Search results for: fraud prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2336

Search results for: fraud prediction

1556 Multi-Model Super Ensemble Based Advanced Approaches for Monsoon Rainfall Prediction

Authors: Swati Bhomia, C. M. Kishtawal, Neeru Jaiswal

Abstract:

Traditionally, monsoon forecasts have encountered many difficulties that stem from numerous issues such as lack of adequate upper air observations, mesoscale nature of convection, proper resolution, radiative interactions, planetary boundary layer physics, mesoscale air-sea fluxes, representation of orography, etc. Uncertainties in any of these areas lead to large systematic errors. Global circulation models (GCMs), which are developed independently at different institutes, each of which carries somewhat different representation of the above processes, can be combined to reduce the collective local biases in space, time, and for different variables from different models. This is the basic concept behind the multi-model superensemble and comprises of a training and a forecast phase. The training phase learns from the recent past performances of models and is used to determine statistical weights from a least square minimization via a simple multiple regression. These weights are then used in the forecast phase. The superensemble forecasts carry the highest skill compared to simple ensemble mean, bias corrected ensemble mean and the best model out of the participating member models. This approach is a powerful post-processing method for the estimation of weather forecast parameters reducing the direct model output errors. Although it can be applied successfully to the continuous parameters like temperature, humidity, wind speed, mean sea level pressure etc., in this paper, this approach is applied to rainfall, a parameter quite difficult to handle with standard post-processing methods, due to its high temporal and spatial variability. The present study aims at the development of advanced superensemble schemes comprising of 1-5 day daily precipitation forecasts from five state-of-the-art global circulation models (GCMs), i.e., European Centre for Medium Range Weather Forecasts (Europe), National Center for Environmental Prediction (USA), China Meteorological Administration (China), Canadian Meteorological Centre (Canada) and U.K. Meteorological Office (U.K.) obtained from THORPEX Interactive Grand Global Ensemble (TIGGE), which is one of the most complete data set available. The novel approaches include the dynamical model selection approach in which the selection of the superior models from the participating member models at each grid and for each forecast step in the training period is carried out. Multi-model superensemble based on the training using similar conditions is also discussed in the present study, which is based on the assumption that training with the similar type of conditions may provide the better forecasts in spite of the sequential training which is being used in the conventional multi-model ensemble (MME) approaches. Further, a variety of methods that incorporate a 'neighborhood' around each grid point which is available in literature to allow for spatial error or uncertainty, have also been experimented with the above mentioned approaches. The comparison of these schemes with respect to the observations verifies that the newly developed approaches provide more unified and skillful prediction of the summer monsoon (viz. June to September) rainfall compared to the conventional multi-model approach and the member models.

Keywords: multi-model superensemble, dynamical model selection, similarity criteria, neighborhood technique, rainfall prediction

Procedia PDF Downloads 120
1555 Commercial Automobile Insurance: A Practical Approach of the Generalized Additive Model

Authors: Nicolas Plamondon, Stuart Atkinson, Shuzi Zhou

Abstract:

The insurance industry is usually not the first topic one has in mind when thinking about applications of data science. However, the use of data science in the finance and insurance industry is growing quickly for several reasons, including an abundance of reliable customer data, ferocious competition requiring more accurate pricing, etc. Among the top use cases of data science, we find pricing optimization, customer segmentation, customer risk assessment, fraud detection, marketing, and triage analytics. The objective of this paper is to present an application of the generalized additive model (GAM) on a commercial automobile insurance product: an individually rated commercial automobile. These are vehicles used for commercial purposes, but for which there is not enough volume to apply pricing to several vehicles at the same time. The GAM model was selected as an improvement over GLM for its ease of use and its wide range of applications. The model was trained using the largest split of the data to determine model parameters. The remaining part of the data was used as testing data to verify the quality of the modeling activity. We used the Gini coefficient to evaluate the performance of the model. For long-term monitoring, commonly used metrics such as RMSE and MAE will be used. Another topic of interest in the insurance industry is to process of producing the model. We will discuss at a high level the interactions between the different teams with an insurance company that needs to work together to produce a model and then monitor the performance of the model over time. Moreover, we will discuss the regulations in place in the insurance industry. Finally, we will discuss the maintenance of the model and the fact that new data does not come constantly and that some metrics can take a long time to become meaningful.

Keywords: insurance, data science, modeling, monitoring, regulation, processes

Procedia PDF Downloads 65
1554 CFD Study of Subcooled Boiling Flow at Elevated Pressure Using a Mechanistic Wall Heat Partitioning Model

Authors: Machimontorn Promtong, Sherman C. P. Cheung, Guan H. Yeoh, Sara Vahaji, Jiyuan Tu

Abstract:

The wide range of industrial applications involved with boiling flows promotes the necessity of establishing fundamental knowledge in boiling flow phenomena. For this purpose, a number of experimental and numerical researches have been performed to elucidate the underlying physics of this flow. In this paper, the improved wall boiling models, implemented on ANSYS CFX 14.5, were introduced to study subcooled boiling flow at elevated pressure. At the heated wall boundary, the Fractal model, Force balance approach and Mechanistic frequency model are given for predicting the nucleation site density, bubble departure diameter, and bubble departure frequency. The presented wall heat flux partitioning closures were modified to consider the influence of bubble sliding along the wall before the lift-off, which usually happens in the flow boiling. The simulation was performed based on the Two-fluid model, where the standard k-ω SST model was selected for turbulence modelling. Existing experimental data at around 5 bars were chosen to evaluate the accuracy of the presented mechanistic approach. The void fraction and Interfacial Area Concentration (IAC) are in good agreement with the experimental data. However, the predicted bubble velocity and Sauter Mean Diameter (SMD) are over-predicted. This over-prediction may be caused by consideration of only dispersed and spherical bubbles in the simulations. In the future work, the important physical mechanisms of bubbles, such as merging and shrinking during sliding on the heated wall will be incorporated into this mechanistic model to enhance its capability for a wider range of flow prediction.

Keywords: subcooled boiling flow, computational fluid dynamics (CFD), mechanistic approach, two-fluid model

Procedia PDF Downloads 298
1553 Predicting Blockchain Technology Installation Cost in Supply Chain System through Supervised Learning

Authors: Hossein Havaeji, Tony Wong, Thien-My Dao

Abstract:

1. Research Problems and Research Objectives: Blockchain Technology-enabled Supply Chain System (BT-enabled SCS) is the system using BT to drive SCS transparency, security, durability, and process integrity as SCS data is not always visible, available, or trusted. The costs of operating BT in the SCS are a common problem in several organizations. The costs must be estimated as they can impact existing cost control strategies. To account for system and deployment costs, it is necessary to overcome the following hurdle. The problem is that the costs of developing and running a BT in SCS are not yet clear in most cases. Many industries aiming to use BT have special attention to the importance of BT installation cost which has a direct impact on the total costs of SCS. Predicting BT installation cost in SCS may help managers decide whether BT is to be an economic advantage. The purpose of the research is to identify some main BT installation cost components in SCS needed for deeper cost analysis. We then identify and categorize the main groups of cost components in more detail to utilize them in the prediction process. The second objective is to determine the suitable Supervised Learning technique in order to predict the costs of developing and running BT in SCS in a particular case study. The last aim is to investigate how the running BT cost can be involved in the total cost of SCS. 2. Work Performed: Applied successfully in various fields, Supervised Learning is a method to set the data frame, treat the data, and train/practice the method sort. It is a learning model directed to make predictions of an outcome measurement based on a set of unforeseen input data. The following steps must be conducted to search for the objectives of our subject. The first step is to make a literature review to identify the different cost components of BT installation in SCS. Based on the literature review, we should choose some Supervised Learning methods which are suitable for BT installation cost prediction in SCS. According to the literature review, some Supervised Learning algorithms which provide us with a powerful tool to classify BT installation components and predict BT installation cost are the Support Vector Regression (SVR) algorithm, Back Propagation (BP) neural network, and Artificial Neural Network (ANN). Choosing a case study to feed data into the models comes into the third step. Finally, we will propose the best predictive performance to find the minimum BT installation costs in SCS. 3. Expected Results and Conclusion: This study tends to propose a cost prediction of BT installation in SCS with the help of Supervised Learning algorithms. At first attempt, we will select a case study in the field of BT-enabled SCS, and then use some Supervised Learning algorithms to predict BT installation cost in SCS. We continue to find the best predictive performance for developing and running BT in SCS. Finally, the paper will be presented at the conference.

Keywords: blockchain technology, blockchain technology-enabled supply chain system, installation cost, supervised learning

Procedia PDF Downloads 109
1552 Precipitation Intensity: Duration Based Threshold Analysis for Initiation of Landslides in Upper Alaknanda Valley

Authors: Soumiya Bhattacharjee, P. K. Champati Ray, Shovan L. Chattoraj, Mrinmoy Dhara

Abstract:

The entire Himalayan range is globally renowned for rainfall-induced landslides. The prime focus of the study is to determine rainfall based threshold for initiation of landslides that can be used as an important component of an early warning system for alerting stake holders. This research deals with temporal dimension of slope failures due to extreme rainfall events along the National Highway-58 from Karanprayag to Badrinath in the Garhwal Himalaya, India. Post processed 3-hourly rainfall intensity data and its corresponding duration from daily rainfall data available from Tropical Rainfall Measuring Mission (TRMM) were used as the prime source of rainfall data. Landslide event records from Border Road Organization (BRO) and some ancillary landslide inventory data for 2013 and 2014 have been used to determine Intensity Duration (ID) based rainfall threshold. The derived governing threshold equation, I= 4.738D-0.025, has been considered for prediction of landslides of the study region. This equation was validated with an accuracy of 70% landslides during August and September 2014. The derived equation was considered for further prediction of landslides of the study region. From the obtained results and validation, it can be inferred that this equation can be used for initiation of landslides in the study area to work as a part of an early warning system. Results can significantly improve with ground based rainfall estimates and better database on landslide records. Thus, the study has demonstrated a very low cost method to get first-hand information on possibility of impending landslide in any region, thereby providing alert and better preparedness for landslide disaster mitigation.

Keywords: landslide, intensity-duration, rainfall threshold, TRMM, slope, inventory, early warning system

Procedia PDF Downloads 256
1551 Evaluation of the Analytic for Hemodynamic Instability as a Prediction Tool for Early Identification of Patient Deterioration

Authors: Bryce Benson, Sooin Lee, Ashwin Belle

Abstract:

Unrecognized or delayed identification of patient deterioration is a key cause of in-hospitals adverse events. Clinicians rely on vital signs monitoring to recognize patient deterioration. However, due to ever increasing nursing workloads and the manual effort required, vital signs tend to be measured and recorded intermittently, and inconsistently causing large gaps during patient monitoring. Additionally, during deterioration, the body’s autonomic nervous system activates compensatory mechanisms causing the vital signs to be lagging indicators of underlying hemodynamic decline. This study analyzes the predictive efficacy of the Analytic for Hemodynamic Instability (AHI) system, an automated tool that was designed to help clinicians in early identification of deteriorating patients. The lead time analysis in this retrospective observational study assesses how far in advance AHI predicted deterioration prior to the start of an episode of hemodynamic instability (HI) becoming evident through vital signs? Results indicate that of the 362 episodes of HI in this study, 308 episodes (85%) were correctly predicted by the AHI system with a median lead time of 57 minutes and an average of 4 hours (240.5 minutes). Of the 54 episodes not predicted, AHI detected 45 of them while the episode of HI was ongoing. Of the 9 undetected, 5 were not detected by AHI due to either missing or noisy input ECG data during the episode of HI. In total, AHI was able to either predict or detect 98.9% of all episodes of HI in this study. These results suggest that AHI could provide an additional ‘pair of eyes’ on patients, continuously filling the monitoring gaps and consequently giving the patient care team the ability to be far more proactive in patient monitoring and adverse event management.

Keywords: clinical deterioration prediction, decision support system, early warning system, hemodynamic status, physiologic monitoring

Procedia PDF Downloads 170
1550 A Prediction of Cutting Forces Using Extended Kienzle Force Model Incorporating Tool Flank Wear Progression

Authors: Wu Peng, Anders Liljerehn, Martin Magnevall

Abstract:

In metal cutting, tool wear gradually changes the micro geometry of the cutting edge. Today there is a significant gap in understanding the impact these geometrical changes have on the cutting forces which governs tool deflection and heat generation in the cutting zone. Accurate models and understanding of the interaction between the work piece and cutting tool leads to improved accuracy in simulation of the cutting process. These simulations are useful in several application areas, e.g., optimization of insert geometry and machine tool monitoring. This study aims to develop an extended Kienzle force model to account for the effect of rake angle variations and tool flank wear have on the cutting forces. In this paper, the starting point sets from cutting force measurements using orthogonal turning tests of pre-machined flanches with well-defined width, using triangular coated inserts to assure orthogonal condition. The cutting forces have been measured by dynamometer with a set of three different rake angles, and wear progression have been monitored during machining by an optical measuring collaborative robot. The method utilizes the measured cutting forces with the inserts flank wear progression to extend the mechanistic cutting forces model with flank wear as an input parameter. The adapted cutting forces model is validated in a turning process with commercial cutting tools. This adapted cutting forces model shows the significant capability of prediction of cutting forces accounting for tools flank wear and different-rake-angle cutting tool inserts. The result of this study suggests that the nonlinear effect of tools flank wear and interaction between the work piece and the cutting tool can be considered by the developed cutting forces model.

Keywords: cutting force, kienzle model, predictive model, tool flank wear

Procedia PDF Downloads 94
1549 Digital Twin for Retail Store Security

Authors: Rishi Agarwal

Abstract:

Digital twins are emerging as a strong technology used to imitate and monitor physical objects digitally in real time across sectors. It is not only dealing with the digital space, but it is also actuating responses in the physical space in response to the digital space processing like storage, modeling, learning, simulation, and prediction. This paper explores the application of digital twins for enhancing physical security in retail stores. The retail sector still relies on outdated physical security practices like manual monitoring and metal detectors, which are insufficient for modern needs. There is a lack of real-time data and system integration, leading to ineffective emergency response and preventative measures. As retail automation increases, new digital frameworks must control safety without human intervention. To address this, the paper proposes implementing an intelligent digital twin framework. This collects diverse data streams from in-store sensors, surveillance, external sources, and customer devices and then Advanced analytics and simulations enable real-time monitoring, incident prediction, automated emergency procedures, and stakeholder coordination. Overall, the digital twin improves physical security through automation, adaptability, and comprehensive data sharing. The paper also analyzes the pros and cons of implementation of this technology through an Emerging Technology Analysis Canvas that analyzes different aspects of this technology through both narrow and wide lenses to help decision makers in their decision of implementing this technology. On a broader scale, this showcases the value of digital twins in transforming legacy systems across sectors and how data sharing can create a safer world for both retail store customers and owners.

Keywords: digital twin, retail store safety, digital twin in retail, digital twin for physical safety

Procedia PDF Downloads 57
1548 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe

Authors: Vipul M. Patel, Hemantkumar B. Mehta

Abstract:

Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.

Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant

Procedia PDF Downloads 273
1547 Category-Base Theory of the Optimum Signal Approximation Clarifying the Importance of Parallel Worlds in the Recognition of Human and Application to Secure Signal Communication with Feedback

Authors: Takuro Kida, Yuichi Kida

Abstract:

We show a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detailed algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory and it is indicated that introducing conversations with feedback does not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.

Keywords: signal prediction, pseudo inverse matrix, artificial intelligence, conditional optimization

Procedia PDF Downloads 140
1546 Cybersecurity Challenges in Africa

Authors: Chimmoe Fomo Michelle Larissa

Abstract:

The challenges of cybersecurity in Africa are increasingly significant as the continent undergoes rapid digital transformation. With the rise of internet connectivity, mobile phone usage, and digital financial services, Africa faces unique cybersecurity threats. The significance of this study lies in understanding these threats and the multifaceted challenges that hinder effective cybersecurity measures across the continent. The methodologies employed in this study include a comprehensive analysis of existing cybersecurity frameworks in various African countries, surveys of key stakeholders in the digital ecosystem, and case studies of cybersecurity incidents. These methodologies aim to provide a detailed understanding of the current cybersecurity landscape, identify gaps in existing policies, and evaluate the effectiveness of implemented security measures. Major findings of the study indicate that Africa faces numerous cybersecurity challenges, including inadequate regulatory frameworks, insufficient cybersecurity awareness, and a shortage of skilled professionals. Additionally, the prevalence of cybercrime, such as financial fraud, data breaches, and ransomware attacks, exacerbates the situation. The study also highlights the role of international cooperation and regional collaboration in addressing these challenges and improving overall cybersecurity resilience. In conclusion, addressing cybersecurity challenges in Africa requires a multifaceted approach that involves strengthening regulatory frameworks, enhancing public awareness, and investing in cybersecurity education and training. The study underscores the importance of regional and international collaboration in building a robust cybersecurity infrastructure capable of mitigating the risks associated with the continent's digital growth.

Keywords: Africa, cybersecurity, challenges, digital infrastructure, cybercrime

Procedia PDF Downloads 14
1545 A Framework on Data and Remote Sensing for Humanitarian Logistics

Authors: Vishnu Nagendra, Marten Van Der Veen, Stefania Giodini

Abstract:

Effective humanitarian logistics operations are a cornerstone in the success of disaster relief operations. However, for effectiveness, they need to be demand driven and supported by adequate data for prioritization. Without this data operations are carried out in an ad hoc manner and eventually become chaotic. The current availability of geospatial data helps in creating models for predictive damage and vulnerability assessment, which can be of great advantage to logisticians to gain an understanding on the nature and extent of the disaster damage. This translates into actionable information on the demand for relief goods, the state of the transport infrastructure and subsequently the priority areas for relief delivery. However, due to the unpredictable nature of disasters, the accuracy in the models need improvement which can be done using remote sensing data from UAVs (Unmanned Aerial Vehicles) or satellite imagery, which again come with certain limitations. This research addresses the need for a framework to combine data from different sources to support humanitarian logistic operations and prediction models. The focus is on developing a workflow to combine data from satellites and UAVs post a disaster strike. A three-step approach is followed: first, the data requirements for logistics activities are made explicit, which is done by carrying out semi-structured interviews with on field logistics workers. Second, the limitations in current data collection tools are analyzed to develop workaround solutions by following a systems design approach. Third, the data requirements and the developed workaround solutions are fit together towards a coherent workflow. The outcome of this research will provide a new method for logisticians to have immediately accurate and reliable data to support data-driven decision making.

Keywords: unmanned aerial vehicles, damage prediction models, remote sensing, data driven decision making

Procedia PDF Downloads 361
1544 The Exploration of Persuasive Skills and Participants Characteristics in Pyramid-Sale: A Qualitative Study

Authors: Xing Yan Fan, Xing Lin Xu, Man Yuan Chen, Pei Tzu Lee, Yu Ting Wang, Yi Xiao Cao, Rui Yao

Abstract:

Pyramid sales have been a widespread issue in China. Victims who are defrauded not only lose money but damage interpersonal relationship. A deeper understanding of pyramid-sale models can be beneficial to prevent potential victims from fraud and improve the property security. The goals of this study were to detect psychological characteristics of pyramid-sale sellers, and analyse persuasive skills in pyramid organizations. A qualitative study was conducted in this study. Participants (n=6) recruited by 'snowball' sampling from present pyramid-sale sellers (n=3) and imprisoned pyramid-sale sellers (n=3). All participants accepted semi-structured interview for collecting data. Content analysis was adopted for data coding and analysis. The results indicate that pyramid organizations are used to utilize their appearance packaging and celebrity effect to strengthen the positions in participants’ mind. The status gap between pyramid-sale sellers in same organization, as well as rewards to increase reputation, are used to motivate participants in pyramid. The most significant common characteristics among all participants are that they tend to possess a high sense of belongingness within the firm. Moreover, the expression of pyramid-sale sellers on gambling mentality is expected to growth as constantly losing money. Findings suggest that the psychological characteristics of pyramid-sale sellers in accordance with Maslow’s hierarchy of needs, persuasive skills of pyramid organization confront to 'attitude-behaviour change model'. These findings have implication on 'immune education' that providing guidance for victims out of stuck and protecting ordinary people from the jeopardizing of pyramid sales.

Keywords: pyramid sales, characteristics, persuasive skills, qualitative study

Procedia PDF Downloads 240
1543 Anti-Corruption, an Important Challenge for the Construction Industry!

Authors: Ahmed Stifi, Sascha Gentes, Fritz Gehbauer

Abstract:

The construction industry is perhaps one of the oldest industry of the world. The ancient monuments like the egyptian pyramids, the temples of Greeks and Romans like Parthenon and Pantheon, the robust bridges, old Roman theatres, the citadels and many more are the best testament to that. The industry also has a symbiotic relationship with other . Some of the heavy engineering industry provide construction machineries, chemical industry develop innovative construction materials, finance sector provides fund solutions for complex construction projects and many more. Construction Industry is not only mammoth but also very complex in nature. Because of the complexity, construction industry is prone to various tribulations which may have the propensity to hamper its growth. The comparitive study of this industry with other depicts that it is associated with a state of tardiness and delay especially when we focus on the managerial aspects and the study of triple constraint (time, cost and scope). While some institutes says the complexity associated with it as a major reason, others like lean construction, refers to the wastes produced across the construction process as the prime reason. This paper introduces corruption as one of the prime factors for such delays.To support this many international reports and studies are available depicting that construction industry is one of the most corrupt sectors worldwide, and the corruption can take place throught the project cycle comprising project selection, planning, design, funding, pre-qualification, tendering, execution, operation and maintenance, and even through the reconstrction phase. It also happens in many forms such as bribe, fraud, extortion, collusion, embezzlement and conflict of interest and the self-sufficient. As a solution to cope the corruption in construction industry, the paper introduces the integrity as a key factor and build a new integrity framework to develop and implement an integrity management system for construction companies and construction projects.

Keywords: corruption, construction industry, integrity, lean construction

Procedia PDF Downloads 363
1542 Predictability of Kiremt Rainfall Variability over the Northern Highlands of Ethiopia on Dekadal and Monthly Time Scales Using Global Sea Surface Temperature

Authors: Kibrom Hadush

Abstract:

Countries like Ethiopia, whose economy is mainly rain-fed dependent agriculture, are highly vulnerable to climate variability and weather extremes. Sub-seasonal (monthly) and dekadal forecasts are hence critical for crop production and water resource management. Therefore, this paper was conducted to study the predictability and variability of Kiremt rainfall over the northern half of Ethiopia on monthly and dekadal time scales in association with global Sea Surface Temperature (SST) at different lag time. Trends in rainfall have been analyzed on annual, seasonal (Kiremt), monthly, and dekadal (June–September) time scales based on rainfall records of 36 meteorological stations distributed across four homogenous zones of the northern half of Ethiopia for the period 1992–2017. The results from the progressive Mann–Kendall trend test and the Sen’s slope method shows that there is no significant trend in the annual, Kiremt, monthly and dekadal rainfall total at most of the station's studies. Moreover, the rainfall in the study area varies spatially and temporally, and the distribution of the rainfall pattern increases from the northeast rift valley to northwest highlands. Methods of analysis include graphical correlation and multiple linear regression model are employed to investigate the association between the global SSTs and Kiremt rainfall over the homogeneous rainfall zones and to predict monthly and dekadal (June-September) rainfall using SST predictors. The results of this study show that in general, SST in the equatorial Pacific Ocean is the main source of the predictive skill of the Kiremt rainfall variability over the northern half of Ethiopia. The regional SSTs in the Atlantic and the Indian Ocean as well contribute to the Kiremt rainfall variability over the study area. Moreover, the result of the correlation analysis showed that the decline of monthly and dekadal Kiremt rainfall over most of the homogeneous zones of the study area are caused by the corresponding persistent warming of the SST in the eastern and central equatorial Pacific Ocean during the period 1992 - 2017. It is also found that the monthly and dekadal Kiremt rainfall over the northern, northwestern highlands and northeastern lowlands of Ethiopia are positively correlated with the SST in the western equatorial Pacific, eastern and tropical northern the Atlantic Ocean. Furthermore, the SSTs in the western equatorial Pacific and Indian Oceans are positively correlated to the Kiremt season rainfall in the northeastern highlands. Overall, the results showed that the prediction models using combined SSTs at various ocean regions (equatorial and tropical) performed reasonably well in the prediction (With R2 ranging from 30% to 65%) of monthly and dekadal rainfall and recommends it can be used for efficient prediction of Kiremt rainfall over the study area to aid with systematic and informed decision making within the agricultural sector.

Keywords: dekadal, Kiremt rainfall, monthly, Northern Ethiopia, sea surface temperature

Procedia PDF Downloads 129
1541 Design of Sustainable Concrete Pavement by Incorporating RAP Aggregates

Authors: Selvam M., Vadthya Poornachandar, Surender Singh

Abstract:

These Reclaimed Asphalt Pavement (RAP) aggregates are generally dumped in the open area after the demolition of Asphalt Pavements. The utilization of RAP aggregates in cement concrete pavements may provide several socio-economic-environmental benefits and could embrace the circular economy. The cross recycling of RAP aggregates in the concrete pavement could reduce the consumption of virgin aggregates and saves the fertile land. However, the structural, as well as functional properties of RAP-concrete could be significantly lower than the conventional Pavement Quality Control (PQC) pavements. This warrants judicious selection of RAP fraction (coarse and fine aggregates) along with the accurate proportion of the same for PQC highways. Also, the selection of the RAP fraction and its proportion shall not be solely based on the mechanical properties of RAP-concrete specimens but also governed by the structural and functional behavior of the pavement system. In this study, an effort has been made to predict the optimum RAP fraction and its corresponding proportion for cement concrete pavements by considering the low-volume and high-volume roads. Initially, the effect of inclusions of RAP on the fresh and mechanical properties of concrete pavement mixes is mapped through an extensive literature survey. Almost all the studies available to date are considered for this study. Generally, Indian Roads Congress (IRC) methods are the most widely used design method in India for the analysis of concrete pavements, and the same has been considered for this study. Subsequently, fatigue damage analysis is performed to evaluate the required safe thickness of pavement slab for different fractions of RAP (coarse RAP). Consequently, the performance of RAP-concrete is predicted by employing the AASHTO-1993 model for the following distresses conditions: faulting, cracking, and smoothness. The performance prediction and total cost analysis of RAP aggregates depict that the optimum proportions of coarse RAP aggregates in the PQC mix are 35% and 50% for high volume and low volume roads, respectively.

Keywords: concrete pavement, RAP aggregate, performance prediction, pavement design

Procedia PDF Downloads 148
1540 Machine Learning Techniques in Seismic Risk Assessment of Structures

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.

Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine

Procedia PDF Downloads 87
1539 A Computational Approach for the Prediction of Relevant Olfactory Receptors in Insects

Authors: Zaide Montes Ortiz, Jorge Alberto Molina, Alejandro Reyes

Abstract:

Insects are extremely successful organisms. A sophisticated olfactory system is in part responsible for their survival and reproduction. The detection of volatile organic compounds can positively or negatively affect many behaviors in insects. Compounds such as carbon dioxide (CO2), ammonium, indol, and lactic acid are essential for many species of mosquitoes like Anopheles gambiae in order to locate vertebrate hosts. For instance, in A. gambiae, the olfactory receptor AgOR2 is strongly activated by indol, which accounts for almost 30% of human sweat. On the other hand, in some insects of agricultural importance, the detection and identification of pheromone receptors (PRs) in lepidopteran species has become a promising field for integrated pest management. For example, with the disruption of the pheromone receptor, BmOR1, mediated by transcription activator-like effector nucleases (TALENs), the sensitivity to bombykol was completely removed affecting the pheromone-source searching behavior in male moths. Then, the detection and identification of olfactory receptors in the genomes of insects is fundamental to improve our understanding of the ecological interactions, and to provide alternatives in the integrated pests and vectors management. Hence, the objective of this study is to propose a bioinformatic workflow to enhance the detection and identification of potential olfactory receptors in genomes of relevant insects. Applying Hidden Markov models (Hmms) and different computational tools, potential candidates for pheromone receptors in Tuta absoluta were obtained, as well as potential carbon dioxide receptors in Rhodnius prolixus, the main vector of Chagas disease. This study showed the validity of a bioinformatic workflow with a potential to improve the identification of certain olfactory receptors in different orders of insects.

Keywords: bioinformatic workflow, insects, olfactory receptors, protein prediction

Procedia PDF Downloads 131
1538 Modified Weibull Approach for Bridge Deterioration Modelling

Authors: Niroshan K. Walgama Wellalage, Tieling Zhang, Richard Dwight

Abstract:

State-based Markov deterioration models (SMDM) sometimes fail to find accurate transition probability matrix (TPM) values, and hence lead to invalid future condition prediction or incorrect average deterioration rates mainly due to drawbacks of existing nonlinear optimization-based algorithms and/or subjective function types used for regression analysis. Furthermore, a set of separate functions for each condition state with age cannot be directly derived by using Markov model for a given bridge element group, which however is of interest to industrial partners. This paper presents a new approach for generating Homogeneous SMDM model output, namely, the Modified Weibull approach, which consists of a set of appropriate functions to describe the percentage condition prediction of bridge elements in each state. These functions are combined with Bayesian approach and Metropolis Hasting Algorithm (MHA) based Markov Chain Monte Carlo (MCMC) simulation technique for quantifying the uncertainty in model parameter estimates. In this study, factors contributing to rail bridge deterioration were identified. The inspection data for 1,000 Australian railway bridges over 15 years were reviewed and filtered accordingly based on the real operational experience. Network level deterioration model for a typical bridge element group was developed using the proposed Modified Weibull approach. The condition state predictions obtained from this method were validated using statistical hypothesis tests with a test data set. Results show that the proposed model is able to not only predict the conditions in network-level accurately but also capture the model uncertainties with given confidence interval.

Keywords: bridge deterioration modelling, modified weibull approach, MCMC, metropolis-hasting algorithm, bayesian approach, Markov deterioration models

Procedia PDF Downloads 712
1537 Design of a Standard Weather Data Acquisition Device for the Federal University of Technology, Akure Nigeria

Authors: Isaac Kayode Ogunlade

Abstract:

Data acquisition (DAQ) is the process by which physical phenomena from the real world are transformed into an electrical signal(s) that are measured and converted into a digital format for processing, analysis, and storage by a computer. The DAQ is designed using PIC18F4550 microcontroller, communicating with Personal Computer (PC) through USB (Universal Serial Bus). The research deployed initial knowledge of data acquisition system and embedded system to develop a weather data acquisition device using LM35 sensor to measure weather parameters and the use of Artificial Intelligence(Artificial Neural Network - ANN)and statistical approach(Autoregressive Integrated Moving Average – ARIMA) to predict precipitation (rainfall). The device is placed by a standard device in the Department of Meteorology, Federal University of Technology, Akure (FUTA) to know the performance evaluation of the device. Both devices (standard and designed) were subjected to 180 days with the same atmospheric condition for data mining (temperature, relative humidity, and pressure). The acquired data is trained in MATLAB R2012b environment using ANN, and ARIMAto predict precipitation (rainfall). Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Correction Square (R2), and Mean Percentage Error (MPE) was deplored as standardize evaluation to know the performance of the models in the prediction of precipitation. The results from the working of the developed device show that the device has an efficiency of 96% and is also compatible with Personal Computer (PC) and laptops. The simulation result for acquired data shows that ANN models precipitation (rainfall) prediction for two months (May and June 2017) revealed a disparity error of 1.59%; while ARIMA is 2.63%, respectively. The device will be useful in research, practical laboratories, and industrial environments.

Keywords: data acquisition system, design device, weather development, predict precipitation and (FUTA) standard device

Procedia PDF Downloads 73
1536 A Novel Epitope Prediction for Vaccine Designing against Ebola Viral Envelope Proteins

Authors: Manju Kanu, Subrata Sinha, Surabhi Johari

Abstract:

Viral proteins of Ebola viruses belong to one of the best studied viruses; however no effective prevention against EBOV has been developed. Epitope-based vaccines provide a new strategy for prophylactic and therapeutic application of pathogen-specific immunity. A critical requirement of this strategy is the identification and selection of T-cell epitopes that act as vaccine targets. This study describes current methodologies for the selection process, with Ebola virus as a model system. Hence great challenge in the field of ebola virus research is to design universal vaccine. A combination of publicly available bioinformatics algorithms and computational tools are used to screen and select antigen sequences as potential T-cell epitopes of supertypes Human Leukocyte Antigen (HLA) alleles. MUSCLE and MOTIF tools were used to find out most conserved peptide sequences of viral proteins. Immunoinformatics tools were used for prediction of immunogenic peptides of viral proteins in zaire strains of Ebola virus. Putative epitopes for viral proteins (VP) were predicted from conserved peptide sequences of VP. Three tools NetCTL 1.2, BIMAS and Syfpeithi were used to predict the Class I putative epitopes while three tools, ProPred, IEDB-SMM-align and NetMHCII 2.2 were used to predict the Class II putative epitopes. B cell epitopes were predicted by BCPREDS 1.0. Immunogenic peptides were identified and selected manually by putative epitopes predicted from online tools individually for both MHC classes. Finally sequences of predicted peptides for both MHC classes were looked for common region which was selected as common immunogenic peptide. The immunogenic peptides were found for viral proteins of Ebola virus: epitopes FLESGAVKY, SSLAKHGEY. These predicted peptides could be promising candidates to be used as target for vaccine design.

Keywords: epitope, b cell, immunogenicity, ebola

Procedia PDF Downloads 295
1535 The Concept of Accounting in Islamic Transactions

Authors: Ahmad Abdulkadir Ibrahim

Abstract:

The Islamic law of transactions laid down the methods and instruments of accounting and analyzed its basic assumptions in the modern world. There is a need to examine the implications of accounting initiatives in the Muslim world and attempt to outline the important characteristics of Islamic accounting and how Islamic accounting resolves the problem of measuring the cost of Murabaha goods in case of exchange rate variation. The research tends to discuss an analytical approach to the Islamic accounting concept as well as elaborating the jurisprudential matter and practical aspects of accounting in Islamic financial transactions. It also aims to alert the practitioners of accounting in the Islamic world to be aware of the concept of accounting in Islamic jurisprudence and its historical development. The methodology adopted in this research is the qualitative method through the consultation of relevant literature, which focuses on the thematic study of the subject matter. This is followed by an analysis and discussion of the contents of the materials used. It is concluded that Islamic accounting is unique in its norms as it has been characterized by fairness, accuracy in measuring tools, truthfulness, mutual trust, moderation in making a profit, and tolerance. It was also qualified by capacity and flexibility in terms of the tools and terminology used and invented by Islamic jurisprudence in the accounting system, which indicates its validity and consistency anytime and anywhere. An important conclusion of the research also lies in the refutation of the popular idea that an Italian writer known as Luca Pacilio was the first writer who developed the basis of double-entry due to the presented proofs by Muslim scholars of critical accounting developments, which cannot be ignored. It concludes further that Islamic jurisprudence draws the accounting system codified in the foundations of a market that is far from usury, fraud, cheating, and unfair competition in all areas.

Keywords: accounting, Islamic accounting, Islamic transactions, Islamic jurisprudence, double entry, murabaha, characteristics

Procedia PDF Downloads 49
1534 Thermo-Mechanical Analysis of Composite Structures Utilizing a Beam Finite Element Based on Global-Local Superposition

Authors: Andre S. de Lima, Alfredo R. de Faria, Jose J. R. Faria

Abstract:

Accurate prediction of thermal stresses is particularly important for laminated composite structures, as large temperature changes may occur during fabrication and field application. The normal transverse deformation plays an important role in the prediction of such stresses, especially for problems involving thick laminated plates subjected to uniform temperature loads. Bearing this in mind, the present study aims to investigate the thermo-mechanical behavior of laminated composite structures using a new beam element based on global-local superposition, accounting for through-the-thickness effects. The element formulation is based on a global-local superposition in the thickness direction, utilizing a cubic global displacement field in combination with a linear layerwise local displacement distribution, which assures zig-zag behavior of the stresses and displacements. By enforcing interlaminar stress (normal and shear) and displacement continuity, as well as free conditions at the upper and lower surfaces, the number of degrees of freedom in the model is maintained independently of the number of layers. Moreover, the proposed formulation allows for the determination of transverse shear and normal stresses directly from the constitutive equations, without the need of post-processing. Numerical results obtained with the beam element were compared to analytical solutions, as well as results obtained with commercial finite elements, rendering satisfactory results for a range of length-to-thickness ratios. The results confirm the need for an element with through-the-thickness capabilities and indicate that the present formulation is a promising alternative to such analysis.

Keywords: composite beam element, global-local superposition, laminated composite structures, thermal stresses

Procedia PDF Downloads 143
1533 Practical Modelling of RC Structural Walls under Monotonic and Cyclic Loading

Authors: Reza E. Sedgh, Rajesh P. Dhakal

Abstract:

Shear walls have been used extensively as the main lateral force resisting systems in multi-storey buildings. The recent development in performance based design urges practicing engineers to conduct nonlinear static or dynamic analysis to evaluate seismic performance of multi-storey shear wall buildings by employing distinct analytical models suggested in the literature. For practical purpose, application of macroscopic models to simulate the global and local nonlinear behavior of structural walls outweighs the microscopic models. The skill level, computational time and limited access to RC specialized finite element packages prevents the general application of this method in performance based design or assessment of multi-storey shear wall buildings in design offices. Hence, this paper organized to verify capability of nonlinear shell element in commercially available package (Sap2000) in simulating results of some specimens under monotonic and cyclic loads with very oversimplified available cyclic material laws in the analytical tool. The selection of constitutive models, the determination of related parameters of the constituent material and appropriate nonlinear shear model are presented in detail. Adoption of proposed simple model demonstrated that the predicted results follow the overall trend of experimental force-displacement curve. Although, prediction of ultimate strength and the overall shape of hysteresis model agreed to some extent with experiment, the ultimate displacement(significant strength degradation point) prediction remains challenging in some cases.

Keywords: analytical model, nonlinear shell element, structural wall, shear behavior

Procedia PDF Downloads 385
1532 Trauma Scores and Outcome Prediction After Chest Trauma

Authors: Mohamed Abo El Nasr, Mohamed Shoeib, Abdelhamid Abdelkhalik, Amro Serag

Abstract:

Background: Early assessment of severity of chest trauma, either blunt or penetrating is of critical importance in prediction of patient outcome. Different trauma scoring systems are widely available and are based on anatomical or physiological parameters to expect patient morbidity or mortality. Up till now, there is no ideal, universally accepted trauma score that could be applied in all trauma centers and is suitable for assessment of severity of chest trauma patients. Aim: Our aim was to compare various trauma scoring systems regarding their predictability of morbidity and mortality in chest trauma patients. Patients and Methods: This study was a prospective study including 400 patients with chest trauma who were managed at Tanta University Emergency Hospital, Egypt during a period of 2 years (March 2014 until March 2016). The patients were divided into 2 groups according to the mode of trauma: blunt or penetrating. The collected data included age, sex, hemodynamic status on admission, intrathoracic injuries, and associated extra-thoracic injuries. The patients outcome including mortality, need of thoracotomy, need for ICU admission, need for mechanical ventilation, length of hospital stay and the development of acute respiratory distress syndrome were also recorded. The relevant data were used to calculate the following trauma scores: 1. Anatomical scores including abbreviated injury scale (AIS), Injury severity score (ISS), New injury severity score (NISS) and Chest wall injury scale (CWIS). 2. Physiological scores including revised trauma score (RTS), Acute physiology and chronic health evaluation II (APACHE II) score. 3. Combined score including Trauma and injury severity score (TRISS ) and 4. Chest-Specific score Thoracic trauma severity score (TTSS). All these scores were analyzed statistically to detect their sensitivity, specificity and compared regarding their predictive power of mortality and morbidity in blunt and penetrating chest trauma patients. Results: The incidence of mortality was 3.75% (15/400). Eleven patients (11/230) died in blunt chest trauma group, while (4/170) patients died in penetrating trauma group. The mortality rate increased more than three folds to reach 13% (13/100) in patients with severe chest trauma (ISS of >16). The physiological scores APACHE II and RTS had the highest predictive value for mortality in both blunt and penetrating chest injuries. The physiological score APACHE II followed by the combined score TRISS were more predictive for intensive care admission in penetrating injuries while RTS was more predictive in blunt trauma. Also, RTS had a higher predictive value for expectation of need for mechanical ventilation followed by the combined score TRISS. APACHE II score was more predictive for the need of thoracotomy in penetrating injuries and the Chest-Specific score TTSS was higher in blunt injuries. The anatomical score ISS and TTSS score were more predictive for prolonged hospital stay in penetrating and blunt injuries respectively. Conclusion: Trauma scores including physiological parameters have a higher predictive power for mortality in both blunt and penetrating chest trauma. They are more suitable for assessment of injury severity and prediction of patients outcome.

Keywords: chest trauma, trauma scores, blunt injuries, penetrating injuries

Procedia PDF Downloads 407
1531 Forecast Financial Bubbles: Multidimensional Phenomenon

Authors: Zouari Ezzeddine, Ghraieb Ikram

Abstract:

From the results of the academic literature which evokes the limitations of previous studies, this article shows the reasons for multidimensionality Prediction of financial bubbles. A new framework for modeling study predicting financial bubbles by linking a set of variable presented on several dimensions dictating its multidimensional character. It takes into account the preferences of financial actors. A multicriteria anticipation of the appearance of bubbles in international financial markets helps to fight against a possible crisis.

Keywords: classical measures, predictions, financial bubbles, multidimensional, artificial neural networks

Procedia PDF Downloads 553
1530 The Reality of E-Commerce in Egypt and Its Role in Enhancing Companies' Competitiveness

Authors: Esam El Gohary

Abstract:

— The companies’ ability to survive and compete in the fierce competition is determined by its competitiveness level. With the spread of information technology use and appearance of online shopping, it became crucial for companies to adopt e-commerce system to increase its competitiveness. This paper was conducted with the purpose of determine how increasing the service value through e-commerce factors (competitive strategy, ICT infrastructures, logistics, security, human resources and innovation) can enhance companies' competitiveness. The problem of this paper is summarized in the absence of the thorough awareness of e-commerce benefits for business owners and customers, as well as how to reduce the intangibility attributes of e-commerce. For this purpose this paper describes the e-commerce in Egypt and its success factors (infrastructures, legal and regulatory environment, human resources and innovation), as well as displays the barriers of such factor, to investigate the significant of these factors on increasing service value and enhance companies' competitiveness. This paper revealed that e-commerce companies have many opportunities to enhance its competitiveness in Egypt, which is enhanced by several factors. The most important factors are “strong ICT infrastructure, qualified and skilled human resources, in addition to the distinctive logistics that distinguish Egypt due to its location, strong legal and regulatory environment and Innovation, as well as the competitive strategy. As well as, companies encounter several threats such as; the lack of infrastructures and logistics in rural areas, the absence of the inclusive understanding and awareness of e-commerce, fear from e-payment transactions and fraud, the ambiguity and burdensome of customs. Through the research findings several recommendations were introduced to both government and companies to overcome threats and exploit opportunities to improve performance and enhance companies' competitiveness.

Keywords: e-commerce competitiveness, e-commerce factors, e-commerce in Egypt, information technology

Procedia PDF Downloads 89
1529 Comparison between Two Software Packages GSTARS4 and HEC-6 about Prediction of the Sedimentation Amount in Dam Reservoirs and to Estimate Its Efficient Life Time in the South of Iran

Authors: Fatemeh Faramarzi, Hosein Mahjoob

Abstract:

Building dams on rivers for utilization of water resources causes problems in hydrodynamic equilibrium and results in leaving all or part of the sediments carried by water in dam reservoir. This phenomenon has also significant impacts on water and sediment flow regime and in the long term can cause morphological changes in the environment surrounding the river, reducing the useful life of the reservoir which threatens sustainable development through inefficient management of water resources. In the past, empirical methods were used to predict the sedimentation amount in dam reservoirs and to estimate its efficient lifetime. But recently the mathematical and computational models are widely used in sedimentation studies in dam reservoirs as a suitable tool. These models usually solve the equations using finite element method. This study compares the results from tow software packages, GSTARS4 & HEC-6, in the prediction of the sedimentation amount in Dez dam, southern Iran. The model provides a one-dimensional, steady-state simulation of sediment deposition and erosion by solving the equations of momentum, flow and sediment continuity and sediment transport. GSTARS4 (Generalized Sediment Transport Model for Alluvial River Simulation) which is based on a one-dimensional mathematical model that simulates bed changes in both longitudinal and transverse directions by using flow tubes in a quasi-two-dimensional scheme to calibrate a period of 47 years and forecast the next 47 years of sedimentation in Dez Dam, Southern Iran. This dam is among the highest dams all over the world (with its 203 m height), and irrigates more than 125000 square hectares of downstream lands and plays a major role in flood control in the region. The input data including geometry, hydraulic and sedimentary data, starts from 1955 to 2003 on a daily basis. To predict future river discharge, in this research, the time series data were assumed to be repeated after 47 years. Finally, the obtained result was very satisfactory in the delta region so that the output from GSTARS4 was almost identical to the hydrographic profile in 2003. In the Dez dam due to the long (65 km) and a large tank, the vertical currents are dominant causing the calculations by the above-mentioned method to be inaccurate. To solve this problem, we used the empirical reduction method to calculate the sedimentation in the downstream area which led to very good answers. Thus, we demonstrated that by combining these two methods a very suitable model for sedimentation in Dez dam for the study period can be obtained. The present study demonstrated successfully that the outputs of both methods are the same.

Keywords: Dez Dam, prediction, sedimentation, water resources, computational models, finite element method, GSTARS4, HEC-6

Procedia PDF Downloads 299
1528 Biomechanical Prediction of Veins and Soft Tissues beneath Compression Stockings Using Fluid-Solid Interaction Model

Authors: Chongyang Ye, Rong Liu

Abstract:

Elastic compression stockings (ECSs) have been widely applied in prophylaxis and treatment of chronic venous insufficiency of lower extremities. The medical function of ECS is to improve venous return and increase muscular pumping action to facilitate blood circulation, which is largely determined by the complex interaction between the ECS and lower limb tissues. Understanding the mechanical transmission of ECS along the skin surface, deeper tissues, and vascular system is essential to assess the effectiveness of the ECSs. In this study, a three-dimensional (3D) finite element (FE) model of the leg-ECS system integrated with a 3D fluid-solid interaction (FSI) model of the leg-vein system was constructed to analyze the biomechanical properties of veins and soft tissues under different ECS compression. The Magnetic Resonance Imaging (MRI) of the human leg was divided into three regions, including soft tissues, bones (tibia and fibula) and veins (peroneal vein, great saphenous vein, and small saphenous vein). The ECSs with pressure ranges from 15 to 26 mmHg (Classes I and II) were adopted in the developed FE-FSI model. The soft tissue was assumed as a Neo-Hookean hyperelastic model with the fixed bones, and the ECSs were regarded as an orthotropic elastic shell. The interfacial pressure and stress transmission were simulated by the FE model, and venous hemodynamics properties were simulated by the FSI model. The experimental validation indicated that the simulated interfacial pressure distributions were in accordance with the pressure measurement results. The developed model can be used to predict interfacial pressure, stress transmission, and venous hemodynamics exerted by ECSs and optimize the structure and materials properties of ECSs design, thus improving the efficiency of compression therapy.

Keywords: elastic compression stockings, fluid-solid interaction, tissue and vein properties, prediction

Procedia PDF Downloads 99
1527 Application of a Model-Free Artificial Neural Networks Approach for Structural Health Monitoring of the Old Lidingö Bridge

Authors: Ana Neves, John Leander, Ignacio Gonzalez, Raid Karoumi

Abstract:

Systematic monitoring and inspection are needed to assess the present state of a structure and predict its future condition. If an irregularity is noticed, repair actions may take place and the adequate intervention will most probably reduce the future costs with maintenance, minimize downtime and increase safety by avoiding the failure of the structure as a whole or of one of its structural parts. For this to be possible decisions must be made at the right time, which implies using systems that can detect abnormalities in their early stage. In this sense, Structural Health Monitoring (SHM) is seen as an effective tool for improving the safety and reliability of infrastructures. This paper explores the decision-making problem in SHM regarding the maintenance of civil engineering structures. The aim is to assess the present condition of a bridge based exclusively on measurements using the suggested method in this paper, such that action is taken coherently with the information made available by the monitoring system. Artificial Neural Networks are trained and their ability to predict structural behavior is evaluated in the light of a case study where acceleration measurements are acquired from a bridge located in Stockholm, Sweden. This relatively old bridge is presently still in operation despite experiencing obvious problems already reported in previous inspections. The prediction errors provide a measure of the accuracy of the algorithm and are subjected to further investigation, which comprises concepts like clustering analysis and statistical hypothesis testing. These enable to interpret the obtained prediction errors, draw conclusions about the state of the structure and thus support decision making regarding its maintenance.

Keywords: artificial neural networks, clustering analysis, model-free damage detection, statistical hypothesis testing, structural health monitoring

Procedia PDF Downloads 190