Search results for: isolated word recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3975

Search results for: isolated word recognition

3195 Predicting the Human Impact of Natural Onset Disasters Using Pattern Recognition Techniques and Rule Based Clustering

Authors: Sara Hasani

Abstract:

This research focuses on natural sudden onset disasters characterised as ‘occurring with little or no warning and often cause excessive injuries far surpassing the national response capacities’. Based on the panel analysis of the historic record of 4,252 natural onset disasters between 1980 to 2015, a predictive method was developed to predict the human impact of the disaster (fatality, injured, homeless) with less than 3% of errors. The geographical dispersion of the disasters includes every country where the data were available and cross-examined from various humanitarian sources. The records were then filtered into 4252 records of the disasters where the five predictive variables (disaster type, HDI, DRI, population, and population density) were clearly stated. The procedure was designed based on a combination of pattern recognition techniques and rule-based clustering for prediction and discrimination analysis to validate the results further. The result indicates that there is a relationship between the disaster human impact and the five socio-economic characteristics of the affected country mentioned above. As a result, a framework was put forward, which could predict the disaster’s human impact based on their severity rank in the early hours of disaster strike. The predictions in this model were outlined in two worst and best-case scenarios, which respectively inform the lower range and higher range of the prediction. A necessity to develop the predictive framework can be highlighted by noticing that despite the existing research in literature, a framework for predicting the human impact and estimating the needs at the time of the disaster is yet to be developed. This can further be used to allocate the resources at the response phase of the disaster where the data is scarce.

Keywords: disaster management, natural disaster, pattern recognition, prediction

Procedia PDF Downloads 153
3194 Cultural Disposition and Implicit Dehumanization of Sexualized Females by Women

Authors: Hong Im Shin

Abstract:

Previous research demonstrated that self-objectification (women view themselves as objects for use) is related to system-justification. Three studies investigated whether cultural disposition as its system-justifying function could have an impact on self-objectification and dehumanization of sexualized women and men. Study 1 (N = 91) employed a survey methodology to examine the relationship between cultural disposition (collectivism vs. individualism), trait of system-justification, and self-objectification. The results showed that the higher tendency of collectivism was related to stronger system-justification and self-objectification. Study 2 (N = 60 females) introduced a single category implicit association task (SC-IAT) to assess the extent to which sexually objectified women were associated with uniquely human attributes (i.e., culture) compared to animal-related attributes (i.e., nature). According to results, female participants associated sexually objectified female targets less with human attributes compared to animal-related attributes. Study 3 (N = 46) investigated whether priming to individualism or collectivism was associated to system justification and sexual objectification of men and women with the use of a recognition task involving upright and inverted pictures of sexualized women and men. The results indicated that the female participants primed to individualism showed an inversion effect for sexualized women and men (person-like recognition), whereas there was no inversion effect for sexualized women in the priming condition of collectivism (object-like recognition). This implies that cultural disposition plays a mediating role for rationalizing the gender status, implicit dehumanization of sexualized females and self-objectification. Future research directions are discussed.

Keywords: cultural disposition, dehumanization, implicit test, self-objectification

Procedia PDF Downloads 238
3193 Towards a Complete Automation Feature Recognition System for Sheet Metal Manufacturing

Authors: Bahaa Eltahawy, Mikko Ylihärsilä, Reino Virrankoski, Esko Petäjä

Abstract:

Sheet metal processing is automated, but the step from product models to the production machine control still requires human intervention. This may cause time consuming bottlenecks in the production process and increase the risk of human errors. In this paper we present a system, which automatically recognizes features from the CAD-model of the sheet metal product. By using these features, the system produces a complete model of the particular sheet metal product. Then the model is used as an input for the sheet metal processing machine. Currently the system is implemented, capable to recognize more than 11 of the most common sheet metal structural features, and the procedure is fully automated. This provides remarkable savings in the production time, and protects against the human errors. This paper presents the developed system architecture, applied algorithms and system software implementation and testing.

Keywords: feature recognition, automation, sheet metal manufacturing, CAD, CAM

Procedia PDF Downloads 354
3192 Effect of Phonological Complexity in Children with Specific Language Impairment

Authors: Irfana M., Priyandi Kabasi

Abstract:

Children with specific language impairment (SLI) have difficulty acquiring and using language despite having all the requirements of cognitive skills to support language acquisition. These children have normal non-verbal intelligence, hearing, and oral-motor skills, with no history of social/emotional problems or significant neurological impairment. Nevertheless, their language acquisition lags behind their peers. Phonological complexity can be considered to be the major factor that causes the inaccurate production of speech in this population. However, the implementation of various ranges of complex phonological stimuli in the treatment session of SLI should be followed for a better prognosis of speech accuracy. Hence there is a need to study the levels of phonological complexity. The present study consisted of 7 individuals who were diagnosed with SLI and 10 developmentally normal children. All of them were Hindi speakers with both genders and their age ranged from 4 to 5 years. There were 4 sets of stimuli; among them were minimal contrast vs maximal contrast nonwords, minimal coarticulation vs maximal coarticulation nonwords, minimal contrast vs maximal contrast words and minimal coarticulation vs maximal coarticulation words. Each set contained 10 stimuli and participants were asked to repeat each stimulus. Results showed that production of maximal contrast was significantly accurate, followed by minimal coarticulation, minimal contrast and maximal coarticulation. A similar trend was shown for both word and non-word categories of stimuli. The phonological complexity effect was evident in the study for each participant group. Moreover, present study findings can be implemented for the management of SLI, specifically for the selection of stimuli.

Keywords: coarticulation, minimal contrast, phonological complexity, specific language impairment

Procedia PDF Downloads 142
3191 Biosignal Recognition for Personal Identification

Authors: Hadri Hussain, M.Nasir Ibrahim, Chee-Ming Ting, Mariani Idroas, Fuad Numan, Alias Mohd Noor

Abstract:

A biometric security system has become an important application in client identification and verification system. A conventional biometric system is normally based on unimodal biometric that depends on either behavioural or physiological information for authentication purposes. The behavioural biometric depends on human body biometric signal (such as speech) and biosignal biometric (such as electrocardiogram (ECG) and phonocardiogram or heart sound (HS)). The speech signal is commonly used in a recognition system in biometric, while the ECG and the HS have been used to identify a person’s diseases uniquely related to its cluster. However, the conventional biometric system is liable to spoof attack that will affect the performance of the system. Therefore, a multimodal biometric security system is developed, which is based on biometric signal of ECG, HS, and speech. The biosignal data involved in the biometric system is initially segmented, with each segment Mel Frequency Cepstral Coefficients (MFCC) method is exploited for extracting the feature. The Hidden Markov Model (HMM) is used to model the client and to classify the unknown input with respect to the modal. The recognition system involved training and testing session that is known as client identification (CID). In this project, twenty clients are tested with the developed system. The best overall performance at 44 kHz was 93.92% for ECG and the worst overall performance was ECG at 88.47%. The results were compared to the best overall performance at 44 kHz for (20clients) to increment of clients, which was 90.00% for HS and the worst overall performance falls at ECG at 79.91%. It can be concluded that the difference multimodal biometric has a substantial effect on performance of the biometric system and with the increment of data, even with higher frequency sampling, the performance still decreased slightly as predicted.

Keywords: electrocardiogram, phonocardiogram, hidden markov model, mel frequency cepstral coeffiecients, client identification

Procedia PDF Downloads 280
3190 Composite Kernels for Public Emotion Recognition from Twitter

Authors: Chien-Hung Chen, Yan-Chun Hsing, Yung-Chun Chang

Abstract:

The Internet has grown into a powerful medium for information dispersion and social interaction that leads to a rapid growth of social media which allows users to easily post their emotions and perspectives regarding certain topics online. Our research aims at using natural language processing and text mining techniques to explore the public emotions expressed on Twitter by analyzing the sentiment behind tweets. In this paper, we propose a composite kernel method that integrates tree kernel with the linear kernel to simultaneously exploit both the tree representation and the distributed emotion keyword representation to analyze the syntactic and content information in tweets. The experiment results demonstrate that our method can effectively detect public emotion of tweets while outperforming the other compared methods.

Keywords: emotion recognition, natural language processing, composite kernel, sentiment analysis, text mining

Procedia PDF Downloads 218
3189 Small Target Recognition Based on Trajectory Information

Authors: Saad Alkentar, Abdulkareem Assalem

Abstract:

Recognizing small targets has always posed a significant challenge in image analysis. Over long distances, the image signal-to-noise ratio tends to be low, limiting the amount of useful information available to detection systems. Consequently, visual target recognition becomes an intricate task to tackle. In this study, we introduce a Track Before Detect (TBD) approach that leverages target trajectory information (coordinates) to effectively distinguish between noise and potential targets. By reframing the problem as a multivariate time series classification, we have achieved remarkable results. Specifically, our TBD method achieves an impressive 97% accuracy in separating target signals from noise within a mere half-second time span (consisting of 10 data points). Furthermore, when classifying the identified targets into our predefined categories—airplane, drone, and bird—we achieve an outstanding classification accuracy of 96% over a more extended period of 1.5 seconds (comprising 30 data points).

Keywords: small targets, drones, trajectory information, TBD, multivariate time series

Procedia PDF Downloads 47
3188 Blade Runner and Slavery in the 21st Century

Authors: Bülent Diken

Abstract:

This paper looks to set Ridley Scott’s original film Blade Runner (1982) and Denis Villeneuve’s Blade Runner 2049 (2017) in order to provide an analysis of both films with respect to the new configurations of slavery in the 21st century. Both Blade Runner films present a de-politicized society that oscillates between two extremes: the spectral (the eye, optics, digital communications) and the biopolitical (the body, haptics). On the one hand, recognizing the subject only as a sign, the society of the spectacle registers, identifies, produces and reproduces the subject as a code. At the same time, though, the subject is constantly reduced to a naked body, to bare life, for biometric technologies to scan it as a biological body or body parts. Being simultaneously a pure code (word without body) and an instrument slave (body without word), the replicants are thus the paradigmatic subjects of this society. The paper focuses first on the similarity: both films depict a relationship between masters and slaves, that is, a despotic relationship. The master uses the (body of the) slave as an instrument, as an extension of his own body. Blade Runner 2019 frames the despotic relation in this classical way through its triangulation with the economy (the Tyrell Corporation) and the slave-replicants’ dissent (rejecting their reduction to mere instruments). In a counter-classical approach, in Blade Runner 2049, the focus shifts to another triangulation: despotism, economy (the Wallace Corporation) and consent (of replicants who no longer perceive themselves as slaves).

Keywords: Blade Runner, the spectacle, bio-politics, slavery, imstrumentalisation

Procedia PDF Downloads 69
3187 Evolution of Reported Bluetongue Outbreaks inAlgeria: Epidemiological Situation

Authors: Amel Benatallah, Michel Marie, Faical Ghozlane

Abstract:

Bluetongue (BT) is a major concern of veterinary services and a real threat to the sheep population. Epidemiological situation of blue tongue has revealed that in 2000, the serotype 2 (BTV2) was isolated and identified. The vector of BTV has affected 10 provinces out of 48 provinces in the country. As a result, 28 outbreaks were reported with 191 cases including 29 deaths. In 2006, the vector of the FCO has still hit Algeria, but this time with another serotype, the BTV 1. The latter was responsible for the resurgence of the disease in 11 provinces (29 outbreaks with 265 reported cases and 36 deaths).The same serotype (BTV1) was isolated and identified in 2008 in two provinces (2 outbreaks with 15 cases revealing 5 deaths) , in 2009 in 5 provinces (19 outbreaks with 78 reported cases and 20 deaths). In addition, 2010 and 2011 saw the resurgence of the same serotype (BTV1) respectively in 9 (46 outbreaks with 131 cases including and 25 deaths) and 7 provinces (16 outbreaks with 63 reported cases and 6 deaths). Serological and entomological surveys were conducted in Algeria during the period from 2000 to 2007 in order to identify the different BTV strains of existing FCO in Algeria in addition to vector Culicoides Imicola and to study the ecology of this vector to limit its movement in the country.

Keywords: blue tongue, serotype, vectors, culicoides imicola, BTV, FCO

Procedia PDF Downloads 340
3186 Duration Patterns of English by Native British Speakers and Mandarin ESL Speakers

Authors: Chen Bingru

Abstract:

This study is intended to describe and analyze the effects of polysyllabic shortening and word or phrase boundary on the duration patterns of spoken utterances by Mandarin learners of English in comparison with native speakers of English. To investigate the relative contribution of these effects, two production experiments were conducted. The study included 11 native British English speakers and 20 Mandarin learners of English who were asked to produce four sets of tokens consisting of a mono-syllabic base form, disyllabic, and trisyllabic words derived from the base by the addition of suffixes, and a set of short sentences with a particular combination of phrase size, stress pattern, and boundary location. The duration of words and segments was measured, and results from the data analysis suggest that the amount of polysyllabic shortening and the effect of word or phrase position are likely to affect a Chinese accent for Mandarin ESL speakers. This study sheds light on research on the duration patterns of language by demonstrating the effect of duration-related factors on the foreign accent of Mandarin ESL speakers. It can also benefit both L2 learners and language teachers by increasing their sensitivity to the duration differences and difficulties experienced by L2 learners of English. An understanding of the amount of polysyllabic shortening and the effect of position in words and phrase on syllable duration can also facilitate L2 teachers to establish priorities for teaching pronunciation to ESL learners.

Keywords: duration patterns, Chinese accent, Mandarin ESL speakers, polysyllabic shortening

Procedia PDF Downloads 139
3185 Identity Verification Based on Multimodal Machine Learning on Red Green Blue (RGB) Red Green Blue-Depth (RGB-D) Voice Data

Authors: LuoJiaoyang, Yu Hongyang

Abstract:

In this paper, we experimented with a new approach to multimodal identification using RGB, RGB-D and voice data. The multimodal combination of RGB and voice data has been applied in tasks such as emotion recognition and has shown good results and stability, and it is also the same in identity recognition tasks. We believe that the data of different modalities can enhance the effect of the model through mutual reinforcement. We try to increase the three modalities on the basis of the dual modalities and try to improve the effectiveness of the network by increasing the number of modalities. We also implemented the single-modal identification system separately, tested the data of these different modalities under clean and noisy conditions, and compared the performance with the multimodal model. In the process of designing the multimodal model, we tried a variety of different fusion strategies and finally chose the fusion method with the best performance. The experimental results show that the performance of the multimodal system is better than that of the single modality, especially in dealing with noise, and the multimodal system can achieve an average improvement of 5%.

Keywords: multimodal, three modalities, RGB-D, identity verification

Procedia PDF Downloads 70
3184 Effectiveness of the Flavonoids Isolated from Thymus inodorus by Different Solvents against Some Pathogenis Microorganisms

Authors: N. Behidj, K. Benyounes, T. Dahmane, A. Allem

Abstract:

The aim of this study was to investigate the antimicrobial activity of flavonoids isolated from the aerial part of a medicinal plant which is Thymus inodorusby the middle agar diffusion method on following microorganisms. We have Staphylococcus aureus, Escherichia coli, Pseudomonas fluorescens, AspergillusNiger, Aspergillus fumigatus and Candida albicans. During this study, flavonoids extracted by stripping with steam are performed. The yields of flavonoids is 7.242% for the aqueous extract and 28.86% for butanol extract, 29.875% for the extract of ethyl acetate and 22.9% for the extract of di - ethyl. The evaluation of the antibacterial effect shows that the diameter of the zone of inhibition varies from one microorganism to another. The operation values obtained show that the bacterial strain P fluoresces, and 3 yeasts and molds; A. Niger, A. fumigatus and C. albicansare the most resistant. But it is noted that, S. aureus is shown more sensitive to crude extracts, the stock solution and the various dilutions. Finally for the minimum inhibitory concentration is estimated only with the crude extract of Thymus inodorus flavonoid.Indeed, these extracts inhibit the growth of Gram + bacteria at a concentration varying between 0.5% and 1%. While for bacteria to Gram -, it is limited to a concentration of 0.5%.

Keywords: antimicrobial activity, organic extracts, aqueous extracts, Thymus numidicus

Procedia PDF Downloads 185
3183 The Automatisation of Dictionary-Based Annotation in a Parallel Corpus of Old English

Authors: Ana Elvira Ojanguren Lopez, Javier Martin Arista

Abstract:

The aims of this paper are to present the automatisation procedure adopted in the implementation of a parallel corpus of Old English, as well as, to assess the progress of automatisation with respect to tagging, annotation, and lemmatisation. The corpus consists of an aligned parallel text with word-for-word comparison Old English-English that provides the Old English segment with inflectional form tagging (gloss, lemma, category, and inflection) and lemma annotation (spelling, meaning, inflectional class, paradigm, word-formation and secondary sources). This parallel corpus is intended to fill a gap in the field of Old English, in which no parallel and/or lemmatised corpora are available, while the average amount of corpus annotation is low. With this background, this presentation has two main parts. The first part, which focuses on tagging and annotation, selects the layouts and fields of lexical databases that are relevant for these tasks. Most information used for the annotation of the corpus can be retrieved from the lexical and morphological database Nerthus and the database of secondary sources Freya. These are the sources of linguistic and metalinguistic information that will be used for the annotation of the lemmas of the corpus, including morphological and semantic aspects as well as the references to the secondary sources that deal with the lemmas in question. Although substantially adapted and re-interpreted, the lemmatised part of these databases draws on the standard dictionaries of Old English, including The Student's Dictionary of Anglo-Saxon, An Anglo-Saxon Dictionary, and A Concise Anglo-Saxon Dictionary. The second part of this paper deals with lemmatisation. It presents the lemmatiser Norna, which has been implemented on Filemaker software. It is based on a concordance and an index to the Dictionary of Old English Corpus, which comprises around three thousand texts and three million words. In its present state, the lemmatiser Norna can assign lemma to around 80% of textual forms on an automatic basis, by searching the index and the concordance for prefixes, stems and inflectional endings. The conclusions of this presentation insist on the limits of the automatisation of dictionary-based annotation in a parallel corpus. While the tagging and annotation are largely automatic even at the present stage, the automatisation of alignment is pending for future research. Lemmatisation and morphological tagging are expected to be fully automatic in the near future, once the database of secondary sources Freya and the lemmatiser Norna have been completed.

Keywords: corpus linguistics, historical linguistics, old English, parallel corpus

Procedia PDF Downloads 212
3182 Functional Relevance of Flavanones and Other Plant Products in the Remedy of Parkinson's Disease

Authors: Himanshi Allahabadi

Abstract:

Plants have found a widespread use in medicine traditionally, including the treatment of cognitive disorders, especially, neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. In terms of indigenous medicine, it has been found that many potential drugs can be isolated from plant products, including those for dementia. Plant product is widely distributed in plant kingdom and forms a major antioxidant source in the human diet, is Polyphenols. There are four important groups of polyphenols: phenolic acids, flavonoids, stilbenes, and lignans. Due to their high antioxidant capacity, interest in their study has greatly increased. There are several methods for discovering and characterizing active compounds isolated from plant sources, now available. The results obtained so far seem fulfilling, but additionally, mechanism of functioning of polyphenols at the molecular level, as well as their application in human health need to be researched upon. Also, even though the neuroprotective effects of flavonoids have been much talked about, much of the data in support of this statement has come from animal studies rather than human studies. This review is based on a multi-faceted study of medicinal plants, i.e. phytochemicals, with special focus on flavanones and their relevance in remedy of Parkinson's disease.

Keywords: dementia, parkinson's disease, flavanones, polyphenols, substantia nigra

Procedia PDF Downloads 307
3181 Fight against Money Laundering with Optical Character Recognition

Authors: Saikiran Subbagari, Avinash Malladhi

Abstract:

Anti Money Laundering (AML) regulations are designed to prevent money laundering and terrorist financing activities worldwide. Financial institutions around the world are legally obligated to identify, assess and mitigate the risks associated with money laundering and report any suspicious transactions to governing authorities. With increasing volumes of data to analyze, financial institutions seek to automate their AML processes. In the rise of financial crimes, optical character recognition (OCR), in combination with machine learning (ML) algorithms, serves as a crucial tool for automating AML processes by extracting the data from documents and identifying suspicious transactions. In this paper, we examine the utilization of OCR for AML and delve into various OCR techniques employed in AML processes. These techniques encompass template-based, feature-based, neural network-based, natural language processing (NLP), hidden markov models (HMMs), conditional random fields (CRFs), binarizations, pattern matching and stroke width transform (SWT). We evaluate each technique, discussing their strengths and constraints. Also, we emphasize on how OCR can improve the accuracy of customer identity verification by comparing the extracted text with the office of foreign assets control (OFAC) watchlist. We will also discuss how OCR helps to overcome language barriers in AML compliance. We also address the implementation challenges that OCR-based AML systems may face and offer recommendations for financial institutions based on the data from previous research studies, which illustrate the effectiveness of OCR-based AML.

Keywords: anti-money laundering, compliance, financial crimes, fraud detection, machine learning, optical character recognition

Procedia PDF Downloads 144
3180 A Hybrid System for Boreholes Soil Sample

Authors: Ali Ulvi Uzer

Abstract:

Data reduction is an important topic in the field of pattern recognition applications. The basic concept is the reduction of multitudinous amounts of data down to the meaningful parts. The Principal Component Analysis (PCA) method is frequently used for data reduction. The Support Vector Machine (SVM) method is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data, the algorithm outputs an optimal hyperplane which categorizes new examples. This study offers a hybrid approach that uses the PCA for data reduction and Support Vector Machines (SVM) for classification. In order to detect the accuracy of the suggested system, two boreholes taken from the soil sample was used. The classification accuracies for this dataset were obtained through using ten-fold cross-validation method. As the results suggest, this system, which is performed through size reduction, is a feasible system for faster recognition of dataset so our study result appears to be very promising.

Keywords: feature selection, sequential forward selection, support vector machines, soil sample

Procedia PDF Downloads 455
3179 Exploring the Use of Digital Tools for the Analysis and Interpretation of the Poems of Seamus Heaney

Authors: Ashok Sachdeva

Abstract:

This research paper delves into the application of digital tools, especially Voyant Tools and AntConc version 4.0, for the analysis and interpretation of Seamus Heaney's poems. Scholars and literary aficionados can acquire deeper insights into Heaney's writings by utilising these tools, revealing hidden nuances and improving their knowledge. This paper outlines the methodology used, presents sample analyses and evaluates the merits and limitations of using digital tools in literary analysis. The combination of traditional close reading with digital analysis tools promises to offer new paths for understanding Heaney's vast tapestry of poetry. Seamus Heaney, a Nobel winner known for his vivid poetry, provides a treasure mine of literary discovery. The advent of digital tools gives an exciting opportunity to reveal previously unknown layers of meaning within his works. This paper investigates the use of Voyant Tools and AntConc version 4.0 to analyse and understand Heaney's writings, demonstrating the symbiotic relationship between traditional literary analysis and cutting-edge digital methodologies. Methodology: To demonstrate the efficiency of digital tools in the analysis of Heaney's poetry, a sample of his notable works will be entered into Voyant Tools and AntConc version 4.0. The former provides a graphic representation of word frequency, word clouds, and patterns over numerous poems. The latter, a concordance tool, enables detailed linguistic analysis, revealing patterns, and linguistic subtleties.

Keywords: digital tools, resonance, assonance, alliteration, creative quotient

Procedia PDF Downloads 72
3178 Phytochemical and Biological Study of Chrozophora oblongifolia

Authors: Al-Braa Kashegari, Ali M. El-Halawany, Akram A. Shalabi, Sabrin R. M. Ibrahim, Hossam M. Abdallah

Abstract:

Chemical investigation of Chrozophora oblongifolia resulted in the isolation of five major compounds that were identified as apeginin-7-O-glucoside (1), quercetin-3-O-glucuronic acid (2), quercetin-3-O-glacturonic acid (3), rutin (4), and 1,3,6-trigalloyl glucose (5). The identity of isolated compounds was assessed by different spectroscopic methods, including one- and two-dimensional NMR. The isolated compounds were tested for their antioxidant activity using different assays viz., DPPH, FRAP, ABTS, ORAC, and metal chelation effects. In addition, the inhibition of target enzymes involved in the metabolic syndrome, such as alpha-glucosidase and pancreatic lipase, were carried out. Moreover, the effect of the compounds on the advanced glycation end-products (AGEs) as one of the major complications of oxidative stress and hyperglycemia in metabolic syndromes were carried out using BSA‐fructose (bovine serum albumin), BSA-methylglyoxal, and arginine methylglyoxal models. The pure isolates showed a protective effect in metabolic syndromes as well as promising antioxidant activity. The results showed potent activity of compound 5 in all measured parameters meanwhile, none of the tested compounds showed activity against pancreatic lipase.

Keywords: Chrozophora oblongifolia, antioxidant, pancreatic lipase, metabolic syndromes

Procedia PDF Downloads 111
3177 A Smartphone-Based Real-Time Activity Recognition and Fall Detection System

Authors: Manutchanok Jongprasithporn, Rawiphorn Srivilai, Paweena Pongsopha

Abstract:

Fall is the most serious accident leading to increased unintentional injuries and mortality. Falls are not only the cause of suffering and functional impairments to the individuals, but also the cause of increasing medical cost and days away from work. The early detection of falls could be an advantage to reduce fall-related injuries and consequences of falls. Smartphones, embedded accelerometer, have become a common device in everyday life due to decreasing technology cost. This paper explores a physical activity monitoring and fall detection application in smartphones which is a non-invasive biomedical device to determine physical activities and fall event. The combination of application and sensors could perform as a biomedical sensor to monitor physical activities and recognize a fall. We have chosen Android-based smartphone in this study since android operating system is an open-source and no cost. Moreover, android phone users become a majority of Thai’s smartphone users. We developed Thai 3 Axis (TH3AX) as a physical activities and fall detection application which included command, manual, results in Thai language. The smartphone was attached to right hip of 10 young, healthy adult subjects (5 males, 5 females; aged< 35y) to collect accelerometer and gyroscope data during performing physical activities (e.g., walking, running, sitting, and lying down) and falling to determine threshold for each activity. Dependent variables are including accelerometer data (acceleration, peak acceleration, average resultant acceleration, and time between peak acceleration). A repeated measures ANOVA was performed to test whether there are any differences between DVs’ means. Statistical analyses were considered significant at p<0.05. After finding threshold, the results were used as training data for a predictive model of activity recognition. In the future, accuracies of activity recognition will be performed to assess the overall performance of the classifier. Moreover, to help improve the quality of life, our system will be implemented with patients and elderly people who need intensive care in hospitals and nursing homes in Thailand.

Keywords: activity recognition, accelerometer, fall, gyroscope, smartphone

Procedia PDF Downloads 692
3176 Evaluation of Robust Feature Descriptors for Texture Classification

Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo

Abstract:

Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.

Keywords: texture classification, texture descriptor, SIFT, SURF, ORB

Procedia PDF Downloads 369
3175 Modelling and Control of Binary Distillation Column

Authors: Narava Manose

Abstract:

Distillation is a very old separation technology for separating liquid mixtures that can be traced back to the chemists in Alexandria in the first century A. D. Today distillation is the most important industrial separation technology. By the eleventh century, distillation was being used in Italy to produce alcoholic beverages. At that time, distillation was probably a batch process based on the use of just a single stage, the boiler. The word distillation is derived from the Latin word destillare, which means dripping or trickling down. By at least the sixteenth century, it was known that the extent of separation could be improved by providing multiple vapor-liquid contacts (stages) in a so called Rectifactorium. The term rectification is derived from the Latin words rectefacere, meaning to improve. Modern distillation derives its ability to produce almost pure products from the use of multi-stage contacting. Throughout the twentieth century, multistage distillation was by far the most widely used industrial method for separating liquid mixtures of chemical components.The basic principle behind this technique relies on the different boiling temperatures for the various components of the mixture, allowing the separation between the vapor from the most volatile component and the liquid of other(s) component(s). •Developed a simple non-linear model of a binary distillation column using Skogestad equations in Simulink. •We have computed the steady-state operating point around which to base our analysis and controller design. However, the model contains two integrators because the condenser and reboiler levels are not controlled. One particular way of stabilizing the column is the LV-configuration where we use D to control M_D, and B to control M_B; such a model is given in cola_lv.m where we have used two P-controllers with gains equal to 10.

Keywords: modelling, distillation column, control, binary distillation

Procedia PDF Downloads 277
3174 Antifungal Nature of Bacillus Subtilis in Controlling Post Harvest Fungal Rot of Yam

Authors: Ifueko Oghogho Ukponmwan, Mike O. Orji

Abstract:

This study investigated the antifungal activity of Bacilluss subtilis in the control of postharvest fungal rot of white yam (Dioscorea spp). Bacillus subtilis was isolated from the soil and fungi (Aspergillus spp, Mucor and yeasts) were isolated from rotten yam. The organisms were paired in yam nutrient agar (YNA) and yam Sabourraud dextrose agar media. In the yam dextrose agar media (YSDA) plates, the Bacillus grew rapidly and established itself and restricted the growth of the fungi organisms, but there was no zone of inhibition. This behaviour of Bacillus on the plates of YSDA was also observed in the yams where the fungi caused rot but the rot was suppressed by the presence of the Bacillus as compared to the degree of rot observed in the control that had only spoilage fungi. The control yam showed greater rot than other yams that contained a combination of Bacillus and fungi. The t-Test analysis showed that the difference in the rot between the treated samples and the control sample is significant and this implies that the presence of Bacillus significantly reduced the growth of fungi in the samples (yams). It was revealed from this study that Bacillus subtilis treatment can be successfully used to preserve white yams in storage. Its fast growth and early establishment in the sample accounts for its antifungal strength.

Keywords: Bacillus subtilis, rot, fungi, yam

Procedia PDF Downloads 181
3173 Culture of Writing and Writing of Culture: Organizational Connections and Pedagogical Implications of ESL Writing in Multilingual Philippine Setting

Authors: Randy S. Magdaluyo, Lea M. Cabar, Jefferson Q. Correa

Abstract:

One recurring issue in ESL writing is the confusing differences in the writing conventions of the first language and the target language. Culture may play an intriguing role in specifying writing features and structures that ESL writers have to follow. Although writing is typically organized in a three-part structure with introduction, body, and conclusion, it is important to analyze the complex nature of ESL writing. This study investigated the organizational features and structures of argumentative essays written in English by thirty college ESL students from three linguistic backgrounds (Cebuano, Chavacao, and Tausug) in a Philippine university. The nature of word order and sentence construction in the students’ essays and the specific components of the introduction, body, and conclusion were quantitatively and qualitatively analyzed based on ESL writing models. Focus group discussions were also conducted to help clarify the possible influence of students’ first language on the ways their essays were conceptualized and organized. Results indicate that while there was no significant difference in the overall introduction, body, and conclusion in all essays, the sentence length was interestingly different for each linguistic group of ESL students, and the word order was notably inconsistent with the S-V-O pattern of the target language. The first language was also revealed to have a facilitative role in the cognitive translation process of these ESL students. As such, implications for a multicultural writing pedagogy was discussed and recommended considering both the students’ native resources in their first language and the ESL writing models in their target language.

Keywords: community funds of knowledge, contrastive rhetoric, ESL writing, multicultural writing pedagogy

Procedia PDF Downloads 138
3172 Clustering Ethno-Informatics of Naming Village in Java Island Using Data Mining

Authors: Atje Setiawan Abdullah, Budi Nurani Ruchjana, I. Gede Nyoman Mindra Jaya, Eddy Hermawan

Abstract:

Ethnoscience is used to see the culture with a scientific perspective, which may help to understand how people develop various forms of knowledge and belief, initially focusing on the ecology and history of the contributions that have been there. One of the areas studied in ethnoscience is etno-informatics, is the application of informatics in the culture. In this study the science of informatics used is data mining, a process to automatically extract knowledge from large databases, to obtain interesting patterns in order to obtain a knowledge. While the application of culture described by naming database village on the island of Java were obtained from Geographic Indonesia Information Agency (BIG), 2014. The purpose of this study is; first, to classify the naming of the village on the island of Java based on the structure of the word naming the village, including the prefix of the word, syllable contained, and complete word. Second to classify the meaning of naming the village based on specific categories, as well as its role in the community behavioral characteristics. Third, how to visualize the naming of the village to a map location, to see the similarity of naming villages in each province. In this research we have developed two theorems, i.e theorems area as a result of research studies have collected intersection naming villages in each province on the island of Java, and the composition of the wedge theorem sets the provinces in Java is used to view the peculiarities of a location study. The methodology in this study base on the method of Knowledge Discovery in Database (KDD) on data mining, the process includes preprocessing, data mining and post processing. The results showed that the Java community prioritizes merit in running his life, always working hard to achieve a more prosperous life, and love as well as water and environmental sustainment. Naming villages in each location adjacent province has a high degree of similarity, and influence each other. Cultural similarities in the province of Central Java, East Java and West Java-Banten have a high similarity, whereas in Jakarta-Yogyakarta has a low similarity. This research resulted in the cultural character of communities within the meaning of the naming of the village on the island of Java, this character is expected to serve as a guide in the behavior of people's daily life on the island of Java.

Keywords: ethnoscience, ethno-informatics, data mining, clustering, Java island culture

Procedia PDF Downloads 283
3171 Screening of Some Saudi Plants for Their Alleviating Effect on the Exaggerated Vasoconstriction in Metabolic Syndrome

Authors: Hossam M. Abdallah, Ali M. El-Halawany, Gamal A. Mohamed, Khalid Z. Alshali, Zainy M. Banjar, Hany A. El-Bassossy

Abstract:

Hypertension and vascular dysfunction are major components and complications of many diseases like metabolic syndrome. In addition, vascular dysfunction is considered the initial step in diabetic atherosclerosis, the main etiology for mortality and a great percent of morbidity in diabetic patients. In spite of the significant developments in antidiabetic therapy, diabetic complications, particularly seen in long-term diabetes, continue to be seriously deleterious. Herbal drugs are prescribed widely in treatment of different aliment because of their effectiveness, fewer side effects and relatively low cost. Nine plants belong to five different families grown in Kingdom of Saudi Arabia were evaluated for their effect on exaggerated vasoconstriction and impaired relaxation in aortae isolated from metabolic syndrome rats. The aerial parts of Onopordum ambiguum Fresen. (OA), Astragalus abyssinicus Steud. (AA), Pulicaria Arabica Cass. (PA), Echinops sheilae Kit Tan (ES), Aizoon canariense L. (AC), Cleome viscosa L. (CV), Chrozophora oblongifolia (Delile) A.Juss. ex Spreng (CO), Centaurea pseudosinaica Mouterde (CP) and Tephrosia nubica Baker (TN) were dried and extracted with methanol. The effect of thirty minute incubation with the total extracts (10-330 µg/ml) or their fractions on the exaggerated vasoconstriction response to phenylephrine (10nM to 10microM) and impaired vasodilation to acetylcholine (10-330 µg /ml) of aortae isolated from metabolic syndrome animals was studied. Incubating aortae isolated from metabolic syndrome animals with total methanol extract of OA, AA, PA, AC, CV, and TN at concentrations (10-330 microgram/ml) in the organ bath led to concentration dependent alleviation of exaggerated vasoconstriction response to phenylephrine without having beneficial effect on impaired vasodilation to acetylcholine. In conclusion, addition of OA, AA, PA, AC, CV and TN to the standard therapies may provide superior means to alleviate the associated vascular complications.

Keywords: vascular dysfunction, exaggerated vasoconstriction, metabolic syndrome, Saudi plants

Procedia PDF Downloads 279
3170 Multimodal Sentiment Analysis With Web Based Application

Authors: Shreyansh Singh, Afroz Ahmed

Abstract:

Sentiment Analysis intends to naturally reveal the hidden mentality that we hold towards an entity. The total of this assumption over a populace addresses sentiment surveying and has various applications. Current text-based sentiment analysis depends on the development of word embeddings and Machine Learning models that take in conclusion from enormous text corpora. Sentiment Analysis from text is presently generally utilized for consumer loyalty appraisal and brand insight investigation. With the expansion of online media, multimodal assessment investigation is set to carry new freedoms with the appearance of integral information streams for improving and going past text-based feeling examination using the new transforms methods. Since supposition can be distinguished through compelling follows it leaves, like facial and vocal presentations, multimodal opinion investigation offers good roads for examining facial and vocal articulations notwithstanding the record or printed content. These methodologies use the Recurrent Neural Networks (RNNs) with the LSTM modes to increase their performance. In this study, we characterize feeling and the issue of multimodal assessment investigation and audit ongoing advancements in multimodal notion examination in various spaces, including spoken surveys, pictures, video websites, human-machine, and human-human connections. Difficulties and chances of this arising field are additionally examined, promoting our theory that multimodal feeling investigation holds critical undiscovered potential.

Keywords: sentiment analysis, RNN, LSTM, word embeddings

Procedia PDF Downloads 119
3169 Tomato Endophytes Trichoderma asperellum AAUTLF and Stenotrophomonas maltophilia D1B Exhibits Plant Growth-Promotion and Fusarium Wilt Suppression

Authors: Bandana Saikia, Ashok Bhattacharyya

Abstract:

Endophytic microbes and their metabolites positively impact overall plant health, which may have a potential implication in agriculture. In the present study, 177 bacterial endophytes and 57 fungal endophytes were isolated, with the highest recovery rate from tomato roots. A maximum of 112 endophytes were isolated during monsoon, followed by 64 isolates and 58 isolates isolated during pre-monsoon and post-monsoon periods, respectively, indicating the rich diversity in bacterial and fungal endophytes of tomato crops from different locations of Assam, India. Further, the endophytes were evaluated for their antagonistic potential against Fusarium oxysporum f. sp. lycopersici. Fungal endophytic isolate AAUTLF (Endophytic Fungi of Tomato Leaf from Assam Agricultural University, Assam, India area) and bacterial endophyte D1B (Endophytic bacteria of tomato from Dhemiji, India district) showed the highest antifungal activity against the pathogen both in vitro and in vivo. Based on 5.8 rDNA sequence analysis of fungal and 16S rDNA sequence of bacteria endophytes, the most effective fungal and bacterial isolates against FOL were identified as Trichoderma asperellum AAUTLF and Stenotrophomonas maltophilia D1B, respectively. The isolates showed an antagonistic effect against Fusarium oxysporum f.sp. lycopersici in-vitro and reduced the disease index of Fusarium wilt in tomatoes by 64.4% under pot conditions. Trichoderma asperellum AAUTLF produced an antifungal compound viz., 6-pentyl-2H-pyran-2-one, which also possesses growth-promoting characteristics. The bacteria Stenotrophomonas maltophilia D1B produced antifungal compounds, including benzothiazole, oleic acid, phenylacetic acid, and 3-(Hydroxy-phenyl-methyl)-2,3-dimethyl-octan-4-one. This would be of high importance for the source of antagonistic strains and biocontrol of tomato Fusarium wilt, as well as other plant fungal diseases.

Keywords: root endophytes, Stemotrophomonas, Trichoderma, benzothiazole, 6-pentyl-2H-pyran-2-one

Procedia PDF Downloads 70
3168 Traffic Light Detection Using Image Segmentation

Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra

Abstract:

Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).

Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks

Procedia PDF Downloads 173
3167 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata

Authors: Pavan K. Rallabandi, Kailash C. Patidar

Abstract:

In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.

Keywords: hybrid systems, hidden markov models, recurrent neural networks, deterministic finite state automata

Procedia PDF Downloads 388
3166 Anticataract Activity of Betulinic Acid in Chick Embryo Lens Model

Authors: Surendra Bodakhe

Abstract:

In this investigation, anticataract activity was determined using cataract formation in developing chick embryo by hydrocortisone. Lenses were evaluated firstly for the extent of opacity and secondly, for lens glutathione (GSH) levels. Betulinic acid was isolated from the chloroform fraction of the crude ethanolic extract of Bauhinia variegata bark (SBE). Fourteen days old Australorp fertilized eggs were divided into different groups of six eggs each. After 24 hrs incubation in a humidified incubator (37οC), at 15 days of age; hydrocortisone (0.25µM/0.2ml/egg) was administered to the chorioallantoic membrane of chick embryos through a small hole in the egg shell on the air sack. Ascorbic acid (standard) or Betulinic acid (test) were administered at 3, 10 and 20 hr after hydrocortisone administration at a specified dose. The puncture was sealed with a cellophane tape and eggs were incubated for 48 hrs in a humidified incubator at 37οC. After 48 hrs, the lenses were isolated for the determination of the extent of opacity and Glutathione level. The betulinic acid prevented the opacification of the chick embryo lenses induced by hydrocortisone. The betulinic acid also prevented the decline of GSH content caused by hydrocortisone. The results indicate that betulinic acid protect the cataract formation in chick embryo lenses induced by hydrocortisone.

Keywords: betulinic acid, cataract, cloudiness, ovine

Procedia PDF Downloads 343