Search results for: Deep Jyoti Singh
2455 Combining the Deep Neural Network with the K-Means for Traffic Accident Prediction
Authors: Celso L. Fernando, Toshio Yoshii, Takahiro Tsubota
Abstract:
Understanding the causes of a road accident and predicting their occurrence is key to preventing deaths and serious injuries from road accident events. Traditional statistical methods such as the Poisson and the Logistics regressions have been used to find the association of the traffic environmental factors with the accident occurred; recently, an artificial neural network, ANN, a computational technique that learns from historical data to make a more accurate prediction, has emerged. Although the ability to make accurate predictions, the ANN has difficulty dealing with highly unbalanced attribute patterns distribution in the training dataset; in such circumstances, the ANN treats the minority group as noise. However, in the real world data, the minority group is often the group of interest; e.g., in the road traffic accident data, the events of the accident are the group of interest. This study proposes a combination of the k-means with the ANN to improve the predictive ability of the neural network model by alleviating the effect of the unbalanced distribution of the attribute patterns in the training dataset. The results show that the proposed method improves the ability of the neural network to make a prediction on a highly unbalanced distributed attribute patterns dataset; however, on an even distributed attribute patterns dataset, the proposed method performs almost like a standard neural network.Keywords: accident risks estimation, artificial neural network, deep learning, k-mean, road safety
Procedia PDF Downloads 1662454 Physics-Informed Machine Learning for Displacement Estimation in Solid Mechanics Problem
Authors: Feng Yang
Abstract:
Machine learning (ML), especially deep learning (DL), has been extensively applied to many applications in recently years and gained great success in solving different problems, including scientific problems. However, conventional ML/DL methodologies are purely data-driven which have the limitations, such as need of ample amount of labelled training data, lack of consistency to physical principles, and lack of generalizability to new problems/domains. Recently, there is a growing consensus that ML models need to further take advantage of prior knowledge to deal with these limitations. Physics-informed machine learning, aiming at integration of physics/domain knowledge into ML, has been recognized as an emerging area of research, especially in the recent 2 to 3 years. In this work, physics-informed ML, specifically physics-informed neural network (NN), is employed and implemented to estimate the displacements at x, y, z directions in a solid mechanics problem that is controlled by equilibrium equations with boundary conditions. By incorporating the physics (i.e. the equilibrium equations) into the learning process of NN, it is showed that the NN can be trained very efficiently with a small set of labelled training data. Experiments with different settings of the NN model and the amount of labelled training data were conducted, and the results show that very high accuracy can be achieved in fulfilling the equilibrium equations as well as in predicting the displacements, e.g. in setting the overall displacement of 0.1, a root mean square error (RMSE) of 2.09 × 10−4 was achieved.Keywords: deep learning, neural network, physics-informed machine learning, solid mechanics
Procedia PDF Downloads 1512453 Melanoma and Non-Melanoma, Skin Lesion Classification, Using a Deep Learning Model
Authors: Shaira L. Kee, Michael Aaron G. Sy, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar AlDahoul
Abstract:
Skin diseases are considered the fourth most common disease, with melanoma and non-melanoma skin cancer as the most common type of cancer in Caucasians. The alarming increase in Skin Cancer cases shows an urgent need for further research to improve diagnostic methods, as early diagnosis can significantly improve the 5-year survival rate. Machine Learning algorithms for image pattern analysis in diagnosing skin lesions can dramatically increase the accuracy rate of detection and decrease possible human errors. Several studies have shown the diagnostic performance of computer algorithms outperformed dermatologists. However, existing methods still need improvements to reduce diagnostic errors and generate efficient and accurate results. Our paper proposes an ensemble method to classify dermoscopic images into benign and malignant skin lesions. The experiments were conducted using the International Skin Imaging Collaboration (ISIC) image samples. The dataset contains 3,297 dermoscopic images with benign and malignant categories. The results show improvement in performance with an accuracy of 88% and an F1 score of 87%, outperforming other existing models such as support vector machine (SVM), Residual network (ResNet50), EfficientNetB0, EfficientNetB4, and VGG16.Keywords: deep learning - VGG16 - efficientNet - CNN – ensemble – dermoscopic images - melanoma
Procedia PDF Downloads 842452 High Pressure Processing of Jackfruit Bulbs: Effect on Color, Nutrient Profile and Enzyme Inactivation
Authors: Jyoti Kumari, Pavuluri Srinivasa Rao
Abstract:
Jackfruit (ArtocarpusheterophyllusL.) is an underutilized yet highly nutritious fruit with unique flavour, known for its therapeutic and culinary properties. Fresh jackfruit bulb has a very short shelf life due to high moisture and sugar content leading to microbial and enzymatic browning, hindering its consumer acceptability and marketability. An attempt has been made for the preservation of the ripe jackfruit bulbs, by the application of high pressure (HP) over a range of 200-500 MPa at ambient temperature for dwell times ranging from 5 to 20 min. The physicochemical properties of jackfruit bulbs such as the pH, TSS, and titrable acidity were not affected by the pressurization process. The ripening index of the fruit bulb also decreased following HP treatment. While the ascorbic acid and antioxidant activity of jackfruit bulb were well retained by high pressure processing (HPP), the total phenols and carotenoids showed a slight increase. The HPP significantly affected the colour and textural properties of jackfruit bulb. High pressure processing was highly effective in reducing the browning index of jackfruit bulbs in comparison to untreated bulbs. The firmness of the bulbs improved upon the pressure treatment with longer dwelling time. The polyphenol oxidase has been identified as the most prominent oxidative enzyme in the jackfruit bulb. The enzymatic activity of polyphenol oxidase and peroxidase were significantly reduced by up to 40% following treatment at 400 MPa/15 min. HPP of jackfruit bulbs at ambient temperatures is shown to be highly beneficial in improving the shelf stability, retaining its nutrient profile, color, and appearance while ensuring the maximum inactivation of the spoilage enzymes.Keywords: antioxidant capacity, ascorbic acid, carotenoids, color, HPP-high pressure processing, jackfruit bulbs, polyphenol oxidase, peroxidase, total phenolic content
Procedia PDF Downloads 1762451 Biotechnological Interventions for Crop Improvement in Nutricereal Pearl Millet
Authors: Supriya Ambawat, Subaran Singh, C. Tara Satyavathi, B. S. Rajpurohit, Ummed Singh, Balraj Singh
Abstract:
Pearl millet [Pennisetum glaucum (L.) R. Br.] is an important staple food of the arid and semiarid tropical regions of Asia, Africa, and Latin America. It is rightly termed as nutricereal as it has high nutrition value and a good source of carbohydrate, protein, fat, ash, dietary fiber, potassium, magnesium, iron, zinc, etc. Pearl millet has low prolamine fraction and is gluten free which is useful for people having a gluten allergy. It has several health benefits like reduction in blood pressure, thyroid, diabe¬tes, cardiovascular and celiac diseases but its direct consumption as food has significantly declined due to several reasons. Keeping this in view, it is important to reorient the ef¬forts to generate demand through value-addition and quality improvement and create awareness on the nutritional merits of pearl millet. In India, through Indian Council of Agricultural Research-All India Coordinated Research Project on Pearl millet, multilocational coordinated trials for developed hybrids were conducted at various centers. The gene banks of pearl millet contain varieties with high levels of iron and zinc which were used to produce new pearl millet varieties with elevated iron levels bred with the high‐yielding varieties. Thus, using breeding approaches and biochemical analysis, a total of 167 hybrids and 61 varieties were identified and released for cultivation in different agro-ecological zones of the country which also includes some biofortified hybrids rich in Fe and Zn. Further, using several biotechnological interventions such as molecular markers, next-generation sequencing (NGS), association mapping, nested association mapping (NAM), MAGIC populations, genome editing, genotyping by sequencing (GBS), genome wide association studies (GWAS) advancement in millet improvement has become possible by identifying and tagging of genes underlying a trait in the genome. Using DArT markers very high density linkage maps were constructed for pearl millet. Improved HHB67 has been released using marker assisted selection (MAS) strategies, and genomic tools were used to identify Fe-Zn Quantitative Trait Loci (QTL). The draft genome sequence of millet has also opened various ways to explore pearl millet. Further, genomic positions of significantly associated simple sequence repeat (SSR) markers with iron and zinc content in the consensus map is being identified and research is in progress towards mapping QTLs for flour rancidity. The sequence information is being used to explore genes and enzymatic pathways responsible for rancidity of flour. Thus, development and application of several biotechnological approaches along with biofortification can accelerate the genetic gain targets for pearl millet improvement and help improve its quality.Keywords: Biotechnological approaches, genomic tools, malnutrition, MAS, nutricereal, pearl millet, sequencing.
Procedia PDF Downloads 1882450 Accurate Mass Segmentation Using U-Net Deep Learning Architecture for Improved Cancer Detection
Authors: Ali Hamza
Abstract:
Accurate segmentation of breast ultrasound images is of paramount importance in enhancing the diagnostic capabilities of breast cancer detection. This study presents an approach utilizing the U-Net architecture for segmenting breast ultrasound images aimed at improving the accuracy and reliability of mass identification within the breast tissue. The proposed method encompasses a multi-stage process. Initially, preprocessing techniques are employed to refine image quality and diminish noise interference. Subsequently, the U-Net architecture, a deep learning convolutional neural network (CNN), is employed for pixel-wise segmentation of regions of interest corresponding to potential breast masses. The U-Net's distinctive architecture, characterized by a contracting and expansive pathway, enables accurate boundary delineation and detailed feature extraction. To evaluate the effectiveness of the proposed approach, an extensive dataset of breast ultrasound images is employed, encompassing diverse cases. Quantitative performance metrics such as the Dice coefficient, Jaccard index, sensitivity, specificity, and Hausdorff distance are employed to comprehensively assess the segmentation accuracy. Comparative analyses against traditional segmentation methods showcase the superiority of the U-Net architecture in capturing intricate details and accurately segmenting breast masses. The outcomes of this study emphasize the potential of the U-Net-based segmentation approach in bolstering breast ultrasound image analysis. The method's ability to reliably pinpoint mass boundaries holds promise for aiding radiologists in precise diagnosis and treatment planning. However, further validation and integration within clinical workflows are necessary to ascertain their practical clinical utility and facilitate seamless adoption by healthcare professionals. In conclusion, leveraging the U-Net architecture for breast ultrasound image segmentation showcases a robust framework that can significantly enhance diagnostic accuracy and advance the field of breast cancer detection. This approach represents a pivotal step towards empowering medical professionals with a more potent tool for early and accurate breast cancer diagnosis.Keywords: mage segmentation, U-Net, deep learning, breast cancer detection, diagnostic accuracy, mass identification, convolutional neural network
Procedia PDF Downloads 852449 Investigation of the Effects of Gamma Radiation on the Electrically Active Defects in InAs/InGaAs Quantum Dots Laser Structures Grown by Molecular Beam Epitaxy on GaAs Substrates Using Deep Level Transient Spectroscopy
Authors: M. Al Huwayz, A. Salhi, S. Alhassan, S. Alotaibi, A. Almalki, M.Almunyif, A. Alhassni, M. Henini
Abstract:
Recently, there has been much research carried out to investigate quantum dots (QDs) lasers with the aim to increase the gain of quantum well lasers. However, one of the difficulties with these structures is that electrically active defects can lead to serious issues in the performance of these devices. It is therefore essential to fully understand the types of defects introduced during the growth and/or the fabrication process. In this study, the effects of Gamma radiation on the electrically active defects in p-i-n InAs/InGaAsQDs laser structures grown by Molecular Beam Epitaxy (MBE) technique on GaAs substrates were investigated. Deep Level Transient Spectroscopy (DLTS), current-voltage (I-V), and capacitance-voltage (C-V) measurements were performed to explore these effects on the electrical properties of these QDs lasers. I-V measurements showed that as-grown sample had better electrical properties than the irradiated sample. However, DLTS and Laplace DLTS measurements at different reverse biases revealed that the defects in the-region of the p-i-n structures were decreased in the irradiated sample. In both samples, a trap with an activation energy of ~ 0.21 eV was assigned to the well-known defect M1 in GaAs layersKeywords: quantum dots laser structures, gamma radiation, DLTS, defects, nAs/IngaAs
Procedia PDF Downloads 1872448 The Impact of Artificial Intelligence on Agricultural Machines and Plant Nutrition
Authors: Kirolos Gerges Yakoub Gerges
Abstract:
Self-sustaining agricultural machines act in stochastic surroundings and therefore, should be capable of perceive the surroundings in real time. This notion can be done using image sensors blended with superior device learning, mainly Deep mastering. Deep convolutional neural networks excel in labeling and perceiving colour pix and since the fee of RGB-cameras is low, the hardware cost of accurate notion relies upon heavily on memory and computation power. This paper investigates the opportunity of designing lightweight convolutional neural networks for semantic segmentation (pixel clever class) with reduced hardware requirements, to allow for embedded usage in self-reliant agricultural machines. The usage of compression techniques, a lightweight convolutional neural community is designed to carry out actual-time semantic segmentation on an embedded platform. The community is skilled on two big datasets, ImageNet and Pascal Context, to apprehend as much as four hundred man or woman instructions. The 400 training are remapped into agricultural superclasses (e.g. human, animal, sky, road, area, shelterbelt and impediment) and the capacity to provide correct actual-time perception of agricultural environment is studied. The network is carried out to the case of self-sufficient grass mowing the usage of the NVIDIA Tegra X1 embedded platform. Feeding case-unique pics to the community consequences in a fully segmented map of the superclasses within the picture. As the network remains being designed and optimized, handiest a qualitative analysis of the technique is entire on the abstract submission deadline. intending this cut-off date, the finalized layout is quantitatively evaluated on 20 annotated grass mowing pictures. Light-weight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show aggressive performance on the subject of accuracy and speed. It’s miles viable to offer value-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.Keywords: centrifuge pump, hydraulic energy, agricultural applications, irrigationaxial flux machines, axial flux applications, coreless machines, PM machinesautonomous agricultural machines, deep learning, safety, visual perception
Procedia PDF Downloads 292447 Time Estimation of Return to Sports Based on Classification of Health Levels of Anterior Cruciate Ligament Using a Convolutional Neural Network after Reconstruction Surgery
Authors: Zeinab Jafari A., Ali Sharifnezhad B., Mohammad Razi C., Mohammad Haghpanahi D., Arash Maghsoudi
Abstract:
Background and Objective: Sports-related rupture of the anterior cruciate ligament (ACL) and following injuries have been associated with various disorders, such as long-lasting changes in muscle activation patterns in athletes, which might last after ACL reconstruction (ACLR). The rupture of the ACL might result in abnormal patterns of movement execution, extending the treatment period and delaying athletes’ return to sports (RTS). As ACL injury is especially prevalent among athletes, the lengthy treatment process and athletes’ absence from sports are of great concern to athletes and coaches. Thus, estimating safe time of RTS is of crucial importance. Therefore, using a deep neural network (DNN) to classify the health levels of ACL in injured athletes, this study aimed to estimate the safe time for athletes to return to competitions. Methods: Ten athletes with ACLR and fourteen healthy controls participated in this study. Three health levels of ACL were defined: healthy, six-month post-ACLR surgery and nine-month post-ACLR surgery. Athletes with ACLR were tested six and nine months after the ACLR surgery. During the course of this study, surface electromyography (sEMG) signals were recorded from five knee muscles, namely Rectus Femoris (RF), Vastus Lateralis (VL), Vastus Medialis (VM), Biceps Femoris (BF), Semitendinosus (ST), during single-leg drop landing (SLDL) and forward hopping (SLFH) tasks. The Pseudo-Wigner-Ville distribution (PWVD) was used to produce three-dimensional (3-D) images of the energy distribution patterns of sEMG signals. Then, these 3-D images were converted to two-dimensional (2-D) images implementing the heat mapping technique, which were then fed to a deep convolutional neural network (DCNN). Results: In this study, we estimated the safe time of RTS by designing a DCNN classifier with an accuracy of 90 %, which could classify ACL into three health levels. Discussion: The findings of this study demonstrate the potential of the DCNN classification technique using sEMG signals in estimating RTS time, which will assist in evaluating the recovery process of ACLR in athletes.Keywords: anterior cruciate ligament reconstruction, return to sports, surface electromyography, deep convolutional neural network
Procedia PDF Downloads 792446 Glaucoma Detection in Retinal Tomography Using the Vision Transformer
Authors: Sushish Baral, Pratibha Joshi, Yaman Maharjan
Abstract:
Glaucoma is a chronic eye condition that causes vision loss that is irreversible. Early detection and treatment are critical to prevent vision loss because it can be asymptomatic. For the identification of glaucoma, multiple deep learning algorithms are used. Transformer-based architectures, which use the self-attention mechanism to encode long-range dependencies and acquire extremely expressive representations, have recently become popular. Convolutional architectures, on the other hand, lack knowledge of long-range dependencies in the image due to their intrinsic inductive biases. The aforementioned statements inspire this thesis to look at transformer-based solutions and investigate the viability of adopting transformer-based network designs for glaucoma detection. Using retinal fundus images of the optic nerve head to develop a viable algorithm to assess the severity of glaucoma necessitates a large number of well-curated images. Initially, data is generated by augmenting ocular pictures. After that, the ocular images are pre-processed to make them ready for further processing. The system is trained using pre-processed images, and it classifies the input images as normal or glaucoma based on the features retrieved during training. The Vision Transformer (ViT) architecture is well suited to this situation, as it allows the self-attention mechanism to utilise structural modeling. Extensive experiments are run on the common dataset, and the results are thoroughly validated and visualized.Keywords: glaucoma, vision transformer, convolutional architectures, retinal fundus images, self-attention, deep learning
Procedia PDF Downloads 1942445 Real-Time Pedestrian Detection Method Based on Improved YOLOv3
Authors: Jingting Luo, Yong Wang, Ying Wang
Abstract:
Pedestrian detection in image or video data is a very important and challenging task in security surveillance. The difficulty of this task is to locate and detect pedestrians of different scales in complex scenes accurately. To solve these problems, a deep neural network (RT-YOLOv3) is proposed to realize real-time pedestrian detection at different scales in security monitoring. RT-YOLOv3 improves the traditional YOLOv3 algorithm. Firstly, the deep residual network is added to extract vehicle features. Then six convolutional neural networks with different scales are designed and fused with the corresponding scale feature maps in the residual network to form the final feature pyramid to perform pedestrian detection tasks. This method can better characterize pedestrians. In order to further improve the accuracy and generalization ability of the model, a hybrid pedestrian data set training method is used to extract pedestrian data from the VOC data set and train with the INRIA pedestrian data set. Experiments show that the proposed RT-YOLOv3 method achieves 93.57% accuracy of mAP (mean average precision) and 46.52f/s (number of frames per second). In terms of accuracy, RT-YOLOv3 performs better than Fast R-CNN, Faster R-CNN, YOLO, SSD, YOLOv2, and YOLOv3. This method reduces the missed detection rate and false detection rate, improves the positioning accuracy, and meets the requirements of real-time detection of pedestrian objects.Keywords: pedestrian detection, feature detection, convolutional neural network, real-time detection, YOLOv3
Procedia PDF Downloads 1432444 Tailoring the Parameters of the Quantum MDS Codes Constructed from Constacyclic Codes
Authors: Jaskarn Singh Bhullar, Divya Taneja, Manish Gupta, Rajesh Kumar Narula
Abstract:
The existence conditions of dual containing constacyclic codes have opened a new path for finding quantum maximum distance separable (MDS) codes. Using these conditions parameters of length n=(q²+1)/2 quantum MDS codes were improved. A class of quantum MDS codes of length n=(q²+q+1)/h, where h>1 is an odd prime, have also been constructed having large minimum distance and these codes are new in the sense as these are not available in the literature.Keywords: hermitian construction, constacyclic codes, cyclotomic cosets, quantum MDS codes, singleton bound
Procedia PDF Downloads 3912443 Efficient Storage in Cloud Computing by Using Index Replica
Authors: Bharat Singh Deora, Sushma Satpute
Abstract:
Cloud computing is based on resource sharing. Like other resources which can be shareable, storage is a resource which can be shared. We can use collective resources of storage from different locations and maintain a central index table for storage details. The storage combining of different places can form a suitable data storage which is operated from one location and is very economical. Proper storage of data should improve data reliability & availability and bandwidth utilization. Also, we are moving the contents of one storage to other according to our need.Keywords: cloud computing, cloud storage, Iaas, PaaS, SaaS
Procedia PDF Downloads 3412442 Studies on Structural and Electrical Properties of Lanthanum Doped Sr₂CoMoO₆₋δ System
Authors: Pravin Kumar, Rajendra K. Singh, Prabhakar Singh
Abstract:
A widespread research work on Mo-based double perovskite systems has been reported as a potential application for electrode materials of solid oxide fuel cells. Mo-based double perovskites studied in form of B-site ordered double perovskite materials, with general formula A₂B′B″O₆ structured by alkaline earth element (A = Sr, Ca, Ba) and heterovalent transition metals (B′ = Fe, Co, Ni, Cr, etc. and B″ = Mo, W, etc.), are raising a significant interest as potential mixed ionic-electronic conductors in the temperature range of 500-800 °C. Such systems reveal higher electrical conductivity, particularly those assigned in form of Sr₂CoMoO₆₋δ (M = Mg, Mn, Fe, Co, Ni, Zn etc.) which were studied in different environments (air/H₂/H₂-Ar/CH₄) at an intermediate temperature. Among them, the Sr₂CoMoO₆₋δ system is a potential candidate as an anode material for solid oxide fuel cells (SOFCs) due to its better electrical conductivity. Therefore, Sr₂CoMoO₆₋δ (SCM) system with La-doped on Sr site has been studied to discover the structural and electrical properties. The double perovskite system Sr₂CoMoO₆₋δ (SCM) and doped system Sr₂-ₓLaₓCoMoO₆₋δ (SLCM, x=0.04) were synthesized by the citrate-nitrate combustion synthesis route. Thermal studies were carried out by thermo-gravimetric analysis. Phase justification was confirmed by powder X-ray diffraction (XRD) as a tetragonal structure with space group I4/m. A minor phase of SrMoO₄ (s.g. I41/a) was identified as a secondary phase using JCPDS card no. 85-0586. Micro-structural investigations revealed the formation of uniform grains. The average grain size of undoped (SCM) and doped (SLCM) compositions was calculated by a linear intercept method and found to be ⁓3.8 μm and 2.7 μm, respectively. The electrical conductivity of SLCM is found higher than SCM in the air within the temperature range of 200-600 °C. SLCM system was also measured in reducing atmosphere (pure H₂) in the temperature range 300-600 °C. SLCM has been showed the higher conductivity in the reducing atmosphere (H₂) than in air and therefore it could be a promising anode material for SOFCs.Keywords: double perovskite, electrical conductivity, SEM, XRD
Procedia PDF Downloads 1332441 Deep Learning-Based Object Detection on Low Quality Images: A Case Study of Real-Time Traffic Monitoring
Authors: Jean-Francois Rajotte, Martin Sotir, Frank Gouineau
Abstract:
The installation and management of traffic monitoring devices can be costly from both a financial and resource point of view. It is therefore important to take advantage of in-place infrastructures to extract the most information. Here we show how low-quality urban road traffic images from cameras already available in many cities (such as Montreal, Vancouver, and Toronto) can be used to estimate traffic flow. To this end, we use a pre-trained neural network, developed for object detection, to count vehicles within images. We then compare the results with human annotations gathered through crowdsourcing campaigns. We use this comparison to assess performance and calibrate the neural network annotations. As a use case, we consider six months of continuous monitoring over hundreds of cameras installed in the city of Montreal. We compare the results with city-provided manual traffic counting performed in similar conditions at the same location. The good performance of our system allows us to consider applications which can monitor the traffic conditions in near real-time, making the counting usable for traffic-related services. Furthermore, the resulting annotations pave the way for building a historical vehicle counting dataset to be used for analysing the impact of road traffic on many city-related issues, such as urban planning, security, and pollution.Keywords: traffic monitoring, deep learning, image annotation, vehicles, roads, artificial intelligence, real-time systems
Procedia PDF Downloads 2012440 Performance of Rapid Impact Compaction as a Middle-Deep Ground Improvement Technique
Authors: Bashar Tarawneh, Yasser Hakam
Abstract:
Rapid Impact Compaction (RIC) is a modern dynamic compaction device mainly used to compact sandy soils, where silt and clay contents are low. The device uses the piling hammer technology to increase the bearing capacity of soils through controlled impacts. The RIC device uses "controlled impact compaction" of the ground using a 9-ton hammer dropped from the height between 0.3 m to 1.2 m onto a 1.5 m diameter steel patent foot. The delivered energy is about 26,487 to 105,948 Joules per drop. To evaluate the performance of this technique, three project sites in the United Arab Emirates were improved using RIC. In those sites, a loose to very loose fine to medium sand was encountered at a depth ranging from 1.0m to 4.0m below the ground level. To evaluate the performance of the RIC, Cone Penetration Tests (CPT) were carried out before and after improvement. Also, load tests were carried out post-RIC work to assess the settlements and bearing capacity. The soil was improved to a depth of about 5.0m below the ground level depending on the CPT friction ratio (the ratio between sleeve friction and tip resistance). CPT tip resistance was significantly increased post ground improvement work. Load tests showed enhancement in the soil bearing capacity and reduction in the potential settlements. This study demonstrates the successful application of the RIC for middle-deep improvement and compaction of the ground. Foundation design criteria were achieved in all site post-RIC work.Keywords: compaction, RIC, ground improvement, CPT
Procedia PDF Downloads 3682439 Concept of the Active Flipped Learning in Engineering Mechanics
Authors: Lin Li, Farshad Amini
Abstract:
The flipped classroom has been introduced to promote collaborative learning and higher-order learning objectives. In contrast to the traditional classroom, the flipped classroom has students watch prerecorded lecture videos before coming to class and then “class becomes the place to work through problems, advance concepts, and engage in collaborative learning”. In this paper, the active flipped learning combines flipped classroom with active learning that is to establish an active flipped learning (AFL) model, aiming to promote active learning, stress deep learning, encourage student engagement and highlight data-driven personalized learning. Because students have watched the lecture prior to class, contact hours can be devoted to problem-solving and gain a deeper understanding of the subject matter. The instructor is able to provide students with a wide range of learner-centered opportunities in class for greater mentoring and collaboration, increasing the possibility to engage students. Currently, little is known about the extent to which AFL improves engineering students’ performance. This paper presents the preliminary study on the core course of sophomore students in Engineering Mechanics. A series of survey and interviews have been conducted to compare students’ learning engagement, empowerment, self-efficacy, and satisfaction with the AFL. It was found that the AFL model taking advantage of advanced technology is a convenient and professional avenue for engineering students to strengthen their academic confidence and self-efficacy in the Engineering Mechanics by actively participating in learning and fostering their deep understanding of engineering statics and dynamicsKeywords: active learning, engineering mechanics, flipped classroom, performance
Procedia PDF Downloads 2942438 Implementation of Statistical Parameters to Form an Entropic Mathematical Models
Authors: Gurcharan Singh Buttar
Abstract:
It has been discovered that although these two areas, statistics, and information theory, are independent in their nature, they can be combined to create applications in multidisciplinary mathematics. This is due to the fact that where in the field of statistics, statistical parameters (measures) play an essential role in reference to the population (distribution) under investigation. Information measure is crucial in the study of ambiguity, assortment, and unpredictability present in an array of phenomena. The following communication is a link between the two, and it has been demonstrated that the well-known conventional statistical measures can be used as a measure of information.Keywords: probability distribution, entropy, concavity, symmetry, variance, central tendency
Procedia PDF Downloads 1582437 Deep Vision: A Robust Dominant Colour Extraction Framework for T-Shirts Based on Semantic Segmentation
Authors: Kishore Kumar R., Kaustav Sengupta, Shalini Sood Sehgal, Poornima Santhanam
Abstract:
Fashion is a human expression that is constantly changing. One of the prime factors that consistently influences fashion is the change in colour preferences. The role of colour in our everyday lives is very significant. It subconsciously explains a lot about one’s mindset and mood. Analyzing the colours by extracting them from the outfit images is a critical study to examine the individual’s/consumer behaviour. Several research works have been carried out on extracting colours from images, but to the best of our knowledge, there were no studies that extract colours to specific apparel and identify colour patterns geographically. This paper proposes a framework for accurately extracting colours from T-shirt images and predicting dominant colours geographically. The proposed method consists of two stages: first, a U-Net deep learning model is adopted to segment the T-shirts from the images. Second, the colours are extracted only from the T-shirt segments. The proposed method employs the iMaterialist (Fashion) 2019 dataset for the semantic segmentation task. The proposed framework also includes a mechanism for gathering data and analyzing India’s general colour preferences. From this research, it was observed that black and grey are the dominant colour in different regions of India. The proposed method can be adapted to study fashion’s evolving colour preferences.Keywords: colour analysis in t-shirts, convolutional neural network, encoder-decoder, k-means clustering, semantic segmentation, U-Net model
Procedia PDF Downloads 1122436 Antimicrobial Action and Its Underlying Mechanism by Methanolic Seed Extract of Syzygium cumini on Bacillus subtilis
Authors: Alok Kumar Yadav, Saurabh Saraswat, Preeti Sirohi, Manjoo Rani, Sameer Srivastava, Manish Pratap Singh, Nand K. Singh
Abstract:
The development of antibiotic resistance in bacteria is increasing at an alarming rate, and this is considered as one of the most serious threats in the history of medicine, and an alternative solution should be derived so as to tackle this problem. In many countries, people use the medicinal plants for the treatment of various diseases as these are cheaper, easily available and least toxic. Syzygium cumini is used for the treatment of various kinds of diseases but their mechanism of action is not reported. The antimicrobial activity of Syzygium cumini was tested by the well diffusion assay and zone of inhibition was reported to be 20.06 mm as compared to control with MIC of 0.3 mg/ml. Genomic DNA fragmentation of Bacillus subtilis revealed apoptosis and FE-SEM indicate cell wall cracking on several intervals of time. Propidium iodide staining results showed that few bacterial cells were stained in the control and population of stained cells increase after exposing them for various period of time. Flow cytometric kinetic data analysis on the membrane permeabilization in bacterial cell showed the significant contribution of antimicrobial potential of the seed extract on antimicrobial-induced permeabilization. Two components of Syzygium cumini methanolic seed extract was found to be quite active against four enzymes like PDB ID- 1W5D, 4OX3, 3MFD and 5E2F which have a very crucial role in membrane synthesis in Bacillus subtilis by in silico analysis. Through in silico analysis, lupeol showed highest binding energy for macromolecule 1W5D and 4OX3 whereas stigmasterol showed the highest binding energy for macromolecule 3MFD and 5E2F respectively. It showed that methanolic seed extract of Syzygium cumini can be used for the inhibition of foodborne infections caused by Bacillus subtilis and also as an alternative of prevalent antibiotics.Keywords: antibiotics, Bacillus subtilis, inhibition, Syzygium cumini
Procedia PDF Downloads 2032435 Anatomical Investigation of Superficial Fascia Relationships with the Skin and Underlying Tissue in the Greyhound Rump, Thigh, and Crus
Authors: Oday A. Al-Juhaishi, Sa`ad M. Ismail, Hung-Hsun Yen, Christina M. Murray, Helen M. S. Davies
Abstract:
The functional anatomy of the fascia in the greyhound is still poorly understood, and incompletely described. The basic knowledge of fascia stems mainly from anatomical, histological and ultrastructural analyses. In this study, twelve specimens of hindlimbs from six fresh greyhound cadavers (3 male, 3 female) were used to examine the topographical relationships of the superficial fascia with the skin and underlying tissue. The first incision was made along the dorsal midline from the level of the thoracolumbar junction caudally to the level of the mid sacrum. The second incision was begun at the level of the first incision and extended along the midline of the lateral aspect of the hindlimb distally, to just proximal to the tarsus, and, the skin margins carefully separated to observe connective tissue links between the skin and superficial fascia, attachment points of the fascia and the relationships of the fascia with blood vessels that supply the skin. A digital camera was used to record the anatomical features as they were revealed. The dissections identified fibrous septa connecting the skin with the superficial fascia and deep fascia in specific areas. The presence of the adipose tissue was found to be very rare within the superficial fascia in these specimens. On the extensor aspects of some joints, a fusion between the superficial fascia and deep fascia was observed. This fusion created a subcutaneous bursa in the following areas: a prepatellar bursa of the stifle, a tarsal bursa caudal to the calcaneus bone, and an ischiatic bursa caudal to the ischiatic tuberosity. The evaluation of blood vessels showed that the perforating vessels passed through fibrous septa in a perpendicular direction to supply the skin, with the largest branch noted in the gluteal area. The attachment points between the superficial fascia and skin were mainly found in the region of the flexor aspect of the joints, such as caudal to the stifle joint. The numerous fibrous septa between the superficial fascia and skin that have been identified in some areas, may create support for the blood vessels that penetrate fascia and into the skin, while allowing for movement between the tissue planes. The subcutaneous bursae between the skin and the superficial fascia where it is fused with the deep fascia may be useful to decrease friction between moving areas. The adhesion points may be related to the integrity and loading of the skin. The attachment points fix the skin and appear to divide the hindlimb into anatomical compartments.Keywords: attachment points, fibrous septa, greyhound, subcutaneous bursa, superficial fascia
Procedia PDF Downloads 3592434 A Review Paper on Data Mining and Genetic Algorithm
Authors: Sikander Singh Cheema, Jasmeen Kaur
Abstract:
In this paper, the concept of data mining is summarized and its one of the important process i.e KDD is summarized. The data mining based on Genetic Algorithm is researched in and ways to achieve the data mining Genetic Algorithm are surveyed. This paper also conducts a formal review on the area of data mining tasks and genetic algorithm in various fields.Keywords: data mining, KDD, genetic algorithm, descriptive mining, predictive mining
Procedia PDF Downloads 5942433 Use of a Novel Intermittent Compression Shoe in Reducing Lower Limb Venous Stasis
Authors: Hansraj Riteesh Bookun, Cassandra Monique Hidajat
Abstract:
This pilot study investigated the efficacy of a newly designed shoe which will act as an intermittent pneumatic compression device to augment venous flow in the lower limb. The aim was to assess the degree with which a wearable intermittent compression device can increase the venous flow in the popliteal vein. Background: Deep venous thrombosis and chronic venous insufficiency are relatively common problems with significant morbidity and mortality. While mechanical and chemical thromboprophylaxis measures are in place in hospital environments (in the form of TED stockings, intermittent pneumatic compression devices, analgesia, antiplatelet and anticoagulant agents), there are limited options in a community setting. Additionally, many individuals are poorly tolerant of graduated compression stockings due to the difficulty in putting them on, their constant tightness and increased associated discomfort in warm weather. These factors may hinder the management of their chronic venous insufficiency. Method: The device is lightweight, easy to wear and comfortable, with a self-contained power source. It features a Bluetooth transmitter and can be controlled with a smartphone. It is externally almost indistinguishable from a normal shoe. During activation, two bladders are inflated -one overlying the metatarsal heads and the second at the pedal arch. The resulting cyclical increase in pressure squeezes blood into the deep venous system. This will decrease periods of stasis and potentially reduce the risk of deep venous thrombosis. The shoe was fitted to 2 healthy participants and the peak systolic velocity of flow in the popliteal vein was measured during and prior to intermittent compression phases. Assessments of total flow volume were also performed. All haemodynamic assessments were performed with ultrasound by a licensed sonographer. Results: Mean peak systolic velocity of 3.5 cm/s with standard deviation of 1.3 cm/s were obtained. There was a three fold increase in mean peak systolic velocity and five fold increase in total flow volume. Conclusion: The device augments venous flow in the leg significantly. This may contribute to lowered thromboembolic risk during periods of prolonged travel or immobility. This device may also serve as an adjunct in the treatment of chronic venous insufficiency. The study will be replicated on a larger scale in a multi—centre trial.Keywords: venous, intermittent compression, shoe, wearable device
Procedia PDF Downloads 1972432 Pegylated Liposomes of Trans Resveratrol, an Anticancer Agent, for Enhancing Therapeutic Efficacy and Long Circulation
Authors: M. R. Vijayakumar, Sanjay Kumar Singh, Lakshmi, Hithesh Dewangan, Sanjay Singh
Abstract:
Trans resveratrol (RES) is a natural molecule proved for cancer preventive and therapeutic activities devoid of any potential side effects. However, the therapeutic application of RES in disease management is limited because of its rapid elimination from blood circulation thereby low biological half life in mammals. Therefore, the main objective of this study is to enhance the circulation as well as therapeutic efficacy using PEGylated liposomes. D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS) is applied as steric surface decorating agent to prepare RES liposomes by thin film hydration method. The prepared nanoparticles were evaluated by various state of the art techniques such as dynamic light scattering (DLS) technique for particle size and zeta potential, TEM for shape, differential scanning calorimetry (DSC) for interaction analysis and XRD for crystalline changes of drug. Encapsulation efficiency and invitro drug release were determined by dialysis bag method. Cancer cell viability studies were performed by MTT assay, respectively. Pharmacokinetic studies were performed in sprague dawley rats. The prepared liposomes were found to be spherical in shape. Particle size and zeta potential of prepared formulations varied from 64.5±3.16 to 262.3±7.45 nm and -2.1 to 1.76 mV, respectively. DSC study revealed absence of potential interaction. XRD study revealed presence of amorphous form in liposomes. Entrapment efficiency was found to be 87.45±2.14 % and the drug release was found to be controlled up to 24 hours. Minimized MEC in MTT assay and tremendous enhancement in circulation time of RES PEGylated liposomes than its pristine form revealed that the stearic stabilized PEGylated liposomes can be an alternative tool to commercialize this molecule for chemopreventive and therapeutic applications in cancer.Keywords: trans resveratrol, cancer nanotechnology, long circulating liposomes, bioavailability enhancement, liposomes for cancer therapy, PEGylated liposomes
Procedia PDF Downloads 5912431 A Student Centered Learning Environment in Engineering Education: Design and a Longitudinal Study of Impact
Authors: Tom O'Mahony
Abstract:
This article considers the design of a student-centered learning environment in engineering education. The learning environment integrates a number of components, including project-based learning, collaborative learning, two-stage assignments, active learning lectures, and a flipped-classroom. Together these elements place the individual learner and their learning at the center of the environment by focusing on understanding, enhancing relevance, applying learning, obtaining rich feedback, making choices, and taking responsibility. The evolution of this environment from 2014 to the present day is outlined. The impact of this environment on learners and their learning is evaluated via student questionnaires that consist of both open and closed-ended questions. The closed questions indicate that students found the learning environment to be really interesting and enjoyable (rated as 4.7 on a 5 point scale) and encouraged students to adopt a deep approach towards studying the course materials (rated as 4.0 on a 5 point scale). A content analysis of the open-ended questions provides evidence that the project, active learning lectures, and flipped classroom all contribute to the success of this environment. Furthermore, this analysis indicates that the two-stage assessment process, in which feedback is provided between a draft and final assignment, is the key component and the dominant theme. A limitation of the study is the small class size (less than 20 learners per year), but, to some degree, this is compensated for by the longitudinal nature of the study.Keywords: deep approaches, formative assessment, project-based learning, student-centered learning
Procedia PDF Downloads 1132430 Computational Elucidation of β-endo-Acetylglucosaminidase (LytB) Inhibition by Kaempferol, Apigenin, and Quercetin in Streptococcus pneumoniae: Anti-Pneumonia Mechanism
Authors: Singh Divya, Rohan Singh, Anjana Pandey
Abstract:
Reviewers' Comments: The study provides valuable insights into the anti-pneumonia properties of flavonoids against LytB. Authors could further validate findings through in vitro studies and consider exploring combination therapies for enhanced efficacy Response: Thankyou for your valuable comments. This study has been conducted further via experimental validation of the in-silico findings. The study uses Streptococcus pneumoniae D39 strain and examine the anti-pneumonia effect of kaempferol, quercetin and apigenin at various concentrations ranging from 9ug/ml to 200ug/ml. From results, it can be concluded that the kaempferol has shown the highest cytotoxic effect (72.1% of inhibition) against S. pneumoniae at concentration of 40ug/ml compare to apigenin and quercetin. The treatment of S. pneumoniae with concoction of kaempferol, quercetin and apigenin has also been performed, it is noted that conc. of 200ug/ml was most effect in achieving 75% inhibition. As S. pneumoniae D39 is a virulent encapsulated strain, the capsule interferes with the uptake of large size drug formulation. For instance, S. pneumoniae D39 with kaempferol and gold nano urchin (GNU) formulation, but the large size of GNU has resulted in reduced cytotoxic effect of kaempferol (27%). To achieve near 100% cytotoxic effect on the MDR S. pneumoniae D39 strain, the study will target the development of kaempferol-engineered gold nano-urchin’ conjugates, where gold nanocrystal will be of small size (less than or equal to 5nm) and decorated with hydroxyl, sulfhydryl, carboxyl, amine and groups. This approach is expected to enhance the anti-pneumonia effect of kaempferol (polyhydroxylated flavonoid). The study will also examine the interactive study among lung epithelial cell line (A549), kaempferol-engineered gold nano urchins, and S. pneumoniae for exploring the colonization, invasion, and biofilm formation of S. pneumoniae on A549 cells resembling the upper respiratory surface of humans.Keywords: streptococcus pneumoniae, β-endo-Acetylglucosaminidase, apigenin, quercetin kaempferol, molecular dynamic simulation, interactome study and GROMACS
Procedia PDF Downloads 82429 Refined Edge Detection Network
Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni
Abstract:
Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone
Procedia PDF Downloads 1032428 Axial Load Capacity of Drilled Shafts from In-Situ Test Data at Semani Site, in Albania
Authors: Neritan Shkodrani, Klearta Rrushi, Anxhela Shaha
Abstract:
Generally, the design of axial load capacity of deep foundations is based on the data provided from field tests, such as SPT (Standard Penetration Test) and CPT (Cone Penetration Test) tests. This paper reports the results of axial load capacity analysis of drilled shafts at a construction site at Semani, in Fier county, Fier prefecture in Albania. In this case, the axial load capacity analyses are based on the data of 416 SPT tests and 12 CPTU tests, which are carried out in this site construction using 12 boreholes (10 borings of a depth 30.0 m and 2 borings of a depth of 80.0m). The considered foundation widths range from 0.5m to 2.5 m and foundation embedment lengths is fixed at a value of 25m. SPT – based analytical methods from the Japanese practice of design (Building Standard Law of Japan) and CPT – based analytical Eslami and Fellenius methods are used for obtaining axial ultimate load capacity of drilled shafts. The considered drilled shaft (25m long and 0.5m - 2.5m in diameter) is analyzed for the soil conditions of each borehole. The values obtained from sets of calculations are shown in different charts. Then the reported axial load capacity values acquired from SPT and CPTU data are compared and some conclusions are found related to the mentioned methods of calculations.Keywords: deep foundations, drilled shafts, axial load capacity, ultimate load capacity, allowable load capacity, SPT test, CPTU test
Procedia PDF Downloads 1062427 Investigation of Delivery of Triple Play Services
Authors: Paramjit Mahey, Monica Sharma, Jasbinder Singh
Abstract:
Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT
Procedia PDF Downloads 5422426 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques
Authors: Chandu Rathnayake, Isuri Anuradha
Abstract:
Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.Keywords: CNN, random forest, decision tree, machine learning, deep learning
Procedia PDF Downloads 75