Search results for: bubble point pressure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8720

Search results for: bubble point pressure

7940 Efficiency of Virtual Reality Exercises with Nintendo Wii System on Balance and Independence in Motor Functions in Hemiparetic Patients: A Randomized Controlled Study

Authors: Ayça Utkan Karasu, Elif Balevi Batur, Gülçin Kaymak Karataş

Abstract:

The aim of this study was to examine the efficiency of virtual reality exercises with Nintendo Wii system on balance and independence in motor functions. This randomized controlled assessor-blinded study included 23 stroke inpatients with hemiparesis all within 12 months poststroke. Patients were randomly assigned to control group (n=11) or experimental group (n=12) via block randomization method. Control group participated in a conventional balance rehabilitation programme. Study group received a four-week balance training programme five times per week with a session duration of 20 minutes in addition to the conventional balance rehabilitation programme. Balance was assessed by the Berg’s balance scale, the functional reach test, the timed up and go test, the postural assessment scale for stroke, the static balance index. Also, displacement of centre of pressure sway and centre of pressure displacement during weight shifting was calculated by Emed-SX system. Independence in motor functions was assessed by The Functional Independence Measure (FIM) ambulation and FIM transfer subscales. The outcome measures were evaluated at baseline, 4th week (posttreatment), 8th week (follow-up). Repeated measures analysis of variance was performed for each of the outcome measure. Significant group time interaction was detected in the scores of the Berg’s balance scale, the functional reach test, eyes open anteroposterior and mediolateral center of pressure sway distance, eyes closed anteroposterior center of pressure sway distance, center of pressure displacement during weight shifting to effected side, unaffected side and total centre of pressure displacement during weight shifting (p < 0.05). Time effect was statistically significant in the scores of the Berg’s balance scale, the functional reach test, the timed up and go test, the postural assessment scale for stroke, the static balance index, eyes open anteroposterior and mediolateral center of pressure sway distance, eyes closed mediolateral center of pressure sway distance, the center of pressure displacement during weight shifting to effected side, the functional independence measure ambulation and transfer scores (p < 0.05). Virtual reality exercises with Nintendo Wii system combined with a conventional balance rehabilitation programme enhances balance performance and independence in motor functions in stroke patients.

Keywords: balance, hemiplegia, stroke rehabilitation, virtual reality

Procedia PDF Downloads 220
7939 Cooperative Learning Mechanism in Intelligent Multi-Agent System

Authors: Ayman M. Mansour, Bilal Hawashin, Mohammed A. Mansour

Abstract:

In this paper, we propose a cooperative learning mechanism in a multi-agent intelligent system. The basic idea is that intelligent agents are capable of collaborating with one another by sharing their knowledge. The agents will start collaboration by providing their knowledge rules to the other agents. This will allow the most important and insightful detection rules produced by the most experienced agent to bubble up for the benefit of the entire agent community. The updated rules will lead to improving the agents’ decision performance. To evaluate our approach, we designed a five–agent system and implemented it using JADE and FuzzyJess software packages. The agents will work with each other to make a decision about a suspicious medical case. This system provides quick response rate and the decision is faster than the manual methods. This will save patients life.

Keywords: intelligent, multi-agent system, cooperative, fuzzy, learning

Procedia PDF Downloads 681
7938 Decision Making about the Environmental Management Implementation: Incentives and Expectations

Authors: Eva Štěpánková

Abstract:

Environmental management implementation is presently one of the ways of organization success and value improvement. Increasing an organization motivation to environmental measures introduction is caused primarily by the rising pressure of the society that generates various incentives to endeavor for the environmental performance improvement. The aim of the paper is to identify and characterize the key incentives and expectations leading organizations to the environmental management implementation. The author focuses on five businesses of different size and field, operating in the Czech Republic. The qualitative approach and grounded theory procedure are used in research. The results point out that the significant incentives for environmental management implementation represent primarily demands of customers, the opportunity to declare the environmental commitment and image improvement. The researched enterprises less commonly expect the economical contribution, competitive advantage increase or export rate improvement. The results show that marketing contributions are primarily expected from the environmental management implementation.

Keywords: environmental management, environmental management system, ISO 14001, Czech Republic

Procedia PDF Downloads 379
7937 Thermodynamic Phase Equilibria and Formation Kinetics of Cyclopentane, Cyclopentanone and Cyclopentanol Hydrates in the Presence of Gaseous Guest Molecules including Methane and Carbon Dioxide

Authors: Sujin Hong, Seokyoon Moon, Heejoong Kim, Yunseok Lee, Youngjune Park

Abstract:

Gas hydrate is an inclusion compound in which a low-molecular-weight gas or organic molecule is trapped inside a three-dimensional lattice structure created by water-molecule via intermolecular hydrogen bonding. It is generally formed at low temperature and high pressure, and exists as crystal structures of cubic systems − structure I, structure II, and hexagonal system − structure H. Many efforts have been made to apply them to various energy and environmental fields such as gas transportation and storage, CO₂ capture and separation, and desalination of seawater. Particularly, studies on the behavior of gas hydrates by new organic materials for CO₂ storage and various applications are underway. In this study, thermodynamic and spectroscopic analyses of the gas hydrate system were performed focusing on cyclopentanol, an organic molecule that forms gas hydrate at relatively low pressure. The thermodynamic equilibria of CH₄ and CO₂ hydrate systems including cyclopentanol were measured and spectroscopic analyses of XRD and Raman were performed. The differences in thermodynamic systems and formation kinetics of CO₂ added cyclopentane, cyclopentanol and cyclopentanone hydrate systems were compared. From the thermodynamic point of view, cyclopentanol was found to be a hydrate promotor. Spectroscopic analyses showed that cyclopentanol formed a hydrate crystal structure of cubic structure II in the presence of CH₄ and CO₂. It was found that the differences in the functional groups among the organic guest molecules significantly affected the rate of hydrate formation and the total amounts of CO₂ stored in the hydrate systems. The total amount of CO₂ stored in the cyclopentanone hydrate was found to be twice that of the amount of CO₂ stored in the cyclopentane and the cyclopentanol hydrates. The findings are expected to open up new opportunity to develop the gas hydrate based wastewater desalination technology.

Keywords: gas hydrate, CO₂, separation, desalination, formation kinetics, thermodynamic equilibria

Procedia PDF Downloads 265
7936 Study on Buckling and Yielding Behaviors of Low Yield Point Steel Plates

Authors: David Boyajian, Tadeh Zirakian

Abstract:

Stability and performance of steel plates are characterized by geometrical buckling and material yielding. In this paper, the geometrical buckling and material yielding behaviors of low yield point (LYP) steel plates are studied from the point of view of their application in steel plate shear wall (SPSW) systems. Use of LYP steel facilitates the design and application of web plates with improved buckling and energy absorption capacities in SPSW systems. LYP steel infill plates may yield first and then undergo inelastic buckling. Hence, accurate determination of the limiting plate thickness corresponding to simultaneous buckling and yielding can be effective in seismic design of such lateral force-resisting and energy dissipating systems. The limiting thicknesses of plates with different loading and support conditions are determined theoretically and verified through detailed numerical simulations. Effects of use of LYP steel and plate aspect ratio parameter on the limiting plate thickness are investigated as well. In addition, detailed studies are performed on determination of the limiting web-plate thickness in code-designed SPSWs. Some practical recommendations are accordingly provided for efficient seismic design of SPSW systems with LYP steel infill plates.

Keywords: buckling, low yield point steel, plates, steel plate shear walls, yielding

Procedia PDF Downloads 399
7935 Performance of the Hybrid Loop Heat Pipe

Authors: Nandy Putra, Imansyah Ibnu Hakim, Iwan Setyawan, Muhammad Zayd A.I

Abstract:

A two-phase cooling technology of passive system sometimes can no longer meet the cooling needs of an increasingly challenging due to the inherent limitations of the capillary pumping for example in terms of the heat flux that can lead to dry out. In this study, intended to overcome the dry out with the addition of a diaphragm, they pump to accelerate the fluid transportation from the condenser to the evaporator. Diaphragm pump installed on the bypass line. When it did not happen dry out then the hybrid loop heat pipe will be work passively using a capillary pressure of wick. Meanwhile, when necessary, hybrid loop heat pipe will be work actively, using diaphragm pump with temperature control installed on the evaporator. From the results, it can be said that the pump has been successfully overcome dry out and can distribute working fluid from the condenser to the evaporator and reduce the temperature of the evaporator from 143°C to 100°C as a temperature controlled where the pump start actively at set point 100°C.

Keywords: hybrid, heat pipe, dry out, assisted, pump

Procedia PDF Downloads 350
7934 Portable Water Treatment for Flood Resilience

Authors: Alireza Abbassi Monjezi, Mohammad Hasan Shaheed

Abstract:

Flood, caused by excessive rainfall, monsoon, cyclone and tsunami is a common disaster in many countries of the world especially sea connected low-lying countries. A stand-alone self-powered water filtration module for decontamination of floodwater has been designed and modeled. A combination forward osmosis – low pressure reverse osmosis (FO-LPRO) system powered by solar photovoltaic-thermal (PVT) energy is investigated which could overcome the main barriers to water supply for remote areas and ensure off-grid filtration. The proposed system is designed to be small scale and portable to provide on-site potable water to communities that are no longer themselves mobile nor can be reached quickly by the aid agencies. FO is an osmotically driven process that uses osmotic pressure gradients to drive water across a controlled pore membrane from a feed solution (low osmotic pressure) to a draw solution (high osmotic pressure). This drops the demand for high hydraulic pressures and therefore the energy demand. There is also a tendency for lower fouling, easier fouling layer removal and higher water recovery. In addition, the efficiency of the PVT unit will be maximized through freshwater cooling which is integrated into the system. A filtration module with the capacity of 5 m3/day is modeled to treat floodwater and provide drinking water. The module can be used as a tool for disaster relief, particularly in the aftermath of flood and tsunami events.

Keywords: flood resilience, membrane desalination, portable water treatment, solar energy

Procedia PDF Downloads 286
7933 Field Study on Thermal Performance of a Green Office in Bangkok, Thailand: A Possibility of Increasing Temperature Set-Points

Authors: T. Sikram, M. Ichinose, R. Sasaki

Abstract:

In the tropics, indoor thermal environment is usually provided by a cooling mode to maintain comfort all year. Indoor thermal environment performance is sometimes different from the standard or from the first design process because of operation, maintenance, and utilization. The field study of thermal environment in the green building is still limited in this region, while the green building continues to increase. This study aims to clarify thermal performance and subjective perception in the green building by testing the temperature set-points. A Thai green office was investigated twice in October 2018 and in May 2019. Indoor environment variables (temperature, relative humidity, and wind velocity) were collected continuously. The temperature set-point was normally set as 23 °C, and it was changed into 24 °C and 25 °C. The study found that this gap of temperature set-point produced average room temperature from 22.7 to 24.6 °C and average relative humidity from 55% to 62%. Thermal environments slight shifted out of the ASHRAE comfort zone when the set-point was increased. Based on the thermal sensation vote, the feeling-colder vote decreased by 30% and 18% when changing +1 °C and +2 °C, respectively. Predicted mean vote (PMV) shows that most of the calculated median values were negative. The values went close to the optimal neutral value (0) when the set-point was set at 25 °C. The neutral temperature was slightly decreased when changing warmer temperature set-points. Building-related symptom reports were found in this study that the number of votes reduced continuously when the temperature was warmer. The symptoms that occurred by a cooler condition had the number of votes more than ones that occurred by a warmer condition. In sum, for this green office, there is a possibility to adjust a higher temperature set-point to +1 °C (24 °C) in terms of reducing cold sensitivity, discomfort, and symptoms. All results could support the policy of changing a warmer temperature of this office to become “a better green building”.

Keywords: thermal environment, green office, temperature set-point, comfort

Procedia PDF Downloads 116
7932 Simulation 2D of Flare Steel Tubes

Authors: B. Daheche, M. T. Hannachi, H. Djebaili

Abstract:

In this approach, we tried to describe the flare test tubes welded by high frequency induction HF, and its experimental application. The test is carried out ENTTPP (National company of pipe mill and processing of flat products). Usually, the final products (tube) undergo a series of destructive testing (CD) in order to see the efficiency of welding. This test performed on sections of pipe with a length defined in the notice is made under a determined effort (pressure), which depends on its share of other parameters namely mechanical (fracture resistance) and geometry (thickness tube, outside diameter), the variation of this effort is well researched and recorded.

Keywords: flare, destructive testing, pressure, drafts tube, tube finished

Procedia PDF Downloads 314
7931 Effect of Viscosity on Propagation of MHD Waves in Astrophysical Plasma

Authors: Alemayehu Mengesha, Solomon Belay

Abstract:

We determine the general dispersion relation for the propagation of magnetohydrodynamic (MHD) waves in an astrophysical plasma by considering the effect of viscosity with an anisotropic pressure tensor. Basic MHD equations have been derived and linearized by the method of perturbation to develop the general form of the dispersion relation equation. Our result indicates that an astrophysical plasma with an anisotropic pressure tensor is stable in the presence of viscosity and a strong magnetic field at considerable wavelength. Currently, we are doing the numerical analysis of this work.

Keywords: astrophysical, magnetic field, instability, MHD, wavelength, viscosity

Procedia PDF Downloads 337
7930 Development of Non-Point Pollutants Removal Equipments Using Media with Bacillus sp.

Authors: Han-Seul Lee, Min-Koo Kang, Sang-Ill Lee

Abstract:

This study was conducted to reduce runoff by rainwater infiltration facility using attached growth with Bacillus sp., which are reported to remove nitrogen and phosphorus, as well as organic matter effectively. This study was investigated non-point pollutants removal efficiency of organic, nitrogen, and phosphorus in column using the media attached growth with Bacillus sp. To compare attached growth with bacillus sp. and detached media, two columns filled with perlite, zeolite, vermiculite, pumice, peat-moss was installed. In A column (attached growth with bacillus sp.), in case of infiltration velocity 30 mm/hr in high concentration of influent, it showed the removal efficiency (after aging term) is SS (suspended solid) 85.8±1.2 %, T-P (total phosphorus) 67.0±8.1 %, T-N (total nitrogen) 66.0±4.9 %, COD (chemical oxygen demand) 73.6±2.9 %, NH4+-N 72.7±3.0 %. In B column (detached media), in case of infiltration velocity 30 mm/hr in high concentration of influent, it showed the removal efficiency (after aging term) is SS 86.0±2.2 %, T-P 62.5±11.3 %, T-N 53.3±3.9 %, COD 34.6±3.7 %, NH4+-N 61.5±2.8 %. Removal efficiency of A column is better than B column. As the result from this study, using media with Bacillus sp. can improve an effective removal of non-point source pollutants.

Keywords: non-point source pollutants, Bacillus sp., rainwater, infiltration facility

Procedia PDF Downloads 321
7929 Modeling the Impact of Time Pressure on Activity-Travel Rescheduling Heuristics

Authors: Jingsi Li, Neil S. Ferguson

Abstract:

Time pressure could have an influence on the productivity, quality of decision making, and the efficiency of problem-solving. This has been mostly stemmed from cognitive research or psychological literature. However, a salient scarce discussion has been held for transport adjacent fields. It is conceivable that in many activity-travel contexts, time pressure is a potentially important factor since an excessive amount of decision time may incur the risk of late arrival to the next activity. The activity-travel rescheduling behavior is commonly explained by costs and benefits of factors such as activity engagements, personal intentions, social requirements, etc. This paper hypothesizes that an additional factor of perceived time pressure could affect travelers’ rescheduling behavior, thus leading to an impact on travel demand management. Time pressure may arise from different ways and is assumed here to be essentially incurred due to travelers planning their schedules without an expectation of unforeseen elements, e.g., transport disruption. In addition to a linear-additive utility-maximization model, the less computationally compensatory heuristic models are considered as an alternative to simulate travelers’ responses. The paper will contribute to travel behavior modeling research by investigating the following questions: how to measure the time pressure properly in an activity-travel day plan context? How do travelers reschedule their plans to cope with the time pressure? How would the importance of the activity affect travelers’ rescheduling behavior? What will the behavioral model be identified to describe the process of making activity-travel rescheduling decisions? How do these identified coping strategies affect the transport network? In this paper, a Mixed Heuristic Model (MHM) is employed to identify the presence of different choice heuristics through a latent class approach. The data about travelers’ activity-travel rescheduling behavior is collected via a web-based interactive survey where a fictitious scenario is created comprising multiple uncertain events on the activity or travel. The experiments are conducted in order to gain a real picture of activity-travel reschedule, considering the factor of time pressure. The identified behavioral models are then integrated into a multi-agent transport simulation model to investigate the effect of the rescheduling strategy on the transport network. The results show that an increased proportion of travelers use simpler, non-compensatory choice strategies instead of compensatory methods to cope with time pressure. Specifically, satisfying - one of the heuristic decision-making strategies - is adopted commonly since travelers tend to abandon the less important activities and keep the important ones. Furthermore, the importance of the activity is found to increase the weight of negative information when making trip-related decisions, especially route choices. When incorporating the identified non-compensatory decision-making heuristic models into the agent-based transport model, the simulation results imply that neglecting the effect of perceived time pressure may result in an inaccurate forecast of choice probability and overestimate the affectability to the policy changes.

Keywords: activity-travel rescheduling, decision making under uncertainty, mixed heuristic model, perceived time pressure, travel demand management

Procedia PDF Downloads 109
7928 Prevalence and Determinants of Hypertension among the Santal Indigenous Group in Bangladesh

Authors: Sharmin Sultana, Palash Chandra Banik, Shirin Jahan Mumu, Liaquat Ali

Abstract:

Santals are one of the oldest indigenous groups of South Asia who, according to anthropological evidence, are thought to be the origins of the Bengali race. The aim of the study was to explore, according to our best knowledge for the first time, the prevalence and determinants of hypertension in this relatively isolated and marginalized indigenous group who still live mostly in a traditional style. Under a cross-sectional analytical design, the study was conducted on the adult (age≥18 years) Santals (n=389, M/F 184/205, age in years, 38±15.3) of a village located in a remote rural area of northern Bangladesh. Subjects were selected by purposive sampling, and data were collected by interviewer-administered pretested questionnaire. Blood pressure was measured by following the WHO guideline of JNC-7 has been used to classify the blood pressure. The prevalence of hypertension was 4.9% among the respondents. Females had a much higher prevalence (5.4%) of hypertension compared to males (4.3%). Among the risk indicators of hypertension, more than half (50.9%) of the study population took extra salt in their meals, whereas 10.5% of respondents used extra salt occasionally, which is an important risk factor for high blood pressure. High waist circumference was found in 19% of the study subjects in terms of central obesity. Older age group (p=0.003, OR=1.1, 95%CI-1.02-1.10), respondents who completed more than primary school (p=0.038, OR=7.1, CI-1.11, 44.6), overweight and obesity (p=0.004, OR=17.1, CI-2.5, 118.1), were the major determinant for hypertension as found from the binary logistic model. None of the respondents received any medication, neither they visit any doctor ever for their hypertension control. The prevalence of hypertension was found to be low but not ignorable. Pre-hypertension in the case of systolic blood pressure needs attention among Santal indigenous population.

Keywords: hypertension, indigenous group, Santals, Bangladesh

Procedia PDF Downloads 98
7927 Study of Gait Stability Evaluation Technique Based on Linear Inverted Pendulum Model

Authors: Kang Sungjae

Abstract:

This research proposes a gait stability evaluation technique based on the linear inverted pendulum model and moving support foot Zero Moment Point. With this, an improvement towards the gait analysis of the orthosis walk is validated. The application of Lagrangian mechanics approximation to the solutions of the dynamics equations for the linear inverted pendulum does not only simplify the solution, but it provides a smooth Zero Moment Point for the double feet support phase. The Zero Moment Point gait analysis techniques mentioned above validates reference trajectories for the center of mass of the gait orthosis, the timing of the steps and landing position references for the swing feet. The stability evaluation technique are tested with a 6 DOF powered gait orthosis. The results obtained are promising for implementations.

Keywords: locomotion, center of mass, gait stability, linear inverted pendulum model

Procedia PDF Downloads 512
7926 Response Surface Methodology to Supercritical Carbon Dioxide Extraction of Microalgal Lipids

Authors: Yen-Hui Chen, Terry Walker

Abstract:

As the world experiences an energy crisis, investing in sustainable energy resources is a pressing mission for many countries. Microalgae-derived biodiesel has attracted intensive attention as an important biofuel, and microalgae Chlorella protothecoides lipid is recognized as a renewable source for microalgae-derived biodiesel production. Supercritical carbon dioxide (SC-CO₂) is a promising green solvent that may potentially substitute the use of organic solvents for lipid extraction; however, the efficiency of SC-CO₂ extraction may be affected by many variables, including temperature, pressure and extraction time individually or in combination. In this study, response surface methodology (RSM) was used to optimize the process parameters, including temperature, pressure and extraction time, on C. protothecoides lipid yield by SC-CO₂ extraction. A second order polynomial model provided a good fit (R-square value of 0.94) for the C. protothecoides lipid yield. The linear and quadratic terms of temperature, pressure and extraction time—as well as the interaction between temperature and pressure—showed significant effects on lipid yield during extraction. The optimal lipid yield from the model was predicted as the temperature of 59 °C, the pressure of 350.7 bar and the extraction time 2.8 hours. Under these conditions, the experimental lipid yield (25%) was close to the predicted value. The principal fatty acid methyl esters (FAME) of C. protothecoides lipid-derived biodiesel were oleic acid methyl ester (60.1%), linoleic acid methyl ester (18.6%) and palmitic acid methyl ester (11.4%), which made up more than 90% of the total FAMEs. In summary, this study indicated that RSM was useful to characterize the optimization the SC-CO₂ extraction process of C. protothecoides lipid yield, and the second-order polynomial model could be used for predicting and describing the lipid yield very well. In addition, C. protothecoides lipid, extracted by SC-CO₂, was suggested as a potential candidate for microalgae-derived biodiesel production.

Keywords: Chlorella protothecoides, microalgal lipids, response surface methodology, supercritical carbon dioxide extraction

Procedia PDF Downloads 439
7925 Ballistics of Main Seat Ejection Cartridges for Aircraft Application

Authors: B. A. Parate, K. D. Deodhar, V. K. Dixit, V. V. Rao

Abstract:

This article outlines the ballistics of main seat ejection cartridges for aircraft application. The ballistics of main seat ejection cartridges plays a vital role during the ejection of the pilot in an emergency. The ballistic parameters such as maximum pressure, time is taken to reach the maximum pressure, and time required to reach half the maximum pressure contributes to the spinal injury of the pilot. Therefore, the evaluations of these parameters are very critical during various stages of development. Elaborate testing was carried out for main seat ejection cartridges on seat ejection tower (SET) at different operating temperatures considering physiological limits. As these trials are cumbersome in nature, a vented vessel (VV) testing facility was devised to lay down the performance parameters at hot and cold temperature conditions. Single base (SB) propellant having hepta-tubular configuration is selected as the main filling. Gun powder plays the role of a booster based on ballistic requirements. The evaluation methodology of various performance parameters of main seat ejection cartridges is explained in this paper. Physiological parameters such as maximum seat ejection velocity, acceleration, and rate of rising of acceleration are also experimentally determined on seat ejection tower. All the parameters are observed well within physiological limits. This paper addresses the internal ballistic of main seat ejection cartridges, propellant selection, its calculation, and evaluation of various performance parameters for an aircraft application.

Keywords: ballistics of seat ejection, ejection seat, gas generator, gun propulsion, main seat ejection cartridges, maximum pressure, performance parameters, propellant, progressive burning and vented vessel

Procedia PDF Downloads 151
7924 Inorganic Microporous Membranes Fabricated by Atmospheric Pressure Plasma Liquid Deposition

Authors: Damian A. Mooney, Michael T. P. Mc Cann, J. M. Don MacElroy, Olli Antson, Denis P. Dowling

Abstract:

Atmospheric pressure plasma liquid deposition (APPLD) is a novel technology used for the deposition of thin films via the injection of a reactive liquid precursor into a high-energy discharge plasma at ambient pressure. In this work, APPLD, utilising a TEOS precursor, was employed to produce asymmetric membranes consisting of a thin (100 nm) layer of deposited silica on a microporous silica support in order to assess their suitability for high temperature gas separation applications. He and N₂ gas permeability measurements were made for each of the fabricated membranes and a maximum ideal He/N₂ selectivity of 66 was observed at room temperature. He, N₂ and CO2 gas permeances were also measured at the elevated temperature of 673K and ideal He/N₂ and CO₂/N₂ selectivities of 300 and 7.4, respectively, were observed. The results suggest that this plasma-based deposition technique can be a viable method for the manufacture of membranes for the efficient separation of high temperature, post-combustion gases, including that of CO₂/N₂ where the constituent gases differ in size by fractions of an Ångstrom.

Keywords: asymmetric membrane, CO₂ separation, high temperature, plasma deposition, thin films

Procedia PDF Downloads 302
7923 Design and Development of Ceramics Kiln by Application Burners Use from High Pressure of Household Gas Stove

Authors: Somboon Sarasit

Abstract:

This research aims to develop a model small ceramic kiln using burner from a high-pressure household gas stove. The efficiency of the kiln and community technology transfer. The study of history shows that this area used to be a source of pottery on the old capital of Ayutthaya. There is evidence from pottery kilns unearthed many types of wood kiln since 2535 and was assumed that the production will end when the war with Burma in the Ayutthaya period. The result of the research design and performance testing of ceramic kiln using burners by gas cooker and outside from 200-liter steel drums inside with ceramic fiber. It was found that the Graze Firing of the products to be at a temperature of 1230°C. The duration of the burn approximately 5-6 hours and uses only 3-4 kg of LPG products, a coffee can burn up to 40-50 pieces. It is an energy-efficient Kiln. Use safe and appropriate opportunities for entrepreneurs, small ceramic and entrepreneurs with new investments or those who want to produce ceramic products as a hobby. The community interest in the pottery to create a new one to continue the product development and manufacturing in the harshest existence forever.

Keywords: ceramics kiln design and development, ceramic gas kiln, burners application, high-pressure of household gas stove

Procedia PDF Downloads 544
7922 Surface Quality Improvement of Abrasive Waterjet Cutting for Spacecraft Structure

Authors: Tarek M. Ahmed, Ahmed S. El Mesalamy, Amro M. Youssef, Tawfik T. El Midany

Abstract:

Abrasive waterjet (AWJ) machining is considered as one of the most powerful cutting processes. It can be used for cutting heat sensitive, hard and reflective materials. Aluminum 2024 is a high-strength alloy which is widely used in aerospace and aviation industries. This paper aims to improve aluminum alloy and to investigate the effect of AWJ control parameters on surface geometry quality. Design of experiments (DoE) is used for establishing an experimental matrix. Statistical modeling is used to present a relation between the cutting parameters (pressure, speed, and distance between the nozzle and cut surface) and responses (taper angle and surface roughness). The results revealed a tangible improvement in productivity by using AWJ processing. The taper kerf angle can be improved by decreasing standoff distance and speed and increasing water pressure. While decreasing (cutting speed, pressure and distance between the nozzle and cut surface) improve the surface roughness in the operating window of cutting parameters.

Keywords: abrasive waterjet machining, machining of aluminum alloy, non-traditional cutting, statistical modeling

Procedia PDF Downloads 246
7921 Gas Flaring Utilization at KK Station

Authors: Abd Alati Ali Abushnaq, Malek Essnni, Abduraouf Eteer

Abstract:

The present study proposes a comprehensive approach to effectively utilize associated gas from the KK remote station, eliminating the practice of flaring and mitigating greenhouse gas (GHG) emissions. The proposed integrated system involves diverting the associated gas via a newly designed pipeline, seamlessly connecting to the existing 12-inch pipeline at the tie-in point. The proposed destination is the low-pressure system at A-100 or 3rd stage, where the associated gas will be channeled towards the NGL (natural gas liquid) plant for processing. To ensure the system's efficacy under varying gas production scenarios, the study employs two industry-standard simulation software packages, Aspen HYSYS and PIPSIM. The simulated results demonstrate the system's ability to handle the projected increase in gas production, reaching up to 38 MMSCFD. This comprehensive analysis ensures the system's robustness and adaptability to future production demands.

Keywords: associated gas, flaring mitigation, GHG emissions, pipeline diversion, NGL plant, KK remote station, production forecasting, Aspen HYSYS, PIPSIM

Procedia PDF Downloads 82
7920 Biaxial Fatigue Specimen Design and Testing Rig Development

Authors: Ahmed H. Elkholy

Abstract:

An elastic analysis is developed to obtain the distribution of stresses, strains, bending moment and deformation for a thin hollow, variable thickness cylindrical specimen when subjected to different biaxial loadings. The specimen was subjected to a combination of internal pressure, axial tensile loading and external pressure. Several axial to circumferential stress ratios were investigated in detail. The analytical model was then validated using experimental results obtained from a test rig using several biaxial loadings. Based on the preliminary results obtained, the specimen was then modified geometrically to ensure uniform strain distribution through its wall thickness and along its gauge length. The new design of the specimen has a higher buckling strength and a maximum value of equivalent stress according to the maximum distortion energy theory. A cyclic function generator of the standard servo-controlled, electro-hydraulic testing machine is used to generate a specific signal shape (sine, square,…) at a certain frequency. The two independent controllers of the electronic circuit cause an independent movement to each servo-valve piston. The movement of each piston pressurizes the upper and lower sides of the actuators alternately. So, the specimen will be subjected to axial and diametral loads independent of each other. The hydraulic system has two different pressures: one pressure will be responsible for axial stress produced in the specimen and the other will be responsible for the tangential stress. Changing the two pressure ratios will change the stress ratios accordingly. The only restriction on the maximum stress obtained is the capacity of the testing system and specimen instability due to buckling.

Keywords: biaxial, fatigue, stress, testing

Procedia PDF Downloads 124
7919 Comparison of the Dynamic Characteristics of Active and Passive Hybrid Bearings

Authors: Denis V. Shutin, Alexander Yu. Babin, Leonid A. Savin

Abstract:

One of the ways of reducing vibroactivity of rotor systems is to apply active hybrid bearings. Their design allows correction of the rotor’s location by means of separately controlling the supply pressure of the lubricant into the friction area. In a most simple case, the control system is based on a P-regulator. Increase of the gain coefficient allows decreasing the amplitude of rotor’s vibrations. The same effect can be achieved by means of increasing the pressure in the collector of a traditional passive hybrid bearing. However, these approaches affect the dynamic characteristics of the bearing differently. Theoretical studies show that the increase of the gain coefficient of an active bearing increases the stiffness of the bearing, as well as the increase of the pressure in the collector. Nevertheless, in case of a passive bearing, the damping properties deteriorate, whereas the active hybrid bearings obtain higher damping properties, which allow effectively providing the energy dissipation of the rotor vibrations and reducing the load on the constructional elements of a machine.

Keywords: active bearings, control system, damping, hybrid bearings, stiffness

Procedia PDF Downloads 379
7918 Study of the Responding Time for Low Permeability Reservoirs

Authors: G. Lei, P. C. Dong, X. Q. Cen, S. Y. Mo

Abstract:

One of the most significant parameters, describing the effect of water flooding in porous media, is flood-response time, and it is an important index in oilfield development. The responding time in low permeability reservoir is usually calculated by the method of stable state successive substitution neglecting the effect of medium deformation. Numerous studies show that the media deformation has an important impact on the development for low permeability reservoirs and can not be neglected. On the base of streamline tube model, we developed a method to interpret responding time with medium deformation factor. The results show that: the media deformation factor, threshold pressure gradient and well spacing have a significant effect on the flood response time. The greater the media deformation factor, threshold pressure gradient or well spacing is, the lower the flood response time is. The responding time of different streamlines varies. As the angle with the main streamline increases, the water flooding response time delays as a "parabola" shape.

Keywords: low permeability, flood-response time, threshold pressure gradient, medium deformation

Procedia PDF Downloads 494
7917 Nonparametric Truncated Spline Regression Model on the Data of Human Development Index in Indonesia

Authors: Kornelius Ronald Demu, Dewi Retno Sari Saputro, Purnami Widyaningsih

Abstract:

Human Development Index (HDI) is a standard measurement for a country's human development. Several factors may have influenced it, such as life expectancy, gross domestic product (GDP) based on the province's annual expenditure, the number of poor people, and the percentage of an illiterate people. The scatter plot between HDI and the influenced factors show that the plot does not follow a specific pattern or form. Therefore, the HDI's data in Indonesia can be applied with a nonparametric regression model. The estimation of the regression curve in the nonparametric regression model is flexible because it follows the shape of the data pattern. One of the nonparametric regression's method is a truncated spline. Truncated spline regression is one of the nonparametric approach, which is a modification of the segmented polynomial functions. The estimator of a truncated spline regression model was affected by the selection of the optimal knots point. Knot points is a focus point of spline truncated functions. The optimal knots point was determined by the minimum value of generalized cross validation (GCV). In this article were applied the data of Human Development Index with a truncated spline nonparametric regression model. The results of this research were obtained the best-truncated spline regression model to the HDI's data in Indonesia with the combination of optimal knots point 5-5-5-4. Life expectancy and the percentage of an illiterate people were the significant factors depend to the HDI in Indonesia. The coefficient of determination is 94.54%. This means the regression model is good enough to applied on the data of HDI in Indonesia.

Keywords: generalized cross validation (GCV), Human Development Index (HDI), knots point, nonparametric regression, truncated spline

Procedia PDF Downloads 334
7916 Influence of Bacterial Motility on Biofilm Formation

Authors: Li Cheng, Zhang Yilei, Cohen Yehuda

Abstract:

Two motility mechanisms were introduced into iDynoMiCs software, which adopts an individual-based modeling method. Based on the new capabilities, along with the pressure motility developed before, influence of bacterial motility on biofilm formation was studied. Simulation results were evaluated both qualitatively through 3D structure inspections and quantitatively by parameter characterizations. It was showed that twitching motility increased the biofilm surface irregularity probably due to movement of cells towards higher nutrient concentration location whereas free motility, on the other hand, could make biofilms flatter and smoother relatively. Pressure motility showed no significant influence in this study.

Keywords: iDynoMics, biofilm structure, bacterial motility, motility mechanisms

Procedia PDF Downloads 386
7915 Reliability and Validity of Determining Ventilatory Threshold and Respiratory Compensation Point by Near-Infrared Spectroscopy

Authors: Tso-Yen Mao, De-Yen Liu, Chun-Feng Huang

Abstract:

Purpose: This research intends to investigate the reliability and validity of ventilatory threshold (VT) and respiratory compensation point (RCP) determined by skeletal muscle hemodynamic status. Methods: One hundred healthy male (age: 22±3 yrs; height: 173.1±6.0 cm; weight: 67.1±10.5 kg) performed graded cycling exercise test which ventilatory and skeletal muscle hemodynamic data were collected simultaneously. VT and RCP were determined by combined V-slope (VE vs. VCO2) and ventilatory efficiency (VE/VO2 vs. VE/VCO2) methods. Pearson correlation, paired t-test, and Bland-Altman plots were used to analyze reliability, validity, and similarities. Statistical significance was set at α =. 05. Results: There are high test-retest correlations of VT and RCP in ventilatory or near-infrared spectroscopy (NIRS) methods (VT vs. VTNIRS: 0.95 vs. 0.94; RCP vs. RCPNIRS: 0.93 vs. 0.93, p<. 05). There are high coefficient of determination at the first timing point of O2Hb decreased (R2 = 0.88, p<. 05) with VT, and high coefficient of determination at the second timing point of O2Hb declined (R2 = 0.89, p< .05) with RCP. VO2 of VT and RCP are not significantly different between ventilatory and NIRS methods (p>. 05). Conclusion: Using NIRS method to determine VT and RCP is reliable and valid in male individuals during graded exercise. Non-invasive skeletal muscle hemodynamics monitor also can be used for controlling training intensity in the future.

Keywords: anaerobic threshold, exercise intensity, hemodynamic, NIRS

Procedia PDF Downloads 308
7914 25-Hydroxy Vit D, Adiponectin Levels and Cardiometabolic Risk Factors in a Sample of Obese Children

Authors: Nayera E. Hassan, Sahar A. El-Masry, Rokia A. El Banna, Mones M. Abu Shady, Muhammad Al-Tohamy, Manal Mouhamed Ali, Mehrevan M. Abd El-Moniem, Mona Anwar

Abstract:

Association between vitamin D, adiponectin and obesity is a matter of debate, as they play important role in linking obesity with different cardiometabolic risk factors. Objectives: Evaluation of the association between metabolic risk factors with both adiponectin and vitamin D levels and that between adiponectin and vitamin D among obese Egyptian children. Subjects and Methods: This case-control cross-sectional study consisted of 65 obese and 30 healthy children, aged 8-11 years. 25-hydroxy vitamin D (25(OH) D) level, serum adiponectin, total cholesterol (TC), triglycerides (TG), high-density lipoprotein-cholesterol (HDL-C) and low-density lipoprotein-cholesterol (LDL-C) were measured. Results: The mean 25(OH) D levels in the obese and control groups were 29.9± 10.3 and 39.7 ± 12.7 ng/mL respectively (P < 0.001). The mean 25(OH) D and adiponectin levels in the obese were lower than that in the control group (P < 0.0001). 25(OH) D were inversely correlated with body mass index (BMI), triglyceride, total cholesterol and LDL-cholesterol (LDL-C), while adiponectin level were inversely correlated with systolic blood pressure (SBP), and diastolic blood pressure (DBP), and positively correlated with HDL-C. However, there is no relation between 25(OH) D and adiponectin levels among obese children and total sample. Conclusion: In spite of strong association between vitamin D and adiponectin levels with metabolic risk factors and obesity, there is no relation between 25(OH) D and adiponectin levels. In obese children, there are significant negative correlations between 25(OH) D with lipid profile, and between adiponectin levels with blood pressure. At certain adiponectin level, the relation between it and BMI disappears.

Keywords: 25-hydroxy vitamin D, adiponectin, lipid profile, blood pressure, children

Procedia PDF Downloads 367
7913 Restored CO₂ from Flue Gas and Utilization by Converting to Methanol by 3 Step Processes: Steam Reforming, Reverse Water Gas Shift and Hydrogenation

Authors: Rujira Jitrwung, Kuntima Krekkeitsakul, Weerawat Patthaveekongka, Chiraphat Kumpidet, Jarukit Tepkeaw, Krissana Jaikengdee, Anantachai Wannajampa

Abstract:

Flue gas discharging from coal fired or gas combustion power plant contains around 12% Carbon dioxide (CO₂), 6% Oxygen (O₂), and 82% Nitrogen (N₂).CO₂ is a greenhouse gas which has been concerned to the global warming. Carbon Capture, Utilization, and Storage (CCUS) is a topic which is a tool to deal with this CO₂ realization. Flue gas is drawn down from the chimney and filtered, then it is compressed to build up the pressure until 8 bar. This compressed flue gas is sent to three stages Pressure Swing Adsorption (PSA), which is filled with activated carbon. Experiments were showed the optimum adsorption pressure at 7bar, which CO₂ can be adsorbed step by step in 1st, 2nd, and 3rd stage, obtaining CO₂ concentration 29.8, 66.4, and 96.7 %, respectively. The mixed gas concentration from the last step is composed of 96.7% CO₂,2.7% N₂, and 0.6%O₂. This mixed CO₂product gas obtained from 3 stages PSA contained high concentration CO₂, which is ready to use for methanol synthesis. The mixed CO₂ was experimented in 5 Liter/Day of methanol synthesis reactor skid by 3 step processes as followed steam reforming, reverse water gas shift, and then hydrogenation. The result showed that proportional of mixed CO₂ and CH₄ 70/30, 50/50, 30/70 % (v/v), and 10/90 yielded methanol 2.4, 4.3, 5.6, and 6.0 Liter/day and save CO₂ 40, 30, 20, and 5 % respectively. The optimum condition resulted both methanol yield and CO₂ consumption using CO₂/CH₄ ratio 43/57 % (v/v), which yielded 4.8 Liter/day methanol and save CO₂ 27% comparing with traditional methanol production from methane steam reforming (5 Liter/day)and absent CO₂ consumption.

Keywords: carbon capture utilization and storage, pressure swing adsorption, reforming, reverse water gas shift, methanol

Procedia PDF Downloads 181
7912 Determination of Sintering Parameters of TiB₂ – Ti₃SiC₂ Composites

Authors: Bilge Yaman Islak, Erhan Ayas

Abstract:

The densification behavior of TiB₂ – Ti₃SiC₂ composites is investigated for temperatures in the range of 1200°C to 1400°C, for the pressure of 40 and 50MPa, and for holding time between 15-30 min by spark plasma sintering (SPS) technique. Ti, Si, TiC and 5 wt.% TiB₂ were used to synthesize TiB₂ – Ti₃SiC₂ composites and the effect of different sintering parameters on the densification and phase evolution of these composites were investigated. The bulk densities were determined by using the Archimedes method. The polished and fractured surfaces of the samples were examined using a scanning electron microscope equipped with an energy dispersive spectroscopy (EDS). The phase analyses were accomplished by using the X-Ray diffractometer. Sintering temperature and holding time are found to play a dominant role in the phase development of composites. TiₓCᵧ and TiSi₂ secondary phases were found in 5 wt.%TiB₂ – Ti₃SiC₂ composites densified at 1200°C and 1400°C under the pressure of 40 MPa, due to decomposition of Ti₃SiC₂. The results indicated that 5 wt.%TiB₂ – Ti₃SiC₂ composites were densified into the dense parts with a relative density of 98.77% by sintering at 1300 °C, for 15 min, under a pressure of 50 MPa via SPS without the formation of any other ancillary phase. This work was funded and supported by Scientific Research Projects Commission of Eskisehir Osmangazi University with the Project Number 201915C103 (2019-2517).

Keywords: densification, phase evolution, sintering, TiB₂ – Ti₃SiC₂ composites

Procedia PDF Downloads 140
7911 Temperature Calculation for an Atmospheric Pressure Plasma Jet by Optical Emission Spectroscopy

Authors: H. Lee, Jr., L. Bo-ot, R. Tumlos, H. Ramos

Abstract:

The objective of the study is to be able to calculate excitation and vibrational temperatures of a 2.45 GHz microwave-induced atmospheric pressure plasma jet. The plasma jet utilizes Argon gas as a primary working gas, while Nitrogen is utilized as a shroud gas for protecting the quartz tube from the plasma discharge. Through Optical Emission Spectroscopy (OES), various emission spectra were acquired from the plasma discharge. Selected lines from Ar I and N2 I emissions were used for the Boltzmann plot technique. The Boltzmann plots yielded values for the excitation and vibrational temperatures. The various values for the temperatures were plotted against varying parameters such as the gas flow rates.

Keywords: plasma jet, OES, Boltzmann plots, vibrational temperatures

Procedia PDF Downloads 709