Search results for: membrane contactor
310 Effect of Synthesis Parameters on Crystal Size and Perfection of Mordenite and Analcime
Authors: Zehui Du, Chaiwat Prapainainar, Paisan Kongkachuichay, Paweena Prapainainar
Abstract:
The aim of this work was to obtain small crystalline size and high crystallinity of mordenites and analcimes, by modifying the aging time, agitation, water content, crystallization temperature and crystallization time. Two different hydrothermal methods were studied. Both methods used Na2SiO3 as the silica source, NaAlO2 as the aluminum source, and NaOH as the alkali source. The first method used HMI as the template while the second method did not use the template. Mordenite crystals with spherical shape and bimodal in size of about 1 and 5 µm were obtained from the first method using conditions of 24 hr aging time, 170°C and 24 hr crystallization. Modernites with high crystallinity were formed using agitation system in the crystallization process. It was also found that the aging time of 2 hr and 24 hr did not much affect the formation of mordenite crystals. Analcime crystals were formed in spherical shape and facet on surface with the size between 13-15 µm by the second method using the conditions of 30 minutes aging time, 170°C and 24 hr crystallization without calcination. By increasing water content, the crystallization process was slowed down and resulted in smaller analcime crystals. Larger size of analcime crystals were observed when the samples were calcined at 300°C and 580°C. Higher calcination temperature led to higher crystal growth and resulted in larger crystal size. Finally, mordenite and analcime was used as fillers in zeolite/Nafion composite membrane to solve the fuel cross over problem in direct alcohol fuel cell.Keywords: analcime, hydrothermal synthesis, mordenite, zeolite
Procedia PDF Downloads 263309 Modified Acetamidobenzoxazolone Based Biomarker for Translocator Protein Mapping during Neuroinflammation
Authors: Anjani Kumar Tiwari, Neelam Kumari, Anil Mishra
Abstract:
The 18-kDa translocator protein (TSPO) previously called as peripheral benzodiazepine receptor, is proven biomarker for variety of neuroinflammation. TSPO is tryptophane rich five transmembranal protein found on outer mitochondrial membrane of steroid synthesising and immunomodulatory cells. In case of neuronal damage or inflammation the expression level of TSPO get upregulated as an immunomodulatory response. By utilizing Benzoxazolone as a basic scaffold, series of TSPO ligands have been designed followed by their screening through in silico studies. Synthesis has been planned by employing convergent methodology in six high yielding steps. For the synthesized ligands the ‘in vitro’ assay was performed to determine the binding affinity in term of Ki. On ischemic rat brain, autoradiography studies were also carried to check the specificity and affinity of the designed radiolabelled ligand for TSPO.Screening was performed on the basis of GScore of CADD based schrodinger software. All the modified and better prospective compound were successfully carried out and characterized by spectroscopic techniques (FTIR, NMR and HRMS). In vitro binding assay showed best binding affinity Ki = 6.1+ 0.3 for TSPO over central benzodiazepine receptor (CBR) Ki > 200. ARG studies indicated higher uptake of two analogues on the lesion side compared with that on the non-lesion side of ischemic rat brains. Displacement experiments with unlabelled ligand had minimized the difference in uptake between the two sides which indicates the specificity of the ligand towards TSPO receptor.Keywords: TSPO, PET, imaging, Acetamidobenzoxazolone
Procedia PDF Downloads 143308 Biomphalaria alexandrina Snail as a Bio-Indicator of Pollution With Manganese Metal and Its Effect on Physiological, Immunological, Histopathological Parameters and Larvicidal Potencies
Authors: Amina M. Ibrahim, Ahmed A. Abdel-Haleem, Rania G. Taha
Abstract:
Metal pollution results in many dangerous consequences to the environment and human health due to the bioaccumulation in their tissues. The present study aims to measure the bioaccumulation factor of the Manganese (Mn) heavy metal in Biomphlaria alexandrina snails' tissues and water samples. The present results showed the concentration of Mn heavy metal in water (87.5 mg/l) and its bioaccumulation factor in Helisoma duryi tissue was higher than that in tissues of Physa acuta and B. alexandrina snails. Results showed that 87.5 mg/l Mn concentration had miracidial and cercaricidal activities. Also, this concentration decreased the mean total number of the hemocytes after exposure for 24h or 48h, while increased both the mean mortality and phagocytic indices of the hemocytes of exposed snails. It caused alterations in the cytomorphology of the hemocytes of exposed snails after 24 or 48h, where, the granulocytes had irregular cell membrane, and forming pseudopodia. Besides, both levels of Testosterone (T) and Estradiol (E) were increased after exposure to 87.5mg/l Mn metal compared to the control group. Also, it increased MDA (Malonaldehyde) and TAC (Total antioxidant capacity) contents, while, decreased SOD (superoxide dismutase). Besides, it caused great histopathological damages in both hermaphrodite and digestive glands, represented in the degeneration of the gonadal, digestive, secretory cells and the connective tissues. Therefore, B. alexandrina might be used as sensitive bio-indicator of pollution with Mn heavy metal to avoid ethics rules; beside they are easily available and large in number.Keywords: manganese metal, B. alexandrina, hormonal alterations, histopathology
Procedia PDF Downloads 58307 Rapid Identification and Diagnosis of the Pathogenic Leptospiras through Comparison among Culture, PCR and Real Time PCR Techniques from Samples of Human and Mouse Feces
Authors: S. Rostampour Yasouri, M. Ghane, M. Doudi
Abstract:
Leptospirosis is one of the most significant infectious and zoonotic diseases along with global spreading. This disease is causative agent of economoic losses and human fatalities in various countries, including Northern provinces of Iran. The aim of this research is to identify and compare the rapid diagnostic techniques of pathogenic leptospiras, considering the multifacetedness of the disease from a clinical manifestation and premature death of patients. In the spring and summer of 2020-2022, 25 fecal samples were collected from suspected leptospirosis patients and 25 Fecal samples from mice residing in the rice fields and factories in Tonekabon city. Samples were prepared by centrifugation and passing through membrane filters. Culture technique was used in liquid and solid EMJH media during one month of incubation at 30°C. Then, the media were examined microscopically. DNA extraction was conducted by extraction Kit. Diagnosis of leptospiras was enforced by PCR and Real time PCR (SYBR Green) techniques using lipL32 specific primer. Out of the patients, 11 samples (44%) and 8 samples (32%) were determined to be pathogenic Leptospira by Real time PCR and PCR technique, respectively. Out of the mice, 9 Samples (36%) and 3 samples (12%) were determined to be pathogenic Leptospira by the mentioned techniques, respectively. Although the culture technique is considered to be the gold standard technique, but due to the slow growth of pathogenic Leptospira and lack of colony formation of some species, it is not a fast technique. Real time PCR allowed rapid diagnosis with much higher accuracy compared to PCR because PCR could not completely identify samples with lower microbial load.Keywords: culture, pathogenic leptospiras, PCR, real time PCR
Procedia PDF Downloads 85306 Effect of Cellular Water Transport on Deformation of Food Material during Drying
Authors: M. Imran Hossen Khan, M. Mahiuddin, M. A. Karim
Abstract:
Drying is a food processing technique where simultaneous heat and mass transfer take place from surface to the center of the sample. Deformation of food materials during drying is a common physical phenomenon which affects the textural quality and taste of the dried product. Most of the plant-based food materials are porous and hygroscopic in nature that contains about 80-90% water in different cellular environments: intercellular environment and intracellular environment. Transport of this cellular water has a significant effect on material deformation during drying. However, understanding of the scale of deformation is very complex due to diverse nature and structural heterogeneity of food material. Knowledge about the effect of transport of cellular water on deformation of material during drying is crucial for increasing the energy efficiency and obtaining better quality dried foods. Therefore, the primary aim of this work is to investigate the effect of intracellular water transport on material deformation during drying. In this study, apple tissue was taken for the investigation. The experiment was carried out using 1H-NMR T2 relaxometry with a conventional dryer. The experimental results are consistent with the understanding that transport of intracellular water causes cellular shrinkage associated with the anisotropic deformation of whole apple tissue. Interestingly, it is found that the deformation of apple tissue takes place at different stages of drying rather than deforming at one time. Moreover, it is found that the penetration rate of heat energy together with the pressure gradient between intracellular and intercellular environments is the responsible force to rupture the cell membrane.Keywords: heat and mass transfer, food material, intracellular water, cell rupture, deformation
Procedia PDF Downloads 221305 Alleviation of Salt Stress Effects on Solanum lycopersicum (L.) Plants Grown in a Saline Soil by Foliar Spray with Salicylic Acid
Authors: Saad Howladar
Abstract:
Salinity stress is one of the major abiotic stresses, restricting plant growth and crop productivity in different world regions, especially in arid and semi-arid regions, including Saudi Arabia. The tomato plant is proven to be moderately sensitive to salt stress. Therefore, two field experiments were conducted using tomato plants (Hybrid 6130) to evaluate the effect of four concentrations of salicylic acid (SA; 0, 20, 40, and 60 µM) applied as foliar spraying in improving plant tolerance to saline soil conditions. Tomato plant growth, yield, osmoprotectants, chloeophyll fluorescence, and ionic contents were determined. The results of this study displayed that growth and yield components and physiological attributes of water-sprayed plants (the control) grown under saline soil conditions were negatively impacted. However, under the adverse conditions of salinity, SA-treated plants had enhanced growth and yield components of tomato plants compared to the control. Free proline, soluble sugars, chlorophyll fluorescence, relative water content, membrane stability index, and nutrients contents (e.g., N, P, K⁺, and Ca²⁺) were also improved significantly, while Na⁺ content was significantly reduced in SA-applied tomato plants. SA at 40 µM was the best treatment, which could be recommended to use for salt-stressed tomato plants to enable them to tolerate the adverse conditions of saline soils.Keywords: tomatoes, salt stress, chlorophyll fluorescence, dehydration tolerance, osmoprotectants
Procedia PDF Downloads 110304 Protective Effect of L-Carnitine against Gentamicin-Induced Nephrotoxicity in Rats
Authors: Mohamed F. Ahmed, Mabruka S. Elashheb, Fatma M. Ben Rabha
Abstract:
This study aimed to determine the possible protective effects of L‐carnitine against gentamicin‐induced nephrotoxicity. Forty male albino rats were divided into 4 groups (10 rats each); Group 1: normal control, group 2: induced nephrotoxicity (gentamicin 50 mg/kg/day S.C; 8 days) , group 3: treated with L‐carnitine (40 mg/kg/d SC for 12 days) and group 4: treated with L‐carnitine 4 days before and for 8 days in concomitant with gentamicin. Gentamicin‐induced nephrotoxicity (group 2): caused significant increase in serum urea, creatinine, urinary N‐acetyl‐B‐D‐glucosaminidase (NAG), gamma glutamyl transpeptidase (GGT), urinary total protein and kidney tissue malondialdehyde (MDA) with significant decrease in serum superoxide dismutase (SOD), serum catalase and creatinine clearance and marked tubular necrosis in the proximal convoluted tubules with interruption in the basement membrane around the necrotic tubule compared to the normal control group. L‐carnitine 4 days before and for 8 days in concomitant with gentamicin (group 4) offered marked decrease in serum urea, serum creatinine, urinary NAG, urinary GGT, urinary proteins and kidney tissue MDA, with marked increase in serum SOD, serum catalase and creatinine clearance with marked improvement in the tubular damage compared to gentamicin‐induced nephrotoxicity group. L‐carnitine administered for 12 days produced no change in the above-mentioned parameters as compared to the normal control group. In conclusion: L‐carnitine could reduce most of the biochemical parameters and also improve the histopathological features of the kidney associated with gentamicin-induced nephrotoxicity.Keywords: gentamicin, nephrotoxicity, L‐carnitine, kidney disease
Procedia PDF Downloads 357303 Comparision of Neospora caninum Experimental Infection in Pigeons and Chickens Embryonated Eggs
Authors: S. Bahrami, A. Rezaie, Z. Boroumand, S. Ghavami
Abstract:
Neospora caninum is protozoan parasite which can cause a serious disease in dogs and cattle. It has been shown that birds may be a permissive intermediate host for N. caninum since parasite DNA has been detected in tissues from birds. It is showed that embryonated chicken egg can be used as an animal model for experimental infection. The aim of present study was to compare experimental infection of Neospora in chicken and pigeons embryonated eggs. An infection with N. caninum Nc1 isolate was conducted in chicken and pigeons embryonated eggs to evaluate LD50. After calculation of LD50, 2LD50 of tachyzoites were injected to eggs. Macroscopic changes of each embryo were noticed and to investigate the parasite distribution in tissues immunohistochemistry (IHC) and molecular methods were used. In the present study, histopathological changes were considered and sections to those used for histopathological examination including heart, liver, brain and chorioallantoic (CA) membrane were subjected to IHC, too. For PCR procedure, primer pair Np21/Np6 was used for amplification of the Nc5 gene. Pigeon's embryo showed more macroscopic changes than chicken embryo. A hemorrhage of the CA was the main grass lesion. All the infected tissues had histopathological changes. Microscopic examination of tissues revealed acute neosporosis due to hemorrhage, necrosis and infiltration of mononuclear inflammatory cells. Based on IHC and molecular results, the parasite aggregation in the heart was more predominant than in the other tissues. These results reinforce that there is genetic susceptibility to N. caninum in pigeons embryonated eggs like chickens embryonated eggs and provide new insights to research an inexpensive and available animal model for N. caninum.Keywords: immunohistochemistry, Neospora caninum, PCR, pigeon embryonated egg
Procedia PDF Downloads 345302 Understanding the Mechanisms of Salmonella typhimurium Resistance to Cannabidiol
Authors: Iddrisu Ibrahim, Joseph Atia Ayariga, Junhuan Xu, Daniel Abugri, Boakai Robertson, Olufemi S. Ajayi
Abstract:
The emergence of multidrug resistance poses a huge risk to public health globally. Yet these recalcitrant pathogens continue to rise in incidence rate, with resistance rates significantly outpacing the speed of antibiotic development. This, therefore, presents an aura of related health issues such as untreatable nosocomial infections arising from organ transplants and surgeries, as well as community-acquired infections that are related to people with compromised immunity, e.g., diabetic and HIV patients, etc. There is a global effort to fight multidrug-resistant pathogens spearheaded by the World Health Organization, thus calling for research into novel antimicrobial agents to fight multiple drug resistance. Previously, our laboratory demonstrated that Cannabidiol (CBD) was an effective antimicrobial against Salmonella typhimurium (S. typhimurium). However, we observed resistance development over time. To understand the mechanisms S. typhimurium uses to develop resistance to Cannabidiol (CBD), we studied the abundance of bacteria lipopolysaccharide (LPS) and membrane sterols of both susceptible and resistant S. typhimurium. Using real-time quantitative polymerase chain reaction (RT-qPCR), we also analyzed the expression of selected genes known for aiding resistance development in S. typhimurium. We discovered that there was a significantly higher expression of blaTEM, fimA, fimZ, and integrons in the CBD-resistant bacteria, and these were also accompanied by a shift in abundance in cell surface molecules such as lipopolysaccharide (LPS) and sterols.Keywords: antimicrobials, resistance, cannabidiol, gram-negative bacteria, integrons, blaTEM, Fim, LPS, ergosterols
Procedia PDF Downloads 101301 Numerical Study on Response of Polymer Electrolyte Fuel Cell (PEFCs) with Defects under Different Load Conditions
Authors: Muhammad Faizan Chinannai, Jaeseung Lee, Mohamed Hassan Gundu, Hyunchul Ju
Abstract:
Fuel cell is known to be an effective renewable energy resource which is commercializing in the present era. It is really important to know about the improvement in performance even when the system faces some defects. This study was carried out to analyze the performance of the Polymer electrolyte fuel cell (PEFCs) under different operating conditions such as current density, relative humidity and Pt loadings considering defects with load changes. The purpose of this study is to analyze the response of the fuel cell system with defects in Balance of Plants (BOPs) and catalyst layer (CL) degradation by maintaining the coolant flow rate as such to preserve the cell temperature at the required level. Multi-Scale Simulation of 3D two-phase PEFC model with coolant was carried out under different load conditions. For detailed analysis and performance comparison, extensive contours of temperature, current density, water content, and relative humidity are provided. The simulation results of the different cases are compared with the reference data. Hence the response of the fuel cell stack with defects in BOP and CL degradations can be analyzed by the temperature difference between the coolant outlet and membrane electrode assembly. The results showed that the Failure of the humidifier increases High-Frequency Resistance (HFR), air flow defects and CL degradation results in the non-uniformity of current density distribution and high cathode activation overpotential, respectively.Keywords: PEM fuel cell, fuel cell modeling, performance analysis, BOP components, current density distribution, degradation
Procedia PDF Downloads 214300 Effect of Particle Size and Concentration of Pomegranate (Punica granatum l.) Peel Powder on Suppression of Oxidation of Edible Plant Oils
Authors: D. G. D. C. L. Munasinghe, M. S. Gunawardana, P. H. P. Prasanna, C. S. Ranadheera, T. Madhujith
Abstract:
Lipid oxidation is an important process that affects the shelf life of edible oils. Oxidation produces off flavors, off odors and chemical compounds that lead to adverse health effects. Chemical mechanisms such as autoxidation, photo-oxidation and thermal oxidation are responsible for lipid oxidation. Refined, Bleached and Deodorized (RBD) coconut oil, Virgin Coconut Oil (VCO) and corn oil are widely used plant oils. Pomegranate fruit is known to possess high antioxidative efficacy. Peel of pomegranate contains high antioxidant activity than aril and pulp membrane. The study attempted to study the effect of particle size and concentration of pomegranate peel powder on suppression of oxidation of RBD coconut oil, VCO and corn oil. Pomegranate peel powder was incorporated into each oil sample as micro (< 250 µm) and nano particles (280 - 300 nm) at 100 ppm and 200 ppm concentrations. The control sample of each oil was prepared, devoid of pomegranate peel powder. The stability of oils against autoxidation was evaluated by storing oil samples at 60 °C for 28 days. The level of oxidation was assessed by peroxide value and thiobarbituric acid reactive substances on 0,1,3,5,7,14 and 28 day, respectively. VCO containing pomegranate particles of 280 - 300 nm at 200 ppm showed the highest oxidative stability followed by RBD coconut oil and corn oil. Results revealed that pomegranate peel powder with 280 - 300 nm particle size at 200 ppm concentration was the best in mitigating oxidation of RBD coconut oil, VCO and corn oil. There is a huge potential of utilizing pomegranate peel powder as an antioxidant agent in reducing oxidation of edible plant oils.Keywords: antioxidant, autoxidation, micro particles, nano particles, pomegranate peel powder
Procedia PDF Downloads 453299 Force Measurement for E-Cadherin-Mediated Intercellular Adhesion Probed by Protein Micropattern and Traction Force Microscopy
Authors: Chieh-Chung Tsou, Chun-Min Lo, Yeh-Shiu Chu
Abstract:
Cell’s mechanical forces provide important physical cues in regulation of proper cellular functions, such as cell differentiation, proliferation and migration. It is believed that adhesive forces generated by cell-cell interaction are able to transmit to the interior of cell through filamentous cortical cytoskeleton. Prominent among other membrane receptors, Cadherins are prototypical adhesive molecules able to generate remarkable forces to regulate intercellular adhesion. However, the mechanistic steps of mechano-transduction in Cadherin-mediated adhesion remain very controversial. We are interested in understanding how Cadherin protein complexes enable force generation and transmission at cell-cell contact in the initial stage of intercellular adhesion. For providing a better control of time, space, and substrate stiffness, in this study, a combination of protein micropattern, micropipette manipulation, and traction force microscopy is used. Pair micropattern with different forms confines cell spreading area and the gaps in pairs varied from 2 to 8 microns are applied for monitoring the forces that cell pairs generated, measured by traction force microscopy. Moreover, cell clones obtained from epithelial cells undergone genome editing are used to score the importance for known components of Cadherin complexes in force generation. We believe that our results from this combinatory mechanobiological method will provide deep insights on understanding the biophysical principle governing mechano- transduction of Cadherin-mediated intercellular adhesion.Keywords: cadherin, intercellular adhesion, protein micropattern, traction force microscopy
Procedia PDF Downloads 251298 Slow and Controlled Release Fertilizer Technology via Application of Plant-available Inorganic Coatings
Authors: Eugene Rybin
Abstract:
Reduction of nutrient losses when using mineral fertilizers is a very important and urgent challenge, which is of both economic and environmental significance. This paper shows the production of slow- and controlled release fertilizers through application of inorganic coatings, which make the released nutrients plant-available. The method of production of coated fertilizers with inorganic cover material is an alternative to other methods where polymer coatings are used. The method is based on spraying an aqueous slurry onto the surface of granules with simultaneous drying in drums under certain conditions and subsequent cooling of granules. This method of production of slow- and controlled-release fertilizers is more ecofriendly compared with others because inorganic materials are used to create a membrane. That is why the coating material is definitely biodegradable. There is also shown the effect of these coatings on the properties of fertilizers, as well as on the agrochemical efficiency and nutrient efficiency/ availability to the plants. The agrochemical tests have proved the increase of nutrient efficiency for every nutrient in compound fertilizers (NPK, NPS) for 3 consecutive years by 10-20 % and by 25-28% for urea, as well as an increase in crop yield, by 10-15% in general, and its quality. Moreover, the decrease in caking by almost 70% was proven as well as slowing down the release rate of nutrients from fertilizers. Control of the release rate was achieved by regulation of thickness and contents of coating materials. All of those characteristics were researched according to the standard-used methods. The performed research has developed the fertilizer technology of slow- and controlled release of nutrients through applying of plant-available inorganic coatings. It leads to a better synchronization of nutrient release rate and plants needs, as well as reduces the harmful effects on the environment from the fertilizers applied.Keywords: controlled release, fertilizers, nutrients, plant-available coatings
Procedia PDF Downloads 97297 Approximation of Geodesics on Meshes with Implementation in Rhinoceros Software
Authors: Marian Sagat, Mariana Remesikova
Abstract:
In civil engineering, there is a problem how to industrially produce tensile membrane structures that are non-developable surfaces. Nondevelopable surfaces can only be developed with a certain error and we want to minimize this error. To that goal, the non-developable surfaces are cut into plates along to the geodesic curves. We propose a numerical algorithm for finding approximations of open geodesics on meshes and surfaces based on geodesic curvature flow. For practical reasons, it is important to automatize the choice of the time step. We propose a method for automatic setting of the time step based on the diagonal dominance criterion for the matrix of the linear system obtained by discretization of our partial differential equation model. Practical experiments show reliability of this method. Because approximation of the model is made by numerical method based on classic derivatives, it is necessary to solve obstacles which occur for meshes with sharp corners. We solve this problem for big family of meshes with sharp corners via special rotations which can be seen as partial unfolding of the mesh. In practical applications, it is required that the approximation of geodesic has its vertices only on the edges of the mesh. This problem is solved by a specially designed pointing tracking algorithm. We also partially solve the problem of finding geodesics on meshes with holes. We implemented the whole algorithm in Rhinoceros (commercial 3D computer graphics and computer-aided design software ). It is done by using C# language as C# assembly library for Grasshopper, which is plugin in Rhinoceros.Keywords: geodesic, geodesic curvature flow, mesh, Rhinoceros software
Procedia PDF Downloads 149296 Ergosterol Biosynthesis: Non-Conventional Method for Improving Process
Authors: Madalina Postaru, Alexandra Tucaliuc, Dan Cascaval, Anca Irina Galaction
Abstract:
Ergosterol (ergosta-5,7,22-trien-3β-ol) is the precursor of vitamin D2 (ergocalciferol), known as provitamin D2 as it is converted under UV radiation to this vitamin. The natural sources of ergosterol are mainly the yeasts (Saccharomyces sp., Candida sp.), but it can be also found in fungus (Claviceps sp.) or plants (orchids). As ergosterol is mainly accumulated in yeast cell membranes, especially in free form in the plasma-membrane, and the chemical synthesis of ergosterol does not represent an efficient method for its production, this study aimed to analyze the influence of aeration efficiency on ergosterol production by S. cerevisiae in batch and fed-batch fermentations, by considering different levels of mixing intensity, aeration rate, and n-dodecane concentration. Our previous studies on ergosterol production by S. cerevisiae in batch and fed-batch fermentation systems indicated that the addition of n-dodecane led to the increase of almost 50% of this sterol concentration, the highest productivity being reached for the fed-batch process. The experiments were carried out in a laboratory stirred bioreactor, provided with computer-controlled and recorded parameters. In batch fermentation system, the study indicated that the oxygen mass transfer coefficient, kLa, is amplified for about 3 times by increasing the volumetric concentration of n-dodecane from 0 to 15%. Moreover, the increase of dissolved oxygen concentration by adding n-dodecane leads to the diminution for 3.5 times of the produced alcohol amount. In fed-batch fermentation process, the positive influence of hydrocarbon on oxygen transfer rate is amplified mainly at its higher concentration level, as the result of the increased yeasts cells amount. Thus, by varying n-dodecane concentration from 0 to 15% vol., the kLa value increase becomes more important than for the batch fermentation, being of 4 timesKeywords: ergosterol, yeast fermentation, n-dodecane, oxygen-vector
Procedia PDF Downloads 119295 Effects of Achillea millefolium L. Extract on Rat Spermatogenesis
Authors: Nasrin Takzaree, Gholamreza Hassanzadeh, Abbas Hadjiakhoondi, Mohammadreza Rouini
Abstract:
Introduction: Today herbal medicine are extensively used for various therapeutic reasons. Whereas Achillea millefolium L. comprises different chemical compounds it is used in classic and modern medicine for different purposes. Concerning the family planning as a principle matter, the idea of using specific herbal medicine is of great importance. Purpose: To investigate the effects of Achillea millefolium L. extract on fertility power and spermatogenesis process in male mature Wistar rats and the anti-fertility effects of this extract in male genital system. Material and methods: In this study 32 male mature Wistar rats were randomly divided in to 4 experimental groups. 1st experimental group included 8 rats receiving Achillea millefolium extract at the dose of 200 mg/kg intraperitoneally. Second and third groups received the extract the same at the doses of 400 and 800 mg/kg respectively. 4th group was considered as control group in which the parenteral distilled water was administered. after 20 days, rats were sacrificed and the spermatogenesis process was histologically examined. Results: In experimental groups receiving high doses of extract comparing with control group, thickness in seminiferous tubules basal membrane, decrease in germinal epithelium cells, congestion in testicular tissue, disarrangement in germinal epithelium cells as well as decrease in cellular condense were observed (p<0.001). Conclusion: Findings suggest that alcoholic extract of Achillea millefolium at high concentrations lead to the structural alterations and changes in spermatogenesis in testicular tissue.Keywords: spermatogenesis, alcoholic extract of Achillea millefolium L., testis, Wistar rat
Procedia PDF Downloads 584294 Valorisation of Waste Chicken Feathers: Electrospun Antibacterial Nanoparticles-Embedded Keratin Composite Nanofibers
Authors: Lebogang L. R. Mphahlele, Bruce B. Sithole
Abstract:
Chicken meat is the highest consumed meat in south Africa, with a per capita consumption of >33 kg yearly. Hence, South Africa produces over 250 million kg of waste chicken feathers each year, the majority of which is landfilled or incinerated. The discarded feathers have caused environmental pollution and natural protein resource waste. Therefore, the valorisation of waste chicken feathers is measured as a more environmentally friendly and cost-effective treatment. Feather contains 91% protein, the main component being beta-keratin, a fibrous and insoluble structural protein extensively cross linked by disulfide bonds. Keratin is usually converted it into nanofibers via electrospinning for a variety of applications. keratin nanofiber composites have many potential biomedical applications for their attractive features, such as high surface-to-volume ratio and very high porosity. The application of nanofibers in the biomedical wound dressing requires antimicrobial properties for materials. One approach is incorporating inorganic nanoparticles, among which silver nanoparticles played an important alternative antibacterial agent and have been studied against many types of microbes. The objective of this study is to combine synthetic polymer, chicken feather keratin, and antibacterial nanoparticles to develop novel electrospun antibacterial nanofibrous composites for possible wound dressing application. Furthermore, this study will converting a two-dimensional electrospun nanofiber membrane to three-dimensional fiber networks that resemble the structure of the extracellular matrix (ECM)Keywords: chicken feather keratin, nanofibers, nanoparticles, nanocomposites, wound dressing
Procedia PDF Downloads 132293 Structure-Based Drug Design of Daptomycin, Antimicrobial lipopeptide
Authors: Satya Eswari Jujjavarapu, Swast Dhagat
Abstract:
Contagious diseases enact severe public health problems and have upsetting consequences. The cyclic lipopeptides explained by bacteria Bacillus, Paenibacillus, Pseudomonas, Streptomyces, Serratia, Propionibacterium and fungus Fusarium are very critical in confining the pathogens. As the degree of drug resistance upsurges in unparalleled manner, the perseverance of searching novel cyclic lipopeptides is being professed. The intense study has shown the implication of these bioactive compounds extending beyond antibacterial and antifungal. Lipopeptides, composed of single units of peptide and fatty acyl moiety, show broad spectrum antimicrobial effects. Among the surplus of cyclic lipopeptides, only few have materialized as strong antibiotics. For their functional vigor, polymyxin, daptomycin, surfactin, iturin and bacillomycin have been integrated in mainstream healthcare. In our work daptomycin has been a major part of antimicrobial resource since the past decade. Daptomycin, a cyclic lipopeptide consists of 13-member amino acid with a decanoyl side-chain. This structure of daptomycin confers it the mechanism of action through which it forms pore in the bacterial cell membrane resulting in the death of cell. Daptomycin is produced by Streptococccus roseoporus and acts against Streptococcus pneumonia (PSRP), methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). The PDB structure and ligands of daptomycin are available online. The molecular docking studies of these ligands with the lipopeptides were performed and their docking score and glide energy were recorded.Keywords: daptomycin, molecular docking, structure-based drug design, lipopeptide
Procedia PDF Downloads 264292 Enhancing Sensitization of Cervical Cancer Cells to γ-Radiation Ellagic Acid
Authors: Vidhula Ahire, Amit Kumar, K. P. Mishra, Gauri Kulkarni
Abstract:
Herbal polyphenols have gained significance because of their increasing promise in prevention and treatment of cancer. Therefore, development of a dietary compound as an effective radiosensitizer and a radioprotector is highly warranted for cervical cancer patients undergoing therapy. This study describes the cytotoxic effects of the flavonoid, ellagic acid (EA) when administered either alone or in combination with gamma radiation on cervical cancer HeLa cells in vitro. Apoptotic index and proliferation were measured by using trypan blue assay. Reproductive cell death was analyzed by clonogenic assay. Propidium iodide staining for flowcytometry was performed to analyze cell cycle modulation. Nuclear and mitochondrial changes were studied with specific dyes. DNA repair kinetics was analyzed by immunofluorescence assay. Evaluation and comparison of EA effects were performed with other clinically used breast cancer drugs. When tumor cells were exposed to 2 and 4 Gy of irradiation in presence of EA (10 μM), it yielded a synergistic cytotoxic effect on cervical cancer cells whereas in NIH3T3 cells it reversed the injury caused by irradiation and abetted in the regaining of normal healthy cells. At 24h ~25foci/cell was observed and 2.6 fold decrease in the mitochondrial membrane potential. Up to 40% cell were arrested in the G1 phase and 20-36% cells exhibited apoptosis. Our results demonstrate the role of increased apoptosis and cell cycle modulation in the mechanism of EA mediated radiosensitization of cervical cancer cells and thus advocating EA as an adjuvant for preclinical trials in cancer chemo- radiotherapy.Keywords: cervical cancer, ellagic acid, sensitization, radiation therapy
Procedia PDF Downloads 322291 Unveiling the Self-Assembly Behavior and Salt-Induced Morphological Transition of Double PEG-Tailed Unconventional Amphiphiles
Authors: Rita Ghosh, Joykrishna Dey
Abstract:
PEG-based amphiphiles are of tremendous importance for its widespread applications in pharmaceutics, household purposes, and drug delivery. Previously, a number of single PEG-tailed amphiphiles having significant applications have been reported from our group. Therefore, it was of immense interest to explore the properties and application potential of PEG-based double tailed amphiphiles. Herein, for the first time, two novel double PEG-tailed amphiphiles having different PEG chain lengths have been developed. The self-assembly behavior of the newly developed amphiphiles in aqueous buffer (pH 7.0) was thoroughly investigated at 25 oC by a number of techniques including, 1H-NMR, and steady-state and time-dependent fluorescence spectroscopy, dynamic light scattering, transmission electron microscopy, atomic force microscopy, and isothermal titration calorimetry. Despite having two polar PEG chains both molecules were found to have strong tendency to self-assemble in aqueous buffered solution above a very low concentration. Surprisingly, the amphiphiles were shown to form stable vesicles spontaneously at room temperature without any external stimuli. The results of calorimetric measurements showed that the vesicle formation is driven by the hydrophobic effect (positive entropy change) of the system, which is associated with the helix-to-random coil transition of the PEG chain. The spectroscopic data confirmed that the bilayer membrane of the vesicles is constituted by the PEG chains of the amphiphilic molecule. Interestingly, the vesicles were also found to exhibit structural transitions upon addition of salts in solution. These properties of the vesicles enable them as potential candidate for drug delivery.Keywords: double-tailed amphiphiles, fluorescence, microscopy, PEG, vesicles
Procedia PDF Downloads 117290 SEM Detection of Folate Receptor in a Murine Breast Cancer Model Using Secondary Antibody-Conjugated, Gold-Coated Magnetite Nanoparticles
Authors: Yasser A. Ahmed, Juleen M Dickson, Evan S. Krystofiak, Julie A. Oliver
Abstract:
Cancer cells urgently need folate to support their rapid division. Folate receptors (FR) are over-expressed on a wide range of tumor cells, including breast cancer cells. FR are distributed over the entire surface of cancer cells, but are polarized to the apical surface of normal cells. Targeting of cancer cells using specific surface molecules such as folate receptors may be one of the strategies used to kill cancer cells without hurting the neighing normal cells. The aim of the current study was to try a method of SEM detecting FR in a murine breast cancer cell model (4T1 cells) using secondary antibody conjugated to gold or gold-coated magnetite nanoparticles. 4T1 cells were suspended in RPMI medium witth FR antibody and incubated with secondary antibody for fluorescence microscopy. The cells were cultured on 30mm Thermanox coverslips for 18 hours, labeled with FR antibody then incubated with secondary antibody conjugated to gold or gold-coated magnetite nanoparticles and processed to scanning electron microscopy (SEM) analysis. The fluorescence microscopy study showed strong punctate FR expression on 4T1 cell membrane. With SEM, the labeling with gold or gold-coated magnetite conjugates showed a similar pattern. Specific labeling occurred in nanoparticle clusters, which are clearly visualized in backscattered electron images. The 4T1 tumor cell model may be useful for the development of FR-targeted tumor therapy using gold-coated magnetite nano-particles.Keywords: cancer cell, nanoparticles, cell culture, SEM
Procedia PDF Downloads 734289 Determination of Antioxidant Activity in Raphanus raphanistrum L.
Authors: Esma Hande Alıcı, Gülnur Arabacı
Abstract:
Antioxidants are compounds or systems that can safely interact with free radicals and terminate the chain reaction before vital molecules are damaged. The anti-oxidative effectiveness of these compounds depends on their chemical characteristics and physical location within a food (proximity to membrane phospholipids, emulsion interfaces, or in the aqueous phase). Antioxidants (e.g., flavonoids, phenolic acids, tannins, vitamin C, vitamin E) have diverse biological properties, such as antiinflammatory, anti-carcinogenic and anti-atherosclerotic effects, reduce the incidence of coronary diseases and contribute to the maintenance of gut health by the modulation of the gut microbial balance. Plants are excellent sources of antioxidants especially with their high content of phenolic compounds. Raphanus raphanistrum L., the wild radish, is a flowering plant in the family Brassicaceae. It grows in Asia and Mediterranean region. It has been introduced into most parts of the world. It spreads rapidly, and is often found growing on roadsides or in other places where the ground has been disturbed. It is an edible plant, in Turkey its fresh aerial parts are mostly consumed as a salad with olive oil and lemon juice after boiled. The leaves of the plant are also used as anti-rheumatic in traditional medicine. In this study, we determined the antioxidant capacity of two different solvent fractions (methanol and ethyl acetate) obtained from Raphanus raphanistrum L. plant leaves. Antioxidant capacity of the plant was introduced by using three different methods: DPPH radical scavenging activity, CUPRAC (Cupric Ion Reducing Antioxidant Capacity) activity and Reducing power activity.Keywords: antioxidant activity, antioxidant capacity, Raphanis raphanistrum L., wild radish
Procedia PDF Downloads 276288 Insight into the Binding Theme of CA-074Me to Cathepsin B: Molecular Dynamics Simulations and Scaffold Hopping to Identify Potential Analogues as Anti-Neurodegenerative Diseases
Authors: Tivani Phosa Mashamba-Thompson, Mahmoud E. S. Soliman
Abstract:
To date, the cause of neurodegeneration is not well understood and diseases that stem from neurodegeneration currently have no known cures. Cathepsin B (CB) enzyme is known to be involved in the production of peptide neurotransmitters and toxic peptides in neurodegenerative diseases (NDs). CA-074Me is a membrane-permeable irreversible selective cathepsin B (CB) inhibitor as confirmed by in vivo studies. Due to the lack of the crystal structure, the binding mode of CA-074Me with the human CB at molecular level has not been previously reported. The main aim of this study is to gain an insight into the binding mode of CB CA-074Me to human CB using various computational tools. Herein, molecular dynamics simulations, binding free energy calculations and per-residue energy decomposition analysis were employed to accomplish the aim of the study. Another objective was to identify novel CB inhibitors based on the structure of CA-074Me using fragment based drug design using scaffold hoping drug design approach. Results showed that two of the designed ligands (hit 1 and hit 2) were found to have better binding affinities than the prototype inhibitor, CA-074Me, by ~2-3 kcal/mol. Per-residue energy decomposition showed that amino acid residues Cys29, Gly196, His197 and Val174 contributed the most towards the binding. The Van der Waals binding forces were found to be the major component of the binding interactions. The findings of this study should assist medicinal chemist towards the design of potential irreversible CB inhibitors.Keywords: cathepsin B, scaffold hopping, docking, molecular dynamics, binding-free energy, neurodegerative diseases
Procedia PDF Downloads 377287 Biophysical Consideration in the Interaction of Biological Cell Membranes with Virus Nanofilaments
Authors: Samaneh Farokhirad, Fatemeh Ahmadpoor
Abstract:
Biological membranes are constantly in contact with various filamentous soft nanostructures that either reside on their surface or are being transported between the cell and its environment. In particular, viral infections are determined by the interaction of viruses (such as filovirus) with cell membranes, membrane protein organization (such as cytoskeletal proteins and actin filament bundles) has been proposed to influence the mechanical properties of lipid membranes, and the adhesion of filamentous nanoparticles influence their delivery yield into target cells or tissues. The goal of this research is to integrate the rapidly increasing but still fragmented experimental observations on the adhesion and self-assembly of nanofilaments (including filoviruses, actin filaments, as well as natural and synthetic nanofilaments) on cell membranes into a general, rigorous, and unified knowledge framework. The global outbreak of the coronavirus disease in 2020, which has persisted for over three years, highlights the crucial role that nanofilamentbased delivery systems play in human health. This work will unravel the role of a unique property of all cell membranes, namely flexoelectricity, and the significance of nanofilaments’ flexibility in the adhesion and self-assembly of nanofilaments on cell membranes. This will be achieved utilizing a set of continuum mechanics, statistical mechanics, and molecular dynamics and Monte Carlo simulations. The findings will help address the societal needs to understand biophysical principles that govern the attachment of filoviruses and flexible nanofilaments onto the living cells and provide guidance on the development of nanofilament-based vaccines for a range of diseases, including infectious diseases and cancer.Keywords: virus nanofilaments, cell mechanics, computational biophysics, statistical mechanics
Procedia PDF Downloads 93286 pH-Responsive Carrier Based on Polymer Particle
Authors: Florin G. Borcan, Ramona C. Albulescu, Adela Chirita-Emandi
Abstract:
pH-responsive drug delivery systems are gaining more importance because these systems deliver the drug at a specific time in regards to pathophysiological necessity, resulting in improved patient therapeutic efficacy and compliance. Polyurethane materials are well-known for industrial applications (elastomers and foams used in different insulations and automotive), but they are versatile biocompatible materials with many applications in medicine, as artificial skin for the premature neonate, membrane in the hybrid artificial pancreas, prosthetic heart valves, etc. This study aimed to obtain the physico-chemical characterization of a drug delivery system based on polyurethane microparticles. The synthesis is based on a polyaddition reaction between an aqueous phase (mixture of polyethylene-glycol M=200, 1,4-butanediol and Tween® 20) and an organic phase (lysin-diisocyanate in acetone) combined with simultaneous emulsification. Different active agents (omeprazole, amoxicillin, metoclopramide) were used to verify the release profile of the macromolecular particles in different pH mediums. Zetasizer measurements were performed using an instrument based on two modules: a Vasco size analyzer and a Wallis Zeta potential analyzer (Cordouan Technol., France) in samples that were kept in various solutions with different pH and the maximum absorbance in UV-Vis spectra were collected on a UVi Line 9,400 Spectrophotometer (SI Analytics, Germany). The results of this investigation have revealed that these particles are proper for a prolonged release in gastric medium where they can assure an almost constant concentration of the active agents for 1-2 weeks, while they can be disassembled faster in a medium with neutral pHs, such as the intestinal fluid.Keywords: lysin-diisocyanate, nanostructures, polyurethane, Zetasizer
Procedia PDF Downloads 184285 Engineering of Filtration Systems in Egyptian Cement Plants: Industrial Case Study
Authors: Mohamed. A. Saad
Abstract:
The paper represents a case study regarding the conversion of Electro-Static Precipitators (ESP`s) into Fabric Filters (FF). Seven cement production companies were established in Egypt during the period 1927 to 1980 and 6 new companies were established to cope with the increasing cement demand in 1980's. The cement production market shares in Egypt indicate that there are six multinational companies in the local market, they are interested in the environmental conditions improving and so decided to achieve emission reduction project. The experimental work in the present study is divided into two main parts: (I) Measuring Efficiency of Filter Fabrics with detailed description of a designed apparatus. The paper also reveals the factors that should be optimized in order to assist problem diagnosis, solving and increasing the life of bag filters. (II) Methods to mitigate dust emissions in Egyptian cement plants with a special focus on converting the Electrostatic Precipitators (ESP`s) into Fabric Filters (FF) using the same ESP casing, bottom hoppers, dust transportation system, and ESP ductwork. Only the fan system for the higher pressure drop with the fabric filter was replaced. The proper selection of bag material was a prime factor with regard to gas composition, temperature and particle size. Fiberglass with PTFE membrane coated bags was selected. This fabric is rated for a continuous temperature of 250 C and a surge temperature of 280C. The dust emission recorded was less than 20 mg/m3 from the production line fitted with fabric filters which is super compared with the ESP`s working lines stack.Keywords: Engineering Electrostatic Precipitator, filtration, dust collectors, cement
Procedia PDF Downloads 253284 Assessment of in vitro Antioxidant and Anti-Inflammatory Potentials of Methanol Extract of Chrysophyllum albidum Cotyledon
Authors: Christianah Adebimpe Dare, Nelson Oghenebrorhie Elvis
Abstract:
This study was aimed at analysing the phytochemicals in Chrysophyllum albidum cotyledon extract and their in vitro antioxidant and anti-inflammatory effects. The star apple fruit was bought at Igbona market Osogbo, Osun State, Nigeria. The seed from the fruit was removed and defatted. The residue was exhaustively extracted with methanol. The Chrysophyllum albidum cotyledon methanol extract (CCME) was phytochemically screened, flavonoids and phenol contents, antioxidant and anti-inflammatory assays were carried out on the extract using standard procedures. Phytochemicals analysis revealed the presence of steroids, tannins, flavonoid, saponin, triterpenes, and xanthoproteins. The phenolic concentration, total flavonoids concentration, and total sugar concentration were found to be 26.72 ± 0.048 µgTAE/mg, 23.12 ± 1.92µg of Rutin equivalent (RTE)/mg (10.49 ± 1.12µg of Quercetin equivalent (QE/mg) and 778.38 ± 12.82 µg of glucose/ml, respectively. The extract demonstrated significant inhibitory effect compared with the standards as potent antioxidant with percentage inhibition of DPPH as 38.10 %-39.51 %, lipid peroxidation as 45.85 %-65.85 %; ferric reducing power showed linear correlation to the standard and the anti-inflammatory potential with 22.06 %-26.37 % protection of the human red blood membrane and the percentage inhibition of denaturation of albumin 3.42 %-7.32 %. The study showed that C. albidum cotyledon methanol extract is a potent antioxidant and anti-inflammatory agent to combat oxidative stress and pathological diseases caused by reactive species.Keywords: albumin denaturation, free radicals, lipid peroxidation, reactive species
Procedia PDF Downloads 139283 Polymer Nanostructures Based Catalytic Materials for Energy and Environmental Applications
Authors: S. Ghosh, L. Ramos, A. N. Kouamé, A.-L. Teillout, H. Remita
Abstract:
Catalytic materials have attracted continuous attention due to their promising applications in a variety of energy and environmental applications including clean energy, energy conversion and storage, purification and separation, degradation of pollutants and electrochemical reactions etc. With the advanced synthetic technologies, polymer nanostructures and nanocomposites can be directly synthesized through soft template mediated approach using swollen hexagonal mesophases and modulate the size, morphology, and structure of polymer nanostructures. As an alternative to conventional catalytic materials, one-dimensional PDPB polymer nanostructures shows high photocatalytic activity under visible light for the degradation of pollutants. These photocatalysts are very stable with cycling. Transmission electron microscopy (TEM), and AFM-IR characterizations reveal that the morphology and structure of the polymer nanostructures do not change after photocatalysis. These stable and cheap polymer nanofibers and metal polymer nanocomposites are easy to process and can be reused without appreciable loss of activity. The polymer nanocomposites formed via one pot chemical redox reaction with 3.4 nm Pd nanoparticles on poly(diphenylbutadiyne) (PDPB) nanofibers (30 nm). The reduction of Pd (II) ions is accompanied by oxidative polymerization leading to composites materials. Hybrid Pd/PDPB nanocomposites used as electrode materials for the electrocatalytic oxidation of ethanol without using support of proton exchange Nafion membrane. Hence, these conducting polymer nanofibers and nanocomposites offer the perspective of developing a new generation of efficient photocatalysts for environmental protection and in electrocatalysis for fuel cell applications.Keywords: conducting polymer, swollen hexagonal mesophases, solar photocatalysis, electrocatalysis, water depollution
Procedia PDF Downloads 384282 Research on the Aeration Systems’ Efficiency of a Lab-Scale Wastewater Treatment Plant
Authors: Oliver Marunțălu, Elena Elisabeta Manea, Lăcrămioara Diana Robescu, Mihai Necșoiu, Gheorghe Lăzăroiu, Dana Andreya Bondrea
Abstract:
In order to obtain efficient pollutants removal in small-scale wastewater treatment plants, uniform water flow has to be achieved. The experimental setup, designed for treating high-load wastewater (leachate), consists of two aerobic biological reactors and a lamellar settler. Both biological tanks were aerated by using three different types of aeration systems - perforated pipes, membrane air diffusers and tube ceramic diffusers. The possibility of homogenizing the water mass with each of the air diffusion systems was evaluated comparatively. The oxygen concentration was determined by optical sensors with data logging. The experimental data was analyzed comparatively for all three different air dispersion systems aiming to identify the oxygen concentration variation during different operational conditions. The Oxygenation Capacity was calculated for each of the three systems and used as performance and selection parameter. The global mass transfer coefficients were also evaluated as important tools in designing the aeration system. Even though using the tubular porous diffusers leads to higher oxygen concentration compared to the perforated pipe system (which provides medium-sized bubbles in the aqueous solution), it doesn’t achieve the threshold limit of 80% oxygen saturation in less than 30 minutes. The study has shown that the optimal solution for the studied configuration was the radial air diffusers which ensure an oxygen saturation of 80% in 20 minutes. An increment of the values was identified when the air flow was increased.Keywords: flow, aeration, bioreactor, oxygen concentration
Procedia PDF Downloads 388281 Porous Alumina-Carbon Nanotubes Nanocomposite Membranes Processed via Spark Plasma Sintering for Heavy Metal Removal from Contaminated Water
Authors: H. K. Shahzad, M. A. Hussein, F. Patel, N. Al-Aqeeli, T. Laoui
Abstract:
The purpose of the present study was to use the adsorption mechanism with microfiltration synergistically for efficient heavy metal removal from contaminated water. Alumina (Al2O3) is commonly used for ceramic membranes development while recently carbon nanotubes (CNTs) have been considered among the best adsorbent materials for heavy metals. In this work, we combined both of these materials to prepare porous Al2O3-CNTs nanocomposite membranes via Spark Plasma Sintering (SPS) technique. Alumina was used as a base matrix while CNTs were added as filler. The SPS process parameters i.e. applied pressure, temperature, heating rate, and holding time were varied to obtain the best combination of porosity (64%, measured according to ASTM c373-14a) and strength (3.2 MPa, measured by diametrical compression test) of the developed membranes. The prepared membranes were characterized using X-ray diffraction (XRD), field emission secondary electron microscopy (FE-SEM), contact angle and porosity measurements. The results showed that properties of the synthesized membranes were highly influenced by the SPS process parameters. FE-SEM images revealed that CNTs were reasonably dispersed in the alumina matrix. The porous membranes were evaluated for their water flux transport as well as their capacity to adsorb heavy metals ions. Selected membranes were able to remove about 97% cadmium from contaminated water. Further work is underway to enhance the removal efficiency of the developed membranes as well as to remove other heavy metals such as arsenic and mercury.Keywords: heavy metal removal, inorganic membrane, nanocomposite, spark plasma sintering
Procedia PDF Downloads 262