Search results for: big data markets
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25783

Search results for: big data markets

25003 Data Science in Military Decision-Making: A Semi-Systematic Literature Review

Authors: H. W. Meerveld, R. H. A. Lindelauf

Abstract:

In contemporary warfare, data science is crucial for the military in achieving information superiority. Yet, to the authors’ knowledge, no extensive literature survey on data science in military decision-making has been conducted so far. In this study, 156 peer-reviewed articles were analysed through an integrative, semi-systematic literature review to gain an overview of the topic. The study examined to what extent literature is focussed on the opportunities or risks of data science in military decision-making, differentiated per level of war (i.e. strategic, operational, and tactical level). A relatively large focus on the risks of data science was observed in social science literature, implying that political and military policymakers are disproportionally influenced by a pessimistic view on the application of data science in the military domain. The perceived risks of data science are, however, hardly addressed in formal science literature. This means that the concerns on the military application of data science are not addressed to the audience that can actually develop and enhance data science models and algorithms. Cross-disciplinary research on both the opportunities and risks of military data science can address the observed research gaps. Considering the levels of war, relatively low attention for the operational level compared to the other two levels was observed, suggesting a research gap with reference to military operational data science. Opportunities for military data science mostly arise at the tactical level. On the contrary, studies examining strategic issues mostly emphasise the risks of military data science. Consequently, domain-specific requirements for military strategic data science applications are hardly expressed. Lacking such applications may ultimately lead to a suboptimal strategic decision in today’s warfare.

Keywords: data science, decision-making, information superiority, literature review, military

Procedia PDF Downloads 167
25002 Legal Regulation of Personal Information Data Transmission Risk Assessment: A Case Study of the EU’s DPIA

Authors: Cai Qianyi

Abstract:

In the midst of global digital revolution, the flow of data poses security threats that call China's existing legislative framework for protecting personal information into question. As a preliminary procedure for risk analysis and prevention, the risk assessment of personal data transmission lacks detailed guidelines for support. Existing provisions reveal unclear responsibilities for network operators and weakened rights for data subjects. Furthermore, the regulatory system's weak operability and a lack of industry self-regulation heighten data transmission hazards. This paper aims to compare the regulatory pathways for data information transmission risks between China and Europe from a legal framework and content perspective. It draws on the “Data Protection Impact Assessment Guidelines” to empower multiple stakeholders, including data processors, controllers, and subjects, while also defining obligations. In conclusion, this paper intends to solve China's digital security shortcomings by developing a more mature regulatory framework and industry self-regulation mechanisms, resulting in a win-win situation for personal data protection and the development of the digital economy.

Keywords: personal information data transmission, risk assessment, DPIA, internet service provider, personal information data transimission, risk assessment

Procedia PDF Downloads 61
25001 Wavelets Contribution on Textual Data Analysis

Authors: Habiba Ben Abdessalem

Abstract:

The emergence of giant set of textual data was the push that has encouraged researchers to invest in this field. The purpose of textual data analysis methods is to facilitate access to such type of data by providing various graphic visualizations. Applying these methods requires a corpus pretreatment step, whose standards are set according to the objective of the problem studied. This step determines the forms list contained in contingency table by keeping only those information carriers. This step may, however, lead to noisy contingency tables, so the use of wavelet denoising function. The validity of the proposed approach is tested on a text database that offers economic and political events in Tunisia for a well definite period.

Keywords: textual data, wavelet, denoising, contingency table

Procedia PDF Downloads 277
25000 A Study on Personnel Commitment Factors in Hafes Hospital

Authors: Farzaneh Bayat

Abstract:

Successful and effective presence in regional and global markets along with optimal use of available utilities and proper utilization of new sources for offering desirable services based on customer satisfaction is inevitable. Commitment has a significant role in offering optimal services. Offering high quality job and desirable services to the customers are personnel’s commitment. Thus, Shiraz Chamran Hospital which is affiliated with Shiraz Medical School and is one of the orthopedic poles in southern Iran was studied. This hospital has 750 personnel and physicians which a sample of 200 of them were chosen as the statistic society for a 5 month period from June to November 2009. Main variables in this decision are: responsibility and responsiveness, job security, team work, task autonomy, gradation opportunity, information sharing, payments and commitment. The study approach is descriptive-correlative. With applied and segmental nature of the tests and statistic analysis, the 7 hypotheses were approved with 95% of certainty.

Keywords: commitment, information sharing, responsibility and responsiveness, job security, task autonomy

Procedia PDF Downloads 340
24999 Customer Churn Analysis in Telecommunication Industry Using Data Mining Approach

Authors: Burcu Oralhan, Zeki Oralhan, Nilsun Sariyer, Kumru Uyar

Abstract:

Data mining has been becoming more and more important and a wide range of applications in recent years. Data mining is the process of find hidden and unknown patterns in big data. One of the applied fields of data mining is Customer Relationship Management. Understanding the relationships between products and customers is crucial for every business. Customer Relationship Management is an approach to focus on customer relationship development, retention and increase on customer satisfaction. In this study, we made an application of a data mining methods in telecommunication customer relationship management side. This study aims to determine the customers profile who likely to leave the system, develop marketing strategies, and customized campaigns for customers. Data are clustered by applying classification techniques for used to determine the churners. As a result of this study, we will obtain knowledge from international telecommunication industry. We will contribute to the understanding and development of this subject in Customer Relationship Management.

Keywords: customer churn analysis, customer relationship management, data mining, telecommunication industry

Procedia PDF Downloads 317
24998 On Pooling Different Levels of Data in Estimating Parameters of Continuous Meta-Analysis

Authors: N. R. N. Idris, S. Baharom

Abstract:

A meta-analysis may be performed using aggregate data (AD) or an individual patient data (IPD). In practice, studies may be available at both IPD and AD level. In this situation, both the IPD and AD should be utilised in order to maximize the available information. Statistical advantages of combining the studies from different level have not been fully explored. This study aims to quantify the statistical benefits of including available IPD when conducting a conventional summary-level meta-analysis. Simulated meta-analysis were used to assess the influence of the levels of data on overall meta-analysis estimates based on IPD-only, AD-only and the combination of IPD and AD (mixed data, MD), under different study scenario. The percentage relative bias (PRB), root mean-square-error (RMSE) and coverage probability were used to assess the efficiency of the overall estimates. The results demonstrate that available IPD should always be included in a conventional meta-analysis using summary level data as they would significantly increased the accuracy of the estimates. On the other hand, if more than 80% of the available data are at IPD level, including the AD does not provide significant differences in terms of accuracy of the estimates. Additionally, combining the IPD and AD has moderating effects on the biasness of the estimates of the treatment effects as the IPD tends to overestimate the treatment effects, while the AD has the tendency to produce underestimated effect estimates. These results may provide some guide in deciding if significant benefit is gained by pooling the two levels of data when conducting meta-analysis.

Keywords: aggregate data, combined-level data, individual patient data, meta-analysis

Procedia PDF Downloads 375
24997 Analyzing On-Line Process Data for Industrial Production Quality Control

Authors: Hyun-Woo Cho

Abstract:

The monitoring of industrial production quality has to be implemented to alarm early warning for unusual operating conditions. Furthermore, identification of their assignable causes is necessary for a quality control purpose. For such tasks many multivariate statistical techniques have been applied and shown to be quite effective tools. This work presents a process data-based monitoring scheme for production processes. For more reliable results some additional steps of noise filtering and preprocessing are considered. It may lead to enhanced performance by eliminating unwanted variation of the data. The performance evaluation is executed using data sets from test processes. The proposed method is shown to provide reliable quality control results, and thus is more effective in quality monitoring in the example. For practical implementation of the method, an on-line data system must be available to gather historical and on-line data. Recently large amounts of data are collected on-line in most processes and implementation of the current scheme is feasible and does not give additional burdens to users.

Keywords: detection, filtering, monitoring, process data

Procedia PDF Downloads 559
24996 A Review of Travel Data Collection Methods

Authors: Muhammad Awais Shafique, Eiji Hato

Abstract:

Household trip data is of crucial importance for managing present transportation infrastructure as well as to plan and design future facilities. It also provides basis for new policies implemented under Transportation Demand Management. The methods used for household trip data collection have changed with passage of time, starting with the conventional face-to-face interviews or paper-and-pencil interviews and reaching to the recent approach of employing smartphones. This study summarizes the step-wise evolution in the travel data collection methods. It provides a comprehensive review of the topic, for readers interested to know the changing trends in the data collection field.

Keywords: computer, smartphone, telephone, travel survey

Procedia PDF Downloads 313
24995 Traditional Factors of States’ Economic Growth: Modern Patterns, Values and Limitations

Authors: Denis Ushakov

Abstract:

Fast growing international migration as a factor of labor globalization now is one of the most important trends of world economy and determinant of social-political transformations. Study of fundamental economical reasons for international migration is relevant due to their prognostic, predictable and normative potential, which can be used in conditions of global economic non-stability. This paper analyzes role of natural-resources, financial and labor factors in economic growth of the modern states; studies relationships between stimulating role of natural resources, finance and labor with levels of modern countries’ economy development. Based on achieved results, findings about fundamental reasons of international migration; transformation of labor factor’s role in providing an economical progress of the states; efficiency of positive impact of manufacturing factors (domestic and attracted from international markets) were offered.

Keywords: international migration, migrant, labor productivity, economy efficiency of migration, migration policy

Procedia PDF Downloads 276
24994 A Business-to-Business Collaboration System That Promotes Data Utilization While Encrypting Information on the Blockchain

Authors: Hiroaki Nasu, Ryota Miyamoto, Yuta Kodera, Yasuyuki Nogami

Abstract:

To promote Industry 4.0 and Society 5.0 and so on, it is important to connect and share data so that every member can trust it. Blockchain (BC) technology is currently attracting attention as the most advanced tool and has been used in the financial field and so on. However, the data collaboration using BC has not progressed sufficiently among companies on the supply chain of manufacturing industry that handle sensitive data such as product quality, manufacturing conditions, etc. There are two main reasons why data utilization is not sufficiently advanced in the industrial supply chain. The first reason is that manufacturing information is top secret and a source for companies to generate profits. It is difficult to disclose data even between companies with transactions in the supply chain. In the blockchain mechanism such as Bitcoin using PKI (Public Key Infrastructure), in order to confirm the identity of the company that has sent the data, the plaintext must be shared between the companies. Another reason is that the merits (scenarios) of collaboration data between companies are not specifically specified in the industrial supply chain. For these problems this paper proposes a Business to Business (B2B) collaboration system using homomorphic encryption and BC technique. Using the proposed system, each company on the supply chain can exchange confidential information on encrypted data and utilize the data for their own business. In addition, this paper considers a scenario focusing on quality data, which was difficult to collaborate because it is a top secret. In this scenario, we show a implementation scheme and a benefit of concrete data collaboration by proposing a comparison protocol that can grasp the change in quality while hiding the numerical value of quality data.

Keywords: business to business data collaboration, industrial supply chain, blockchain, homomorphic encryption

Procedia PDF Downloads 136
24993 Multivariate Assessment of Mathematics Test Scores of Students in Qatar

Authors: Ali Rashash Alzahrani, Elizabeth Stojanovski

Abstract:

Data on various aspects of education are collected at the institutional and government level regularly. In Australia, for example, students at various levels of schooling undertake examinations in numeracy and literacy as part of NAPLAN testing, enabling longitudinal assessment of such data as well as comparisons between schools and states within Australia. Another source of educational data collected internationally is via the PISA study which collects data from several countries when students are approximately 15 years of age and enables comparisons in the performance of science, mathematics and English between countries as well as ranking of countries based on performance in these standardised tests. As well as student and school outcomes based on the tests taken as part of the PISA study, there is a wealth of other data collected in the study including parental demographics data and data related to teaching strategies used by educators. Overall, an abundance of educational data is available which has the potential to be used to help improve educational attainment and teaching of content in order to improve learning outcomes. A multivariate assessment of such data enables multiple variables to be considered simultaneously and will be used in the present study to help develop profiles of students based on performance in mathematics using data obtained from the PISA study.

Keywords: cluster analysis, education, mathematics, profiles

Procedia PDF Downloads 126
24992 Dataset Quality Index:Development of Composite Indicator Based on Standard Data Quality Indicators

Authors: Sakda Loetpiparwanich, Preecha Vichitthamaros

Abstract:

Nowadays, poor data quality is considered one of the majority costs for a data project. The data project with data quality awareness almost as much time to data quality processes while data project without data quality awareness negatively impacts financial resources, efficiency, productivity, and credibility. One of the processes that take a long time is defining the expectations and measurements of data quality because the expectation is different up to the purpose of each data project. Especially, big data project that maybe involves with many datasets and stakeholders, that take a long time to discuss and define quality expectations and measurements. Therefore, this study aimed at developing meaningful indicators to describe overall data quality for each dataset to quick comparison and priority. The objectives of this study were to: (1) Develop a practical data quality indicators and measurements, (2) Develop data quality dimensions based on statistical characteristics and (3) Develop Composite Indicator that can describe overall data quality for each dataset. The sample consisted of more than 500 datasets from public sources obtained by random sampling. After datasets were collected, there are five steps to develop the Dataset Quality Index (SDQI). First, we define standard data quality expectations. Second, we find any indicators that can measure directly to data within datasets. Thirdly, each indicator aggregates to dimension using factor analysis. Next, the indicators and dimensions were weighted by an effort for data preparing process and usability. Finally, the dimensions aggregate to Composite Indicator. The results of these analyses showed that: (1) The developed useful indicators and measurements contained ten indicators. (2) the developed data quality dimension based on statistical characteristics, we found that ten indicators can be reduced to 4 dimensions. (3) The developed Composite Indicator, we found that the SDQI can describe overall datasets quality of each dataset and can separate into 3 Level as Good Quality, Acceptable Quality, and Poor Quality. The conclusion, the SDQI provide an overall description of data quality within datasets and meaningful composition. We can use SQDI to assess for all data in the data project, effort estimation, and priority. The SDQI also work well with Agile Method by using SDQI to assessment in the first sprint. After passing the initial evaluation, we can add more specific data quality indicators into the next sprint.

Keywords: data quality, dataset quality, data quality management, composite indicator, factor analysis, principal component analysis

Procedia PDF Downloads 139
24991 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm

Authors: Ameur Abdelkader, Abed Bouarfa Hafida

Abstract:

Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.

Keywords: predictive analysis, big data, predictive analysis algorithms, CART algorithm

Procedia PDF Downloads 142
24990 Canopy Temperature Acquired from Daytime and Nighttime Aerial Data as an Indicator of Trees’ Health Status

Authors: Agata Zakrzewska, Dominik Kopeć, Adrian Ochtyra

Abstract:

The growing number of new cameras, sensors, and research methods allow for a broader application of thermal data in remote sensing vegetation studies. The aim of this research was to check whether it is possible to use thermal infrared data with a spectral range (3.6-4.9 μm) obtained during the day and the night to assess the health condition of selected species of deciduous trees in an urban environment. For this purpose, research was carried out in the city center of Warsaw (Poland) in 2020. During the airborne data acquisition, thermal data, laser scanning, and orthophoto map images were collected. Synchronously with airborne data, ground reference data were obtained for 617 studied species (Acer platanoides, Acer pseudoplatanus, Aesculus hippocastanum, Tilia cordata, and Tilia × euchlora) in different health condition states. The results were as follows: (i) healthy trees are cooler than trees in poor condition and dying both in the daytime and nighttime data; (ii) the difference in the canopy temperatures between healthy and dying trees was 1.06oC of mean value on the nighttime data and 3.28oC of mean value on the daytime data; (iii) condition classes significantly differentiate on both daytime and nighttime thermal data, but only on daytime data all condition classes differed statistically significantly from each other. In conclusion, the aerial thermal data can be considered as an alternative to hyperspectral data, a method of assessing the health condition of trees in an urban environment. Especially data obtained during the day, which can differentiate condition classes better than data obtained at night. The method based on thermal infrared and laser scanning data fusion could be a quick and efficient solution for identifying trees in poor health that should be visually checked in the field.

Keywords: middle wave infrared, thermal imagery, tree discoloration, urban trees

Procedia PDF Downloads 115
24989 Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectroscopy (AAS) for the Elemental Analysis Medicinal Plants from India Used in the Treatment of Heart Diseases

Authors: B. M. Pardeshi

Abstract:

Introduction: Minerals and trace elements are chemical elements required by our bodies for numerous biological and physiological processes that are necessary for the maintenance of health. Medicinal plants are highly beneficial for the maintenance of good health and prevention of diseases. They are known as potential sources of minerals and vitamins. 30 to 40% of today’s conventional drugs used in the medicinal and curative properties of various plants are employed in herbal supplement botanicals, nutraceuticals and drug. Aim: The authors explored the mineral element content of some herbs, because mineral elements may have significant role in the development and treatment of gastrointestinal diseases, and a close connection between the presence or absence of mineral elements and inflammatory mediators was noted. Methods: Present study deals with the elemental analysis of medicinal plants by Instrumental Neutron activation Analysis and Atomic Absorption Spectroscopy. Medicinal herbals prescribed for skin diseases were purchased from markets and were analyzed by Instrumental Neutron Activation Analysis (INAA) using 252Cf Californium spontaneous fission neutron source (flux* 109 n s-1) and the induced activities were counted by γ-ray spectrometry and Atomic Absorption Spectroscopy (AAS) techniques (Perkin Elmer 3100 Model) available at Department of Chemistry University of Pune, India, was used for the measurement of major, minor and trace elements. Results: 15 elements viz. Al, K, Cl, Na, Mn by INAA and Cu, Co, Pb Ni, Cr, Ca, Fe, Zn, Hg and Cd by AAS were analyzed from different medicinal plants from India. A critical examination of the data shows that the elements Ca , K, Cl, Al, and Fe are found to be present at major levels in most of the samples while the other elements Na, Mn, Cu, Co, Pb, Ni, Cr, Ca, Zn, Hg and Cd are present in minor or trace levels. Conclusion: The beneficial therapeutic effect of the studied herbs may be related to their mineral element content. The elemental concentration in different medicinal plants is discussed.

Keywords: instrumental neutron activation analysis, atomic absorption spectroscopy, medicinal plants, trace elemental analysis, mineral contents

Procedia PDF Downloads 333
24988 Good Marketing is an Important Factor for the Success of the Institution

Authors: Maamar Moumena

Abstract:

the Follower of the movement of international competition finds that the success of Japanese companies to break into global markets and win a competitive edge and meet the challenges of this competition, due primarily to the adoption of these companies to the modern concept of marketing, and possession of sophisticated marketing systems, with a focus on pricing policy. The institution's ability to produce goods and services be limited unless accompanied by an effective marketing effort. So the satisfaction of the consumer needs efficiently and effectiveness are unwarranted economic and social presence in the market, and ensure the continuity and achieve their goals, and this can only be achieved through marketing activity, where he activity facet which translates the output of the institution and its presence in the form of financial compensation, and that the inclusion of and marketing function within the functions of the institution and awarded each of gravity reflects the extent of their importance in the conduct of the future of the institution, and depending on excellence in performance and a good application of the basic concepts of marketing and primarily make the consumer focus of attention, so the pleasing of the consumer and earn his allegiance reflects the success of an organization.

Keywords: competition, marketing, institution, consumer

Procedia PDF Downloads 282
24987 Systematic Taxonomy and Phylogenetic of Commercial Fish Species of Family Nemipetridae from Malaysian Waters and Neighboring Seas

Authors: Ayesha Imtiaz, Darlina Md. Naim

Abstract:

Family Nemipteridae is among the most abundantly distributed family in Malaysian fish markets due to its high contribution to landing sites of Malaysia. Using an advanced molecular approach that used two mitochondrial (Cytochrome oxidase c I and Cytochrome oxidase b) and one nuclear gene (Recombination activating gene, RAGI) to expose cryptic diversity and phylogenetic relationships among commercially important species of family Nemipteridae. Our research covered all genera (including 31 species out total 45 species) of family Nemipteridae, distributed in Malaysia. We also found certain type of geographical barriers in the South China sea that reduces dispersal and stops a few species to intermix. Northside of the South China Sea (near Vietnam) does not allow genetic diversity to mix with the Southern side of the South China sea (Sarawak) and reduces dispersal. Straits of Malacca reduce the intermixing genetic diversity of South China Sea and the Indian Ocean.

Keywords: Nemipteridae, RAG I, south east Asia, Malaysia

Procedia PDF Downloads 143
24986 Hierarchical Clustering Algorithms in Data Mining

Authors: Z. Abdullah, A. R. Hamdan

Abstract:

Clustering is a process of grouping objects and data into groups of clusters to ensure that data objects from the same cluster are identical to each other. Clustering algorithms in one of the areas in data mining and it can be classified into partition, hierarchical, density based, and grid-based. Therefore, in this paper, we do a survey and review for four major hierarchical clustering algorithms called CURE, ROCK, CHAMELEON, and BIRCH. The obtained state of the art of these algorithms will help in eliminating the current problems, as well as deriving more robust and scalable algorithms for clustering.

Keywords: clustering, unsupervised learning, algorithms, hierarchical

Procedia PDF Downloads 885
24985 End to End Monitoring in Oracle Fusion Middleware for Data Verification

Authors: Syed Kashif Ali, Usman Javaid, Abdullah Chohan

Abstract:

In large enterprises multiple departments use different sort of information systems and databases according to their needs. These systems are independent and heterogeneous in nature and sharing information/data between these systems is not an easy task. The usage of middleware technologies have made data sharing between systems very easy. However, monitoring the exchange of data/information for verification purposes between target and source systems is often complex or impossible for maintenance department due to security/access privileges on target and source systems. In this paper, we are intended to present our experience of an end to end data monitoring approach at middle ware level implemented in Oracle BPEL for data verification without any help of monitoring tool.

Keywords: service level agreement, SOA, BPEL, oracle fusion middleware, web service monitoring

Procedia PDF Downloads 481
24984 Tourist Behavior Towards Blockchain-Based Payments

Authors: A. Šapkauskienė, A. Mačerinskienė, R. Andrulienė, R. Bruzgė, S. Masteika, K. Driaunys

Abstract:

The COVID-19 pandemic has affected not only world markets and economies but also the daily lives of customers and their payment habits. The pandemic has accelerated the digital transformation, so the role of technology will become even more important post-COVID. Although the popularity of cryptocurrencies has reached unprecedented heights, there are still obstacles, such as a lack of consumer experience and distrust of these technologies, so exploring the role of cryptocurrency and blockchain in the context of international travel becomes extremely important. Research on tourists’ intentions to use cryptocurrencies for payment purposes is limited due to the small number of research studies. To fill this research gap, an exploratory study based on the analysis of survey data was conducted. The purpose of the research is to explore how the behavior of tourists has changed making their financial transactions when paying for the tourism services in order to determine the intention to pay in cryptocurrencies. Behavioral intention can be examined as a dependent variable that is useful for the study of the acceptance of blockchain as cutting-edge technology. Therefore, this study examines the intention of travelers to use cryptocurrencies in electronic payments for tourism services. Several studies have shown that the intention to accept payments in a cryptocurrency is affected by the perceived usefulness of these payments and the perceived ease of use. The findings deepen our understanding of the readiness of service users to apply for blockchain-based payment in the tourism sector. The tourism industry has to focus not only on the technology but on consumers who can use cryptocurrencies, creating new possibilities and increasing business competitiveness. Based on research results, suggestions are made to guide future research on the use of cryptocurrencies by tourists in the tourism industry. Therefore, in line with the rapid expansion of virtual currency users, market capitalization, and payment in cryptographic currencies, it is necessary to explore the possibilities of implementing a blockchain-based system aiming to promote the use of services in the tourism sector as the most affected by the pandemic.

Keywords: behavioral intention, blockchain-based payment, cryptocurrency, tourism

Procedia PDF Downloads 105
24983 Positioning Food Safety in Halal Assurance

Authors: Marin Neio Demirci, Jan Mei Soon, Carol A. Wallace

Abstract:

Muslims follow the religion of Islam and the food they eat should be Halal, meaning lawful or permissible. Muslims are allowed to eat halal and wholesome food that has been provided for them. However, some of the main prohibitions are swine flesh, blood, carrion, animals not slaughtered according to Islamic laws and alcoholic drinks. At present Halal assurance is in a complicated state, with various Halal standards differing from each other without gaining mutual acceptance. The world is starting to understand the need for an influential globally accepted standard that would open doors to global markets and gain consumer confidence. This paper discusses issues mainly related to food safety in Halal assurance. The aim was to discover and describe the approach to food safety requirements in Halal food provision and how this is incorporated in the Halal assurance systems. The position of food safety regulation within Halal requirements or Halal standards’ requirements for food safety is still unclear. This review also considers whether current Halal standards include criteria in common with internationally accepted food hygiene standards and emphasizes the potential of using the HACCP system for Halal assurance.

Keywords: certification, GHP, HACCP, Halal standard

Procedia PDF Downloads 352
24982 Dissimilarity Measure for General Histogram Data and Its Application to Hierarchical Clustering

Authors: K. Umbleja, M. Ichino

Abstract:

Symbolic data mining has been developed to analyze data in very large datasets. It is also useful in cases when entry specific details should remain hidden. Symbolic data mining is quickly gaining popularity as datasets in need of analyzing are becoming ever larger. One type of such symbolic data is a histogram, which enables to save huge amounts of information into a single variable with high-level of granularity. Other types of symbolic data can also be described in histograms, therefore making histogram a very important and general symbolic data type - a method developed for histograms - can also be applied to other types of symbolic data. Due to its complex structure, analyzing histograms is complicated. This paper proposes a method, which allows to compare two histogram-valued variables and therefore find a dissimilarity between two histograms. Proposed method uses the Ichino-Yaguchi dissimilarity measure for mixed feature-type data analysis as a base and develops a dissimilarity measure specifically for histogram data, which allows to compare histograms with different number of bins and bin widths (so called general histogram). Proposed dissimilarity measure is then used as a measure for clustering. Furthermore, linkage method based on weighted averages is proposed with the concept of cluster compactness to measure the quality of clustering. The method is then validated with application on real datasets. As a result, the proposed dissimilarity measure is found producing adequate and comparable results with general histograms without the loss of detail or need to transform the data.

Keywords: dissimilarity measure, hierarchical clustering, histograms, symbolic data analysis

Procedia PDF Downloads 162
24981 Impact of Green Bonds Issuance on Stock Prices: An Event Study on Respective Indian Companies

Authors: S. L. Tulasi Devi, Shivam Azad

Abstract:

The primary objective of this study is to analyze the impact of green bond issuance on the stock prices of respective Indian companies. An event study methodology has been employed to study the effect of green bond issuance. For in-depth study and analysis, this paper used different window frames, including 15-15 days, 10-10 days, 7-7days, 6-6 days, and 5-5 days. Further, for better clarity, this paper also used an uneven window period of 7-5 days. The period of study covered all the companies which issued green bonds during the period of 2017-2022; Adani Green Energy, State Bank of India, Power Finance Corporation, Jain Irrigation, and Rural Electrification Corporation, except Indian Renewable Energy Development Agency and Indian Railway Finance Corporation, because of data unavailability. The paper used all three event study methods as discussed in earlier literature; 1) constant return model, 2) market-adjusted model, and 3) capital asset pricing model. For the fruitful comparison between results, the study considered cumulative average return (CAR) and buy and hold average return (BHAR) methodology. For checking the statistical significance, a two-tailed t-statistic has been used. All the statistical calculations have been performed in Microsoft Excel 2016. The study found that all other companies have shown positive returns on the event day except for the State Bank of India. The results demonstrated that constant return model outperformed compared to the market-adjusted model and CAPM. The p-value derived from all the methods has shown an almost insignificant impact of the issuance of green bonds on the stock prices of respective companies. The overall analysis states that there’s not much improvement in the market efficiency of the Indian Stock Markets.

Keywords: green bonds, event study methodology, constant return model, market-adjusted model, CAPM

Procedia PDF Downloads 97
24980 CSR Practices in Bali: An Exploratory Study on the Environmental Aspect

Authors: Trianasari, Gede Adi Yuniarta

Abstract:

The tourism industry has been widely recognized as one of the world’s largest industries and is expected to have continuous growth. While it has positive impacts especially on the job markets and economic aspect, this industry also brings serious environmental impacts that may not be neglected. As such, the tourism industry is faced with increasing demands and challenges to deal with the environmental issues. Corporate Social Responsibility (CSR) is a way to show the firms’ concern on the societal and environmental aspects. In line with the increasing pressure on such responsibilities, a growing number of firms have involved in CSR activities. In Bali, the majority of both chained and locally owned hotels have shown their efforts on CSR practices. However, little is known about what and how they perform or implement such program especially within the environmental aspect. The importance of understanding what they focus on lays in the identification of areas that have received sufficient treatment and those that require more attention. Furthermore, also, it is especially essential considering that Bali is one of the worldly known destinations that have been facing numerous crucial issues on environment that may threaten the sustainability of the island and its people. This paper reports on the results of a study exploring the practices of CSR in hotels in Bali. Data were collected from 49 hotel managers and human resource managers in Bali across four major tourist areas, using semi structured interview method. The analysis was conducted qualitatively. The results showed that all hotels under study have implemented CSR activities in which environment was found to be the second key aspect, following the activities directly related to community aspect. Moreover, there were five major types of environmental action identified: beach cleaning, replantation, marine conservation, turtle conservation, mangrove, and garbage management. These findings suggest that hotels in Bali under study have shown their concern on the environment, however, less attention was given on attempt to reduce the environmental impacts of their operations. Mapping the types of environmental related CSR activities enhances the knowledge of and gives lights into the CSR literature especially from the perspective of Eastern practice.

Keywords: CSR, exploratory study, sustainable tourism, tourist object

Procedia PDF Downloads 168
24979 WiFi Data Offloading: Bundling Method in a Canvas Business Model

Authors: Majid Mokhtarnia, Alireza Amini

Abstract:

Mobile operators deal with increasing in the data traffic as a critical issue. As a result, a vital responsibility of the operators is to deal with such a trend in order to create added values. This paper addresses a bundling method in a Canvas business model in a WiFi Data Offloading (WDO) strategy by which some elements of the model may be affected. In the proposed method, it is supposed to sell a number of data packages for subscribers in which there are some packages with a free given volume of data-offloaded WiFi complimentary. The paper on hands analyses this method in the views of attractiveness and profitability. The results demonstrate that the quality of implementation of the WDO strongly affects the final result and helps the decision maker to make the best one.

Keywords: bundling, canvas business model, telecommunication, WiFi data offloading

Procedia PDF Downloads 200
24978 Distributed Perceptually Important Point Identification for Time Series Data Mining

Authors: Tak-Chung Fu, Ying-Kit Hung, Fu-Lai Chung

Abstract:

In the field of time series data mining, the concept of the Perceptually Important Point (PIP) identification process is first introduced in 2001. This process originally works for financial time series pattern matching and it is then found suitable for time series dimensionality reduction and representation. Its strength is on preserving the overall shape of the time series by identifying the salient points in it. With the rise of Big Data, time series data contributes a major proportion, especially on the data which generates by sensors in the Internet of Things (IoT) environment. According to the nature of PIP identification and the successful cases, it is worth to further explore the opportunity to apply PIP in time series ‘Big Data’. However, the performance of PIP identification is always considered as the limitation when dealing with ‘Big’ time series data. In this paper, two distributed versions of PIP identification based on the Specialized Binary (SB) Tree are proposed. The proposed approaches solve the bottleneck when running the PIP identification process in a standalone computer. Improvement in term of speed is obtained by the distributed versions.

Keywords: distributed computing, performance analysis, Perceptually Important Point identification, time series data mining

Procedia PDF Downloads 435
24977 Analysing Techniques for Fusing Multimodal Data in Predictive Scenarios Using Convolutional Neural Networks

Authors: Philipp Ruf, Massiwa Chabbi, Christoph Reich, Djaffar Ould-Abdeslam

Abstract:

In recent years, convolutional neural networks (CNN) have demonstrated high performance in image analysis, but oftentimes, there is only structured data available regarding a specific problem. By interpreting structured data as images, CNNs can effectively learn and extract valuable insights from tabular data, leading to improved predictive accuracy and uncovering hidden patterns that may not be apparent in traditional structured data analysis. In applying a single neural network for analyzing multimodal data, e.g., both structured and unstructured information, significant advantages in terms of time complexity and energy efficiency can be achieved. Converting structured data into images and merging them with existing visual material offers a promising solution for applying CNN in multimodal datasets, as they often occur in a medical context. By employing suitable preprocessing techniques, structured data is transformed into image representations, where the respective features are expressed as different formations of colors and shapes. In an additional step, these representations are fused with existing images to incorporate both types of information. This final image is finally analyzed using a CNN.

Keywords: CNN, image processing, tabular data, mixed dataset, data transformation, multimodal fusion

Procedia PDF Downloads 123
24976 Knowledge Discovery and Data Mining Techniques in Textile Industry

Authors: Filiz Ersoz, Taner Ersoz, Erkin Guler

Abstract:

This paper addresses the issues and technique for textile industry using data mining techniques. Data mining has been applied to the stitching of garments products that were obtained from a textile company. Data mining techniques were applied to the data obtained from the CHAID algorithm, CART algorithm, Regression Analysis and, Artificial Neural Networks. Classification technique based analyses were used while data mining and decision model about the production per person and variables affecting about production were found by this method. In the study, the results show that as the daily working time increases, the production per person also decreases. In addition, the relationship between total daily working and production per person shows a negative result and the production per person show the highest and negative relationship.

Keywords: data mining, textile production, decision trees, classification

Procedia PDF Downloads 350
24975 The Importance of Patenting and Technology Exports as Indicators of Economic Development

Authors: Hugo Rodríguez

Abstract:

The patenting of inventions is the result of an organized effort to achieve technological improvement and its consequent positive impact on the population's standard of living. Technology exports, either of high-tech goods or of Information and Communication Technology (ICT) services, represent the level of acceptance that world markets have of that technology acquired or developed by a country, either in public or private settings. A quantitative measure of the above variables is expected to have a positive and relevant impact on the level of economic development of the countries, measured on this first occasion through their level of Gross Domestic Product (GDP). And in that sense, it not only explains the performance of an economy but the difference between nations. We present an econometric model where we seek to explain the difference between the GDP levels of 178 countries through their different performance in the outputs of the technological production process. We take the variables of Patenting, ICT Exports and High Technology Exports as results of the innovation process. This model achieves an explanatory power for four annual cuts (2000, 2005, 2010 and 2015) equivalent to an adjusted r2 of 0.91, 0.87, 0.91 and 0.96, respectively.

Keywords: Development, exports, patents, technology

Procedia PDF Downloads 110
24974 Paradigms of Assessment, Valuation and Quantification to Trade Ecosystem Services: A Review Focusing on Mangroves and Wetlands

Authors: Rama Seth, Luise Noring, Pratim Majumdar

Abstract:

Based on an extensive literature review, this paper presents distinct approaches to value, quantify and trade ecosystem services, with particular emphasis on services provided by mangroves and wetlands. Building on diverse monetary and market-based systems for the improved allocation of natural resources, such trading and exchange-based methods can help tackle the degradation of ecosystem services in a more targeted and structured manner than achievable with stand-alone policy and administrative regulations. Using various threads of literature, the paper proposes a platform that serves as the skeletal foundation for developing an efficient global market for ecosystem services trading. The paper bridges a significant research and practice gap by recommending how to establish an equilibrium in the biosphere via trading mechanisms while also discovering other research gaps and future research potential in the domain of ecosystem valuation.

Keywords: environment, economics, mangroves, wetlands, markets, ESG, global capital, climate investments, valuation, ecosystem services

Procedia PDF Downloads 251