Search results for: critical solution temperature
15775 Structural Investigation of Na2O–B2O3–SiO2 Glasses Doped with NdF3
Authors: M. S. Gaafar, S. Y. Marzouk
Abstract:
Sodium borosilicate glasses doped with different content of NdF3 mol % have been prepared by rapid quenching method. Ultrasonic velocities (both longitudinal and shear) measurements have been carried out at room temperature and at ultrasonic frequency of 4 MHz. Elastic moduli, Debye temperature, softening temperature and Poisson's ratio have been obtained as a function of NdF3 modifier content. Results showed that the elastic moduli, Debye temperature, softening temperature and Poisson's ratio have very slight change with the change of NdF3 mol % content. Based on FTIR spectroscopy and theoretical (Bond compression) model, quantitative analysis has been carried out in order to obtain more information about the structure of these glasses. The study indicated that the structure of these glasses is mainly composed of SiO4 units with four bridging oxygens (Q4), and with three bridging and one nonbridging oxygens (Q3).Keywords: borosilicate glasses, ultrasonic velocity, elastic moduli, FTIR spectroscopy, bond compression model
Procedia PDF Downloads 41415774 Calibration and Validation of ArcSWAT Model for Estimation of Surface Runoff and Sediment Yield from Dhangaon Watershed
Authors: M. P. Tripathi, Priti Tiwari
Abstract:
Soil and Water Assessment Tool (SWAT) is a distributed parameter continuous time model and was tested on daily and fortnightly basis for a small agricultural watershed (Dhangaon) of Chhattisgarh state in India. The SWAT model recently interfaced with ArcGIS and called as ArcSWAT. The watershed and sub-watershed boundaries, drainage networks, slope and texture maps were generated in the environment of ArcGIS of ArcSWAT. Supervised classification method was used for land use/cover classification from satellite imageries of the years 2009 and 2012. Manning's roughness coefficient 'n' for overland flow and channel flow and Fraction of Field Capacity (FFC) were calibrated for monsoon season of the years 2009 and 2010. The model was validated on a daily basis for the years 2011 and 2012 by using the observed daily rainfall and temperature data. Calibration and validation results revealed that the model was predicting the daily surface runoff and sediment yield satisfactorily. Sensitivity analysis showed that the annual sediment yield was inversely proportional to the overland and channel 'n' values whereas; annual runoff and sediment yields were directly proportional to the FFC. The model was also tested (calibrated and validated) for the fortnightly runoff and sediment yield for the year 2009-10 and 2011-12, respectively. Simulated values of fortnightly runoff and sediment yield for the calibration and validation years compared well with their observed counterparts. The calibration and validation results revealed that the ArcSWAT model could be used for identification of critical sub-watershed and for developing management scenarios for the Dhangaon watershed. Further, the model should be tested for simulating the surface runoff and sediment yield using generated rainfall and temperature before applying it for developing the management scenario for the critical or priority sub-watersheds.Keywords: watershed, hydrologic and water quality, ArcSWAT model, remote sensing, GIS, runoff and sediment yield
Procedia PDF Downloads 37915773 Critical Success Factors for Implementation of E-Supply Chain Management
Authors: Mehrnoosh Askarizadeh
Abstract:
Globalization of the economy, e-business, and introduction of new technologies pose new challenges to all organizations. In recent decades, globalization, outsourcing, and information technology have enabled many organizations to successfully operate collaborative supply networks in which each specialized business partner focuses on only a few key strategic activities For this industries supply network can be acknowledged as a new form of organization. We will study about critical success factors (CSFs) for implementation of SCM in companies. It is shown that in different circumstances e- supply chain management has a higher impact on performance.Keywords: supply chain management, logistics management, critical success factors, information technology, top management support, human resource
Procedia PDF Downloads 40915772 Effect of Manganese Doping on Ferrroelectric Properties of (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 Lead-Free Piezoceramic
Authors: Chongtham Jiten, Radhapiyari Laishram, K. Chandramani Singh
Abstract:
Alkaline niobate (Na0.5K0.5)NbO3 ceramic system has attracted major attention in view of its potential for replacing the highly toxic but superior lead zirconate titanate (PZT) system for piezoelectric applications. Recently, a more detailed study of this system reveals that the ferroelectric and piezoelectric properties are optimized in the Li- and V-modified system having the composition (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3. In the present work, we further study the pyroelectric behaviour of this composition along with another doped with Mn4+. So, (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 + x MnO2 (x = 0, and 0.01 wt. %) ceramic compositions were synthesized by conventional ceramic processing route. X-ray diffraction study reveals that both the undoped and Mn4+-doped ceramic samples prepared crystallize into a perovskite structure having orthorhombic symmetry. Dielectric study indicates that Mn4+ doping has little effect on both the Curie temperature (Tc) and tetragonal-orthorhombic phase transition temperature (Tot). The bulk density, room-temperature dielectric constant (εRT), and room-c The room-temperature coercive field (Ec) is observed to be lower in Mn4+ doped sample. The detailed analysis of the P-E hysteresis loops over the range of temperature from about room temperature to Tot points out that enhanced ferroelectric properties exist in this temperature range with better thermal stability for the Mn4+ doped ceramic. The study reveals that small traces of Mn4+ can modify (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 system so as to improve its ferroelectric properties with good thermal stability over a wide range of temperature.Keywords: ceramics, dielectric properties, ferroelectric properties, lead-free, sintering, thermal stability
Procedia PDF Downloads 23815771 Design and Performance Evaluation of Hybrid Corrugated-GFRP Infill Panels
Authors: Woo Young Jung, Sung Min Park, Ho Young Son, Viriyavudh Sim
Abstract:
This study presents a way to reduce earthquake damage and emergency rehabilitation of critical structures such as schools, high-tech factories, and hospitals due to strong ground motions associated with climate changes. Regarding recent trend, a strong earthquake causes serious damage to critical structures and then the critical structure might be influenced by sequence aftershocks (or tsunami) due to fault plane adjustments. Therefore, in order to improve seismic performance of critical structures, retrofitted or strengthening study of the structures under aftershocks sequence after emergency rehabilitation of the structures subjected to strong earthquakes is widely carried out. Consequently, this study used composite material for emergency rehabilitation of the structure rather than concrete and steel materials because of high strength and stiffness, lightweight, rapid manufacturing, and dynamic performance. Also, this study was to develop or improve the seismic performance or seismic retrofit of critical structures subjected to strong ground motions and earthquake aftershocks, by utilizing GFRP-Corrugated Infill Panels (GCIP).Keywords: aftershock, composite material, GFRP, infill panel
Procedia PDF Downloads 33415770 CO2 Gas Solubility and Foam Generation
Authors: Chanmoly Or, Kyuro Sasaki, Yuichi Sugai, Masanori Nakano, Motonao Imai
Abstract:
Cold drainage mechanism of oil production is a complicated process which involves with solubility and foaming processes. Laboratory experiments were carried out to investigate the CO2 gas solubility in hexadecane (as light oil) and the effect of depressurization processes on microbubble generation. The experimental study of sensitivity parameters of temperature and pressure on CO2 gas solubility in hexadecane was conducted at temperature of 20 °C and 50 °C and pressure ranged 2.0–7.0 MPa by using PVT (RUSKA Model 2370) apparatus. The experiments of foamy hexadecane were also prepared by depressurizing from saturated pressure of 6.4 MPa and temperature of 50 °C. The experimental results show the CO2 gas solubility in hexadecane linearly increases with increasing pressure. At pressure 4.5 MPa, CO2 gas dissolved in hexadecane 2.5 mmol.g-1 for temperature of 50 °C and 3.5 mmol.g-1 for temperature of 20 °C. The bubbles of foamy hexadecane were observed that most of large bubbles were coalesced shortly whereas the small one keeps presence. The experimental result of foamy hexadecane indicated large depressurization step (∆P) produces high quality of foam with high microbubble distribution.Keywords: CO2 gas solubility, depressurization process, foamy hexadecane, microbubble distribution
Procedia PDF Downloads 49215769 The Effect of Particle Temperature on the Thickness of Thermally Sprayed Coatings
Authors: M. Jalali Azizpour, H.Mohammadi Majd
Abstract:
In this paper, the effect of WC-12Co particle Temperature in HVOF thermal spraying process on the coating thickness has been studied. The statistical results show that the spray distance and oxygen-to-fuel ratio are more effective factors on particle characterization and thickness of HVOF thermal spraying coatings. Spray Watch diagnostic system, scanning electron microscopy (SEM), X-ray diffraction and thickness measuring system were used for this purpose.Keywords: HVOF, temperature, thickness, velocity, WC-12Co
Procedia PDF Downloads 40315768 Numerical Study of Natural Convection Heat Transfer Performance in an Inclined Cavity: Nanofluid and Random Temperature
Authors: Hicham Salhi, Mohamed Si-Ameur, Nadjib Chafai
Abstract:
Natural convection of a nanofluid consisting of water and nanoparticles (Ag or TiO2) in an inclined enclosure cavity, has been studied numerically, heated by a (random temperature, based on the random function). The governing equations are solved numerically using the finite-volume. Results are presented in the form of streamlines, isotherms, and average Nusselt number. In addition, a parametric study is carried out to examine explicitly the volume fraction effects of nanoparticles (Ψ= 0.1, 0.2), the Rayleigh number (Ra=103, 104, 105, 106),the inclination angle of the cavity( égale à 0°, 30°, 45°, 90°, 135°, 180°), types of temperature (constant ,random), types of (NF) (Ag andTiO2). The results reveal that (NPs) addition remarkably enhances heat transfer in the cavity especially for (Ψ= 0.2). Besides, the effect of inclination angle and type of temperature is more pronounced at higher Rayleigh number.Keywords: nanofluid, natural convection, inclined cavity, random temperature, finite-volume
Procedia PDF Downloads 28815767 Preparation of CuAlO2 Thin Films on Si or Sapphire Substrate by Sol-Gel Method Using Metal Acetate or Nitrate
Authors: Takashi Ehara, Takayoshi Nakanishi, Kohei Sasaki, Marina Abe, Hiroshi Abe, Kiyoaki Abe, Ryo Iizaka, Takuya Sato
Abstract:
CuAlO2 thin films are prepared on Si or sapphire substrate by sol-gel method using two kinds of sols. One is combination of Cu acetate and Al acetate basic, and the other is Cu nitrate and Al nitrate. In the case of acetate sol, XRD peaks of CuAlO2 observed at annealing temperature of 800-950 ºC on both Si and sapphire substrates. In contrast, in the case of the films prepared using nitrate on Si substrate, XRD peaks of CuAlO2 have been observed only at the annealing temperature of 800-850 ºC. At annealing temperature of 850ºC, peaks of other species have been observed beside the CuAlO2 peaks, then, the CuAlO2 peaks disappeared at annealing temperature of 900 °C with increasing in intensity of the other peaks. Intensity of the other peaks decreased at annealing temperature of 950 ºC with appearance of broad SiO2 peak. In the present, we ascribe these peaks as metal silicide.Keywords: CuAlO2, silicide, thin Films, transparent conducting oxide
Procedia PDF Downloads 39615766 The Soliton Solution of the Quadratic-Cubic Nonlinear Schrodinger Equation
Authors: Sarun Phibanchon, Yuttakarn Rattanachai
Abstract:
The quadratic-cubic nonlinear Schrodinger equation can be explained the weakly ion-acoustic waves in magnetized plasma with a slightly non-Maxwellian electron distribution by using the Madelung's fluid picture. However, the soliton solution to the quadratic-cubic nonlinear Schrodinger equation is determined by using the direct integration. By the characteristics of a soliton, the solution can be claimed that it's a soliton by considering its time evolution and their collisions between two solutions. These results are shown by applying the spectral method.Keywords: soliton, ion-acoustic waves, plasma, spectral method
Procedia PDF Downloads 41115765 Bi-Directional Evolutionary Topology Optimization Based on Critical Fatigue Constraint
Authors: Khodamorad Nabaki, Jianhu Shen, Xiaodong Huang
Abstract:
This paper develops a method for considering the critical fatigue stress as a constraint in the Bi-directional Evolutionary Structural Optimization (BESO) method. Our aim is to reach an optimal design in which high cycle fatigue failure does not occur for a specific life time. The critical fatigue stress is calculated based on modified Goodman criteria and used as a stress constraint in our topology optimization problem. Since fatigue generally does not occur for compressive stresses, we use the p-norm approach of the stress measurement that considers the highest tensile principal stress in each point as stress measure to calculate the sensitivity numbers. The BESO method has been extended to minimize volume an object subjected to the critical fatigue stress constraint. The optimization results are compared with the results from the compliance minimization problem which shows clearly the merits of our newly developed approach.Keywords: topology optimization, BESO method, p-norm, fatigue constraint
Procedia PDF Downloads 29515764 Determining Design Parameters for Sizing of Hydronic Heating Systems in Concrete Thermally Activated Building Systems
Authors: Rahmat Ali, Inamullah Khan, Amjad Naseer, Abid A. Shah
Abstract:
Hydronic Heating and Cooling systems in concrete slab based buildings are increasingly becoming a popular substitute to conventional heating and cooling systems. In exploring the materials, techniques employed, and their relative performance measures, a fair bit of uncertainty exists. This research has identified the simplest method of determining the thermal field of a single hydronic pipe when acting as a part of a concrete slab, based on which the spacing and positioning of pipes for a best thermal performance and surface temperature control are determined. The pipe material chosen is the commonly used PEX pipe, which has an all-around performance and thermal characteristics with a thermal conductivity of 0.5W/mK. Concrete Test samples were constructed and their thermal fields tested under varying input conditions. Temperature sensing devices were embedded into the wet concrete at fixed distances from the pipe and other touch sensing temperature devices were employed for determining the extent of the thermal field and validation studies. In the first stage, it was found that the temperature along a specific distance was the same and that heat dissipation occurred in well-defined layers. The temperature obtained in concrete was then related to the different control parameters including water supply temperature. From the results, the temperature of water required for a specific temperature rise in concrete is determined. The thermally effective area is also determined which is then used to calculate the pipe spacing and positioning for the desired level of thermal comfort.Keywords: thermally activated building systems, concrete slab temperature, thermal field, energy efficiency, thermal comfort, pipe spacing
Procedia PDF Downloads 33715763 Critical Design - Concepts, Methods and Practices for Innovative Societal Relationships
Authors: Martina Maria Keitsch
Abstract:
Critical Design (CD) confronts traditional design practice. Instead of reproducing and reinforcing contemporary perceptions of products and services, CD seeks to challenge them with the goal to stimulate debates and visions on societal innovation. CD methods comprise, among other narratives and design of critical objects. The oral presentation is based on a study that discusses concepts, methods, and applications of CD links CD to traditional design, and identifies CD benefits and challenges for design research and practice. The objective of the study is to introduce CD as an alternative for design researchers and practitioners supplementing commercially oriented design approaches. The study utilizes a literature review on CD concepts and methods based on current publications and online documents and illustrates CD practice with help of selected case studies. Findings of the study indicate that CD contribute, among others, to create new societal roles for designers, foster innovative relationships between designers and users, and encourage creativity through imaginative aesthetics.Keywords: critical design, postmodern design theories, narratives, rhizome
Procedia PDF Downloads 17115762 Device-integrated Micro-thermocouples for Reliable Temperature Measurement of GaN HEMTs
Authors: Hassan Irshad Bhatti, Saravanan Yuvaraja, Xiaohang Li
Abstract:
GaN-based devices, such as high electron mobility transistors (HEMTs), offer superior characteristics for high-power, high-frequency, and high-temperature applications [1]. However, this exceptional electrical performance is compromised by undesirable self-heating effects under high-power applications [2, 3]. Some of the issues caused by self-heating are current collapse, thermal runway and performance degradation [4, 5]. Therefore, accurate and reliable methods for measuring the temperature of individual devices on a chip are needed to monitor and control the thermal behavior of GaN-based devices [6]. Temperature measurement at the micro/nanoscale is a challenging task that requires specialized techniques such as Infrared microscopy, Raman thermometry, and thermoreflectance. Recently, micro-thermocouples (MTCs) have attracted considerable attention due to their advantages of simplicity, low cost, high sensitivity, and compatibility with standard fabrication processes [7, 8]. A micro-thermocouple is a junction of two different metal thin films, which generates a Seebeck voltage related to the temperature difference between a hot and cold zone. Integrating MTC in a device allows local temperature to be measured with high sensitivity and accuracy [9]. This work involves the fabrication and integration of micro-thermocouples (MTCs) to measure the channel temperature of GaN HEMT. Our fabricated MTC (Platinum-Chromium junction) has shown a sensitivity of 16.98 µV/K and can measure device channel temperature with high precision and accuracy. The temperature information obtained using this sensor can help improve GaN-based devices and provide thermal engineers with useful insights for optimizing their designs.Keywords: Electrical Engineering, Thermal engineering, Power Devices, Semiconuctors
Procedia PDF Downloads 1915761 Pre-Cooling Strategies for the Refueling of Hydrogen Cylinders in Vehicular Transport
Authors: C. Hall, J. Ramos, V. Ramasamy
Abstract:
Hydrocarbon-based fuel vehicles are a major contributor to air pollution due to harmful emissions produced, leading to a demand for cleaner fuel types. A leader in this pursuit is hydrogen, with its application in vehicles producing zero harmful emissions and the only by-product being water. To compete with the performance of conventional vehicles, hydrogen gas must be stored on-board of vehicles in cylinders at high pressures (35–70 MPa) and have a short refueling duration (approximately 3 mins). However, the fast-filling of hydrogen cylinders causes a significant rise in temperature due to the combination of the negative Joule-Thompson effect and the compression of the gas. This can lead to structural failure and therefore, a maximum allowable internal temperature of 85°C has been imposed by the International Standards Organization. The technological solution to tackle the issue of rapid temperature rise during the refueling process is to decrease the temperature of the gas entering the cylinder. Pre-cooling of the gas uses a heat exchanger and requires energy for its operation. Thus, it is imperative to determine the least amount of energy input that is required to lower the gas temperature for cost savings. A validated universal thermodynamic model is used to identify an energy-efficient pre-cooling strategy. The model requires negligible computational time and is applied to previously validated experimental cases to optimize pre-cooling requirements. The pre-cooling characteristics include the location within the refueling timeline and its duration. A constant pressure-ramp rate is imposed to eliminate the effects of rapid changes in mass flow rate. A pre-cooled gas temperature of -40°C is applied, which is the lowest allowable temperature. The heat exchanger is assumed to be ideal with no energy losses. The refueling of the cylinders is modeled with the pre-cooling split in ten percent time intervals. Furthermore, varying burst durations are applied in both the early and late stages of the refueling procedure. The model shows that pre-cooling in the later stages of the refuelling process is more energy-efficient than early pre-cooling. In addition, the efficiency of pre-cooling towards the end of the refueling process is independent of the pressure profile at the inlet. This leads to the hypothesis that pre-cooled gas should be applied as late as possible in the refueling timeline and at very low temperatures. The model had shown a 31% reduction in energy demand whilst achieving the same final gas temperature for a refueling scenario when pre-cooling was applied towards the end of the process. The identification of the most energy-efficient refueling approaches whilst adhering to the safety guidelines is imperative to reducing the operating cost of hydrogen refueling stations. Heat exchangers are energy-intensive and thus, reducing the energy requirement would lead to cost reduction. This investigation shows that pre-cooling should be applied as late as possible and for short durations.Keywords: cylinder, hydrogen, pre-cooling, refueling, thermodynamic model
Procedia PDF Downloads 9615760 Chatter Suppression in Boring Process Using Passive Damper
Authors: V. Prasannavenkadesan, A. Elango, S. Chockalingam
Abstract:
During machining process, chatter is an unavoidable phenomenon. Boring bars possess the cantilever shape and due to this, it is subjected to chatter. The adverse effect of chatter includes the increase in temperature which will leads to excess tool wear. To overcome these problems, in this investigation, Cartridge brass (Cu – 70% and Zn – 30%) is passively fixed on the boring bar and also clearance is provided in order to reduce the displacement, tool wear and cutting temperature. A conventional all geared lathe is attached with vibrometer and pyrometer is used to measure the displacement and temperature. The influence of input parameters such as cutting speed, depth of cut and clearance on temperature, tool wear and displacement are investigated for various cutting conditions. From the result, the optimum conditions to obtain better damping in boring process for chatter reduction is identified.Keywords: boring, chatter, mass damping, passive damping
Procedia PDF Downloads 35015759 Emperical Correlation for Measurement of Thermal Diffusivity of Spherical Shaped Food Products under Forced Convection Environment
Authors: M. Riaz, Inamur Rehman, Abhishek Sharma
Abstract:
The present work is the development of an experimental method for determining the thermal diffusivity variations with temperature of selected regular shaped solid fruits and vegetables subjected to forced convection cooling. Experimental investigations were carried on the sample chosen (potato and brinjal), which is approximately of spherical geometry. The variation of temperature within the food product is measured at several locations from centre to skin, under forced convection environment using a deep freezer, maintained at -10°C.This method uses one dimensional Fourier equation applied to regular shapes. For this, the experimental temperature data obtained from cylindrical and spherical shaped products during pre-cooling was utilised. Such temperature and thermal diffusivity profiles can be readily used with other information such as degradation rate, etc. to evaluate thermal treatments based on cold air cooling methods for storage of perishable food products.Keywords: thermal diffusivity, skin temperature, precooling, forced convection, regular shaped
Procedia PDF Downloads 46015758 The Influence of the Moving Speeds of DNA Droplet on Polymerase Chain Reaction
Authors: Jyh Jyh Chen, Fu H. Yang, Chen W. Wang, Yu M. Lin
Abstract:
In this work, a reaction chamber is reciprocated among three temperature regions by using an oscillatory thermal cycling machine. Three cartridge heaters are collocated to heat three aluminum blocks in order to achieve PCR requirements in the reaction chamber. The effects of various chamber moving speeds among different temperature regions on the chamber temperature profiles are presented. To solve the evaporation effect of the sample in the PCR experiment, the mineral oil and the cover lid are used. The influences of various extension times on DNA amplification are also demonstrated. The target fragments of the amplification are 385-bp and 420-bp. The results show when the forward speed is set at 6 mm/s and the backward speed is 2.4 mm/s, the temperature required for the experiment can be achieved. It is successful to perform the amplification of DNA fragments in our device.Keywords: oscillatory, polymerase chain reaction, reaction chamber, thermal cycling machine
Procedia PDF Downloads 53015757 The Influence of Water and Salt Crystals Content on Thermal Conductivity Coefficient of Red Clay Brick
Authors: Dalia Bednarska, Marcin Koniorczyk
Abstract:
This paper presents results of experiments aimed at studying hygro-thermal properties of red clay brick. The main objective of research was to investigate the relation between thermal conductivity coefficient of brick and its water or Na2SO4 solution content. The research was conducted using stationary technique for the totally dried specimens, as well as the ones 25%, 50%, 75% and 100% imbued with water or sodium sulfate solution. Additionally, a sorption isotherm test was conducted for seven relative humidity levels. Furthermore the change of red clay brick pore structure before and after imbuing with water and salt solution was investigated by multi-cycle mercury intrusion test. The experimental results confirm negative influence of water or sodium sulphate on thermal properties of material. The value of thermal conductivity coefficient increases along with growth of water or Na₂SO₄ solution content. The study shows that the presence of Na₂SO₄ solution has less negative influence on brick’s thermal conductivity coefficient than water.Keywords: building materials, red clay brick, sodium sulfate, thermal conductivity coefficient
Procedia PDF Downloads 40415756 A Soft System Methodology Approach to Stakeholder Engagement in Water Sensitive Urban Design
Authors: Lina Lukusa, Ulrike Rivett
Abstract:
Poor water management can increase the extreme pressure already faced by water scarcity. Unless water management is addressed holistically, water quality and quantity will continue to degrade. A holistic approach to water management named Water Sensitive Urban Design (WSUD) has thus been created to facilitate the effective management of water. Traditionally, water management has employed a linear design approach, while WSUD requires a systematic, cyclical approach. In simple terms, WSUD assumes that everything is connected. Hence, it is critical for different stakeholders involved in WSUD to engage and reach a consensus on a solution. However, many stakeholders in WSUD have conflicting interests. Using the soft system methodology (SSM), developed by Peter Checkland, as a problem-solving method, decision-makers can understand this problematic situation from different world views. The SSM addresses ill and complex challenging situations involving human activities in a complex structured scenario. This paper demonstrates how SSM can be applied to understand the complexity of stakeholder engagement in WSUD. The paper concludes that SSM is an adequate solution to understand a complex problem better and then propose efficient solutions.Keywords: co-design, ICT platform, soft systems methodology, water sensitive urban design
Procedia PDF Downloads 12115755 Thermoelectric Blanket for Aiding the Treatment of Cerebral Hypoxia and Other Related Conditions
Authors: Sarayu Vanga, Jorge Galeano-Cabral, Kaya Wei
Abstract:
Cerebral hypoxia refers to a condition in which there is a decrease in oxygen supply to the brain. Patients suffering from this condition experience a decrease in their body temperature. While there isn't any cure to treat cerebral hypoxia as of date, certain procedures are utilized to help aid in the treatment of the condition. Regulating the body temperature is an example of one of those procedures. Hypoxia is well known to reduce the body temperature of mammals, although the neural origins of this response remain uncertain. In order to speed recovery from this condition, it is necessary to maintain a stable body temperature. In this study, we present an approach to regulating body temperature for patients who suffer from cerebral hypoxia or other similar conditions. After a thorough literature study, we propose the use of thermoelectric blankets, which are temperature-controlled thermal blankets based on thermoelectric devices. These blankets are capable of heating up and cooling down the patient to stabilize body temperature. This feature is possible through the reversible effect that thermoelectric devices offer while behaving as a thermal sensor, and it is an effective way to stabilize temperature. Thermoelectricity is the direct conversion of thermal to electrical energy and vice versa. This effect is now known as the Seebeck effect, and it is characterized by the Seebeck coefficient. In such a configuration, the device has cooling and heating sides with temperatures that can be interchanged by simply switching the direction of the current input in the system. This design integrates various aspects, including a humidifier, ventilation machine, IV-administered medication, air conditioning, circulation device, and a body temperature regulation system. The proposed design includes thermocouples that will trigger the blanket to increase or decrease a set temperature through a medical temperature sensor. Additionally, the proposed design allows an efficient way to control fluctuations in body temperature while being cost-friendly, with an expected cost of 150 dollars. We are currently working on developing a prototype of the design to collect thermal and electrical data under different conditions and also intend to perform an optimization analysis to improve the design even further. While this proposal was developed for treating cerebral hypoxia, it can also aid in the treatment of other related conditions, as fluctuations in body temperature appear to be a common symptom that patients have for many illnesses.Keywords: body temperature regulation, cerebral hypoxia, thermoelectric, blanket design
Procedia PDF Downloads 16015754 Assessment of the Simulation Programs Usable to Support Decision Making Processes of the Critical Infrastructure Emergency Management
Authors: Jiří Barta, Oldřich Svoboda
Abstract:
This article deals with the issue of practical training of the management staff during emergency events in the frame of critical infrastructure. Critical infrastructure represents one of the possible targets of destructive activities as well as operational accidents and incidents which can seriously influence the functioning of the system of ensuring the basic needs of the inhabitants. Therefore, protection of critical infrastructure and training of the staff in dealing with emergencies becomes a broadly discussed topic. Nowadays, the market offers a wide range of simulation tools which proclaim that they are suitable for practical training of management staff and completing their tasks. Another group of programs declares that they are not primarily designed for this type of simulations. However, after some minor adaptations, for example by adding or changing users‘ roles, they are able to fulfil the needs of practical training as well as the process of emergency simulation. This paper characterises and selects simulators and programs for simulating emergency events.Keywords: computer simulation, Symos´97, simulation software, harmful substances, Konstruktivní simulace, SIMEX
Procedia PDF Downloads 25815753 Process Safety Evaluation of a Nuclear Power Plant through Virtual Process Hazard Analysis Using Hazard and Operability Technique
Authors: Elysa V. Largo, Lormaine Anne A. Branzuela, Julie Marisol D. Pagalilauan, Neil C. Concibido, Monet Concepcion M. Detras
Abstract:
The energy demand in the country is increasing; thus, nuclear energy is recently mandated to add to the energy mix. The Philippines has the Bataan Nuclear Power Plant (BNPP), which can be a source of nuclear energy; however, it has not been operated since the completion of its construction. Thus, evaluating the safety of BNPP is vital. This study explored the possible deviations that may occur in the operation of a nuclear power plant with a pressurized water reactor, which is similar to BNPP, through a virtual process hazard analysis (PHA) using the hazard and operability (HAZOP) technique. Temperature, pressure, and flow were used as parameters. A total of 86 causes of various deviations were identified, wherein the primary system and line from reactor coolant pump to reactor vessel are the most critical system and node, respectively. A total of 348 scenarios were determined. The critical events are radioactive leaks due to nuclear meltdown and sump overflow that could lead to multiple worker fatalities, one or more public fatalities, and environmental remediation. There were existing safeguards identified; however, further recommendations were provided to have additional and supplemental barriers to reduce the risk.Keywords: PSM, PHA, HAZOP, nuclear power plant
Procedia PDF Downloads 15415752 Pulse Method for Investigation of Zr-C Phase Diagram at High Carbon Content Domain under High Temperatures
Authors: Arseniy M. Kondratyev, Sergey V. Onufriev, Alexander I. Savvatimskiy
Abstract:
The microsecond electrical pulse heating technique which provides uniform energy input into an investigated specimen is considered. In the present study we investigated ZrC+C carbide specimens in a form of a thin layer (about 5 microns thick) that were produced using a method of magnetron sputtering on insulating substrates. Specimens contained (at. %): Zr–17.88; C–67.69; N–8.13; O–5.98. Current through the specimen, voltage drop across it and radiation at the wavelength of 856 nm were recorded in the experiments. It enabled us to calculate the input energy, specific heat (from 2300 to 4500 K) and resistivity (referred to the initial dimensions of a specimen). To obtain the true temperature a black body specimen was used. Temperature of the beginning and completion of a phase transition (solid–liquid) was measured.Temperature of the onset of melting was 3150 K at the input energy 2.65 kJ/g; temperature of the completion of melting was 3450 K at the input energy 5.2 kJ/g. The specific heat of the solid phase of investigated carbide calculated using our data on temperature and imparted energy, is close to 0.75 J/gК for temperature range 2100–2800 K. Our results are considered together with the equilibrium Zr-C phase diagram.Keywords: pulse heating, zirconium carbide, high temperatures, melting
Procedia PDF Downloads 32315751 Constant Order Predictor Corrector Method for the Solution of Modeled Problems of First Order IVPs of ODEs
Authors: A. A. James, A. O. Adesanya, M. R. Odekunle, D. G. Yakubu
Abstract:
This paper examines the development of one step, five hybrid point method for the solution of first order initial value problems. We adopted the method of collocation and interpolation of power series approximate solution to generate a continuous linear multistep method. The continuous linear multistep method was evaluated at selected grid points to give the discrete linear multistep method. The method was implemented using a constant order predictor of order seven over an overlapping interval. The basic properties of the derived corrector was investigated and found to be zero stable, consistent and convergent. The region of absolute stability was also investigated. The method was tested on some numerical experiments and found to compete favorably with the existing methods.Keywords: interpolation, approximate solution, collocation, differential system, half step, converges, block method, efficiency
Procedia PDF Downloads 33715750 Explicit Iterative Scheme for Approximating a Common Solution of Generalized Mixed Equilibrium Problem and Fixed Point Problem for a Nonexpansive Semigroup in Hilbert Space
Authors: Mohammad Farid
Abstract:
In this paper, we introduce and study an explicit iterative method based on hybrid extragradient method to approximate a common solution of generalized mixed equilibrium problem and fixed point problem for a nonexpansive semigroup in Hilbert space. Further, we prove that the sequence generated by the proposed iterative scheme converge strongly to the common solution of generalized mixed equilibrium problem and fixed point problem for a nonexpansive semigroup. This common solution is the unique solution of a variational inequality problem and is the optimality condition for a minimization problem. The results presented in this paper are the supplement, extension and generalization of the previously known results in this area.Keywords: generalized mixed equilibrium problem, fixed-point problem, nonexpansive semigroup, variational inequality problem, iterative algorithms, hybrid extragradient method
Procedia PDF Downloads 47515749 Enhancement of Hardness and Corrosion Resistance of Plasma Nitrided Low Alloy Tool Steel
Authors: Kalimi Trinadh, Corinne Nouveau, A. S. Khanna, Karanveer S. Aneja, K. Ram Mohan Rao
Abstract:
This study concerns improving the corrosion resistance of low alloy steel after plasma nitriding performed at variable time and temperature. Nitriding carried out in the temperature range of 450-550ᵒC for a various time period of 1-8 hrs. at 500Pa in a glow discharge plasma of H₂ and N₂ (80:20). The substrate was kept biased negatively at 250V. Following nitriding the X-ray diffraction studies shown that the phases formed were mainly γ′ (Fe₄N) and ε (Fe₂₋₃N). The ε (Fe₂₋₃N) phase found to be the dominating phase. Cross sections of the samples under scanning electron microscope point analyses revealed the presence of nitrogen in the surface region. For the assessment of corrosion resistance property, potentiodynamic polarization tests were performed in 3.5% NaCl solution. It has been shown that the plasma nitriding significantly improved the corrosion resistance when compared to the as-received steel. Furthermore, it has also been found that nitriding for 6h has more corrosion resistance than nitriding for the 8h duration. The hardness of the nitrided samples was measured by Vicker’s microhardness tester. The hardness of the nitrided steel was found to be improved much above the hardness of the steel in the as-received condition. It was found to be around two-fold of the initial hardness.Keywords: corrosion, steel, plasma nitriding, X-ray diffraction
Procedia PDF Downloads 19915748 Experimental investigation on the lithium-Ion Battery Thermal Management System Based on Micro Heat Pipe Array in High Temperature Environment
Authors: Ruyang Ren, Yaohua Zhao, Yanhua Diao
Abstract:
The intermittent and unstable characteristics of renewable energy such as solar energy can be effectively solved through battery energy storage system. Lithium-ion battery is widely used in battery energy storage system because of its advantages of high energy density, small internal resistance, low self-discharge rate, no memory effect and long service life. However, the performance and service life of lithium-ion battery is seriously affected by its operating temperature. Thus, the safety operation of the lithium-ion battery module is inseparable from an effective thermal management system (TMS). In this study, a new type of TMS based on micro heat pipe array (MHPA) for lithium-ion battery is established, and the TMS is applied to a battery energy storage box that needs to operate at a high temperature environment of 40 °C all year round. MHPA is a flat shape metal body with high thermal conductivity and excellent temperature uniformity. The battery energy storage box is composed of four battery modules, with a nominal voltage of 51.2 V, a nominal capacity of 400 Ah. Through the excellent heat transfer characteristics of the MHPA, the heat generated by the charge and discharge process can be quickly transferred out of the battery module. In addition, if only the MHPA cannot meet the heat dissipation requirements of the battery module, the TMS can automatically control the opening of the external fan outside the battery module according to the temperature of the battery, so as to further enhance the heat dissipation of the battery module. The thermal management performance of lithium-ion battery TMS based on MHPA is studied experimentally under different ambient temperatures and the condition to turn on the fan or not. Results show that when the ambient temperature is 40 °C and the fan is not turned on in the whole charge and discharge process, the maximum temperature of the battery in the energy storage box is 53.1 °C and the maximum temperature difference in the battery module is 2.4 °C. After the fan is turned on in the whole charge and discharge process, the maximum temperature is reduced to 50.1 °C, and the maximum temperature difference is reduced to 1.7 °C. Obviously, the lithium-ion battery TMS based on MHPA not only could control the maximum temperature of the battery below 55 °C, but also ensure the excellent temperature uniformity of the battery module. In conclusion, the lithium-ion battery TMS based on MHPA can ensure the safe and stable operation of the battery energy storage box in high temperature environment.Keywords: heat dissipation, lithium-ion battery thermal management, micro heat pipe array, temperature uniformity
Procedia PDF Downloads 18115747 Critical Literacy and Multiliteracies in the English Language Teaching at Federal Institute of Mato Grosso, Rondonópolis Campus
Authors: Jordana Lenhardt
Abstract:
This paperwork aims to promote a reflection on the critical literacy and multiliteracies concepts in the English language teaching, under an emancipatory perspective, in the English language classroom at the Federal Institute of Mato Grosso (IFMT), Rondonópolis Campus. Some Authors place the relationship between the world conscience and the self-conscience in a direct reason, compromising one to the other, and others defend that emancipatory teaching practice must be connected in all the spheres of the social context; with this paperwork, we intend to analyze students’ interactions with the English language, in order to verify if they demonstrate critical conscience about language and the world around them. The study is still at a preliminary level and is grounded in discourse critical analysis and systemic-functional linguistics. We understand that text is irremediable, linked to a context, and that the linguistic selection made by the speaker builds social representations. This research foresees the analysis of some students’ speeches in an interview about their classes at the Federal Institute in the city of Rondonópolis and the methodology being used on them. Discourse critical analysis explains that, through the awareness of the language uses, learners can become more conscious of the coercions in their own language practices, the possibilities of risks, and the costs of the individual or collective challenges, to engage themselves in emancipatory linguistic practice. The critical language conscience contributes, on the other hand, to make students more aware of the practices in which they are involved, as producers and consumers of texts, of the social forces, ideologies, and power relations, their effects on the identities and social relations, as well as the discourse role in the social and cultural processes.Keywords: multiliteracies, critical literacy, emancipation, social transformation
Procedia PDF Downloads 10115746 Remote Controlled of In-Situ Forming Thermo-sensitive Hydrogel Nanocomposite for Hyperthermia Therapy Application: Synthesis and Characterizations
Authors: Elbadawy A. Kamoun
Abstract:
Magnetically responsive hydrogel nanocomposite (NCH) based on composites of superparamagnetic of Fe3O4 nano-particles and temperature responsive hydrogel matrices were developed. The nanocomposite hydrogel system based on the temperature sensitive N-isopropylacrylamide hydrogels crosslinked by poly(ethylene glycol)-400 dimethacrylate (PEG400DMA) incorporating with chitosan derivative, was synthesized and characterized. Likewise, the NCH system was synthesized by visible-light free radical photopolymerization, using carboxylated camphorquinone-amine system to avoid the common risks of the use of UV-light especially in hyperthermia treatment. Superparamagnetic of iron oxide nanoparticles were introduced into the hydrogel system by polymerizing mixture technique and monomer solution. FT-IR with Raman spectroscopy and Wide angle-XRD analysis were utilized to verify the chemical structure of NCH and exfoliation reaction for nanoparticles, respectively. Additionally, morphological structure of NCH was investigated using SEM and TEM photographs. The swelling responsive of the current nanocomposite hydrogel system with different crosslinking conditions, temperature, magnetic field efficiency, and the presence effect of magnetic nanoparticles were evaluated. Notably, hydrolytic degradation of this system was proved in vitro application. While, in-vivo release profile behavior is under investigation nowadays. Moreover, the compatibility and cytotoxicity tests were previously investigated in our studies for photoinitiating system. These systems show promised polymeric material candidate devices and are expected to have a wide applicability in various biomedical applications as mildly.Keywords: hydrogel nanocomposites, tempretaure-responsive hydrogel, superparamagnetic nanoparticles, hyperthermia therapy
Procedia PDF Downloads 279