantly different between urban and green view conditions. Those with an urban view had slower reaction times for these words, so a view of greenspace resulted in better information retrieval for word and false memory recognition. Importantly, this difference was found after only 5 minutes of exposure to either view, during winter, and with a sample size of only 26. Greenspace views improve performance in a learning task. This provides a case for better visual access to greenspace in work and learning environments.

Keywords: benefits, greenspace, learning, restoration

Procedia PDF Downloads 119
6116 Assessing Storage of Stability and Mercury Reduction of Freeze-Dried Pseudomonas putida within Different Types of Lyoprotectant

Authors: A. A. M. Azoddein, Y. Nuratri, A. B. Bustary, F. A. M. Azli, S. C. Sayuti

Abstract:

Pseudomonas putida is a potential strain in biological treatment to remove mercury contained in the effluent of petrochemical industry due to its mercury reductase enzyme that able to reduce ionic mercury to elementary mercury. Freeze-dried P. putida allows easy, inexpensive shipping, handling and high stability of the product. This study was aimed to freeze dry P. putida cells with addition of lyoprotectant. Lyoprotectant was added into the cells suspension prior to freezing. Dried P. putida obtained was then mixed with synthetic mercury. Viability of recovery P. putida after freeze dry was significantly influenced by the type of lyoprotectant. Among the lyoprotectants, tween 80/ sucrose was found to be the best lyoprotectant. Sucrose able to recover more than 78% (6.2E+09 CFU/ml) of the original cells (7.90E+09CFU/ml) after freeze dry and able to retain 5.40E+05 viable cells after 4 weeks storage in 4oC without vacuum. Polyethylene glycol (PEG) pre-treated freeze dry cells and broth pre-treated freeze dry cells after freeze-dry recovered more than 64% (5.0 E+09CFU/ml) and >0.1% (5.60E+07CFU/ml). Freeze-dried P. putida cells in PEG and broth cannot survive after 4 weeks storage. Freeze dry also does not really change the pattern of growth P. putida but extension of lag time was found 1 hour after 3 weeks of storage. Additional time was required for freeze-dried P. putida cells to recover before introduce freeze-dried cells to more complicated condition such as mercury solution. The maximum mercury reduction of PEG pre-treated freeze-dried cells after freeze dry and after storage 3 weeks was 56.78% and 17.91%. The maximum of mercury reduction of tween 80/sucrose pre-treated freeze-dried cells after freeze dry and after storage 3 weeks were 26.35% and 25.03%. Freeze dried P. putida was found to have lower mercury reduction compare to the fresh P. putida that has been growth in agar. Result from this study may be beneficial and useful as initial reference before commercialize freeze-dried P. putida.

Keywords: Pseudomonas putida, freeze-dry, PEG, tween80/Sucrose, mercury, cell viability

Procedia PDF Downloads 344
6115 Waste Bone Based Catalyst: Characterization and Esterification Application

Authors: Amit Keshav

Abstract:

Waste bone, produced in large quantity (8-10 kg./day) from a slaughterhouse, could be a cheap (cost $0.20 per kg) substitute for commercial catalysts. In the present work, catalyst for esterification reaction was prepared from waste bone and characterized by various techniques. Bone was deoiled and then sulfonated. Fourier-transform infrared spectroscopy (FTIR) spectra of prepared catalyst predicted –OH vibration at 3416 and 1630 cm⁻¹, S-O stretching at 1124 cm⁻¹ and intense bands of hydroxypatite in a region between 500 and 700 cm⁻¹. X-ray diffraction (XRD) predicts peaks of hydroxyapatite, CaO, and tricalcium phosphate. Scanning electron microscope (SEM) was employed to reveal the presence of non-uniformity deposited fine particles on the catalyst surface that represents active acidic sites. The prepared catalyst was employed to study its performance on esterification reaction between acrylic acid and ethanol in a molar ratio of 1:1 at a set temperature of 60 °C. Results show an equilibrium conversion of 49% which is matched to the commercial catalysts employed in literature. Thus waste bone could be a good catalyst for acrylic acid removal from waste industrial streams via the process of esterification.Keywords— Heterogeneous catalyst, characterization, esterification, equilibrium conversion

Keywords: heterogeneous catalyst, characterization, esterification, equilibrium conversion

Procedia PDF Downloads 129
6114 Findings on Modelling Carbon Dioxide Concentration Scenarios in the Nairobi Metropolitan Region before and during COVID-19

Authors: John Okanda Okwaro

Abstract:

Carbon (IV) oxide (CO₂) is emitted majorly from fossil fuel combustion and industrial production. The sources of interest of carbon (IV) oxide in the study area are mining activities, transport systems, and industrial processes. This study is aimed at building models that will help in monitoring the emissions within the study area. Three scenarios were discussed, namely: pessimistic scenario, business-as-usual scenario, and optimistic scenario. The result showed that there was a reduction in carbon dioxide concentration by approximately 50.5 ppm between March 2020 and January 2021 inclusive. This is majorly due to reduced human activities that led to decreased consumption of energy. Also, the CO₂ concentration trend follows the business-as-usual scenario (BAU) path. From the models, the pessimistic, business-as-usual, and optimistic scenarios give CO₂ concentration of about 545.9 ppm, 408.1 ppm, and 360.1 ppm, respectively, on December 31st, 2021. This research helps paint the picture to the policymakers of the relationship between energy sources and CO₂ emissions. Since the reduction in CO₂ emission was due to decreased use of fossil fuel as there was a decrease in economic activities, then if Kenya relies more on green energy than fossil fuel in the post-COVID-19 period, there will be more CO₂ emission reduction. That is, the CO₂ concentration trend is likely to follow the optimistic scenario path, hence a reduction in CO₂ concentration of about 48 ppm by the end of the year 2021. This research recommends investment in solar energy by energy-intensive companies, mine machinery and equipment maintenance, investment in electric vehicles, and doubling tree planting efforts to achieve the 10% cover.

Keywords: forecasting, greenhouse gas, green energy, hierarchical data format

Procedia PDF Downloads 152
6113 A Facile Synthesis Strategy of Saccharine/TiO₂ Composite Heterojunction Catalyst for Co₂RR

Authors: Jenaidullah Batur, Sebghatullah Mudaber

Abstract:

Currently, there is a list of catalysts that can reduce CO₂ to valuable chemicals and fuels, among them metal oxides such as TiO₂, known as promising photocatalysts to produce hydrogen and CO unless they are at an earlier age and still need to promote activity to able for produce fabricated values. Herein, in this work, we provided a novel, facile and eco-friendly synthesis strategy to synthesize more effective TiO₂-organic composite materials to selectively reduce CO₂ to CO. In this experiment, commercial nanocrystalline TiO₂ and saccharin with Li (LiBr, LiCl) were synthesized using the facile physical grinding in the motel pestle for 10 minutes, then added 10 mL of deionized water (18.2 megaohms) on the 300mg composite catalyst before samples moving for hydrothermal heating for 24 hours at 80 C in the oven. Compared with nanosized TiO₂, the new TiO₂-Sac-Li indeed displays a high CO generation rate of 70.83 μmol/g/h, which is 7 times higher than TiO₂, which shows enhancement in CO₂ reduction and an apparent improvement in charge carrier dynamic. The CO₂ reduction process at the gas-solid interface on TiO₂-Sac-Li composite semiconductors is investigated by functional calculations and several characterization methods. The results indicate that CO₂ can be easily activated by the TiO₂-Sac-Li atoms on the surface. This work innovatively investigates CO₂ reduction in novel composite materials and helps to broaden the applications of composite materials semiconductors.

Keywords: green chemistry, green synthesis, TiO₂, photocatalyst

Procedia PDF Downloads 68
6112 Enhancing the Luminescence of Alkyl-Capped Silicon Quantum Dots by Using Metal Nanoparticles

Authors: Khamael M. Abualnaja, Lidija Šiller, Ben R. Horrocks

Abstract:

Metal enhanced luminescence of alkyl-capped silicon quantum dots (C11-SiQDs) was obtained by mixing C11-SiQDs with silver nanoparticles (AgNPs). C11-SiQDs have been synthesized by galvanostatic method of p-Si (100) wafers followed by a thermal hydrosilation reaction of 1-undecene in refluxing toluene in order to extract alkyl-capped silicon quantum dots from porous Si. The chemical characterization of C11-SiQDs was carried out using X-ray photoemission spectroscopy (XPS). C11-SiQDs have a crystalline structure with a diameter of 5 nm. Silver nanoparticles (AgNPs) of two different sizes were synthesized also using photochemical reduction of silver nitrate with sodium dodecyl sulphate. The synthesized Ag nanoparticles have a polycrystalline structure with an average particle diameter of 100 nm and 30 nm, respectively. A significant enhancement up to 10 and 4 times in the luminescence intensities was observed for AgNPs100/C11-SiQDs and AgNPs30/C11-SiQDs mixtures, respectively using 488 nm as an excitation source. The enhancement in luminescence intensities occurs as a result of the coupling between the excitation laser light and the plasmon bands of Ag nanoparticles; thus this intense field at Ag nanoparticles surface couples strongly to C11-SiQDs. The results suggest that the larger Ag nanoparticles i.e.100 nm caused an optimum enhancement in the luminescence intensity of C11-SiQDs which reflect the strong interaction between the localized surface plasmon resonance of AgNPs and the electric field forming a strong polarization near C11-SiQDs.

Keywords: silicon quantum dots, silver nanoparticles (AgNPs), luminescence, plasmon

Procedia PDF Downloads 360
6111 Central Composite Design for the Optimization of Fenton Process Parameters in Treatment of Hydrocarbon Contaminated Soil using Nanoscale Zero-Valent Iron

Authors: Ali Gharaee, Mohammad Reza Khosravi Nikou, Bagher Anvaripour, Ali Asghar Mahjoobi

Abstract:

Soil contamination by petroleum hydrocarbon (PHC) is a major concern facing the oil and gas industry. Particularly, condensate liquids have been found to contaminate soil at gas production sites. The remediation of PHCs is a difficult challenge due to the complex interaction between contaminant and soil. A study has been conducted to enhance degradation of PHCs by Fenton oxidation and using Nanoscale Zero-Valent Iron as catalyst. The various operating conditions such as initial H2O2 concentration, nZVI dosage, reaction time, and initial contamination dose were investigated. Central composite design was employed to optimize and analyze the effect of operational parameters on the PHC removal efficiency. It was found that optimal molar ratio of H2O2/Fe0 was 58 with maximum TPH removal of 84% and 3hr reaction time and initial contaminant concentration was 15g oil /kg soil. Based on the results, combination of Nanoscale ZVI and Fenton has proved to be a promising remedy for contaminated soil.

Keywords: oil contaminated Soil, fenton oxidation, zero valent iron nano-particles

Procedia PDF Downloads 273
6110 Investigation of Municipal Solid Waste Incineration Filter Cake as Minor Additional Constituent in Cement Production

Authors: Veronica Caprai, Katrin Schollbach, Miruna V. A. Florea, H. J. H. Brouwers

Abstract:

Nowadays MSWI (Municipal Solid Waste Incineration) bottom ash (BA) produced by Waste-to-Energy (WtE) plants represents the majority of the solid residues derived from MSW incineration. Once processed, the BA is often landfilled resulting in possible environmental problems, additional costs for the plant and increasing occupation of public land. In order to limit this phenomenon, European countries such as the Netherlands aid the utilization of MSWI BA in the construction field, by providing standards about the leaching of contaminants into the environment (Dutch Soil Quality Decree). Commonly, BA has a particle size below 32 mm and a heterogeneous chemical composition, depending on its source. By washing coarser BA, an MSWI sludge is obtained. It is characterized by a high content of heavy metals, chlorides, and sulfates as well as a reduced particle size (below 0.25 mm). To lower its environmental impact, MSWI sludge is filtered or centrifuged for removing easily soluble contaminants, such as chlorides. However, the presence of heavy metals is not easily reduced, compromising its possible application. For lowering the leaching of those contaminants, the use of MSWI residues in combination with cement represents a precious option, due to the known retention of those ions into the hydrated cement matrix. Among the applications, the European standard for common cement EN 197-1:1992 allows the incorporation of up to 5% by mass of a minor additional constituent (MAC), such as fly ash or blast furnace slag but also an unspecified filler into cement. To the best of the author's knowledge, although it is widely available, it has the appropriate particle size and a chemical composition similar to cement, FC has not been investigated as possible MAC in cement production. Therefore, this paper will address the suitability of MSWI FC as MAC for CEM I 52.5 R, within a 5% maximum replacement by mass. After physical and chemical characterization of the raw materials, the crystal phases of the pastes are determined by XRD for 3 replacement levels (1%, 3%, and 5%) at different ages. Thereafter, the impact of FC on mechanical and environmental performances of cement is assessed according to EN 196-1 and the Dutch Soil Quality Decree, respectively. The investigation of the reaction products evidences the formation of layered double hydroxides (LDH), in the early stage of the reaction. Mechanically the presence of FC results in a reduction of 28 days compressive strength by 8% for a replacement of 5% wt., compared with the pure CEM I 52.5 R without any MAC. In contrast, the flexural strength is not affected by the presence of FC. Environmentally, the Dutch legislation for the leaching of contaminants for unshaped (granular) material is satisfied. Based on the collected results, FC represents a suitable candidate as MAC in cement production.

Keywords: environmental impact evaluation, Minor additional constituent, MSWI residues, X-ray diffraction crystallography

Procedia PDF Downloads 157
6109 Negative RT-PCR in a Newborn Infected with Zika Virus: A Case Report

Authors: Vallejo Michael, Acuña Edgar, Roa Juan David, Peñuela Rosa, Parra Alejandra, Casallas Daniela, Rodriguez Sheyla

Abstract:

Congenital Zika Virus Syndrome is an entity composed by a variety of birth defects presented in newborns that have been exposed to the Zika Virus during pregnancy. The syndrome characteristic features are severe microcephaly, cerebral tissue abnormalities, ophthalmological abnormalities such as uveitis and chorioretinitis, arthrogryposis, clubfoot deformity and muscular tone abnormalities. The confirmatory test is the Reverse transcription polymerase chain reaction (RT-PCR) associated to the physical findings. Here we present the case of a newborn with microcephaly whose mother presented a confirmed Zika Virus infection during the third trimester of pregnancy, despite of the evident findings and the history of Zika infection the RT-PCR in amniotic and cerebrospinal fluid of the newborn was negative. RT-PCR has demonstrated a low sensibility in samples with low viral loads, reason why, we propose a clinical diagnosis in patients with clinical history of Zika Virus infection during pregnancy accompanied by evident clinical manifestations of the child.

Keywords: congenital, Zika virus, microcephaly, reverse transcriptase polymerase chain reaction

Procedia PDF Downloads 188
6108 Planning Strategies for Urban Flood Mitigation through Different Case Studies of Best Practices across the World

Authors: Bismina Akbar, Smitha M. V.

Abstract:

Flooding is a global phenomenon that causes widespread devastation, economic damage, and loss of human lives. In the past twenty years, the number of reported flood events has increased significantly. Millions of people around the globe are at risk of flooding from coastal, dam breaks, groundwater, and urban surface water and wastewater sources. Climate change is one of the important causes for them since it affects, directly and indirectly, the river network. Although the contribution of climate change is undeniable, human contributions are there to increase the frequency of floods. There are different types of floods, such as Flash floods, Coastal floods, Urban floods, River (or fluvial) floods, and Ponding (or pluvial flooding). This study focuses on formulating mitigation strategies for urban flood risk reduction through analysis of different best practice case studies, including China, Japan, Indonesia, and Brazil. The mitigation measures suggest that apart from the structural and non-structural measures, environmental considerations like blue-green solutions are beneficial for flood risk reduction. And also, Risk-Informed Master plans are essential nowadays to take risk-based decision processes that enable more sustainability and resilience.

Keywords: hazard, mitigation, risk reduction, urban flood

Procedia PDF Downloads 61
6107 Photo-Electrochemical/Electro-Fenton Coupling Oxidation System with Fe/Co-Based Anode and Cathode Metal-Organic Frameworks Derivative Materials for Sulfamethoxazole Treatment

Authors: Xin Chen, Xinyong Li, Qidong Zhao, Dong Wang

Abstract:

A new coupling system was constructed by combining photo-electrochemical cell with electro-fenton cell (PEC-EF). The electrode material in this system was derived from MnyFe₁₋yCo Prussian-Blue-Analog (PBA). Mn₀.₄Fe₀.₆Co₀.₆₇-N@C spin-coated on carbon paper behaved as the gas diffusion cathode and Mn₀.₄Fe₀.₆Co₀.₆₇O₂.₂ spin-coated on fluorine-tin oxide glass (FTO) as anode. The two separated cells could degrade Sulfamethoxazole (SMX) simultaneously and some coupling mechanisms by PEC and EF enhancing the degradation efficiency were investigated. The continuous on-site generation of H₂O₂ at cathode through an oxygen reduction reaction (ORR) was realized over rotating ring-disk electrode (RRDE). The electron transfer number (n) of the ORR with Mn₀.₄Fe₀.₆Co₀.₆₇-N@C was 2.5 in the selected potential and pH range. The photo-electrochemical properties of Mn₀.₄Fe₀.₆Co₀.₆₇O₂.₂ were systematically studied, which displayed good response towards visible light. The photoinduced electrons at anode can transfer to cathode for further use. Efficient photo-electro-catalytic performance was observed in degrading SMX. Almost 100% SMX removal was achieved in 120 min. This work not only provided a highly effective technique for antibiotic treatment but also revealed the synergic effect between PEC and EF.

Keywords: electro-fenton, photo-electrochemical, synergic effect, sulfamethoxazole

Procedia PDF Downloads 170
6106 NiSe-Ni₃Se₂/Multiwalled Carbon Nanotubes as Efficient Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Media

Authors: Oluwaseun A. Oyetade, Roelof J. Kriek

Abstract:

The development of effective catalysts for the oxygen evolution reaction (OER) is of great importance to combat energy-related concerns in the environment. Herein, we report a one-step solvothermal method employed for the fabrication of nickel selenide hybrids (NiSe-Ni₃Se₂) and a series of nickel selenide hybrid/multiwalled carbon nanotube composites (NiSe-Ni₃Se₂/MWCNT) as electrocatalysts for OER in alkaline media. The catalytic activities of these catalysts were investigated via several electrochemical characterization techniques, such as linear sweep voltammetry, chronoamperometric studies at constant potential, electrochemical surface area determination, and Tafel slope calculation, under alkaline conditions. Morphological observations demonstrated the agglomeration of non-uniform NiSe-Ni₃Se₂ microspheres around carbon nanotubes (CNTs), demonstrating the successful synthesis of NiSe-Ni₃Se₂/MWCNT nanocomposites. Among the tested electrocatalysts, the 20% NiSe-Ni₃Se₂/MWCNT nanocomposite demonstrated the highest activity, exhibiting an overpotential of 325 mV to achieve a current density of 10 mA.cm⁻² in 0.1 mol.dm⁻³ KOH solution. The NiSe-Ni₃Se₂/MWCNT nanocomposites showed improved activity toward OER compared to bare NiSe-Ni₃Se₂ hybrids and MWCNTs, exhibiting an overpotential of 528, 392 and 434 mV for 10%, 30% and 50% NiSe-Ni₃Se₂/MWCNT nanocomposites, respectively. These results compare favourably to the overpotential of noble catalysts, such as RuO₂ and IrO₂. Our results imply that the addition of MWCNTs increased the activity of NiSe-Ni₃Se₂ hybrids due to an increased number of catalytic sites, dispersion of NiSe-Ni₃Se₂ hybrid nanoparticles, and electronic conductivity of the nanocomposites. These nanocomposites also demonstrated better long-term stability compared to NiSe-Ni₃Se₂ hybrids and MWCNTs. Hence, NiSe-Ni₃Se₂/MWCNT nanocomposites possess the potential as effective electrocatalysts for OER in alkaline media.

Keywords: carbon nanotubes, electrocatalysts, nanocomposites, nickel selenide hybrids, oxygen evolution reaction

Procedia PDF Downloads 115
6105 Numerical Investigation of Hot Oil Velocity Effect on Force Heat Convection and Impact of Wind Velocity on Convection Heat Transfer in Receiver Tube of Parabolic Trough Collector System

Authors: O. Afshar

Abstract:

A solar receiver is designed for operation under extremely uneven heat flux distribution, cyclic weather, and cloud transient cycle conditions, which can include large thermal stress and even receiver failure. In this study, the effect of different oil velocity on convection coefficient factor and impact of wind velocity on local Nusselt number by Finite Volume Method will be analyzed. This study is organized to give an overview of the numerical modeling using a MATLAB software, as an accurate, time efficient and economical way of analyzing the heat transfer trends over stationary receiver tube for different Reynolds number. The results reveal when oil velocity is below 0.33m/s, the value of convection coefficient is negligible at low temperature. The numerical graphs indicate that when oil velocity increases up to 1.2 m/s, heat convection coefficient increases significantly. In fact, a reduction in oil velocity causes a reduction in heat conduction through the glass envelope. In addition, the different local Nusselt number is reduced when the wind blows toward the concave side of the collector and it has a significant effect on heat losses reduction through the glass envelope.

Keywords: receiver tube, heat convection, heat conduction, Nusselt number

Procedia PDF Downloads 342