Search results for: deep q-network
1310 Eradicating Rural Poverty in Nigeria through Entrepreneurship Education
Authors: Nwachukwu Ihiejeto Celestine
Abstract:
Rural poverty in Nigeria has been the bake of the society. It has been a canker worm which has eaten deep into the fabric of Nigerian society. Different models and principles have been applied to eradicate it, such as operation feed the nation, green revolution, NAPEP etc. Little or nothing has been done in the area of entrepreneurship education to tame this monster. It is based on this that the author wants to x-ray the role entrepreneurship education which studies “the process of identifying, bringing a vision to life” could play in the eradication of rural poverty in Nigeria. This will go along in providing appropriate principles for poverty alleviation and eradication in Nigeria. Some selected states in the eastern Geo-political region could be x-rayed in this circumstance. It is hoped that policy makers etc will find the work cogent in formulating and implementing policy decisions.Keywords: poverty, entrepreneurship, education, Nigeria
Procedia PDF Downloads 4661309 Determination of Aquifer Geometry Using Geophysical Methods: A Case Study from Sidi Bouzid Basin, Central Tunisia
Authors: Dhekra Khazri, Hakim Gabtni
Abstract:
Because of Sidi Bouzid water table overexploitation, this study aims at integrating geophysical methods to determinate aquifers geometry assessing their geological situation and geophysical characteristics. However in highly tectonic zones controlled by Atlassic structural features with NE-SW major directions (central Tunisia), Bouguer gravimetric responses of some areas can be as much dominated by the regional structural tendency, as being non-identified or either defectively interpreted such as the case of Sidi Bouzid basin. This issue required a residual gravity anomaly elaboration isolating the Sidi Bouzid basin gravity response ranging between -8 and -14 mGal and crucial for its aquifers geometry characterization. Several gravity techniques helped constructing the Sidi Bouzid basin's residual gravity anomaly, such as Upwards continuation compared to polynomial regression trends and power spectrum analysis detecting deep basement sources at (3km), intermediate (2km) and shallow sources (1km). A 3D Euler Deconvolution was also performed detecting deepest accidents trending NE-SW, N-S and E-W with depth values reaching 5500 m and delineating the main outcropping structures of the study area. Further gravity treatments highlighted the subsurface geometry and structural features of Sidi Bouzid basin over Horizontal and vertical gradient, and also filters based on them such as Tilt angle and Source Edge detector locating rooted edges or peaks from potential field data detecting a new E-W lineament compartmentalizing the Sidi Bouzid gutter into two unequally residual anomaly and subsiding domains. This subsurface morphology is also detected by the used 2D seismic reflection sections defining the Sidi Bouzid basin as a deep gutter within a tectonic set of negative flower structures, and collapsed and tilted blocks. Furthermore, these structural features were confirmed by forward gravity modeling process over several modeled residual gravity profiles crossing the main area. Sidi Bouzid basin (central Tunisia) is also of a big interest cause of the unknown total thickness and the undefined substratum of its siliciclastic Tertiary package, and its aquifers unbounded structural subsurface features and deep accidents. The Combination of geological, hydrogeological and geophysical methods is then of an ultimate need. Therefore, a geophysical methods integration based on gravity survey supporting available seismic data through forward gravity modeling, enhanced lateral and vertical extent definition of the basin's complex sedimentary fill via 3D gravity models, improved depth estimation by a depth to basement modeling approach, and provided 3D isochronous seismic mapping visualization of the basin's Tertiary complex refining its geostructural schema. A subsurface basin geomorphology mapping, over an ultimate matching between the basin's residual gravity map and the calculated theoretical signature map, was also displayed over the modeled residual gravity profiles. An ultimate multidisciplinary geophysical study of the Sidi Bouzid basin aquifers can be accomplished via an aeromagnetic survey and a 4D Microgravity reservoir monitoring offering temporal tracking of the target aquifer's subsurface fluid dynamics enhancing and rationalizing future groundwater exploitation in this arid area of central Tunisia.Keywords: aquifer geometry, geophysics, 3D gravity modeling, improved depths, source edge detector
Procedia PDF Downloads 2841308 Attitude of Beef Cattle Farmers toward Biosecurity Practices
Authors: Veronica Sri Lestari, Sitti Nurani Sirajuddin, Kasmiyati Kasim
Abstract:
The purpose of this research was to know the attitude of beef cattle farmers toward bio security practices. This research was conducted in Barru regency, South Sulawesi province, Indonesia, in 2014. Thirty beef cattle farmers were selected through random sampling. Primary and secondary data were collected through report, observation and deep interview by using questionnaire. Bio security practices consisted of 35 questions. Every answer of the question was scored based on three categories: score 1 (not important), score 2 (important) and 3 (very important). The results of this research showed that the attitude of beef cattle farmers toward bio security practices was categorized as important.Keywords: attitude, beef cattle, biosecurity, farmers
Procedia PDF Downloads 2971307 On-Road Text Detection Platform for Driver Assistance Systems
Authors: Guezouli Larbi, Belkacem Soundes
Abstract:
The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.Keywords: text detection, CNN, PZM, deep learning
Procedia PDF Downloads 831306 Application of Robotics to Assemble a Used Fuel Container in the Canadian Used Fuel Packing Plant
Authors: Dimitrie Marinceu
Abstract:
The newest Canadian Used Fuel Container (UFC)- (called also “Mark II”) modifies the design approach for its Assembly Robotic Cell (ARC) in the Canadian Used (Nuclear) Fuel Packing Plant (UFPP). Some of the robotic design solutions are presented in this paper. The design indicates that robots and manipulators are expected to be used in the Canadian UFPP. As normally, the UFPP design will incorporate redundancy of all equipment to allow expedient recovery from any postulated upset conditions. Overall, this paper suggests that robot usage will have a significant positive impact on nuclear safety, quality, productivity, and reliability.Keywords: used fuel packing plant, robotic assembly cell, used fuel container, deep geological repository
Procedia PDF Downloads 2911305 Reflection Phase Tuning of Graphene Plasmons by Substrate Design
Authors: Xiaojie Jiang, Wei Cai, Yinxiao Xiang, Ni Zhang, Mengxin Ren, Xinzheng Zhang, Jingjun Xu
Abstract:
Reflection phase of graphene plasmons (GPs) at an abrupt interface is very important, which determines the plasmon resonance of graphene structures of deep sub-wavelength scales. However, at an abrupt graphene edge, the reflection phase is always a constant, ΦR ≈ π/4. In this work, we show that the reflection phase of GPs can be efficiently changed through substrate design. Reflection phase of graphene plasmons (GPs) at an abrupt interface is very important, which determines the plasmon resonance of graphene structures of deep sub-wavelength scales. However, at an abrupt graphene edge, the reflection phase is always a constant, ΦR ≈ π/4. In this work, we show that the reflection phase of GPs can be efficiently changed through substrate design. Specifically, the reflection phase is no longer π/4 at the interface formed by placing a graphene sheet on different substrates. Moreover, tailorable reflection phase of GPs up to 2π variation can be further achieved by scattering GPs at a junction consisting of two such dielectric interfaces with various gap width acting as a Fabry-Perot cavity. Besides, the evolution of plasmon mode in graphene ribbons based on the interface reflection phase tuning is predicted, which is expected to be observed in near-field experiments with scattering-type scanning near-field optical microscopy (s-SNOM). Our work provides another way for in-plane plasmon control, which should find applications for integrated plasmon devices design using graphene.Specifically, the reflection phase is no longer π/4 at the interface formed by placing a graphene sheet on different substrates. Moreover, tailorable reflection phase of GPs up to 2π variation can be further achieved by scattering GPs at a junction consisting of two such dielectric interfaces with various gap width acting as a Fabry-Perot cavity. Besides, the evolution of plasmon mode in graphene ribbons based on the interface reflection phase tuning is predicted, which is expected to be observed in near-field experiments with scattering-type scanning near-field optical microscopy (s-SNOM). Our work provides a new way for in-plane plasmon control, which should find applications for integrated plasmon devices design using graphene.Keywords: graphene plasmons, reflection phase tuning, plasmon mode tuning, Fabry-Perot cavity
Procedia PDF Downloads 1511304 Sri Aurobindo's Views on Heraclitus' Philosophy: A Synthesis
Authors: Kamaladevi Kunkolienker
Abstract:
This paper appreciates the stimulating and thought-provoking synthesis of Heraclitus’ philosophy offered by Sri Aurobindo. The deep philosophical insights of Heraclitus expressed in aphoristic and cryptic form inspired him and supported his system of Integral Yoga. An attempt is made to reconstruct and synthesize Eastern and Western philosophical insights through hermeneutical treatment of many concepts. Aurobindo points out the sameness and kinship between Heraclitus’ thought and concepts from Vedic and upanishadic texts with illustrations and thus undertakes the task of synthesizing them. This fruitful synthesis also brings out the scientific perspective of Heraclitus’ thought and showcases it as a rare flowering of philosophy. It also enables the thinkers to reflect, reinterpret and synthesize such philosophies to bring out their significance in post-modern philosophy and science.Keywords: all, change, fire, one
Procedia PDF Downloads 3611303 Ways Management of Foods Not Served to Consumers in Food Service Sector
Authors: Marzena Tomaszewska, Beata Bilska, Danuta Kolozyn-Krajewska
Abstract:
Food loss and food waste are a global problem of the modern economy. The research undertaken aimed to analyze how food is handled in catering establishments when it comes to food waste and to demonstrate main ways of management with foods/dishes not served to consumers. A survey study was conducted from January to June 2019. The selection of catering establishments participating in the study was deliberate. The study included establishments located only in Mazowieckie Voivodeship (Poland). 42 completed questionnaires were collected. In some questions, answers were based on a 5-point scale of 1 to 5 (from 'always'/'every day' to 'never'). The survey also included closed questions with a suggested cafeteria of answers. The respondents stated that in their workplaces, dishes served cold and hot ready meals are discarded every day or almost every day (23.7% and 20.5% of answers respectively). A procedure most frequently used for dealing with dishes not served to consumers on a given day is their storage at a cool temperature until the following day. In the research, 1/5 of respondents admitted that consumers 'always' or 'usually' leave uneaten meals on their plates, and over 41% 'sometimes' do so. It was found additionally that food not used in food service sector is most often thrown into a public container for rubbish. Most often thrown into the public container (with communal trash) were: expired products (80.0%), plate waste (80.0%), and inedible products (fruit and vegetable peels, egg shells) (77.5%). Most frequently into the container dedicated only for food waste were thrown out used deep-frying oil (62.5%). 10% of respondents indicated that inedible products in their workplaces is allocate for animal feeds. Food waste in the food service sector still remains an insufficiently studied issue, as owners of these objects are often unwilling to disclose data pertaining to the subject. Incorrect ways of management with foods not served to consumers were observed. There is the need to develop the educational activities for employees and management in the context of food waste management in the food service sector. This publication has been developed under the contract with the National Center for Research and Development No Gospostrateg1/385753/1/NCBR/2018 for carrying out and funding of a project implemented as part of the 'The social and economic development of Poland in the conditions of globalizing markets - GOSPOSTRATEG' program entitled 'Developing a system for monitoring wasted food and an effective program to rationalize losses and reduce food wastage' (acronym PROM).Keywords: food waste, inedible products, plate waste, used deep-frying oil
Procedia PDF Downloads 1191302 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network
Authors: Gulfam Haider, sana danish
Abstract:
Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent
Procedia PDF Downloads 1251301 Adaptations to Hamilton's Rule in Human Populations
Authors: Monty Vacura
Abstract:
Hamilton’s Rule is a universal law of biology expressed in protists, plants and animals. When applied to human populations, this model explains: 1) Origin of religion in society as a biopsychological need selected to increase population size; 2) Instincts of racism expressed through intergroup competition; 3) Simultaneous selection for human cooperation and conflict, love and hate; 4) Connection between sporting events and instinctive social messaging for stimulating offensive and defensive responses; 5) Pathway to reduce human sacrifice. This chapter discusses the deep psychological influences of Hamilton’s Rule. Suggestions are provided to reduce human deaths via our instinctive sacrificial behavior, by consciously monitoring Hamilton’s Rule variables highlighted throughout our media outlets.Keywords: psychology, Hamilton’s rule, evolution, human instincts
Procedia PDF Downloads 601300 Against Language Disorder: A Way of Reading Dialects in Yan Lianke’s Novels
Authors: Thuy Hanh Nguyen Thi
Abstract:
By the method of deep reading and text analysis, this article will analyze the use and creation of dialects as a way of demonstrating Yan Lianke's creative stance. This article indicates that this is the writer’s narrative strategy in a fight against aphasia, a language disorder of Chinese people and culture, demonstrating a sense of return to folklore and marks his own linguistic style. In terms of verbal text, the dialect in the Yan Lianke’s novels manifested through the use of words, sentences and dialects. There are two types of dialects that exist in Yan Lianke’s novels: the current dialect system and the particular dialect system of Pa Lau world created by the writer himself in order to enrich the vocabulary of Han Chinese.Keywords: Yan Lianke , aphasia, dialect, Pa Lou world
Procedia PDF Downloads 1241299 Wellness Warriors: A Qualitative Exploration of Frontline Healthcare Staff Responding to Crisis
Authors: Andrea Knezevic, Padmini Pai, Julaine Allan, Katarzyna Olcoń, Louisa Smith
Abstract:
Healthcare staff are on the frontline during times of disaster and are required to support the health and wellbeing of communities despite any personal adversity and trauma they are experiencing as a result of the disaster. This study explored the experiences of healthcare staff trained as ‘Wellness Warriors’ following the 2019-2020 Australian bushfires. The findings indicated that healthcare staff developed interpersonal skills around deep listening and connecting with others which allowed them to feel differently about work and restored their faith in healthcare leadership.Keywords: Australian bushfires, burnout, health care providers, mental health, occupational trauma, post-disaster, wellbeing, workplace wellness
Procedia PDF Downloads 1371298 Finite Element Study of Coke Shape Deep Beam to Column Moment Connection Subjected to Cyclic Loading
Authors: Robel Wondimu Alemayehu, Sihwa Jung, Manwoo Park, Young K. Ju
Abstract:
Following the aftermath of the 1994 Northridge earthquake, intensive research on beam to column connections is conducted, leading to the current design basis. The current design codes require the use of either a prequalified connection or a connection that passes the requirements of large-scale cyclic qualification test prior to use in intermediate or special moment frames. The second alternative is expensive both in terms of money and time. On the other hand, the maximum beam depth in most of the prequalified connections is limited to 900mm due to the reduced rotation capacity of deeper beams. However, for long span beams the need to use deeper beams may arise. In this study, a beam to column connection detail suitable for deep beams is presented. The connection detail comprises of thicker-tapered beam flange adjacent to the beam to column connection. Within the thicker-tapered flange region, two reduced beam sections are provided with the objective of forming two plastic hinges within the tapered-thicker flange region. In addition, the length, width, and thickness of the tapered-thicker flange region are proportioned in such a way that a third plastic hinge forms at the end of the tapered-thicker flange region. As a result, the total rotation demand is distributed over three plastic zones. Making it suitable for deeper beams that have lower rotation capacity at one plastic hinge. The effectiveness of this connection detail is studied through finite element analysis. For the study, a beam that has a depth of 1200mm is used. Additionally, comparison with welded unreinforced flange-welded web (WUF-W) moment connection and reduced beam section moment connection is made. The results show that the rotation capacity of a WUF-W moment connection is increased from 2.0% to 2.2% by applying the proposed moment connection detail. Furthermore, the maximum moment capacity, energy dissipation capacity and stiffness of the WUF-W moment connection is increased up to 58%, 49%, and 32% respectively. In contrast, applying the reduced beam section detail to the same WUF-W moment connection reduced the rotation capacity from 2.0% to 1.50% plus the maximum moment capacity and stiffness of the connection is reduced by 22% and 6% respectively. The proposed connection develops three plastic hinge regions as intended and it shows improved performance compared to both WUF-W moment connection and reduced beam section moment connection. Moreover, the achieved rotation capacity satisfies the minimum required for use in intermediate moment frames.Keywords: connections, finite element analysis, seismic design, steel intermediate moment frame
Procedia PDF Downloads 1661297 An Observation of the Information Technology Research and Development Based on Article Data Mining: A Survey Study on Science Direct
Authors: Muhammet Dursun Kaya, Hasan Asil
Abstract:
One of the most important factors of research and development is the deep insight into the evolutions of scientific development. The state-of-the-art tools and instruments can considerably assist the researchers, and many of the world organizations have become aware of the advantages of data mining for the acquisition of the knowledge required for the unstructured data. This paper was an attempt to review the articles on the information technology published in the past five years with the aid of data mining. A clustering approach was used to study these articles, and the research results revealed that three topics, namely health, innovation, and information systems, have captured the special attention of the researchers.Keywords: information technology, data mining, scientific development, clustering
Procedia PDF Downloads 2781296 Sinhala Sign Language to Grammatically Correct Sentences using NLP
Authors: Anjalika Fernando, Banuka Athuraliya
Abstract:
This paper presents a comprehensive approach for converting Sinhala Sign Language (SSL) into grammatically correct sentences using Natural Language Processing (NLP) techniques in real-time. While previous studies have explored various aspects of SSL translation, the research gap lies in the absence of grammar checking for SSL. This work aims to bridge this gap by proposing a two-stage methodology that leverages deep learning models to detect signs and translate them into coherent sentences, ensuring grammatical accuracy. The first stage of the approach involves the utilization of a Long Short-Term Memory (LSTM) deep learning model to recognize and interpret SSL signs. By training the LSTM model on a dataset of SSL gestures, it learns to accurately classify and translate these signs into textual representations. The LSTM model achieves a commendable accuracy rate of 94%, demonstrating its effectiveness in accurately recognizing and translating SSL gestures. Building upon the successful recognition and translation of SSL signs, the second stage of the methodology focuses on improving the grammatical correctness of the translated sentences. The project employs a Neural Machine Translation (NMT) architecture, consisting of an encoder and decoder with LSTM components, to enhance the syntactical structure of the generated sentences. By training the NMT model on a parallel corpus of Sinhala wrong sentences and their corresponding grammatically correct translations, it learns to generate coherent and grammatically accurate sentences. The NMT model achieves an impressive accuracy rate of 98%, affirming its capability to produce linguistically sound translations. The proposed approach offers significant contributions to the field of SSL translation and grammar correction. Addressing the critical issue of grammar checking, it enhances the usability and reliability of SSL translation systems, facilitating effective communication between hearing-impaired and non-sign language users. Furthermore, the integration of deep learning techniques, such as LSTM and NMT, ensures the accuracy and robustness of the translation process. This research holds great potential for practical applications, including educational platforms, accessibility tools, and communication aids for the hearing-impaired. Furthermore, it lays the foundation for future advancements in SSL translation systems, fostering inclusive and equal opportunities for the deaf community. Future work includes expanding the existing datasets to further improve the accuracy and generalization of the SSL translation system. Additionally, the development of a dedicated mobile application would enhance the accessibility and convenience of SSL translation on handheld devices. Furthermore, efforts will be made to enhance the current application for educational purposes, enabling individuals to learn and practice SSL more effectively. Another area of future exploration involves enabling two-way communication, allowing seamless interaction between sign-language users and non-sign-language users.In conclusion, this paper presents a novel approach for converting Sinhala Sign Language gestures into grammatically correct sentences using NLP techniques in real time. The two-stage methodology, comprising an LSTM model for sign detection and translation and an NMT model for grammar correction, achieves high accuracy rates of 94% and 98%, respectively. By addressing the lack of grammar checking in existing SSL translation research, this work contributes significantly to the development of more accurate and reliable SSL translation systems, thereby fostering effective communication and inclusivity for the hearing-impaired communityKeywords: Sinhala sign language, sign Language, NLP, LSTM, NMT
Procedia PDF Downloads 1041295 Hermite–Hadamard Type Integral Inequalities Involving k–Riemann–Liouville Fractional Integrals and Their Applications
Authors: Artion Kashuri, Rozana Liko
Abstract:
In this paper, some generalization integral inequalities of Hermite–Hadamard type for functions whose derivatives are s–convex in modulus are given by using k–fractional integrals. Some applications to special means are obtained as well. Some known versions are recovered as special cases from our results. We note that our inequalities can be viewed as new refinements of the previous results. Finally, our results have a deep connection with various fractional integral operators and interested readers can find new interesting results using our idea and technique as well.Keywords: Hermite-Hadamard's inequalities, Hölder's inequality, k-Riemann-Liouville fractional integral, special means
Procedia PDF Downloads 1281294 Water Quality in Buyuk Menderes Graben, Turkey
Authors: Tugbanur Ozen Balaban, Gultekin Tarcan, Unsal Gemici, Mumtaz Colak, I. Hakki Karamanderesi
Abstract:
Buyuk Menderes Graben is located in the Western Anatolia (Turkey). The graben has become the largest industrial and agricultural area with a total population exceeding 3.000.000. There are two big cities within the study areas from west to east as Aydın and Denizli. The study area is very rich with regard to cold ground waters and thermal waters. Electrical production using geothermal potential has become very popular in the last decades in this area. Buyuk Menderes Graben is a tectonically active extensional region and is undergoing a north–south extensional tectonic regime which commenced at the latest during Early Middle Miocene period. The basement of the study area consists of Menderes massif rocks that are made up of high-to low-grade metamorphics and they are aquifer for both cold ground waters and thermal waters depending on the location. Neogene terrestrial sediments, which are mainly composed by alluvium fan deposits unconformably cover the basement rocks in different facies have very low permeability and locally may act as cap rocks for the geothermal systems. The youngest unit is Quaternary alluvium which is the shallow regional aquifer consists of Holocene alluvial deposits in the study area. All the waters are of meteoric origin and reflect shallow or deep circulation according to the 8O, 2H and 3H contents. Meteoric waters move to deep zones by fractured system and rise to the surface along the faults. Water samples (drilling well, spring and surface waters) and local seawater were collected between 2010 and 2012 years. Geochemical modeling was calculated distribution of the aqueous species and exchange processes by using PHREEQCi speciation code. Geochemical analyses show that cold ground water types are evolving from Ca–Mg–HCO3 to Na–Cl–SO4 and geothermal aquifer waters reflect the water types of Na-Cl-HCO3 in Aydın. Water types of Denizli are Ca-Mg-HCO3 and Ca-Mg-HCO3-SO4. Thermal water types reflect generally Na-HCO3-SO4. The B versus Cl rates increase from east to west with the proportion of seawater introduced into the fresh water aquifers and geothermal reservoirs. Concentrations of some elements (As, B, Fe and Ni) are higher than the tolerance limit of the drinking water standard of Turkey (TS 266) and international drinking water standards (WHO, FAO etc).Keywords: Buyuk Menderes, isotope chemistry, geochemical modelling, water quality
Procedia PDF Downloads 5361293 Fine-Tuned Transformers for Translating Multi-Dialect Texts to Modern Standard Arabic
Authors: Tahar Alimi, Rahma Boujebane, Wiem Derouich, Lamia Hadrich Belguith
Abstract:
Machine translation task of low-resourced languages such as Arabic is a challenging task. Despite the appearance of sophisticated models based on the latest deep learning techniques, namely the transfer learning and transformers, all models prove incapable of carrying out an acceptable translation, which includes Arabic Dialects (AD), because they do not have official status. In this paper, we present a machine translation model designed to translate Arabic multidialectal content into Modern Standard Arabic (MSA), leveraging both new and existing parallel resources. The latter achieved the best results for both Levantine and Maghrebi dialects with a BLEU score of 64.99.Keywords: Arabic translation, dialect translation, fine-tune, MSA translation, transformer, translation
Procedia PDF Downloads 611292 A Literature Review of Emotional Labor and Emotional Labor Strategies
Authors: Yeong-Gyeong Choi, Kyoung-Seok Kim
Abstract:
This study, literature review research, intends to deal with the problem of conceptual ambiguity among research on emotional labor, and to look into the evolutionary trends and changing aspects of defining the concept of emotional labor. For this, it gropes for methods for reducing conceptual ambiguity. Further, it arranges the concept of emotional labor; and examines and reviews comparatively the currents of the existing studies and looks for the characteristics and correlations of their classification criteria. That is, this study intends to arrange systematically and examine theories on emotional labor suggested hitherto, and suggest a future direction of research on emotional labor on the basis thereof. In addition, it attempts to look for positive aspects of the results of emotional labor.Keywords: emotion labor, dimensions of emotional labor, surface acting, deep acting
Procedia PDF Downloads 3571291 Emotion Detection in a General Human-Robot Interaction System Optimized for Embedded Platforms
Authors: Julio Vega
Abstract:
Expression recognition is a field of Artificial Intelligence whose main objectives are to recognize basic forms of affective expression that appear on people’s faces and contributing to behavioral studies. In this work, a ROS node has been developed that, based on Deep Learning techniques, is capable of detecting the facial expressions of the people that appear in the image. These algorithms were optimized so that they can be executed in real time on an embedded platform. The experiments were carried out in a PC with a USB camera and in a Raspberry Pi 4 with a PiCamera. The final results shows a plausible system, which is capable to work in real time even in an embedded platform.Keywords: python, low-cost, raspberry pi, emotion detection, human-robot interaction, ROS node
Procedia PDF Downloads 1291290 The Power of the Proper Orthogonal Decomposition Method
Authors: Charles Lee
Abstract:
The Principal Orthogonal Decomposition (POD) technique has been used as a model reduction tool for many applications in engineering and science. In principle, one begins with an ensemble of data, called snapshots, collected from an experiment or laboratory results. The beauty of the POD technique is that when applied, the entire data set can be represented by the smallest number of orthogonal basis elements. It is the such capability that allows us to reduce the complexity and dimensions of many physical applications. Mathematical formulations and numerical schemes for the POD method will be discussed along with applications in NASA’s Deep Space Large Antenna Arrays, Satellite Image Reconstruction, Cancer Detection with DNA Microarray Data, Maximizing Stock Return, and Medical Imaging.Keywords: reduced-order methods, principal component analysis, cancer detection, image reconstruction, stock portfolios
Procedia PDF Downloads 841289 Numerical Study on the Effect of Spudcan Penetration on the Jacket Platform
Authors: Xiangming Ge, Bing Pan, Wei He, Hao Chen, Yong Zhou, Jiayao Wu, Weijiang Chu
Abstract:
How the extraction and penetration of spudcan affect the performance of the adjacent pile foundation supporting the jacket platform was studied in the program FLAC3D depending on a wind farm project in Bohai sea. The simulations were conducted at the end of the spudcan penetration, which induced a pockmark in the seabed. The effects of the distance between the pile foundation and the pockmark were studied. The displacement at the mudline arose when the pockmark was closer. The bearing capacity of this jacket platform with deep pile foundations has been less influenced by the process of spudcan penetration, which can induce severe stresses on the pile foundation. The induced rotation was also satisfied with the rotation-controlling criteria.Keywords: offshore foundation, pile-soil interaction, spudcan penetration, FLAC3D
Procedia PDF Downloads 2151288 Strategies to Achieve Deep Decarbonisation in Power Generation: A Review
Authors: Abdullah Alotaiq
Abstract:
The transition to low-carbon power generation is essential for mitigating climate change and achieving sustainability. This process, however, entails considerable costs, and understanding the factors influencing these costs is critical. This is necessary to cater to the increasing demand for low-carbon electricity across the heating, industry, and transportation sectors. A crucial aspect of this transition is identifying cost-effective and feasible paths for decarbonization, which is integral to global climate mitigation efforts. It is concluded that hybrid solutions, combining different low-carbon technologies, are optimal for minimizing costs and enhancing flexibility. These solutions also address the challenges associated with phasing out existing fossil fuel-based power plants and broadening the spectrum of low-carbon power generation options.Keywords: review, power generation, energy transition, decarbonisation
Procedia PDF Downloads 541287 Faculty Use of Geospatial Tools for Deep Learning in Science and Engineering Courses
Authors: Laura Rodriguez Amaya
Abstract:
Advances in science, technology, engineering, and mathematics (STEM) are viewed as important to countries’ national economies and their capacities to be competitive in the global economy. However, many countries experience low numbers of students entering these disciplines. To strengthen the professional STEM pipelines, it is important that students are retained in these disciplines at universities. Scholars agree that to retain students in universities’ STEM degrees, it is necessary that STEM course content shows the relevance of these academic fields to their daily lives. By increasing students’ understanding on the importance of these degrees and careers, students’ motivation to remain in these academic programs can also increase. An effective way to make STEM content relevant to students’ lives is the use of geospatial technologies and geovisualization in the classroom. The Geospatial Revolution, and the science and technology associated with it, has provided scientists and engineers with an incredible amount of data about Earth and Earth systems. This data can be used in the classroom to support instruction and make content relevant to all students. The purpose of this study was to find out the prevalence use of geospatial technologies and geovisualization as teaching practices in a USA university. The Teaching Practices Inventory survey, which is a modified version of the Carl Wieman Science Education Initiative Teaching Practices Inventory, was selected for the study. Faculty in the STEM disciplines that participated in a summer learning institute at a 4-year university in the USA constituted the population selected for the study. One of the summer learning institute’s main purpose was to have an impact on the teaching of STEM courses, particularly the teaching of gateway courses taken by many STEM majors. The sample population for the study is 97.5 of the total number of summer learning institute participants. Basic descriptive statistics through the Statistical Package for the Social Sciences (SPSS) were performed to find out: 1) The percentage of faculty using geospatial technologies and geovisualization; 2) Did the faculty associated department impact their use of geospatial tools?; and 3) Did the number of years in a teaching capacity impact their use of geospatial tools? Findings indicate that only 10 percent of respondents had used geospatial technologies, and 18 percent had used geospatial visualization. In addition, the use of geovisualization among faculty of different disciplines was broader than the use of geospatial technologies. The use of geospatial technologies concentrated in the engineering departments. Data seems to indicate the lack of incorporation of geospatial tools in STEM education. The use of geospatial tools is an effective way to engage students in deep STEM learning. Future research should look at the effect on student learning and retention in science and engineering programs when geospatial tools are used.Keywords: engineering education, geospatial technology, geovisualization, STEM
Procedia PDF Downloads 2521286 Prediction of Terrorist Activities in Nigeria using Bayesian Neural Network with Heterogeneous Transfer Functions
Authors: Tayo P. Ogundunmade, Adedayo A. Adepoju
Abstract:
Terrorist attacks in liberal democracies bring about a few pessimistic results, for example, sabotaged public support in the governments they target, disturbing the peace of a protected environment underwritten by the state, and a limitation of individuals from adding to the advancement of the country, among others. Hence, seeking for techniques to understand the different factors involved in terrorism and how to deal with those factors in order to completely stop or reduce terrorist activities is the topmost priority of the government in every country. This research aim is to develop an efficient deep learning-based predictive model for the prediction of future terrorist activities in Nigeria, addressing low-quality prediction accuracy problems associated with the existing solution methods. The proposed predictive AI-based model as a counterterrorism tool will be useful by governments and law enforcement agencies to protect the lives of individuals in society and to improve the quality of life in general. A Heterogeneous Bayesian Neural Network (HETBNN) model was derived with Gaussian error normal distribution. Three primary transfer functions (HOTTFs), as well as two derived transfer functions (HETTFs) arising from the convolution of the HOTTFs, are namely; Symmetric Saturated Linear transfer function (SATLINS ), Hyperbolic Tangent transfer function (TANH), Hyperbolic Tangent sigmoid transfer function (TANSIG), Symmetric Saturated Linear and Hyperbolic Tangent transfer function (SATLINS-TANH) and Symmetric Saturated Linear and Hyperbolic Tangent Sigmoid transfer function (SATLINS-TANSIG). Data on the Terrorist activities in Nigeria gathered through questionnaires for the purpose of this study were used. Mean Square Error (MSE), Mean Absolute Error (MAE) and Test Error are the forecast prediction criteria. The results showed that the HETFs performed better in terms of prediction and factors associated with terrorist activities in Nigeria were determined. The proposed predictive deep learning-based model will be useful to governments and law enforcement agencies as an effective counterterrorism mechanism to understand the parameters of terrorism and to design strategies to deal with terrorism before an incident actually happens and potentially causes the loss of precious lives. The proposed predictive AI-based model will reduce the chances of terrorist activities and is particularly helpful for security agencies to predict future terrorist activities.Keywords: activation functions, Bayesian neural network, mean square error, test error, terrorism
Procedia PDF Downloads 1651285 Nanofluidic Cell for Resolution Improvement of Liquid Transmission Electron Microscopy
Authors: Deybith Venegas-Rojas, Sercan Keskin, Svenja Riekeberg, Sana Azim, Stephanie Manz, R. J. Dwayne Miller, Hoc Khiem Trieu
Abstract:
Liquid Transmission Electron Microscopy (TEM) is a growing area with a broad range of applications from physics and chemistry to material engineering and biology, in which it is possible to image in-situ unseen phenomena. For this, a nanofluidic device is used to insert the nanoflow with the sample inside the microscope in order to keep the liquid encapsulated because of the high vacuum. In the last years, Si3N4 windows have been widely used because of its mechanical stability and low imaging contrast. Nevertheless, the pressure difference between the inside fluid and the outside vacuum in the TEM generates bulging in the windows. This increases the imaged fluid volume, which decreases the signal to noise ratio (SNR), limiting the achievable spatial resolution. With the proposed device, the membrane is fortified with a microstructure capable of stand higher pressure differences, and almost removing completely the bulging. A theoretical study is presented with Finite Element Method (FEM) simulations which provide a deep understanding of the membrane mechanical conditions and proves the effectiveness of this novel concept. Bulging and von Mises Stress were studied for different membrane dimensions, geometries, materials, and thicknesses. The microfabrication of the device was made with a thin wafer coated with thin layers of SiO2 and Si3N4. After the lithography process, these layers were etched (reactive ion etching and buffered oxide etch (BOE) respectively). After that, the microstructure was etched (deep reactive ion etching). Then the back side SiO2 was etched (BOE) and the array of free-standing micro-windows was obtained. Additionally, a Pyrex wafer was patterned with windows, and inlets/outlets, and bonded (anodic bonding) to the Si side to facilitate the thin wafer handling. Later, a thin spacer is sputtered and patterned with microchannels and trenches to guide the nanoflow with the samples. This approach reduces considerably the common bulging problem of the window, improving the SNR, contrast and spatial resolution, increasing substantially the mechanical stability of the windows, allowing a larger viewing area. These developments lead to a wider range of applications of liquid TEM, expanding the spectrum of possible experiments in the field.Keywords: liquid cell, liquid transmission electron microscopy, nanofluidics, nanofluidic cell, thin films
Procedia PDF Downloads 2551284 Algorithmic Skills Transferred from Secondary CSI Studies into Tertiary Education
Authors: Piroska Biró, Mária Csernoch, János Máth, Kálmán Abari
Abstract:
Testing the first year students of Informatics at the University of Debrecen revealed that students start their tertiary studies in programming with a low level of programming knowledge and algorithmic skills. The possible reasons which lead the students to this very unfortunate result were examined. The results of the test were compared to the students’ results in the school leaving exams and to their self-assessment values. It was found that there is only a slight connection between the students’ results in the test and in the school leaving exams, especially at intermediate level. Beyond this, the school leaving exams do not seem to enable students to evaluate their own abilities.Keywords: deep and surface approaches, metacognitive abilities, programming and algorithmic skills, school leaving exams, tracking code
Procedia PDF Downloads 3841283 Sustainable Tourism Management in Taiwan: Using Certification and KPI Indicators to Development Sustainable Tourism Experiences
Authors: Shirley Kuo
Abstract:
The main purpose of this study is to develop sustainable indicators for Taiwan, and using the Delphi method to find that our tourist areas can progress in a sustainable way. We need a lot of infrastructures and policies to develop tourist areas, and with proper KPI indicators can reduce the destruction of the natural and ecological environment. This study will first study the foreign certification experiences, because Taiwan is currently in the development stage, and then the methodology will explain in-depth interviews using the Delphi method, and then there is discussion about which KPI indicators Taiwan currently needs. In this study current progress is a deep understanding of national sustainable tourism certification and KPI indicators.Keywords: sustainable tourism, certification, KPI indicators, Delphi method
Procedia PDF Downloads 3321282 Comparing Deep Architectures for Selecting Optimal Machine Translation
Authors: Despoina Mouratidis, Katia Lida Kermanidis
Abstract:
Machine translation (MT) is a very important task in Natural Language Processing (NLP). MT evaluation is crucial in MT development, as it constitutes the means to assess the success of an MT system, and also helps improve its performance. Several methods have been proposed for the evaluation of (MT) systems. Some of the most popular ones in automatic MT evaluation are score-based, such as the BLEU score, and others are based on lexical similarity or syntactic similarity between the MT outputs and the reference involving higher-level information like part of speech tagging (POS). This paper presents a language-independent machine learning framework for classifying pairwise translations. This framework uses vector representations of two machine-produced translations, one from a statistical machine translation model (SMT) and one from a neural machine translation model (NMT). The vector representations consist of automatically extracted word embeddings and string-like language-independent features. These vector representations used as an input to a multi-layer neural network (NN) that models the similarity between each MT output and the reference, as well as between the two MT outputs. To evaluate the proposed approach, a professional translation and a "ground-truth" annotation are used. The parallel corpora used are English-Greek (EN-GR) and English-Italian (EN-IT), in the educational domain and of informal genres (video lecture subtitles, course forum text, etc.) that are difficult to be reliably translated. They have tested three basic deep learning (DL) architectures to this schema: (i) fully-connected dense, (ii) Convolutional Neural Network (CNN), and (iii) Long Short-Term Memory (LSTM). Experiments show that all tested architectures achieved better results when compared against those of some of the well-known basic approaches, such as Random Forest (RF) and Support Vector Machine (SVM). Better accuracy results are obtained when LSTM layers are used in our schema. In terms of a balance between the results, better accuracy results are obtained when dense layers are used. The reason for this is that the model correctly classifies more sentences of the minority class (SMT). For a more integrated analysis of the accuracy results, a qualitative linguistic analysis is carried out. In this context, problems have been identified about some figures of speech, as the metaphors, or about certain linguistic phenomena, such as per etymology: paronyms. It is quite interesting to find out why all the classifiers led to worse accuracy results in Italian as compared to Greek, taking into account that the linguistic features employed are language independent.Keywords: machine learning, machine translation evaluation, neural network architecture, pairwise classification
Procedia PDF Downloads 1321281 Tumor Detection Using Convolutional Neural Networks (CNN) Based Neural Network
Authors: Vinai K. Singh
Abstract:
In Neural Network-based Learning techniques, there are several models of Convolutional Networks. Whenever the methods are deployed with large datasets, only then can their applicability and appropriateness be determined. Clinical and pathological pictures of lobular carcinoma are thought to exhibit a large number of random formations and textures. Working with such pictures is a difficult problem in machine learning. Focusing on wet laboratories and following the outcomes, numerous studies have been published with fresh commentaries in the investigation. In this research, we provide a framework that can operate effectively on raw photos of various resolutions while easing the issues caused by the existence of patterns and texturing. The suggested approach produces very good findings that may be used to make decisions in the diagnosis of cancer.Keywords: lobular carcinoma, convolutional neural networks (CNN), deep learning, histopathological imagery scans
Procedia PDF Downloads 136