Search results for: high-dimensional data analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 42068

Search results for: high-dimensional data analysis

41288 The Relationship between Emotional Intelligence and Leadership Performance

Authors: Omar Al Ali

Abstract:

The current study was aimed to explore the relationships between emotional intelligence, cognitive ability, and leader's performance. Data were collected from 260 senior managers from UAE. The results showed that there are significant relationships between emotional intelligence and leadership performance as measured by the annual internal evaluations of each participant (r = .42, p < .01). Data from regression analysis revealed that both variables namely emotional intelligence (beta = .31, p < .01), and cognitive ability (beta = .29, p < .01), predicted leadership competencies, and together explained 26% of its variance. Data suggests that EI and cognitive ability are significantly correlated with leadership performance. In depth implications of the present findings for human resource development theory and practice are discussed.

Keywords: emotional intelligence, cognitive ability, leadership, performance

Procedia PDF Downloads 477
41287 Analysis of the Relationship between the Old Days Hospitalized with Economic Lost Top Ten Age Productive Disease in Hospital Inpatient Inche Abdul Moeis Samarinda, Indonesia

Authors: Tri Murti Tugiman, Awalyya Fasha

Abstract:

This research aims to analyze the magnitude of the economic losses incurred as a result of a person suffering from a particular disease of the ten highest in the productive age diseases in Hospitals Inche Abdul Moeis Samarinda. This research was a descriptive survey research and a secondary data analysis. For the analysis of economic losses populations used are all in patients who suffer from the 10 highest diseases in the productive age in hospitals IA Moeis Samarinda in 2011. Sampling was performed by using a stratified random sampling with samples of 77 people. Research results indicate that the direct cost community incurred to obtain medical services in hospitals IA Moeis is IDR 74437520. The amount of indirect costs incurred during service in a community hospital is IDR 10562000. The amount lost due to sickness fee is IDR 5377800. The amount of economic lost people to obtain medical services in hospitals IA Moeis is IDR 90377320. The number of days of hospitalization was as much as 171 respondents throughout the day. This study suggests the economic loss could be prevented by changes in the lifestyle of the people who clean and healthy along with the following insurance.

Keywords: hospitalized, economic lost, productive age diseases, secondary data analysis

Procedia PDF Downloads 480
41286 Prediction of Structural Response of Reinforced Concrete Buildings Using Artificial Intelligence

Authors: Juan Bojórquez, Henry E. Reyes, Edén Bojórquez, Alfredo Reyes-Salazar

Abstract:

This paper addressed the use of Artificial Intelligence to obtain the structural reliability of reinforced concrete buildings. For this purpose, artificial neuronal networks (ANN) are developed to predict seismic demand hazard curves. In order to have enough input-output data to train the ANN, a set of reinforced concrete buildings (low, mid, and high rise) are designed, then a probabilistic seismic hazard analysis is made to obtain the seismic demand hazard curves. The results are then used as input-output data to train the ANN in a feedforward backpropagation model. The predicted values of the seismic demand hazard curves found by the ANN are then compared. Finally, it is concluded that the computer time analysis is significantly lower and the predictions obtained from the ANN were accurate in comparison to the values obtained from the conventional methods.

Keywords: structural reliability, seismic design, machine learning, artificial neural network, probabilistic seismic hazard analysis, seismic demand hazard curves

Procedia PDF Downloads 196
41285 Assessment of the Validity of Sentiment Analysis as a Tool to Analyze the Emotional Content of Text

Authors: Trisha Malhotra

Abstract:

Sentiment analysis is a recent field of study that computationally assesses the emotional nature of a body of text. To assess its test-validity, sentiment analysis was carried out on the emotional corpus of text from a personal 15-day mood diary. Self-reported mood scores varied more or less accurately with daily mood evaluation score given by the software. On further assessment, it was found that while sentiment analysis was good at assessing ‘global’ mood, it was not able to ‘locally’ identify and differentially score synonyms of various emotional words. It is further critiqued for treating the intensity of an emotion as universal across cultures. Finally, the software is shown not to account for emotional complexity in sentences by treating emotions as strictly positive or negative. Hence, it is posited that a better output could be two (positive and negative) affect scores for the same body of text.

Keywords: analysis, data, diary, emotions, mood, sentiment

Procedia PDF Downloads 269
41284 Classification of Generative Adversarial Network Generated Multivariate Time Series Data Featuring Transformer-Based Deep Learning Architecture

Authors: Thrivikraman Aswathi, S. Advaith

Abstract:

As there can be cases where the use of real data is somehow limited, such as when it is hard to get access to a large volume of real data, we need to go for synthetic data generation. This produces high-quality synthetic data while maintaining the statistical properties of a specific dataset. In the present work, a generative adversarial network (GAN) is trained to produce multivariate time series (MTS) data since the MTS is now being gathered more often in various real-world systems. Furthermore, the GAN-generated MTS data is fed into a transformer-based deep learning architecture that carries out the data categorization into predefined classes. Further, the model is evaluated across various distinct domains by generating corresponding MTS data.

Keywords: GAN, transformer, classification, multivariate time series

Procedia PDF Downloads 130
41283 Performance of Environmental Efficiency of Energy Consumption in OPEC Countries

Authors: Bahram Fathi, Mahdi Khodaparast Mashhadi, Masuod Homayounifar

Abstract:

Global awareness on energy security and climate change has created much interest in assessing energy efficiency performance. A number of previous studies have contributed to evaluate energy efficiency performance using different analytical techniques among which data envelopment analysis (DEA) has recently received increasing attention. Most of DEA-related energy efficiency studies do not consider undesirable outputs such as CO2 emissions in their modeling framework, which may lead to biased energy efficiency values. Within a joint production frame work of desirable and undesirable outputs, in this paper we construct energy efficiency performance index for measuring energy efficiency performance by using environmental DEA model with CO2 emissions. We finally apply the index proposed to assess the energy efficiency performance in OPEC over time.

Keywords: energy efficiency, environmental, OPEC, data envelopment analysis

Procedia PDF Downloads 387
41282 Characteristics of Himalayan Glaciers with Lakes, Kosi Sub-Basin, Ganga Basin: Based on Remote Sensing and GIS Techniques

Authors: Ram Moorat Singh, Arun Kumar Sharma, Ravi Chaurey

Abstract:

Assessment of characteristics of Himalayan glaciers with or without glacier lakes was carried out for 1937glaciers of Kosi sub-basin, Ganga basin by using remote sensing and GIS techniques. Analysis of IRS-P6 AWiFS Data of 2004-07 periods, SRTM DEM and MODIS Land Surface Temperature (LST) data (15year mean) using image processing and GIS tools has provided significant information on various glacier parameters. The glacier area, length, width, ice exposed area, debris cover area, glacier slope, orientation, elevation and temperature data was analysed. The 119 supra glacier lakes and 62 moraine dam/peri-glacier lakes (area > 0.02 km2) in the study were studied to discern the suitable glacier conditions for glacier lake formation. On analysis it is observed that the glacial lakes are preferably formed in association with large dimension glaciers (area, length and width), glaciers with higher percent ice exposed area, lower percent debris cover area and in general mean elevation value greater than 5300 m amsl. On analysis of lake type shows that the moraine dam lakes are formed associated with glaciers located at relatively higher altitude as compared to altitude of glaciers with supra glacier lakes. Analysis of frequency of occurrence of lakes vis a vis glacier orientation shows that more number of glacier lakes are formed associated with glaciers having orientation south, south east, south west, east and west directions. The supra glacial lakes are formed in association with glaciers having higher mean temperature as compared to moraine dam lakes as verified using LST data of 15 years (2000-2014).

Keywords: remote sensing, supra glacial lake, Himalaya, Kosi sub-basin, glaciers, moraine-dammed lake

Procedia PDF Downloads 378
41281 Exploring Disruptive Innovation Capacity Effects on Firm Performance: An Investigation in Industries 4.0

Authors: Selma R. Oliveira, E. W. Cazarini

Abstract:

Recently, studies have referenced innovation as a key factor affecting the performance of firms. Companies make use of its innovative capacities to achieve sustainable competitive advantage. In this perspective, the objective of this paper is to contribute to innovation planning policies in industry 4.0. Thus, this paper examines the disruptive innovation capacity on firm performance in Europe. This procedure was prepared according to the following phases: Phase 1: Determination of the conceptual model; and Phase 2: Verification of the conceptual model. The research was initially conducted based on the specialized literature, which extracted the data regarding the constructs/structure and content in order to build the model. The research involved the intervention of experts knowledgeable on the object studied, selected by technical-scientific criteria. The data were extracted using an assessment matrix. To reduce subjectivity in the results achieved the following methods were used complementarily and in combination: multicriteria analysis, multivariate analysis, psychometric scaling and neurofuzzy technology. The data were extracted using an assessment matrix and the results were satisfactory, validating the modeling approach.

Keywords: disruptive innovation, capacity, performance, Industry 4.0

Procedia PDF Downloads 165
41280 Comparative Analysis of Data Gathering Protocols with Multiple Mobile Elements for Wireless Sensor Network

Authors: Bhat Geetalaxmi Jairam, D. V. Ashoka

Abstract:

Wireless Sensor Networks are used in many applications to collect sensed data from different sources. Sensed data has to be delivered through sensors wireless interface using multi-hop communication towards the sink. The data collection in wireless sensor networks consumes energy. Energy consumption is the major constraints in WSN .Reducing the energy consumption while increasing the amount of generated data is a great challenge. In this paper, we have implemented two data gathering protocols with multiple mobile sinks/elements to collect data from sensor nodes. First, is Energy-Efficient Data Gathering with Tour Length-Constrained Mobile Elements in Wireless Sensor Networks (EEDG), in which mobile sinks uses vehicle routing protocol to collect data. Second is An Intelligent Agent-based Routing Structure for Mobile Sinks in WSNs (IAR), in which mobile sinks uses prim’s algorithm to collect data. Authors have implemented concepts which are common to both protocols like deployment of mobile sinks, generating visiting schedule, collecting data from the cluster member. Authors have compared the performance of both protocols by taking statistics based on performance parameters like Delay, Packet Drop, Packet Delivery Ratio, Energy Available, Control Overhead. Authors have concluded this paper by proving EEDG is more efficient than IAR protocol but with few limitations which include unaddressed issues likes Redundancy removal, Idle listening, Mobile Sink’s pause/wait state at the node. In future work, we plan to concentrate more on these limitations to avail a new energy efficient protocol which will help in improving the life time of the WSN.

Keywords: aggregation, consumption, data gathering, efficiency

Procedia PDF Downloads 497
41279 Finite Element Analysis of RC Frames with Retrofitted Infill Walls

Authors: M. Ömer Timurağaoğlu, Adem Doğangün, Ramazan Livaoğlu

Abstract:

The evaluation of performance of infilled reinforced concrete (RC) frames has been a significant challenge for engineers. The strengthening of infill walls has been an important concern to enhance the behavior of RC infilled frames. The aim of this study is to investigate the behaviour of retrofitted infill walls of RC frames using finite element analysis. For this purpose, a one storey, one bay infilled and strengthened infilled RC frame which have the same geometry and material properties with the frames tested in laboratory are modelled using different analytical approaches. A fibrous material is used to strengthen infill walls and frame. As a consequence, the results of the finite element analysis were evaluated of whether these analytical approaches estimate the behavior or not. To model the infilled and strengthened infilled RC frames, a finite element program ABAQUS is used. Finally, data obtained from the nonlinear finite element analysis is compared with the experimental results.

Keywords: finite element analysis, infilled RC frames, infill wall, strengthening

Procedia PDF Downloads 529
41278 Analysis of Structural Modeling on Digital English Learning Strategy Use

Authors: Gyoomi Kim, Jiyoung Bae

Abstract:

The purpose of this study was to propose a framework that verifies the structural relationships among students’ use of digital English learning strategy (DELS), affective domains, and their individual variables. The study developed a hypothetical model based on previous studies on language learning strategy use as well as digital language learning. The participants were 720 Korean high school students and 430 university students. The instrument was a self-response questionnaire that contained 70 question items based on Oxford’s SILL (Strategy Inventory for Language Learning) as well as the previous studies on language learning strategies in digital learning environment in order to measure DELS and affective domains. The collected data were analyzed through structural equation modeling (SEM). This study used quantitative data analysis procedures: Explanatory factor analysis (EFA) and confirmatory factor analysis (CFA). Firstly, the EFA was conducted in order to verify the hypothetical model; the factor analysis was conducted preferentially to identify the underlying relationships between measured variables of DELS and the affective domain in the EFA process. The hypothetical model was established with six indicators of learning strategies (memory, cognitive, compensation, metacognitive, affective, and social strategies) under the latent variable of the use of DELS. In addition, the model included four indicators (self-confidence, interests, self-regulation, and attitude toward digital learning) under the latent variable of learners’ affective domain. Secondly, the CFA was used to determine the suitability of data and research models, so all data from the present study was used to assess model fits. Lastly, the model also included individual learner factors as covariates and five constructs selected were learners’ gender, the level of English proficiency, the duration of English learning, the period of using digital devices, and previous experience of digital English learning. The results verified from SEM analysis proposed a theoretical model that showed the structural relationships between Korean students’ use of DELS and their affective domains. Therefore, the results of this study help ESL/EFL teachers understand how learners use and develop appropriate learning strategies in digital learning contexts. The pedagogical implication and suggestions for the further study will be also presented.

Keywords: Digital English Learning Strategy, DELS, individual variables, learners' affective domains, Structural Equation Modeling, SEM

Procedia PDF Downloads 125
41277 Recreation and Environmental Quality of Tropical Wetlands: A Social Media Based Spatial Analysis

Authors: Michael Sinclair, Andrea Ghermandi, Sheela A. Moses, Joseph Sabu

Abstract:

Passively crowdsourced data, such as geotagged photographs from social media, represent an opportunistic source of location-based and time-specific behavioral data for ecosystem services analysis. Such data have innovative applications for environmental management and protection, which are replicable at wide spatial scales and in the context of both developed and developing countries. Here we test one such innovation, based on the analysis of the metadata of online geotagged photographs, to investigate the provision of recreational services by the entire network of wetland ecosystems in the state of Kerala, India. We estimate visitation to individual wetlands state-wide and extend, for the first time to a developing region, the emerging application of cultural ecosystem services modelling using data from social media. The impacts of restoration of wetland areal extension and water quality improvement are explored as a means to inform more sustainable management strategies. Findings show that improving water quality to a level suitable for the preservation of wildlife and fisheries could increase annual visits by 350,000, an increase of 13% in wetland visits state-wide, while restoring previously encroached wetland area could result in a 7% increase in annual visits, corresponding to 49,000 visitors, in the Ashtamudi and Vembanad lakes alone, two large coastal Ramsar wetlands in Kerala. We discuss how passive crowdsourcing of social media data has the potential to improve current ecosystem service analyses and environmental management practices also in the context of developing countries.

Keywords: coastal wetlands, cultural ecosystem services, India, passive crowdsourcing, social media, wetland restoration

Procedia PDF Downloads 155
41276 Efficacy and Safety of Probiotic Treatment in Patients with Liver Cirrhosis: A Systematic Review and Meta-Analysis

Authors: Samir Malhotra, Rajan K. Khandotra, Rakesh K. Dhiman, Neelam Chadha

Abstract:

There is paucity of data about safety and efficacy of probiotic treatment on patient outcomes in cirrhosis. Specifically, it is important to know whether probiotics can improve mortality, hepatic encephalopathy (HE), number of hospitalizations, ammonia levels, quality of life, and adverse events. Probiotics may improve outcomes in patients with acute or chronic HE. However, it is also important to know whether probiotics can prevent development of HE, even in situations where patients do not have acute HE at the time of administration. It is also important to know if probiotics are useful as primary prophylaxis of HE. We aimed to conduct an updated systematic review and meta-analysis to evaluate the safety and efficacy of probiotics in patients with cirrhosis. We searched PubMed, Cochrane library, Embase, Scopus, SCI, Google Scholar, conference proceedings, and references of included studies till June 2017 to identify randomised clinical trials comparing probiotics with other treatments in cirrhotics. Data was analyzed using MedCalc. Probiotics had no effect on mortality but significantly reduced HE (14 trials, 1073 patients, OR 0.371; 95% CI 0.282 to 0.489). There was not enough data to conduct a meta-analysis on outcomes like hospitalizations and quality of life. The effect on plasma ammonia levels was not significant (SMD -0.429; 95%CI -1.034 – 0.177). There was no difference in adverse events. To conclude, although the included studies had a high risk of bias, the available evidence does suggest a beneficial effect on HE. Larger studies with longer periods of follow-up are needed to determine if probiotics can reduce all-cause mortality.

Keywords: cirrhosis, hepatic encephalopathy, meta-analysis, probiotic

Procedia PDF Downloads 201
41275 The Feminism of Data Privacy and Protection in Africa

Authors: Olayinka Adeniyi, Melissa Omino

Abstract:

The field of data privacy and data protection in Africa is still an evolving area, with many African countries yet to enact legislation on the subject. While African Governments are bringing their legislation to speed in this field, how patriarchy pervades every sector of African thought and manifests in society needs to be considered. Moreover, the laws enacted ought to be inclusive, especially towards women. This, in a nutshell, is the essence of data feminism. Data feminism is a new way of thinking about data science and data ethics that is informed by the ideas of intersectional feminism. Feminising data privacy and protection will involve thinking women, considering women in the issues of data privacy and protection, particularly in legislation, as is the case in this paper. The line of thought of women inclusion is not uncommon when even international and regional human rights specific for women only came long after the general human rights. The consideration is that these should have been inserted or rather included in the original general instruments in the first instance. Since legislation on data privacy is coming in this century, having seen the rights and shortcomings of earlier instruments, then the cue should be taken to ensure inclusive wholistic legislation for data privacy and protection in the first instance. Data feminism is arguably an area that has been scantily researched, albeit a needful one. With the spate of increase in the violence against women spiraling in the cyber world, compounding the issue of COVID-19 and the needful response of governments, and the effect of these on women and their rights, fast forward, the research on the feminism of data privacy and protection in Africa becomes inevitable. This paper seeks to answer the questions, what is data feminism in the African context, why is it important in the issue of data privacy and protection legislation; what are the laws, if any, existing on data privacy and protection in Africa, are they women inclusive, if not, why; what are the measures put in place for the privacy and protection of women in Africa, and how can this be made possible. The paper aims to investigate the issue of data privacy and protection in Africa, the legal framework, and the protection or provision that it has for women if any. It further aims to research the importance and necessity of feminizing data privacy and protection, the effect of lack of it, the challenges or bottlenecks in attaining this feat and the possibilities of accessing data privacy and protection for African women. The paper also researches the emerging practices of data privacy and protection of women in other jurisprudences. It approaches the research through the methodology of review of papers, analysis of laws, and reports. It seeks to contribute to the existing literature in the field and is explorative in its suggestion. It suggests a draft of some clauses to make any data privacy and protection legislation women inclusive. It would be useful for policymaking, academic, and public enlightenment.

Keywords: feminism, women, law, data, Africa

Procedia PDF Downloads 205
41274 A Case Study at PT Bank XYZ on The Role of Compensation, Career Development, and Employee Engagement towards Employee Performance

Authors: Ahmad Badawi Saluy, Novawiguna Kemalasari

Abstract:

This study aims to examine, analyze and explain the impacts of compensation, career development and employee engagement to employee’s performance partially and simultaneously (Case Study at PT Bank XYZ). The research design used is quantitative descriptive research causality involving 30 respondents. Sources of data are from primary and secondary data, primary data obtained from questionnaires distribution and secondary data obtained from journals and books. Data analysis used model test using smart application PLS 3 that consists of test outer model and inner model. The results showed that compensation, career development and employee engagement partially have a positive impact on employee performance, while they have a positive and significant impact on employee performance simultaneously. The independent variable has the greatest impact is the employee engagement.

Keywords: compensation, career development, employee engagement, employee performance

Procedia PDF Downloads 152
41273 Statistical Scientific Investigation of Popular Cultural Heritage in the Relationship between Astronomy and Weather Conditions in the State of Kuwait

Authors: Ahmed M. AlHasem

Abstract:

The Kuwaiti society has long been aware of climatic changes and their annual dates and trying to link them to astronomy in an attempt to forecast the future weather conditions. The reason for this concern is that many of the economic, social and living activities of the society depend deeply on the nature of the weather conditions directly and indirectly. In other words, Kuwaiti society, like the case of many human societies, has in the past tried to predict climatic conditions by linking them to astronomy or popular statements to indicate the timing of climate changes. Accordingly, this study was devoted to scientific investigation based on the statistical analysis of climatic data to show the accuracy and compatibility of some of the most important elements of the cultural heritage in relation to climate change and to relate it scientifically to precise climatic measurements for decades. The research has been divided into 10 topics, each topic has been focused on one legacy, whether by linking climate changes to the appearance/disappearance of star or a popular statement inherited through generations, through explain the nature and timing and thereby statistical analysis to indicate the proportion of accuracy based on official climatic data since 1962. The study's conclusion is that the relationship is weak and, in some cases, non-existent between the popular heritage and the actual climatic data. Therefore, it does not have a dependable relationship and a reliable scientific prediction between both the popular heritage and the forecast of weather conditions.

Keywords: astronomy, cultural heritage, statistical analysis, weather prediction

Procedia PDF Downloads 122
41272 Comparative Analysis of Integrated and Non-Integrated Fish Farming in Ogun State, Nigeria

Authors: B. G. Abiona

Abstract:

This study compared profitability analysis of integrated and non-integrated fish farming in Ogun State, Nigeria. Primary data were collected using interview guide. Random sampling techniques was used to select 133 non-integrated fish farmers (NIFF) and 216 integrated fish farmers (IFF) (n = 349) from the study area. Data were analyzed using Chi-square, T-test and Pearson Product moment correlation. Results showed that 92.5% of NIFF was male compared to IFF (90.7%). Also, 96.8% of IFF and 79.7% of NIFF were married. The mean ages of sampled farmers were 44 years (NIFF) and 46 years (IFF) while the mean fish farming experiences were 4 years (NIFF) and 5 years (IFF). Also, the average net profit per year of integrated fish farmers was ₦162,550 compared to NIFF (₦61,638). The chi-square analyses showed that knowledge of fish farming had significant relationship with respondents sex (χ2 = 9.44, df = 2, p < 0.05), age (r = 0.20, p< 0.05) and farming experience (r = p = 0.05). Significant differences exist between integrated and non-integrated fish farming, considering their knowledge of fish farming (t = 21.5, χ = 43.01, p < 0.05). The study concluded that IFF are more profitable compared to NIFF. It was recommended that private investors and NGOs should sponsor short training and courses which will enhance efficiency of fish farming to boost productivity among fish farmers.

Keywords: profitability analysis, farms, integration

Procedia PDF Downloads 336
41271 Finite Element Analysis and Multibody Dynamics of 6-DOF Industrial Robot

Authors: Rahul Arora, S. S. Dhami

Abstract:

This paper implements the design structure of industrial robot along with the different transmission components like gear assembly and analysis of complete industrial robot. In this paper, it gives the overview on the most efficient types of modeling and different analysis results that can be obtained for an industrial robot. The investigation is executed in regards to two classifications i.e. the deformation and the stress tests. SolidWorks is utilized to design and review the 3D drawing plan while ANSYS Workbench is utilized to execute the FEA on an industrial robot and the designed component. The CAD evaluation was conducted on a disentangled model of an industrial robot. The study includes design and drafting its transmission system. In CAE study static, modal and dynamic analysis are presented. Every one of the outcomes is divided in regard with the impact of the static and dynamic analysis on the situating exactness of the robot. It gives critical data with respect to parts of the industrial robot that are inclined to harm under higher high force applications. Therefore, the mechanical structure under different operating conditions can help in optimizing the manipulator geometry and in selecting the right material for the same. The FEA analysis is conducted for four different materials on the same industrial robot and gear assembly.

Keywords: CAD, CAE, FEA, robot, static, dynamic, modal, gear assembly

Procedia PDF Downloads 377
41270 Distributional and Developmental Analysis of PM2.5 in Beijing, China

Authors: Alexander K. Guo

Abstract:

PM2.5 poses a large threat to people’s health and the environment and is an issue of large concern in Beijing, brought to the attention of the government by the media. In addition, both the United States Embassy in Beijing and the government of China have increased monitoring of PM2.5 in recent years, and have made real-time data available to the public. This report utilizes hourly historical data (2008-2016) from the U.S. Embassy in Beijing for the first time. The first objective was to attempt to fit probability distributions to the data to better predict a number of days exceeding the standard, and the second was to uncover any yearly, seasonal, monthly, daily, and hourly patterns and trends that may arise to better understand of air control policy. In these data, 66,650 hours and 2687 days provided valid data. Lognormal, gamma, and Weibull distributions were fit to the data through an estimation of parameters. The Chi-squared test was employed to compare the actual data with the fitted distributions. The data were used to uncover trends, patterns, and improvements in PM2.5 concentration over the period of time with valid data in addition to specific periods of time that received large amounts of media attention, analyzed to gain a better understanding of causes of air pollution. The data show a clear indication that Beijing’s air quality is unhealthy, with an average of 94.07µg/m3 across all 66,650 hours with valid data. It was found that no distribution fit the entire dataset of all 2687 days well, but each of the three above distribution types was optimal in at least one of the yearly data sets, with the lognormal distribution found to fit recent years better. An improvement in air quality beginning in 2014 was discovered, with the first five months of 2016 reporting an average PM2.5 concentration that is 23.8% lower than the average of the same period in all years, perhaps the result of various new pollution-control policies. It was also found that the winter and fall months contained more days in both good and extremely polluted categories, leading to a higher average but a comparable median in these months. Additionally, the evening hours, especially in the winter, reported much higher PM2.5 concentrations than the afternoon hours, possibly due to the prohibition of trucks in the city in the daytime and the increased use of coal for heating in the colder months when residents are home in the evening. Lastly, through analysis of special intervals that attracted media attention for either unnaturally good or bad air quality, the government’s temporary pollution control measures, such as more intensive road-space rationing and factory closures, are shown to be effective. In summary, air quality in Beijing is improving steadily and do follow standard probability distributions to an extent, but still needs improvement. Analysis will be updated when new data become available.

Keywords: Beijing, distribution, patterns, pm2.5, trends

Procedia PDF Downloads 245
41269 Risk Analysis of Flood Physical Vulnerability in Residential Areas of Mathare Nairobi, Kenya

Authors: James Kinyua Gitonga, Toshio Fujimi

Abstract:

Vulnerability assessment and analysis is essential to solving the degree of damage and loss as a result of natural disasters. Urban flooding causes a major economic loss and casualties, at Mathare residential area in Nairobi, Kenya. High population caused by rural-urban migration, Unemployment, and unplanned urban development are among factors that increase flood vulnerability in Mathare area. This study aims to analyse flood risk physical vulnerabilities in Mathare based on scientific data, research data that includes the Rainfall data, River Mathare discharge rate data, Water runoff data, field survey data and questionnaire survey through sampling of the study area have been used to develop the risk curves. Three structural types of building were identified in the study area, vulnerability and risk curves were made for these three structural types by plotting the relationship between flood depth and damage for each structural type. The results indicate that the structural type with mud wall and mud floor is the most vulnerable building to flooding while the structural type with stone walls and concrete floor is least vulnerable. The vulnerability of building contents is mainly determined by the number of floors, where households with two floors are least vulnerable, and households with a one floor are most vulnerable. Therefore more than 80% of the residential buildings including the property in the building are highly vulnerable to floods consequently exposed to high risk. When estimating the potential casualties/injuries we discovered that the structural types of houses were major determinants where the mud/adobe structural type had casualties of 83.7% while the Masonry structural type had casualties of 10.71% of the people living in these houses. This research concludes that flood awareness, warnings and observing the building codes will enable reduce damage to the structural types of building, deaths and reduce damage to the building contents.

Keywords: flood loss, Mathare Nairobi, risk curve analysis, vulnerability

Procedia PDF Downloads 239
41268 Simulation Analysis of a Full-Scale Five-Story Building with Vibration Control Dampers

Authors: Naohiro Nakamura

Abstract:

Analysis methods to accurately estimate the behavior of buildings when earthquakes occur is very important for improving the seismic safety of such buildings. Recently, the use of damping devices has increased significantly and there is a particular need to appropriately evaluate the behavior of buildings with such devices during earthquakes in the design stage. At present, however, the accuracy of the analysis evaluations is not sufficient. One reason is that the accuracy of current analysis methods has not been appropriately verified because there is very limited data on the behavior of actual buildings during earthquakes. Many types of shaking table test of large structures are performed at the '3-Dimensional Full-Scale Earthquake Testing Facility' (nicknamed 'E-Defense') operated by the National Research Institute of Earth Science and Disaster Prevention (NIED). In this study, simulations using 3- dimensional analysis models were conducted on shaking table test of a 5-story steel-frame structure with dampers. The results of the analysis correspond favorably to the test results announced afterward by the committee. However, the suitability of the parameters and models used in the analysis and the influence they had on the responses remain unclear. Hence, we conducted additional analysis and studies on these models and parameters. In this paper, outlines of the test are shown and the utilized analysis model is explained. Next, the analysis results are compared with the test results. Then, the additional analyses, concerning with the hysteresis curve of the dampers and the beam-end stiffness of the frame, are investigated.

Keywords: three-dimensional analysis, E-defense, full-scale experimen, vibration control damper

Procedia PDF Downloads 190
41267 Managing Incomplete PSA Observations in Prostate Cancer Data: Key Strategies and Best Practices for Handling Loss to Follow-Up and Missing Data

Authors: Madiha Liaqat, Rehan Ahmed Khan, Shahid Kamal

Abstract:

Multiple imputation with delta adjustment is a versatile and transparent technique for addressing univariate missing data in the presence of various missing mechanisms. This approach allows for the exploration of sensitivity to the missing-at-random (MAR) assumption. In this review, we outline the delta-adjustment procedure and illustrate its application for assessing the sensitivity to deviations from the MAR assumption. By examining diverse missingness scenarios and conducting sensitivity analyses, we gain valuable insights into the implications of missing data on our analyses, enhancing the reliability of our study's conclusions. In our study, we focused on assessing logPSA, a continuous biomarker in incomplete prostate cancer data, to examine the robustness of conclusions against plausible departures from the MAR assumption. We introduced several approaches for conducting sensitivity analyses, illustrating their application within the pattern mixture model (PMM) under the delta adjustment framework. This proposed approach effectively handles missing data, particularly loss to follow-up.

Keywords: loss to follow-up, incomplete response, multiple imputation, sensitivity analysis, prostate cancer

Procedia PDF Downloads 89
41266 The Visualizer for Real-Time Analysis of Internet Trends

Authors: Radek Malinský, Ivan Jelínek

Abstract:

The current web has become a modern encyclopedia, where people share their thoughts and ideas on various topics around them. Such kind of encyclopedia is very useful for other people who are looking for answers to their questions. However, with the growing popularity of social networking and blogging and ever expanding network services, there has also been a growing diversity of technologies along with different structure of individual websites. It is, therefore, difficult to directly find a relevant answer for a common Internet user. This paper presents a web application for the real-time end-to-end analysis of selected Internet trends; where the trend can be whatever the people post online. The application integrates fully configurable tools for data collection and analysis using selected webometric algorithms, and for its chronological visualization to user. It can be assumed that the application facilitates the users to evaluate the quality of various products that are mentioned online.

Keywords: Trend, visualizer, web analysis, web 2.0.

Procedia PDF Downloads 264
41265 A Privacy Protection Scheme Supporting Fuzzy Search for NDN Routing Cache Data Name

Authors: Feng Tao, Ma Jing, Guo Xian, Wang Jing

Abstract:

Named Data Networking (NDN) replaces IP address of traditional network with data name, and adopts dynamic cache mechanism. In the existing mechanism, however, only one-to-one search can be achieved because every data has a unique name corresponding to it. There is a certain mapping relationship between data content and data name, so if the data name is intercepted by an adversary, the privacy of the data content and user’s interest can hardly be guaranteed. In order to solve this problem, this paper proposes a one-to-many fuzzy search scheme based on order-preserving encryption to reduce the query overhead by optimizing the caching strategy. In this scheme, we use hash value to ensure the user’s query safe from each node in the process of search, so does the privacy of the requiring data content.

Keywords: NDN, order-preserving encryption, fuzzy search, privacy

Procedia PDF Downloads 484
41264 R Statistical Software Applied in Reliability Analysis: Case Study of Diesel Generator Fans

Authors: Jelena Vucicevic

Abstract:

Reliability analysis represents a very important task in different areas of work. In any industry, this is crucial for maintenance, efficiency, safety and monetary costs. There are ways to calculate reliability, unreliability, failure density and failure rate. This paper will try to introduce another way of calculating reliability by using R statistical software. R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. The R programming environment is a widely used open source system for statistical analysis and statistical programming. It includes thousands of functions for the implementation of both standard and new statistical methods. R does not limit user only to operation related only to these functions. This program has many benefits over other similar programs: it is free and, as an open source, constantly updated; it has built-in help system; the R language is easy to extend with user-written functions. The significance of the work is calculation of time to failure or reliability in a new way, using statistic. Another advantage of this calculation is that there is no need for technical details and it can be implemented in any part for which we need to know time to fail in order to have appropriate maintenance, but also to maximize usage and minimize costs. In this case, calculations have been made on diesel generator fans but the same principle can be applied to any other part. The data for this paper came from a field engineering study of the time to failure of diesel generator fans. The ultimate goal was to decide whether or not to replace the working fans with a higher quality fan to prevent future failures. Seventy generators were studied. For each one, the number of hours of running time from its first being put into service until fan failure or until the end of the study (whichever came first) was recorded. Dataset consists of two variables: hours and status. Hours show the time of each fan working and status shows the event: 1- failed, 0- censored data. Censored data represent cases when we cannot track the specific case, so it could fail or success. Gaining the result by using R was easy and quick. The program will take into consideration censored data and include this into the results. This is not so easy in hand calculation. For the purpose of the paper results from R program have been compared to hand calculations in two different cases: censored data taken as a failure and censored data taken as a success. In all three cases, results are significantly different. If user decides to use the R for further calculations, it will give more precise results with work on censored data than the hand calculation.

Keywords: censored data, R statistical software, reliability analysis, time to failure

Procedia PDF Downloads 401
41263 Framework for the Assessment of National Systems of Innovation in Biotechnology

Authors: Andrea Schiffauerova, Amnah Alzeyoudi

Abstract:

This paper studies patterns of innovation within national constitutional context. Its objective is to examine national systems of innovation in biotechnology in six leading innovative countries: the US, Japan, Germany, the UK, France and Canada. The framework proposed for this purpose consists of specific factors considered critical for the development of national systems of innovation, which are industry size, innovative activities, area of specialization, industry structure, national policy, the level of government intervention, the stock of knowledge in universities and industries, knowledge transfer from universities to industry and country-specific conditions for start-ups. The paper then uses the framework to provide detailed cross-country comparisons while highlighting particular features of national institutional context which affect the creation and diffusion of scientific knowledge within the system. The study is primarily based on the extensive survey of literature and it is complemented by the quantitative analysis of the patent data extracted from the United States Patent and Trademark Office (USPTO). The empirical analysis provides numerous insights and greatly complements the data gained from the literature and other sources. The final cross-country comparative analysis identifies three patterns followed by the national innovation systems in the six countries. The proposed cross-country relative positioning analysis may help in drawing policy implications and strategies leading to the enhancement of national competitive advantage and innovation capabilities of nations.

Keywords: comparative analysis, framework, national systems of innovation, patent analysis, United States Patent and Trademark Office (USPTO)

Procedia PDF Downloads 313
41262 Development of a Multi-Factorial Instrument for Accident Analysis Based on Systemic Methods

Authors: C. V. Pietreanu, S. E. Zaharia, C. Dinu

Abstract:

The present research is built on three major pillars, commencing by making some considerations on accident investigation methods and pointing out both defining aspects and differences between linear and non-linear analysis. The traditional linear focus on accident analysis describes accidents as a sequence of events, while the latest systemic models outline interdependencies between different factors and define the processes evolution related to a specific (normal) situation. Linear and non-linear accident analysis methods have specific limitations, so the second point of interest is mirrored by the aim to discover the drawbacks of systemic models which becomes a starting point for developing new directions to identify risks or data closer to the cause of incidents/accidents. Since communication represents a critical issue in the interaction of human factor and has been proved to be the answer of the problems made by possible breakdowns in different communication procedures, from this focus point, on the third pylon a new error-modeling instrument suitable for risk assessment/accident analysis will be elaborated.

Keywords: accident analysis, multi-factorial error modeling, risk, systemic methods

Procedia PDF Downloads 208
41261 Finding Data Envelopment Analysis Target Using the Multiple Objective Linear Programming Structure in Full Fuzzy Case

Authors: Raziyeh Shamsi

Abstract:

In this paper, we present a multiple objective linear programming (MOLP) problem in full fuzzy case and find Data Envelopment Analysis(DEA) targets. In the presented model, we are seeking the least inputs and the most outputs in the production possibility set (PPS) with the variable return to scale (VRS) assumption, so that the efficiency projection is obtained for all decision making units (DMUs). Then, we provide an algorithm for finding DEA targets interactively in the full fuzzy case, which solves the full fuzzy problem without defuzzification. Owing to the use of interactive methods, the targets obtained by our algorithm are more applicable, more realistic, and they are according to the wish of the decision maker. Finally, an application of the algorithm in 21 educational institutions is provided.

Keywords: DEA, MOLP, full fuzzy, target

Procedia PDF Downloads 302
41260 Problems and Challenges in Social Economic Research after COVID-19: The Case Study of Province Sindh

Authors: Waleed Baloch

Abstract:

This paper investigates the problems and challenges in social-economic research in the case study of the province of Sindh after the COVID-19 pandemic; the pandemic has significantly impacted various aspects of society and the economy, necessitating a thorough examination of the resulting implications. The study also investigates potential strategies and solutions to mitigate these challenges, ensuring the continuation of robust social and economic research in the region. Through an in-depth analysis of data and interviews with key stakeholders, the study reveals several significant findings. Firstly, researchers encountered difficulties in accessing primary data due to disruptions caused by the pandemic, leading to limitations in the scope and accuracy of their studies. Secondly, the study highlights the challenges faced in conducting fieldwork, such as restrictions on travel and face-to-face interactions, which impacted the ability to gather reliable data. Lastly, the research identifies the need for innovative research methodologies and digital tools to adapt to the new research landscape brought about by the pandemic. The study concludes by proposing recommendations to address these challenges, including utilizing remote data collection methods, leveraging digital technologies for data analysis, and establishing collaborations among researchers to overcome resource constraints. By addressing these issues, researchers in the social economic field can effectively navigate the post-COVID-19 research landscape, facilitating a deeper understanding of the socioeconomic impacts and facilitating evidence-based policy interventions.

Keywords: social economic, sociology, developing economies, COVID-19

Procedia PDF Downloads 63
41259 Optimal Pricing Based on Real Estate Demand Data

Authors: Vanessa Kummer, Maik Meusel

Abstract:

Real estate demand estimates are typically derived from transaction data. However, in regions with excess demand, transactions are driven by supply and therefore do not indicate what people are actually looking for. To estimate the demand for housing in Switzerland, search subscriptions from all important Swiss real estate platforms are used. These data do, however, suffer from missing information—for example, many users do not specify how many rooms they would like or what price they would be willing to pay. In economic analyses, it is often the case that only complete data is used. Usually, however, the proportion of complete data is rather small which leads to most information being neglected. Also, the data might have a strong distortion if it is complete. In addition, the reason that data is missing might itself also contain information, which is however ignored with that approach. An interesting issue is, therefore, if for economic analyses such as the one at hand, there is an added value by using the whole data set with the imputed missing values compared to using the usually small percentage of complete data (baseline). Also, it is interesting to see how different algorithms affect that result. The imputation of the missing data is done using unsupervised learning. Out of the numerous unsupervised learning approaches, the most common ones, such as clustering, principal component analysis, or neural networks techniques are applied. By training the model iteratively on the imputed data and, thereby, including the information of all data into the model, the distortion of the first training set—the complete data—vanishes. In a next step, the performances of the algorithms are measured. This is done by randomly creating missing values in subsets of the data, estimating those values with the relevant algorithms and several parameter combinations, and comparing the estimates to the actual data. After having found the optimal parameter set for each algorithm, the missing values are being imputed. Using the resulting data sets, the next step is to estimate the willingness to pay for real estate. This is done by fitting price distributions for real estate properties with certain characteristics, such as the region or the number of rooms. Based on these distributions, survival functions are computed to obtain the functional relationship between characteristics and selling probabilities. Comparing the survival functions shows that estimates which are based on imputed data sets do not differ significantly from each other; however, the demand estimate that is derived from the baseline data does. This indicates that the baseline data set does not include all available information and is therefore not representative for the entire sample. Also, demand estimates derived from the whole data set are much more accurate than the baseline estimation. Thus, in order to obtain optimal results, it is important to make use of all available data, even though it involves additional procedures such as data imputation.

Keywords: demand estimate, missing-data imputation, real estate, unsupervised learning

Procedia PDF Downloads 285