Search results for: light sensitive nanocomposites
4971 Enhancing Efficiency of Building through Translucent Concrete
Authors: Humaira Athar, Brajeshwar Singh
Abstract:
Generally, the brightness of the indoor environment of buildings is entirely maintained by the artificial lighting which has consumed a large amount of resources. It is reported that lighting consumes about 19% of the total generated electricity which accounts for about 30-40% of total energy consumption. One possible way is to reduce the lighting energy by exploiting sunlight either through the use of suitable devices or energy efficient materials like translucent concrete. Translucent concrete is one such architectural concrete which allows the passage of natural light as well as artificial light through it. Several attempts have been made on different aspects of translucent concrete such as light guiding materials (glass fibers, plastic fibers, cylinder etc.), concrete mix design and manufacturing methods for use as building elements. Concerns are, however, raised on various related issues such as poor compatibility between the optical fibers and cement paste, unaesthetic appearance due to disturbance occurred in the arrangement of fibers during vibration and high shrinkage in flowable concrete due to its high water/cement ratio. Need is felt to develop translucent concrete to meet the requirement of structural safety as OPC concrete with the maximized saving in energy towards the power of illumination and thermal load in buildings. Translucent concrete was produced using pre-treated plastic optical fibers (POF, 2mm dia.) and high slump white concrete. The concrete mix was proportioned in the ratio of 1:1.9:2.1 with a w/c ratio of 0.40. The POF was varied from 0.8-9 vol.%. The mechanical properties and light transmission of this concrete were determined. Thermal conductivity of samples was measured by a transient plate source technique. Daylight illumination was measured by a lux grid method as per BIS:SP-41. It was found that the compressive strength of translucent concrete increased with decreasing optical fiber content. An increase of ~28% in the compressive strength of concrete was noticed when fiber was pre-treated. FE-SEM images showed little-debonded zone between the fibers and cement paste which was well supported with pull-out bond strength test results (~187% improvement over untreated). The light transmission of concrete was in the range of 3-7% depending on fiber spacing (5-20 mm). The average daylight illuminance (~75 lux) was nearly equivalent to the criteria specified for illumination for circulation (80 lux). The thermal conductivity of translucent concrete was reduced by 28-40% with respect to plain concrete. The thermal load calculated by heat conduction equation was ~16% more than the plain concrete. Based on Design-Builder software, the total annual illumination energy load of a room using one side translucent concrete was 162.36 kW compared with the energy load of 249.75 kW for a room without concrete. The calculated energy saving on an account of the power of illumination was ~25%. A marginal improvement towards thermal comfort was also noticed. It is concluded that the translucent concrete has the advantages of the existing concrete (load bearing) with translucency and insulation characteristics. It saves a significant amount of energy by providing natural daylight instead of artificial power consumption of illumination.Keywords: energy saving, light transmission, microstructure, plastic optical fibers, translucent concrete
Procedia PDF Downloads 1304970 Regional Low Gravity Anomalies Influencing High Concentrations of Heavy Minerals on Placer Deposits
Authors: T. B. Karu Jayasundara
Abstract:
Regions of low gravity and gravity anomalies both influence heavy mineral concentrations on placer deposits. Economically imported heavy minerals are likely to have higher levels of deposition in low gravity regions of placer deposits. This can be found in coastal regions of Southern Asia, particularly in Sri Lanka and Peninsula India and areas located in the lowest gravity region of the world. The area about 70 kilometers of the east coast of Sri Lanka is covered by a high percentage of ilmenite deposits, and the southwest coast of the island consists of Monazite placer deposit. These deposits are one of the largest placer deposits in the world. In India, the heavy mineral industry has a good market. On the other hand, based on the coastal placer deposits recorded, the high gravity region located around Papua New Guinea, has no such heavy mineral deposits. In low gravity regions, with the help of other depositional environmental factors, the grains have more time and space to float in the sea, this helps bring high concentrations of heavy mineral deposits to the coast. The effect of low and high gravity can be demonstrated by using heavy mineral separation devices. The Wilfley heavy mineral separating table is one of these; it is extensively used in industries and in laboratories for heavy mineral separation. The horizontally oscillating Wilfley table helps to separate heavy and light mineral grains in to deferent fractions, with the use of water. In this experiment, the low and high angle of the Wilfley table are representing low and high gravity respectively. A sample mixture of grain size <0.85 mm of heavy and light mineral grains has been used for this experiment. The high and low angle of the table was 60 and 20 respectively for this experiment. The separated fractions from the table are again separated into heavy and light minerals, with the use of heavy liquid, which consists of a specific gravity of 2.85. The fractions of separated heavy and light minerals have been used for drawing the two-dimensional graphs. The graphs show that the low gravity stage has a high percentage of heavy minerals collected in the upper area of the table than in the high gravity stage. The results of the experiment can be used for the comparison of regional low gravity and high gravity levels of heavy minerals. If there are any heavy mineral deposits in the high gravity regions, these deposits will take place far away from the coast, within the continental shelf.Keywords: anomaly, gravity, influence, mineral
Procedia PDF Downloads 2004969 Design of UV Based Unicycle Robot to Disinfect Germs and Communicate With Multi-Robot System
Authors: Charles Koduru, Parth Patel, M. Hassan Tanveer
Abstract:
In this paper, the communication between a team of robots is used to sanitize an environment with germs is proposed. We introduce capabilities from a team of robots (most likely heterogeneous), a wheeled robot named ROSbot 2.0 that consists of a mounted LiDAR and Kinect sensor, and a modified prototype design of a unicycle-drive Roomba robot called the UV robot. The UV robot consists of ultrasonic sensors to avoid obstacles and is equipped with an ultraviolet light system to disinfect and kill germs, such as bacteria and viruses. In addition, the UV robot is equipped with disinfectant spray to target hidden objects that ultraviolet light is unable to reach. Using the sensors from the ROSbot 2.0, the robot will create a 3-D model of the environment which will be used to factor how the ultraviolet robot will disinfect the environment. Together this proposed system is known as the RME assistive robot device or RME system, which communicates between a navigation robot and a germ disinfecting robot operated by a user. The RME system includes a human-machine interface that allows the user to control certain features of each robot in the RME assistive robot device. This method allows the cleaning process to be done at a more rapid and efficient pace as the UV robot disinfects areas just by moving around in the environment while using the ultraviolet light system to kills germs. The RME system can be used in many applications including, public offices, stores, airports, hospitals, and schools. The RME system will be beneficial even after the COVID-19 pandemic. The Kennesaw State University will continue the research in the field of robotics, engineering, and technology and play its role to serve humanity.Keywords: multi robot system, assistive robots, COVID-19 pandemic, ultraviolent technology
Procedia PDF Downloads 1874968 Light Car Assisted by PV Panels
Authors: Soufiane Benoumhani, Nadia Saifi, Boubekeur Dokkar, Mohamed Cherif Benzid
Abstract:
This work presents the design and simulation of electric equipment for a hybrid solar vehicle. The new drive train of this vehicle is a parallel hybrid system which means a vehicle driven by a great percentage of an internal combustion engine with 49.35 kW as maximal power and electric motor only as assistance when is needed. This assistance is carried out on the rear axle by a single electric motor of 7.22 kW as nominal power. The motor is driven by 12 batteries connecting in series, which are charged by three PV panels (300 W) installed on the roof and hood of the vehicle. The individual components are modeled and simulated by using the Matlab Simulink environment. The whole system is examined under different load conditions. The reduction of CO₂ emission is obtained by reducing fuel consumption. With the use of this hybrid system, fuel consumption can be reduced from 6.74 kg/h to 5.56 kg/h when the electric motor works at 100 % of its power. The net benefit of the system reaches 1.18 kg/h as fuel reduction at high values of power and torque.Keywords: light car, hybrid system, PV panel, electric motor
Procedia PDF Downloads 1244967 Maximizing Nitrate Absorption of Agricultural Waste Water in a Tubular Microalgae Reactor by Adapting the Illumination Spectrum
Authors: J. Martin, A. Dannenberg, G. Detrell, R. Ewald, S. Fasoulas
Abstract:
Microalgae-based photobioreactors (PBR) for Life Support Systems (LSS) are currently being investigated for future space missions such as a crewed base on planets or moons. Biological components may help reducing resupply masses by closing material mass flows with the help of regenerative components. Via photosynthesis, the microalgae use CO2, water, light and nutrients to provide oxygen and biomass for the astronauts. These capabilities could have synergies with Earth applications that tackle current problems and the developed technologies can be transferred. For example, a current worldwide discussed issue is the increased nitrate and phosphate pollution of ground water from agricultural waste waters. To investigate the potential use of a biological system based on the ability of the microalgae to extract and use nitrate and phosphate for the treatment of polluted ground water from agricultural applications, a scalable test stand is being developed. This test stand investigates the maximization of intake rates of nitrate and quantifies the produced biomass and oxygen. To minimize the required energy, for the uptake of nitrate from artificial waste water (AWW) the Flashing Light Effect (FLE) and the adaption of the illumination spectrum were realized. This paper describes the composition of the AWW, the development of the illumination unit and the possibility of non-invasive process optimization and control via the adaption of the illumination spectrum and illumination cycles. The findings were a doubling of the energy related growth rate by adapting the illumination setting.Keywords: microalgae, illumination, nitrate uptake, flashing light effect
Procedia PDF Downloads 1134966 Blade-Coating Deposition of Semiconducting Polymer Thin Films: Light-To-Heat Converters
Authors: M. Lehtihet, S. Rosado, C. Pradère, J. Leng
Abstract:
Poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT: PSS), is a polymer mixture well-known for its semiconducting properties and is widely used in the coating industry for its visible transparency and high electronic conductivity (up to 4600 S/cm) as a transparent non-metallic electrode and in organic light-emitting diodes (OLED). It also possesses strong absorption properties in the Near Infra-Red (NIR) range (λ ranging between 900 nm to 2.5 µm). In the present work, we take advantage of this absorption to explore its potential use as a transparent light-to-heat converter. PEDOT: PSS aqueous dispersions are deposited onto a glass substrate using a blade-coating technique in order to produce uniform coatings with controlled thicknesses ranging in ≈ 400 nm to 2 µm. Blade-coating technique allows us good control of the deposit thickness and uniformity by the tuning of several experimental conditions (blade velocity, evaporation rate, temperature, etc…). This liquid coating technique is a well-known, non-expensive technique to realize thin film coatings on various substrates. For coatings on glass substrates destined to solar insulation applications, the ideal coating would be made of a material able to transmit all the visible range while reflecting the NIR range perfectly, but materials possessing similar properties still have unsatisfactory opacity in the visible too (for example, titanium dioxide nanoparticles). NIR absorbing thin films is a more realistic alternative for such an application. Under solar illumination, PEDOT: PSS thin films heat up due to absorption of NIR light and thus act as planar heaters while maintaining good transparency in the visible range. Whereas they screen some NIR radiation, they also generate heat which is then conducted into the substrate that re-emits this energy by thermal emission in every direction. In order to quantify the heating power of these coatings, a sample (coating on glass) is placed in a black enclosure and illuminated with a solar simulator, a lamp emitting a calibrated radiation very similar to the solar spectrum. The temperature of the rear face of the substrate is measured in real-time using thermocouples and a black-painted Peltier sensor measures the total entering flux (sum of transmitted and re-emitted fluxes). The heating power density of the thin films is estimated from a model of the thin film/glass substrate describing the system, and we estimate the Solar Heat Gain Coefficient (SHGC) to quantify the light-to-heat conversion efficiency of such systems. Eventually, the effect of additives such as dimethyl sulfoxide (DMSO) or optical scatterers (particles) on the performances are also studied, as the first one can alter the IR absorption properties of PEDOT: PSS drastically and the second one can increase the apparent optical path of light within the thin film material.Keywords: PEDOT: PSS, blade-coating, heat, thin-film, Solar spectrum
Procedia PDF Downloads 1654965 Optimization Aluminium Design for the Facade Second Skin toward Visual Comfort: Case Studies & Dialux Daylighting Simulation Model
Authors: Yaseri Dahlia Apritasari
Abstract:
Visual comfort is important for the building occupants to need. Visual comfort can be fulfilled through natural lighting (daylighting) and artificial lighting. One strategy to optimize natural lighting can be achieved through the facade second skin design. This strategy can reduce glare, and fulfill visual comfort need. However, the design strategy cannot achieve light intensity for visual comfort. Because the materials, design and opening percentage of the facade of second skin blocked sunlight. This paper discusses aluminum material for the facade second skin design that can fulfill the optimal visual comfort with the case studies Multi Media Tower building. The methodology of the research is combination quantitative and qualitative through field study observed, lighting measurement and visual comfort questionnaire. Then it used too simulation modeling (DIALUX 4.13, 2016) for three facades second skin design model. Through following steps; (1) Measuring visual comfort factor: light intensity indoor and outdoor; (2) Taking visual comfort data from building occupants; (3) Making models with different facade second skin design; (3) Simulating and analyzing the light intensity value for each models that meet occupants visual comfort standard: 350 lux (Indonesia National Standard, 2010). The result shows that optimization of aluminum material for the facade second skin design can meet optimal visual comfort for building occupants. The result can give recommendation aluminum opening percentage of the facade second skin can meet optimal visual comfort for building occupants.Keywords: aluminium material, Facade, second skin, visual comfort
Procedia PDF Downloads 3524964 Investigating the Accessibility of Physically Disabled Individuals in Corporate Offices: A Case of Dhaka City
Authors: Ishrar Tabassum, Jay Andrew Saptok, Khalid Raihan Kabir, Elmee Tabassum
Abstract:
The purpose of this study is to bring light to the current state of the working environments in the corporate environment and other such institutions with a particular focus on the Bangladesh National Building Code (BNBC) and its guidelines for accommodating the physically disabled. Data were collected via semi-formal interviews, site visits and focus groups conducted using a preset questionnaire as the guidelines. After conducting surveys at corporate offices of 20 organizations from major commercial sectors in Dhaka city, the auditing showed many inadequacies, as aside from the larger corporate offices, the offices have little to no accessibility for the physically disabled. This study hopes to shed light on the fact that the existing BNBCs lack of emphasis on ensuring the accessibility of the handicapped in corporate buildings in the hope that, in the future, the physically disabled will have greater opportunities at being productive members of the workforce.Keywords: person with disability, PWD, corporate buildings, Dhaka City
Procedia PDF Downloads 2004963 Pyridine-N-oxide Based AIE-active Triazoles: Synthesis, Morphology and Photophysical Properties
Authors: Luminita Marin, Dalila Belei, Carmen Dumea
Abstract:
Aggregation induced emission (AIE) is an intriguing optical phenomenon recently evidenced by Tang and his co-workers, for which aggregation works constructively in the improving of light emission. The AIE challenging phenomenon is quite opposite to the notorious aggregation caused quenching (ACQ) of light emission in the condensed phase, and comes in line with requirements of photonic and optoelectronic devices which need solid state emissive substrates. This paper reports a series of ten new aggregation induced emission (AIE) low molecular weight compounds based on triazole and pyridine-N-oxide heterocyclic units bonded by short flexible chains, obtained by a „click” chemistry reaction. The compounds present extremely weak luminescence in solution but strong light emission in solid state. To distinguish the influence of the crystallinity degree on the emission efficiency, the photophysical properties were explored by UV-vis and photoluminescence spectroscopy in solution, water suspension, amorphous and crystalline films. On the other hand, the compound morphology of the up mentioned states was monitored by dynamic light scattering, scanning electron microscopy, atomic force microscopy and polarized light microscopy methods. To further understand the structural design – photophysical properties relationship, single crystal X-ray diffraction on some understudy compounds was performed too. The UV-vis absorption spectra of the triazole water suspensions indicated a typical behaviour for nanoparticle formation, while the photoluminescence spectra revealed an emission intensity enhancement up to 921-fold higher of the crystalline films compared to solutions, clearly indicating an AIE behaviour. The compounds have the tendency to aggregate forming nano- and micro- crystals in shape of rose-like and fibres. The crystals integrity is kept due to the strong lateral intermolecular forces, while the absence of face-to-face forces explains the enhanced luminescence in crystalline state, in which the intramolecular rotations are restricted. The studied flexible triazoles draw attention to a new structural design in which small biologically friendly luminophore units are linked together by small flexible chains. This design enlarges the variety of the AIE luminogens to the flexible molecules, guiding further efforts in development of new AIE structures for appropriate applications, the biological ones being especially envisaged.Keywords: aggregation induced emission, pyridine-N-oxide, triazole
Procedia PDF Downloads 4694962 Dynamics of Bacterial Contamination and Oral Health Risks Associated with Currency Notes and Coins Circulating in Kampala City
Authors: Abdul Walusansa
Abstract:
In this paper, paper notes and coins were collected from general public in Kampala City where ready-to-eat food can be served, in order to survey for bacterial contamination. The total bacterial number and potentially pathogenic organisms loading on currency were tested. All isolated potential pathogens were also tested for antibiotic resistance against four most commonly prescribed antibiotics. 1. The bacterial counts on one hundred paper notes sample were ranging between 6~10918/cm cm-2,the median was 141/ cm-2, according to the data it was much higher than credit cards and Australian notes which were made of polymer. The bacterial counts on sixty coin samples were ranging between 2~380/cm-2, much less than paper notes. 2. Coliform (65.6%), E. coli (45.9%), S. aureus (41.7%), B. cereus (67.7%), Salmonella (19.8%) were isolated on one hundred paper notes. Coliform (22.4%), E. coli (5.2%), S. aureus (24.1%), B. cereus (34.5%), Salmonella (10.3%) were isolated from sixty coin samples. These results suggested a high rate of potential pathogens contamination of paper notes than coins. 3. Antibiotic resistances are commonly in most of the pathogens isolated on currency. Ampicillin resistance was found in 60%of Staphylococcus aureus isolated on currency, as well as 76.6% of E. coil and 40% of Salmonella. Erythromycin resistance was detected in 56.6% of S. aureus and in 80.0% of E. coli. All the pathogens isolated were sensitive to Norfloxacin, Salmonella and S. aureus also sensitive to Cefaclor. In this paper, we also studied the antimicrobial capability of metal coins, coins collected from different countries were tested for the ability to inhibit the growth of E. sakazakii, S. aureus, E. coli, L. monocytogenes and S. typhimurium. 1) E. sakazakii appeared very sensitive to metal coins, the second is S. aureus, but E. coli, L. monocytogenes and S. typhimurium are more resistant to these metal coin samples. 2) Coins made of Nickel-brass alloy and Copper-nickel alloy showed a better effect in anti-microbe than other metal coins, especially the ability to inhibited the growth of E. sakazakii and S. aureus, all the inhibition zones produced on nutrient agar are more than 20.6 mm. Aluminium-bronze alloy revealed weak anti-microbe activity to S. aureus and no effect to kill other pathogens. Coins made of stainless steel also can’t resist bacteria growth. 3) Surprisingly, one cent coins of USA which were made of 97.5% Zinc and 2.5% Cu showed a significant antimicrobial capability, the average inhibition zone of these five pathogens is 45.5 mm.Keywords: antibiotic sensitivity, bacteria, currency, coins, parasites
Procedia PDF Downloads 3324961 Development Planning in the System of the Islamic Republic of Iran in the Light of Development Laws: From Rationally Planning to Wisely Decision Making
Authors: Mohammad Sadeghi, Mahdieh Saniee
Abstract:
Nowadays, development laws have become a major branch of engineering science, laws help humankind achieve his/her basic needs, and it is attracted to the attention of the nations. Therefore, lawyers have been invited to contemplate legislator's approaches respecting legislating countries' economic, social and cultural development plans and to observe the reliance of approaches on two elements of distributive justice and transitional justice in light of legal rationality. Legal rationality in development planning has encountered us with this question that whether a rational approach and existing models in the Iran development planning system approximate us to the goal of development laws respecting the rationalist approach and also regarding wisely decision-making model. The present study will investigate processes, approaches, and damages of development planning in the legislation of country development plans to answer this question.Keywords: rationality, decision-making process, policymaking, development
Procedia PDF Downloads 1154960 Optimal Construction Using Multi-Criteria Decision-Making Methods
Authors: Masood Karamoozian, Zhang Hong
Abstract:
The necessity and complexity of the decision-making process and the interference of the various factors to make decisions and consider all the relevant factors in a problem are very obvious nowadays. Hence, researchers show their interest in multi-criteria decision-making methods. In this research, the Analytical Hierarchy Process (AHP), Simple Additive Weighting (SAW), and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methods of multi-criteria decision-making have been used to solve the problem of optimal construction systems. Systems being evaluated in this problem include; Light Steel Frames (LSF), a case study of designs by Zhang Hong studio in the Southeast University of Nanjing, Insulating Concrete Form (ICF), Ordinary Construction System (OCS), and Prefabricated Concrete System (PRCS) as another case study designs in Zhang Hong studio in the Southeast University of Nanjing. Crowdsourcing was done by using a questionnaire at the sample level (200 people). Questionnaires were distributed among experts, university centers, and conferences. According to the results of the research, the use of different methods of decision-making led to relatively the same results. In this way, with the use of all three multi-criteria decision-making methods mentioned above, the Prefabricated Concrete System (PRCS) was in the first rank, and the Light Steel Frame (LSF) system ranked second. Also, the Prefabricated Concrete System (PRCS), in terms of performance standards and economics, was ranked first, and the Light Steel Frame (LSF) system was allocated the first rank in terms of environmental standards.Keywords: multi-criteria decision making, AHP, SAW, TOPSIS
Procedia PDF Downloads 1104959 Facile Synthesis of Potassium Vanadium Fluorophosphate: Semiconducting Properties and Its Photocatalytic Performance for Dye Degradation under Visible Light
Authors: S. Tartaya, R. Bagtache, A. M. Djaballah, M. Trari
Abstract:
Due to the increase in the trade of colored products and their applications in various fields such as cosmetic, food, textile, pharmaceutical industries, etc. Dyes constitute a large part of the contaminants in wastewater and cause serious damage in the environment and the aquatic system. Photocatalytic systems are highly efficient processes for treating wastewater in the presence of semiconductor photocatalysts. In this field, we report our contribution by synthesizing a potassium vanadium fluorophosphate compound KVPO4F (which is abbreviated KVPOF) by a simplified hydrothermal method at 180°C for 5 days. The as synthesized product has been characterized physically and photoelectrochemically. The indirect optical transition of 1.88 eV, determined from the diffuse reflectance, was assigned to the charge transfer. Moreover, the curve (C-2–E) of the KVPOF displayed n-type character of the semiconductor. Even more, interestingly, the photocatalytic performance was evaluated through the photo-degradation of cationic dye Methyl Violet (MV). An abatement of 61% was obtained after 6 h of irradiation under visible light.Keywords: KVPO4F, photocatalysis, semiconductor, wastewater, environment
Procedia PDF Downloads 784958 On-Line Super Critical Fluid Extraction, Supercritical Fluid Chromatography, Mass Spectrometry, a Technique in Pharmaceutical Analysis
Authors: Narayana Murthy Akurathi, Vijaya Lakshmi Marella
Abstract:
The literature is reviewed with regard to online Super critical fluid extraction (SFE) coupled directly with supercritical fluid chromatography (SFC) -mass spectrometry that have typically more sensitive than conventional LC-MS/MS and GC-MS/MS. It is becoming increasingly interesting to use on-line techniques that combine sample preparation, separation and detection in one analytical set up. This provides less human intervention, uses small amount of sample and organic solvent and yields enhanced analyte enrichment in a shorter time. The sample extraction is performed under light shielding and anaerobic conditions, preventing the degradation of thermo labile analytes. It may be able to analyze compounds over a wide polarity range as SFC generally uses carbon dioxide which was collected as a by-product of other chemical reactions or is collected from the atmosphere as it contributes no new chemicals to the environment. The diffusion of solutes in supercritical fluids is about ten times greater than that in liquids and about three times less than in gases which results in a decrease in resistance to mass transfer in the column and allows for fast high resolution separations. The drawback of SFC when using carbon dioxide as mobile phase is that the direct introduction of water samples poses a series of problems, water must therefore be eliminated before it reaches the analytical column. Hundreds of compounds analysed simultaneously by simple enclosing in an extraction vessel. This is mainly applicable for pharmaceutical industry where it can analyse fatty acids and phospholipids that have many analogues as their UV spectrum is very similar, trace additives in polymers, cleaning validation can be conducted by putting swab sample in an extraction vessel, analysing hundreds of pesticides with good resolution.Keywords: super critical fluid extraction (SFE), super critical fluid chromatography (SFC), LCMS/MS, GCMS/MS
Procedia PDF Downloads 3914957 European Electromagnetic Compatibility Directive Applied to Astronomical Observatories
Authors: Oibar Martinez, Clara Oliver
Abstract:
The Cherenkov Telescope Array Project (CTA) aims to build two different observatories of Cherenkov Telescopes, located in Cerro del Paranal, Chile, and La Palma, Spain. These facilities are used in this paper as a case study to investigate how to apply standard Directives on Electromagnetic Compatibility to astronomical observatories. Cherenkov Telescopes are able to provide valuable information from both Galactic and Extragalactic sources by measuring Cherenkov radiation, which is produced by particles which travel faster than light in the atmosphere. The construction requirements demand compliance with the European Electromagnetic Compatibility Directive. The largest telescopes of these observatories, called Large Scale Telescopes (LSTs), are high precision instruments with advanced photomultipliers able to detect the faint sub-nanosecond blue light pulses produced by Cherenkov Radiation. They have a 23-meter parabolic reflective surface. This surface focuses the radiation on a camera composed of an array of high-speed photosensors which are highly sensitive to the radio spectrum pollution. The camera has a field of view of about 4.5 degrees and has been designed for maximum compactness and lowest weight, cost and power consumption. Each pixel incorporates a photo-sensor able to discriminate single photons and the corresponding readout electronics. The first LST is already commissioned and intends to be operated as a service to Scientific Community. Because of this, it must comply with a series of reliability and functional requirements and must have a Conformité Européen (CE) marking. This demands compliance with Directive 2014/30/EU on electromagnetic compatibility. The main difficulty of accomplishing this goal resides on the fact that Conformité Européen marking setups and procedures were implemented for industrial products, whereas no clear protocols have been defined for scientific installations. In this paper, we aim to give an answer to the question on how the directive should be applied to our installation to guarantee the fulfillment of all the requirements and the proper functioning of the telescope itself. Experts in Optics and Electromagnetism were both needed to make these kinds of decisions and match tests which were designed to be made over the equipment of limited dimensions on large scientific plants. An analysis of the elements and configurations most likely to be affected by external interferences and those that are most likely to cause the maximum disturbances was also performed. Obtaining the Conformité Européen mark requires knowing what the harmonized standards are and how the elaboration of the specific requirement is defined. For this type of large installations, one needs to adapt and develop the tests to be carried out. In addition, throughout this process, certification entities and notified bodies play a key role in preparing and agreeing the required technical documentation. We have focused our attention mostly on the technical aspects of each point. We believe that this contribution will be of interest for other scientists involved in applying industrial quality assurance standards to large scientific plant.Keywords: CE marking, electromagnetic compatibility, european directive, scientific installations
Procedia PDF Downloads 1104956 Physiological Responses of Dominant Grassland Species to Different Grazing Intensity in Inner Mongolia, China
Authors: Min Liu, Jirui Gong, Qinpu Luo, Lili Yang, Bo Yang, Zihe Zhang, Yan Pan, Zhanwei Zhai
Abstract:
Grazing disturbance is one of the important land-use types that affect plant growth and ecosystem processes. In order to study the responses of dominant species to grazing in the semiarid temperate grassland of Inner Mongolia, we set five grazing intensity plots: a control and four levels of grazing (light (LG), moderate (MG), heavy (HG) and extreme heavy grazing (EHG)) to test the morphological and physiological responses of Stipa grandis, Leymus chinensis at the individual levels. With the increase of grazing intensity, Stipa grandis and Leymus chinensis both exhibited reduced plant height, leaf area, stem length and aboveground biomass, showing a significant dwarf phenomenon especially in HG and EHG plots. The photosynthetic capacity decreased along the grazing gradient. Especially in the MG plot, the two dominant species have lowest net photosynthetic rate (Pn) and water use efficiency (WUE). However, in the HG and EHG plots, the two species had high light saturation point (LSP) and low light compensation point (LCP), indicating they have high light-use efficiency. They showed a stimulation of compensatory photosynthesis to the remnant leaves as compared with grasses in MG plot. For Leymus chinensis, the lipid peroxidation level did not increase with the low malondialdehyde (MDA) content even in the EHG plot. It may be due to the high enzymes activity of superoxide dismutase (SOD) and peroxidase (POD) to reduce the damage of reactive oxygen species. Meanwhile, more carbohydrate was stored in the leaf of Leymus chinensis to provide energy to the plant regrowth. On the contrary, Stipa grandis showed the high level of lipid peroxidation especially in the HG and EHG plots with decreased antioxidant enzymes activity. The soluble protein content did not change significantly in the different plots. Therefore, with the increase of grazing intensity, plants changed morphological and physiological traits to defend themselves effectively to herbivores. Leymus chinensis is more resistant to grazing than Stipa grandis in terms of tolerance traits, particularly under heavy grazing pressure.Keywords: antioxidant enzymes activity, grazing density, morphological responses, photosynthesis
Procedia PDF Downloads 3674955 Refitting Equations for Peak Ground Acceleration in Light of the PF-L Database
Authors: Matevž Breška, Iztok Peruš, Vlado Stankovski
Abstract:
Systematic overview of existing Ground Motion Prediction Equations (GMPEs) has been published by Douglas. The number of earthquake recordings that have been used for fitting these equations has increased in the past decades. The current PF-L database contains 3550 recordings. Since the GMPEs frequently model the peak ground acceleration (PGA) the goal of the present study was to refit a selection of 44 of the existing equation models for PGA in light of the latest data. The algorithm Levenberg-Marquardt was used for fitting the coefficients of the equations and the results are evaluated both quantitatively by presenting the root mean squared error (RMSE) and qualitatively by drawing graphs of the five best fitted equations. The RMSE was found to be as low as 0.08 for the best equation models. The newly estimated coefficients vary from the values published in the original works.Keywords: Ground Motion Prediction Equations, Levenberg-Marquardt algorithm, refitting PF-L database, peak ground acceleration
Procedia PDF Downloads 4624954 Green Prossesing of PS/Nanoparticle Fibers and Studying Morphology and Properties
Authors: M. Kheirandish, S. Borhani
Abstract:
In this experiment Polystyrene/Zinc-oxide (PS/ZnO) nanocomposite fibers were produced by electrospinning technique using limonene as a green solvent. First, the morphology of electrospun pure polystyrene (PS) and PS/ZnO nanocomposite fibers investigated by SEM. Results showed the PS fiber diameter decreased by increasing concentration of Zinc Oxide nanoparticles (ZnO NPs). Thermo Gravimetric Analysis (TGA) results showed thermal stability of nanocomposites increased by increasing ZnO NPs in PS electrospun fibers. Considering Differential Scanning Calorimeter (DSC) thermograms for electrospun PS fibers indicated that introduction of ZnO NPs into fibers affects the glass transition temperature (Tg) by reducing it. Also, UV protection properties of nanocomposite fibers were increased by increasing ZnO concentration. Evaluating the effect of metal oxide NPs amount on mechanical properties of electrospun layer showed that tensile strength and elasticity modulus of the electrospun layer of PS increased by addition of ZnO NPs. X-ray diffraction (XRD) pattern of nanopcomposite fibers confirmed the presence of NPs in the samples.Keywords: electrospininng, nanoparticle, polystyrene, ZnO
Procedia PDF Downloads 2414953 Recent Nano technological Advancements in Antimicrobial Edible Films for Food Packaging: A Review
Authors: Raana Babadi Fathipour
Abstract:
Researchers are now focusing on sustainable advancements in active packaging systems to meet the growing consumer demand for high-quality food with Eco-friendly packaging. One significant advancement in this area is the inclusion of antimicrobial agents in bio-polymer-based edible films, which effectively inhibit or kill pathogenic/spoilage microbes that can contaminate food. This technology also helps reduce undesirable flavors caused by active compounds directly incorporated into the food. To further enhance the efficiency of antimicrobial bio-based packaging systems, Nano technological concepts such as bio-nano composites and Nano encapsulation systems have been applied. This review examines the current state and applications of antimicrobial biodegradable films in the food packaging industry, while also highlighting ongoing research on the use of nanotechnology to develop innovative bio-based packaging systems.Keywords: active packaging, antimicrobial edible films, bioactive agents, biopolymers, bio-nanocomposites
Procedia PDF Downloads 734952 Mechanical Properties of Carbon Nanofiber Reinforced Polymer Composites-Molecular Dynamics Approach
Authors: Sumit Sharma, Rakesh Chandra, Pramod Kumar, Navin Kumar
Abstract:
Molecular dynamics (MD) simulation has been used to study the effect of carbon nanofiber (CNF) volume fraction (Vf) and aspect ratio (l/d) on mechanical properties of CNF reinforced polypropylene (PP) composites. Materials Studio 5.5 has been used as a tool for finding the modulus and damping in composites. CNF composition in PP was varied by volume from 0 to 16%. Aspect ratio of CNF was varied from l/d=5 to l/d=100. To the best of the knowledge of the authors, till date there is no study, either experimental or analytical, which predict damping for CNF-PP composites at the nanoscale. Hence, this will be a valuable addition in the area of nanocomposites. Results show that with only 2% addition by volume of CNF in PP, E11 increases 748%. Increase in E22 is very less in comparison to the increase in E11. With increase in CNF aspect ratio (l/d) till l/d=60, the longitudinal loss factor (η11) decreases rapidly. Results of this study have been compared with those available in literature.Keywords: carbon nanofiber, elasticity, mechanical properties, molecular dynamics
Procedia PDF Downloads 4864951 Synthesis of a Hybrid of PEG-b-PCL and G1-PEA Dendrimer Based Six-Armed Star Polymer for Nano Delivery of Vancomycin
Authors: Calvin A. Omolo, Rahul S. Kalhapure, Mahantesh Jadhav, Sanjeev Rambharose, Chunderika Mocktar, Thirumala Govender
Abstract:
Treatment of infections is compromised by limitations of conventional dosage forms and drug resistance. Nanocarrier system is a strategy to overcome these challenges and improve therapy. Thus, the development of novel materials for drug delivery via nanocarriers is essential. The aim of the study was to synthesize a multi-arm polymer (6-mPEPEA) for enhanced activity of vancomycin (VM) against susceptible and resistant Staphylococcus aureus (MRSA). The synthesis steps of the star polymer followed reported procedures. The synthesized 6-mPEPEA was characterized by FTIR, ¹H and ¹³CNMR and MTT assays. VM loaded micelles were prepared from 6-mPEPEA and characterized for size, polydispersity index (PI) and surface charge (ZP) (Dynamic Light Scattering), morphology by TEM, drug loading (UV Spectrophotometry), drug release (dialysis bag), in vitro and in vivo efficacy against sensitive and resistant S. aureus. 6-mPEPEA was synthesized, and its structure was confirmed. MTT assays confirmed its nontoxic nature with a high cell viability (77%-85%). Unimolecular spherical micelles were prepared. Size, PI, and ZP was 52.48 ± 2.6 nm, 0.103 ± 0.047, -7.3 ± 1.3 mV, respectively and drug loading was 62.24 ± 3.8%. There was a 91% drug release from VCM-6-mPEPEA after 72 hours. In vitro antibacterial test revealed that VM-6-mPEPEA had 8 and 16-fold greater activity against S. aureus and MRSA when compared to bare VM. Further investigations using flow cytometry showed that VM-6-mPEPEA had 99.5% killing rate of MRSA at the MIC concentration. In vivo antibacterial activity revealed that treatment with VM-6-mPEPEA had a 190 and a 15-fold reduction in the MRSA load in untreated and VM treated respectively. These findings confirmed the potential of 6-mPEPEA as a promising bio-degradable nanocarrier for antibiotic delivery to improve treatment of bacterial infections.Keywords: biosafe, MRSA, nanocarrier, resistance, unimolecular-micelles
Procedia PDF Downloads 1904950 Advanced Real-Time Fluorescence Imaging System for Rat's Femoral Vein Thrombosis Monitoring
Authors: Sang Hun Park, Chul Gyu Song
Abstract:
Artery and vein occlusion changes observed in patients and experimental animals are unexplainable symptoms. As the fat accumulated in cardiovascular ruptures, it causes vascular blocking. Likewise, early detection of cardiovascular disease can be useful for treatment. In this study, we used the mouse femoral occlusion model to observe the arterial and venous occlusion changes without darkroom. We observed the femoral arterial flow pattern changes by proposed fluorescent imaging system using an animal model of thrombosis. We adjusted the near-infrared light source current in order to control the intensity of the fluorescent substance light. We got the clear fluorescent images and femoral artery flow pattern were measured by a 5-minute interval. The result showed that the fluorescent substance flowing in the femoral arteries were accumulated in thrombus as time passed, and the fluorescence of other vessels gradually decreased.Keywords: thrombus, fluorescence, femoral, arteries
Procedia PDF Downloads 3444949 Effect of UV-B Light Treatment on Nutraceutical Potential of an Indigenous Mushroom Calocybe Indica
Authors: Himanshi Rathore, Shalinee Prasad, Satyawati Sharma, Ajay Singh Yadav
Abstract:
Medicinal mushrooms are acceptable all over the world not only because they have a unique flavour and texture but also due to the presence of great nutritional, nutraceutical and functional properties. High content of physiologically active substances like ergosterol, vitamin D, phenolic compounds, triterpenoids and steroids make these medicinal mushrooms a key source of nutraceuticals. Calocybe indica is a popular medicinal mushroom of India which is known to possess high amount of secondary metabolites including ergosterol (vitamin D2). The ergosterol gets converted to vitamin D in the presence of UV rays by a photochemical reaction. In lieu of the above facts the present study was undertaken to investigate the effect of UV-B light treatment on the vitamin D2 concentration, phenolic content and non volatile compounds in Calocybe indica. For this study, UV-B light source of intensity 5.3w/m2 was used to expose mushrooms for the time period of 0min, 30min, 60min and 90 min. It was found that the vitamin D2 concentration increased with the time duration i.e. 85±0.15 (0 min), 182±1.6 (30 min), 187±0.4 (60 min) and 182 ±0.8 (90 min) μg/g (dry weight). Highest concentration of vitamin D2 was found at 60 min duration. No discoloration in sliced mushrooms was observed during the exposure time. The results revealed that the exposure of mushrooms for a minimum of 30 min duration under UVB source can be a novel, convenient and cheapest way to increase the vitamin D content in mushrooms. This can be one of richest source to fulfil the recommended dietary allowances of vitamin D in our daily diets. The paper provides information on the enhancement of vitamin D content by UV lights and its effects on the non volatile (soluble sugars, free amino acids, 5′-nucleotides and phenolics) compounds will also be presented.Keywords: Calocybe indica, ergosterol, nutraceutical, phenolics
Procedia PDF Downloads 4714948 Facile Synthesis of Heterostructured Bi₂S₃-WS₂ Photocatalysts for Photodegradation of Organic Dye
Authors: S. V. Prabhakar Vattikuti, Chan Byon
Abstract:
In this paper, we report a facile synthetic strategy of randomly disturbed Bi₂S₃ nanorods on WS₂ nanosheets, which are synthesized via a controlled hydrothermal method without surfactant under an inert atmosphere. We developed a simple hydrothermal method for the formation of heterostructured of Bi₂S₃/WS₂ with a large scale (>95%). The structural features, composition, and morphology were characterized by XRD, SEM-EDX, TEM, HRTEM, XPS, UV-vis spectroscopy, N₂ adsorption-desorption, and TG-DTA measurements. The heterostructured Bi₂S₃/WS₂ composite has significant photocatalytic efficiency toward the photodegradation of organic dye. The time-dependent UV-vis absorbance spectroscopy measurement was consistent with the enhanced photocatalytic degradation of rhodamine B (RhB) under visible light irradiation with the diminishing carrier recombination for the Bi₂S₃/WS₂ photocatalyst. Due to their marked synergistic effects, the supported Bi₂S₃ nanorods on WS₂ nanosheet heterostructures exhibit significant visible-light photocatalytic activity and stability for the degradation of RhB. A possible reaction mechanism is proposed for the Bi₂S₃/WS₂ composite.Keywords: photocatalyst, heterostructures, transition metal disulfides, organic dye, nanorods
Procedia PDF Downloads 2964947 Characterization of Iron Doped Titanium Dioxide Nanoparticles and Its Photocatalytic Degradation Ability for Congo Red Dye
Authors: Vishakha Parihar
Abstract:
This study reports the preparation of iron metal-doped nanoparticles of Titanium dioxide by the sol-gel process and the photocatalytic degradation of dye. Nano-particles were characterized by SEM, EDX, and UV-Vis spectroscopy. The detailed study confirmed that nanoparticles have grown in high density and have good optical properties. The photocatalytic batch experiment was performed in an aqueous solution where congo red dye was used as a dye pollutant under the irradiation of ultraviolet rays created by using a mercury lamp source. Total degradation efficiency achieved was approximately 85% to 93% in the duration of 100-120 minutes of irradiation under an ultraviolet light source. The decolorization ability of this process was measured by absorbance at a maximum wavelength of 498nm. The results indicated that the iron-doped Titanium dioxide nanoparticles showed an excellent photocatalytic response to the degradation of dye under the ultraviolet light source within a very short period of time.Keywords: titanium dioxide, nano-particles iron dope, photocatalytic degradation, Congo red dye, sol-gel process
Procedia PDF Downloads 1864946 The Effects of Covid-19 on Oral Health among 19 to 29 Years Old - A Cross-sectional Study in Albania
Authors: Mimoza Canga, Alketa Qafmolla, Vergjini Mulo, Irene Malagnino
Abstract:
Aim: Assessment of oral health in young people aged 18-29 years after the Covid-19 pandemic in Albania. Materials and methods: The present study was conducted at the University of Medicine in Tirana, Albania, from March 2023 to September 2023. This is s cross-sectional study. In our research, 104 students participated, of which 64 were females (61.5%) and 40 were males (38.5%). In the present survey, the participants were divided into four age groups: 18-20, 21-23, 24-26, and 27-29 years old. Majority of the sample (69%) were 18-20 years. Participants were instructed to complete the questionnaire. The study had no dropouts. The current study was conducted in accordance to Helsinki declaration. Statistical analysis was performed using IBM SPSS Statistics Version 23.0, Microsoft Windows Linux, Chicago, IL, USA. Data were analyzed using analysis of variance (ANOVA). P ≤ 0.05 was considered statistically significant. Results: This study reported that 80 (76.9%) of the participants had passed Covid-19, while 24 (23.1%) of them had not passed Covid-19. Based on our data analysis, 70 (67.3%) of the participants had symptoms such as of fever 38°C- 40.5°C and headache. They stated that were treated with Azithromycin 500 mg tablets, Augmentin 625 mg tablets, Vitamin C 1000 mg, Magnesium, and Vitamin D. 40(38.4%) of the participants noticed hypersensitivity in gums (p = 0.004) and sensitive teeth (p = 0.001) after having passed Covid-19 compared to pre-pandemic. Nearly 40 (38.4%) of the participants who passed Covid-19 were treated with painful relievers for the gums and teeth, such as ibuprofen (Advil), used Sensodyne Toothpaste for sensitive teeth and Clove oil. Conclusion: Within the limitations of this study conducted in Albania, can concluded that Covid-19 has a direct impact on oral health.Keywords: albania, Covid19, cross-sectional study, oral health
Procedia PDF Downloads 964945 Natural Regeneration Dynamics in Different Microsites within Gaps of Different Sizes
Authors: M. E. Hammond, R. Pokorny
Abstract:
Not much research has gone into the dynamics of natural regeneration of trees species in tropical forest regions. This study seeks to investigate the impact of gap sizes and light distribution in forest floors on the regeneration of Celtis mildbraedii (CEM), Nesogordonia papaverine (NES) and Terminalia superba (TES). These are selected economically important tree species with different shade tolerance attributes. The spatial distribution patterns and the potential regeneration competition index (RCI) among species using height to diameter ratio (HDR) have been assessed. Gap sizes ranging between 287 – 971 m² were selected at the Bia Tano forest reserve, a tropical moist semi-deciduous forest in Ghana. Four (4) transects in the cardinal directions were constructed from the center of each gap. Along each transect, ten 1 m² sampling zones at 2 m spacing were established. Then, three gap microsites (labeled ecozones I, II, III) were delineated within these sampling zones based on the varying temporal light distribution on the forest floor. Data on height (H), root collar diameter (RCD) and regeneration census were gathered from each of the ten sampling zones. CEM and NES seedlings (≤ 50 cm) and saplings (≥ 51 cm) were present in all ecozones of the large gaps. Seedlings of TES were observed in all ecozones of large and small gaps. Regression analysis showed a significant negative linear relationship between independent RCD and H growth variables on dependent HDR index in ecozones II and III of both large and small gaps. There was a correlation between RCD and H in both large and small gaps. A strong regeneration competition was observed among species in ecozone II in large (df 2, F=3.6, p=0.035) and small (df 2, F=17.9, p=0.000) gaps. These results contribute to the understanding of the natural regeneration of different species with regards to light regimes in forest floors.Keywords: Celtis mildbraedii, ecozones, gaps, Nesogordonia papaverifera, regeneration, Terminalia superba
Procedia PDF Downloads 1424944 Evaluation of Corrosion Property of Aluminium-Zirconium Dioxide (AlZrO2) Nanocomposites
Authors: M. Ramachandra, G. Dilip Maruthi, R. Rashmi
Abstract:
This paper aims to study the corrosion property of aluminum matrix nanocomposite of an aluminum alloy (Al-6061) reinforced with zirconium dioxide (ZrO2) particles. The zirconium dioxide particles are synthesized by solution combustion method. The nanocomposite materials are prepared by mechanical stir casting method, varying the percentage of n-ZrO2 (2.5%, 5% and 7.5% by weight). The corrosion behavior of base metal (Al-6061) and Al/ZrO2 nanocomposite in seawater (3.5% NaCl solution) is measured using the potential control method. The corrosion rate is evaluated by Tafel extrapolation technique. The corrosion potential increases with the increase in wt.% of n-ZrO2 in the nanocomposite which means the decrease in corrosion rate. It is found that on addition of n-ZrO2 particles to the aluminum matrix, the corrosion rate has decreased compared to the base metal.Keywords: Al6061 alloy, corrosion, solution, stir casting, combustion, potentiostat, zirconium dioxide
Procedia PDF Downloads 4094943 Fabrication and Assessment of Poly (butylene succinate)/ Poly (ԑ-caprolactone)/Eucomis Autumnalis Cellulose Bio-Composites for Tissue Engineering Applications
Authors: Kumalo F. I., Malimabe M. A., Gumede T. P., Mosoabisane M. F. T.
Abstract:
This study investigates the fabrication and characterization of bio-nanocomposites consisting of poly (butylene succinate) (PBS) and poly (ԑ-caprolactone) (PCL), reinforced with cellulose extracted from Eucomis autumnalis, a medicinal plant. Bio-nanocomposite films were prepared using the solvent casting method, with cellulose content ranging from 1 to 3 wt%. Comprehensive analysis was conducted using FTIR, SEM, TEM, DSC, TGA, and XRD, to assess morphological, thermal, and structural properties. The results indicated significant improvements in the thermal stability and morphological properties with increasing cellulose content, showcasing the potential of these materials for tissue engineering applications. The use of cellulose extracted from a medicinal plant highlight the potential for sustainable and biocompatible materials in biomedical applications.Keywords: Bionanocomposites, poly(butylene succinate), poly(caprolactone), eucomis autumnalis, medicinal plant
Procedia PDF Downloads 534942 Chemical and Biomolecular Detection at a Polarizable Electrical Interface
Authors: Nicholas Mavrogiannis, Francesca Crivellari, Zachary Gagnon
Abstract:
Development of low-cost, rapid, sensitive and portable biosensing systems are important for the detection and prevention of disease in developing countries, biowarfare/antiterrorism applications, environmental monitoring, point-of-care diagnostic testing and for basic biological research. Currently, the most established commercially available and widespread assays for portable point of care detection and disease testing are paper-based dipstick and lateral flow test strips. These paper-based devices are often small, cheap and simple to operate. The last three decades in particular have seen an emergence in these assays in diagnostic settings for detection of pregnancy, HIV/AIDS, blood glucose, Influenza, urinary protein, cardiovascular disease, respiratory infections and blood chemistries. Such assays are widely available largely because they are inexpensive, lightweight, and portable, are simple to operate, and a few platforms are capable of multiplexed detection for a small number of sample targets. However, there is a critical need for sensitive, quantitative and multiplexed detection capabilities for point-of-care diagnostics and for the detection and prevention of disease in the developing world that cannot be satisfied by current state-of-the-art paper-based assays. For example, applications including the detection of cardiac and cancer biomarkers and biothreat applications require sensitive multiplexed detection of analytes in the nM and pM range, and cannot currently be satisfied with current inexpensive portable platforms due to their lack of sensitivity, quantitative capabilities and often unreliable performance. In this talk, inexpensive label-free biomolecular detection at liquid interfaces using a newly discovered electrokinetic phenomenon known as fluidic dielectrophoresis (fDEP) is demonstrated. The electrokinetic approach involves exploiting the electrical mismatches between two aqueous liquid streams forced to flow side-by-side in a microfluidic T-channel. In this system, one fluid stream is engineered to have a higher conductivity relative to its neighbor which has a higher permittivity. When a “low” frequency (< 1 MHz) alternating current (AC) electrical field is applied normal to this fluidic electrical interface the fluid stream with high conductivity displaces into the low conductive stream. Conversely, when a “high” frequency (20MHz) AC electric field is applied, the high permittivity stream deflects across the microfluidic channel. There is, however, a critical frequency sensitive to the electrical differences between each fluid phase – the fDEP crossover frequency – between these two events where no fluid deflection is observed, and the interface remains fixed when exposed to an external field. To perform biomolecular detection, two streams flow side-by-side in a microfluidic T-channel: one fluid stream with an analyte of choice and an adjacent stream with a specific receptor to the chosen target. The two fluid streams merge and the fDEP crossover frequency is measured at different axial positions down the resulting liquidKeywords: biodetection, fluidic dielectrophoresis, interfacial polarization, liquid interface
Procedia PDF Downloads 447