Search results for: transportation database
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3080

Search results for: transportation database

2330 Comparative Analysis of Smart City Development: Assessing the Resilience and Technological Advancement in Singapore and Bucharest

Authors: Sînziana Iancu

Abstract:

In an era marked by rapid urbanization and technological advancement, the concept of smart cities has emerged as a pivotal solution to address the complex challenges faced by urban centres. As cities strive to enhance the quality of life for their residents, the development of smart cities has gained prominence. This study embarks on a comparative analysis of two distinct smart city models, Singapore and Bucharest, to assess their resilience and technological advancements. The significance of this study lies in its potential to provide valuable insights into the strategies, strengths, and areas of improvement in smart city development, ultimately contributing to the advancement of urban planning and sustainability. Methodologies: This comparative study employs a multifaceted approach to comprehensively analyse the smart city development in Singapore and Bucharest: * Comparative Analysis: A systematic comparison of the two cities is conducted, focusing on key smart city indicators, including digital infrastructure, integrated public services, urban planning and sustainability, transportation and mobility, environmental monitoring, safety and security, innovation and economic resilience, and community engagement; * Case Studies: In-depth case studies are conducted to delve into specific smart city projects and initiatives in both cities, providing real-world examples of their successes and challenges; * Data Analysis: Official reports, statistical data, and relevant publications are analysed to gather quantitative insights into various aspects of smart city development. Major Findings: Through a comprehensive analysis of Singapore and Bucharest's smart city development, the study yields the following major findings: * Singapore excels in digital infrastructure, integrated public services, safety, and innovation, showcasing a high level of resilience across these domains; * Bucharest is in the early stages of smart city development, with notable potential for growth in digital infrastructure and community engagement.; * Both cities exhibit a commitment to sustainable urban planning and environmental monitoring, with room for improvement in integrating these aspects into everyday life; * Transportation and mobility solutions are a priority for both cities, with Singapore having a more advanced system, while Bucharest is actively working on improving its transportation infrastructure; * Community engagement, while important, requires further attention in both cities to enhance the inclusivity of smart city initiatives. Conclusion: In conclusion, this study serves as a valuable resource for urban planners, policymakers, and stakeholders in understanding the nuances of smart city development and resilience. While Singapore stands as a beacon of success in various smart city indicators, Bucharest demonstrates potential and a willingness to adapt and grow in this domain. As cities worldwide embark on their smart city journeys, the lessons learned from Singapore and Bucharest provide invaluable insights into the path toward urban sustainability and resilience in the digital age.

Keywords: bucharest, resilience, Singapore, smart city

Procedia PDF Downloads 68
2329 The Optimal Irrigation in the Mitidja Plain

Authors: Gherbi Khadidja

Abstract:

In the Mediterranean region, water resources are limited and very unevenly distributed in space and time. The main objective of this project is the development of a wireless network for the management of water resources in northern Algeria, the Mitidja plain, which helps farmers to irrigate in the most optimized way and solve the problem of water shortage in the region. Therefore, we will develop an aid tool that can modernize and replace some traditional techniques, according to the real needs of the crops and according to the soil conditions as well as the climatic conditions (soil moisture, precipitation, characteristics of the unsaturated zone), These data are collected in real-time by sensors and analyzed by an algorithm and displayed on a mobile application and the website. The results are essential information and alerts with recommendations for action to farmers to ensure the sustainability of the agricultural sector under water shortage conditions. In the first part: We want to set up a wireless sensor network, for precise management of water resources, by presenting another type of equipment that allows us to measure the water content of the soil, such as the Watermark probe connected to the sensor via the acquisition card and an Arduino Uno, which allows collecting the captured data and then program them transmitted via a GSM module that will send these data to a web site and store them in a database for a later study. In a second part: We want to display the results on a website or a mobile application using the database to remotely manage our smart irrigation system, which allows the farmer to use this technology and offers the possibility to the growers to access remotely via wireless communication to see the field conditions and the irrigation operation, at home or at the office. The tool to be developed will be based on satellite imagery as regards land use and soil moisture. These tools will make it possible to follow the evolution of the needs of the cultures in time, but also to time, and also to predict the impact on water resources. According to the references consulted, if such a tool is used, it can reduce irrigation volumes by up to up to 40%, which represents more than 100 million m3 of savings per year for the Mitidja. This volume is equivalent to a medium-size dam.

Keywords: optimal irrigation, soil moisture, smart irrigation, water management

Procedia PDF Downloads 108
2328 A Research on Determining the Viability of a Job Board Website for Refugees in Kenya

Authors: Prince Mugoya, Collins Oduor Ondiek, Patrick Kanyi Wamuyu

Abstract:

Refugee Job Board Website is a web-based application that provides a platform for organizations to post jobs specifically for refugees. Organizations upload job opportunities and refugees can view them on the website. The website also allows refugees to input their skills and qualifications. The methodology used to develop this system is a waterfall (traditional) methodology. Software development tools include Brackets which will be used to code the website and PhpMyAdmin to store all the data in a database.

Keywords: information technology, refugee, skills, utilization, economy, jobs

Procedia PDF Downloads 164
2327 Performance Evaluation of Various Displaced Left Turn Intersection Designs

Authors: Hatem Abou-Senna, Essam Radwan

Abstract:

With increasing traffic and limited resources, accommodating left-turning traffic has been a challenge for traffic engineers as they seek balance between intersection capacity and safety; these are two conflicting goals in the operation of a signalized intersection that are mitigated through signal phasing techniques. Hence, to increase the left-turn capacity and reduce the delay at the intersections, the Florida Department of Transportation (FDOT) moves forward with a vision of optimizing intersection control using innovative intersection designs through the Transportation Systems Management & Operations (TSM&O) program. These alternative designs successfully eliminate the left-turn phase, which otherwise reduces the conventional intersection’s (CI) efficiency considerably, and divide the intersection into smaller networks that would operate in a one-way fashion. This study focused on the Crossover Displaced Left-turn intersections (XDL), also known as Continuous Flow Intersections (CFI). The XDL concept is best suited for intersections with moderate to high overall traffic volumes, especially those with very high or unbalanced left turn volumes. There is little guidance on determining whether partial XDL intersections are adequate to mitigate the overall intersection condition or full XDL is always required. The primary objective of this paper was to evaluate the overall intersection performance in the case of different partial XDL designs compared to a full XDL. The XDL alternative was investigated for 4 different scenarios; partial XDL on the east-west approaches, partial XDL on the north-south approaches, partial XDL on the north and east approaches and full XDL on all 4 approaches. Also, the impact of increasing volume on the intersection performance was considered by modeling the unbalanced volumes with 10% increment resulting in 5 different traffic scenarios. The study intersection, located in Orlando Florida, is experiencing recurring congestion in the PM peak hour and is operating near capacity with volume to a capacity ratio closer to 1.00 due to the presence of two heavy conflicting movements; southbound and westbound. The results showed that a partial EN XDL alternative proved to be effective and compared favorably to a full XDL alternative followed by the partial EW XDL alternative. The analysis also showed that Full, EW and EN XDL alternatives outperformed the NS XDL and the CI alternatives with respect to the throughput, delay and queue lengths. Significant throughput improvements were remarkable at the higher volume level with percent increase in capacity of 25%. The percent reduction in delay for the critical movements in the XDL scenarios compared to the CI scenario ranged from 30-45%. Similarly, queue lengths showed percent reduction in the XDL scenarios ranging from 25-40%. The analysis revealed how partial XDL design can improve the overall intersection performance at various demands, reduce the costs associated with full XDL and proved to outperform the conventional intersection. However, partial XDL serving low volumes or only one of the critical movements while other critical movements are operating near or above capacity do not provide significant benefits when compared to the conventional intersection.

Keywords: continuous flow intersections, crossover displaced left-turn, microscopic traffic simulation, transportation system management and operations, VISSIM simulation model

Procedia PDF Downloads 310
2326 Montelukast Doesn’t Decrease the Risk of Cardiovascular Disease in Asthma Patients in Taiwan

Authors: Sheng Yu Chen, Shi-Heng Wang

Abstract:

Aim: Based on human, animal experiments, and genetic studies, cysteinyl leukotrienes, LTC4, LTD4, and LTE4, are inflammatory substances that are metabolized by 5-lipooxygenase from arachidonic acid, and these substances trigger asthma. In addition, the synthetic pathway of cysteinyl leukotriene is relevant to the increase in cardiovascular diseases such as myocardial ischemia and stroke. Given the situation, we aim to investigate whether cysteinyl leukotrienes receptor antagonist (LTRA), montelukast which cures those who have asthma has potential protective effects on cardiovascular diseases. Method: We conducted a cohort study, and enrolled participants which are newly diagnosed with asthma (ICD-9 CM code 493. X) between 2002 to 2011. The data source is from Taiwan National Health Insurance Research Database Patients with a previous history of myocardial infarction or ischemic stroke were excluded. Among the remaining participants, every montelukast user was matched with two randomly non-users by sex, and age. The incident cardiovascular diseases, including myocardial infarction and ischemic stroke, were regarded as outcomes. We followed the participants until outcomes come first or the end of the following period. To explore the protective effect of montelukast on the risk of cardiovascular disease, we use multivariable Cox regression to estimate the hazard ratio with adjustment for potential confounding factors. Result: There are 55876 newly diagnosed asthma patients who had at least one claim of inpatient admission or at least three claims of outpatient records. We enrolled 5350 montelukast users and 10700 non-users in this cohort study. The following mean (±SD) time of the Montelukast group is 5 (±2.19 )years, and the non-users group is 6.2 5.47 (± 2.641) years. By using multivariable Cox regression, our analysis indicated that the risk of incident cardiovascular diseases between montelukast users (n=43, 0.8%) and non-users (n=111, 1.04%) is approximately equal. [adjusted hazard ratio 0.992; P-value:0.9643] Conclusion: In this population-based study, we found that the use of montelukast is not associated with a decrease in incident MI or IS.

Keywords: asthma, inflammation, montelukast, insurance research database, cardiovascular diseases

Procedia PDF Downloads 81
2325 DHL CSI Solution Design Project

Authors: Mohammed Al-Yamani, Yaser Miaji

Abstract:

DHL Customer Solutions and Innovation Department (CSI) have been experiencing difficulties while comparing quotes for different customers in different years. Currently, the employees are processing data by opening several loaded Excel files where the quotes are and manually copying values to another Excel Workbook where the comparison is made. This project consists of developing a new and effective database for DHL CSI department so that information is stored altogether on the same catalog. That being said, we have been assigned to find an efficient algorithm that can deal with the different formats of the Excel Workbooks to copy and store the express customer rates for core products (DOX, WPX, IMP) for comparisons purposes.

Keywords: DHL, solution design, ORACLE, EXCEL

Procedia PDF Downloads 409
2324 A Future Urban Street Design in Baltimore, Maryland Based on a Hierarchy of Functional Needs and the Context of Autonomous Vehicles, Green Infrastructure, and Evolving Street Typologies

Authors: Samuel Quick

Abstract:

The purpose of this paper is to examine future urban street design in the context of developing technologies, evolving street typologies, and projected transportation trends. The goal was to envision a future urban street in the year 2060 that addresses the advent and implementation of autonomous vehicles, the promotion of new street typologies, and the projection of current transportation trends. Using a hierarchy of functional needs for urban streets, the future street was designed and evaluated based on the functions the street provides to the surrounding community. The site chosen for the future street design is an eight-block section of West North Avenue in the city of Baltimore, Maryland. Three different conceptual designs were initially completed and evaluated leading to a master plan for West North Avenue as well as street designs for connecting streets that represent different existing street types. Final designs were compared with the existing street design and evaluated with the adapted ‘Hierarchy of Needs’ theory. The review of the literature and the results from this paper indicate that urban streets will have to become increasingly multi-functional to meet the competing needs of the environment and community. Future streets will have to accommodate multimodal transit which will include mass transit, walking, and biking. Furthermore, a comprehensive implementation of green infrastructure within the urban street will provide access to nature for urban communities and essential stormwater management. With these developments, the future of an urban street will move closer to a greenway typology. Findings from this study indicate that urban street design will have to be policy-driven to promote and implement autonomous bus-rapid-transit in order to conserve street space for other functions. With this conservation of space, urban streets can then provide more functions to the surrounding community, taking a holistic approach to urban street design.

Keywords: autonomous vehicle, greenway, green infrastructure, multi-modality, street typology

Procedia PDF Downloads 182
2323 Artificial Neural Networks and Hidden Markov Model in Landslides Prediction

Authors: C. S. Subhashini, H. L. Premaratne

Abstract:

Landslides are the most recurrent and prominent disaster in Sri Lanka. Sri Lanka has been subjected to a number of extreme landslide disasters that resulted in a significant loss of life, material damage, and distress. It is required to explore a solution towards preparedness and mitigation to reduce recurrent losses associated with landslides. Artificial Neural Networks (ANNs) and Hidden Markov Model (HMMs) are now widely used in many computer applications spanning multiple domains. This research examines the effectiveness of using Artificial Neural Networks and Hidden Markov Model in landslides predictions and the possibility of applying the modern technology to predict landslides in a prominent geographical area in Sri Lanka. A thorough survey was conducted with the participation of resource persons from several national universities in Sri Lanka to identify and rank the influencing factors for landslides. A landslide database was created using existing topographic; soil, drainage, land cover maps and historical data. The landslide related factors which include external factors (Rainfall and Number of Previous Occurrences) and internal factors (Soil Material, Geology, Land Use, Curvature, Soil Texture, Slope, Aspect, Soil Drainage, and Soil Effective Thickness) are extracted from the landslide database. These factors are used to recognize the possibility to occur landslides by using an ANN and HMM. The model acquires the relationship between the factors of landslide and its hazard index during the training session. These models with landslide related factors as the inputs will be trained to predict three classes namely, ‘landslide occurs’, ‘landslide does not occur’ and ‘landslide likely to occur’. Once trained, the models will be able to predict the most likely class for the prevailing data. Finally compared two models with regards to prediction accuracy, False Acceptance Rates and False Rejection rates and This research indicates that the Artificial Neural Network could be used as a strong decision support system to predict landslides efficiently and effectively than Hidden Markov Model.

Keywords: landslides, influencing factors, neural network model, hidden markov model

Procedia PDF Downloads 383
2322 Associated Factors of Hypertension, Hypercholesterolemia and Double Burden Hypertension-Hypercholesterolemia in Patients With Congestive Heart Failure: Hospital Based Study

Authors: Pierre Mintom, William Djeukeu Asongni, Michelle Moni, William Dakam, Christine Fernande Nyangono Biyegue.

Abstract:

Background: In order to prevent congestive heart failure, control of hypertension and hypercholesterolemia is necessary because those risk factors frequently occur in combination. Objective: The aim of the study is to determine the prevalence and risk factors of hypertension, hypercholesterolemia and double burden HTA-Hypercholesterolemia in patients with congestive heart failure. Methodology: A database of 98 patients suffering from congestive heart failure was used. The latter were recruited from August 15, 2017, to March 5, 2018, in the Cardiology department of Deido District Hospital of Douala. This database provides information on sociodemographic parameters, biochemical examinations, characteristics of heart failure and food consumption. ESC/ESH and NCEP-ATPIII definitions were used to define Hypercholesterolemia (total cholesterol ≥200mg/dl), Hypertension (SBP≥140mmHg and/or DBP≥90mmHg). Double burden hypertension-hypercholesterolemia was defined as follows: total cholesterol (CT)≥200mg/dl, SBP≥140mmHg and DBP≥90mmHg. Results: The prevalence of hypertension (HTA), hypercholesterolemia (hyperchol) and double burden HTA-Hyperchol were 61.2%, 66.3% and 45.9%, respectively. No sociodemographic factor was associated with hypertension, hypercholesterolemia and double burden, but Male gender was significantly associated (p<0.05) with hypercholesterolemia. HypoHDLemia significantly increased hypercholesterolemia and the double burden by 19.664 times (p=0.001) and 14.968 times (p=0.021), respectively. Regarding dietary habits, the consumption of rice, peanuts and derivatives and cottonseed oil respectively significantly (p<0.05) exposed to the occurrence of hypertension. The consumption of tomatoes, green bananas, corn and derivatives, peanuts and derivatives and cottonseed oil significantly exposed (p<0.05) to the occurrence of hypercholesterolemia. The consumption of palm oil and cottonseed oil exposed the occurrence of the double burden of hypertension-hypercholesterolemia. Consumption of eggs protects against hypercholesterolemia, and consumption of peanuts and tomatoes protects against the double burden. Conclusion: hypercholesterolemia associated with hypertension appears as a complicating factor of congestive heart failure. Key risk factors are mainly diet-based, suggesting the importance of nutritional education for patients. New management protocols emphasizing diet should be considered.

Keywords: risk factors, hypertension, hypercholesterolemia, congestive heart failure

Procedia PDF Downloads 68
2321 Freight Time and Cost Optimization in Complex Logistics Networks, Using a Dimensional Reduction Method and K-Means Algorithm

Authors: Egemen Sert, Leila Hedayatifar, Rachel A. Rigg, Amir Akhavan, Olha Buchel, Dominic Elias Saadi, Aabir Abubaker Kar, Alfredo J. Morales, Yaneer Bar-Yam

Abstract:

The complexity of providing timely and cost-effective distribution of finished goods from industrial facilities to customers makes effective operational coordination difficult, yet effectiveness is crucial for maintaining customer service levels and sustaining a business. Logistics planning becomes increasingly complex with growing numbers of customers, varied geographical locations, the uncertainty of future orders, and sometimes extreme competitive pressure to reduce inventory costs. Linear optimization methods become cumbersome or intractable due to a large number of variables and nonlinear dependencies involved. Here we develop a complex systems approach to optimizing logistics networks based upon dimensional reduction methods and apply our approach to a case study of a manufacturing company. In order to characterize the complexity in customer behavior, we define a “customer space” in which individual customer behavior is described by only the two most relevant dimensions: the distance to production facilities over current transportation routes and the customer's demand frequency. These dimensions provide essential insight into the domain of effective strategies for customers; direct and indirect strategies. In the direct strategy, goods are sent to the customer directly from a production facility using box or bulk trucks. In the indirect strategy, in advance of an order by the customer, goods are shipped to an external warehouse near a customer using trains and then "last-mile" shipped by trucks when orders are placed. Each strategy applies to an area of the customer space with an indeterminate boundary between them. Specific company policies determine the location of the boundary generally. We then identify the optimal delivery strategy for each customer by constructing a detailed model of costs of transportation and temporary storage in a set of specified external warehouses. Customer spaces help give an aggregate view of customer behaviors and characteristics. They allow policymakers to compare customers and develop strategies based on the aggregate behavior of the system as a whole. In addition to optimization over existing facilities, using customer logistics and the k-means algorithm, we propose additional warehouse locations. We apply these methods to a medium-sized American manufacturing company with a particular logistics network, consisting of multiple production facilities, external warehouses, and customers along with three types of shipment methods (box truck, bulk truck and train). For the case study, our method forecasts 10.5% savings on yearly transportation costs and an additional 4.6% savings with three new warehouses.

Keywords: logistics network optimization, direct and indirect strategies, K-means algorithm, dimensional reduction

Procedia PDF Downloads 138
2320 Methodology to Achieve Non-Cooperative Target Identification Using High Resolution Range Profiles

Authors: Olga Hernán-Vega, Patricia López-Rodríguez, David Escot-Bocanegra, Raúl Fernández-Recio, Ignacio Bravo

Abstract:

Non-Cooperative Target Identification has become a key research domain in the Defense industry since it provides the ability to recognize targets at long distance and under any weather condition. High Resolution Range Profiles, one-dimensional radar images where the reflectivity of a target is projected onto the radar line of sight, are widely used for identification of flying targets. According to that, to face this problem, an approach to Non-Cooperative Target Identification based on the exploitation of Singular Value Decomposition to a matrix of range profiles is presented. Target Identification based on one-dimensional radar images compares a collection of profiles of a given target, namely test set, with the profiles included in a pre-loaded database, namely training set. The classification is improved by using Singular Value Decomposition since it allows to model each aircraft as a subspace and to accomplish recognition in a transformed domain where the main features are easier to extract hence, reducing unwanted information such as noise. Singular Value Decomposition permits to define a signal subspace which contain the highest percentage of the energy, and a noise subspace which will be discarded. This way, only the valuable information of each target is used in the recognition process. The identification algorithm is based on finding the target that minimizes the angle between subspaces and takes place in a transformed domain. Two metrics, F1 and F2, based on Singular Value Decomposition are accomplished in the identification process. In the case of F2, the angle is weighted, since the top vectors set the importance in the contribution to the formation of a target signal, on the contrary F1 simply shows the evolution of the unweighted angle. In order to have a wide database or radar signatures and evaluate the performance, range profiles are obtained through numerical simulation of seven civil aircraft at defined trajectories taken from an actual measurement. Taking into account the nature of the datasets, the main drawback of using simulated profiles instead of actual measured profiles is that the former implies an ideal identification scenario, since measured profiles suffer from noise, clutter and other unwanted information and simulated profiles don't. In this case, the test and training samples have similar nature and usually a similar high signal-to-noise ratio, so as to assess the feasibility of the approach, the addition of noise has been considered before the creation of the test set. The identification results applying the unweighted and weighted metrics are analysed for demonstrating which algorithm provides the best robustness against noise in an actual possible scenario. So as to confirm the validity of the methodology, identification experiments of profiles coming from electromagnetic simulations are conducted, revealing promising results. Considering the dissimilarities between the test and training sets when noise is added, the recognition performance has been improved when weighting is applied. Future experiments with larger sets are expected to be conducted with the aim of finally using actual profiles as test sets in a real hostile situation.

Keywords: HRRP, NCTI, simulated/synthetic database, SVD

Procedia PDF Downloads 353
2319 System Dietadhoc® - A Fusion of Human-Centred Design and Agile Development for the Explainability of AI Techniques Based on Nutritional and Clinical Data

Authors: Michelangelo Sofo, Giuseppe Labianca

Abstract:

In recent years, the scientific community's interest in the exploratory analysis of biomedical data has increased exponentially. Considering the field of research of nutritional biologists, the curative process, based on the analysis of clinical data, is a very delicate operation due to the fact that there are multiple solutions for the management of pathologies in the food sector (for example can recall intolerances and allergies, management of cholesterol metabolism, diabetic pathologies, arterial hypertension, up to obesity and breathing and sleep problems). In this regard, in this research work a system was created capable of evaluating various dietary regimes for specific patient pathologies. The system is founded on a mathematical-numerical model and has been created tailored for the real working needs of an expert in human nutrition using the human-centered design (ISO 9241-210), therefore it is in step with continuous scientific progress in the field and evolves through the experience of managed clinical cases (machine learning process). DietAdhoc® is a decision support system nutrition specialists for patients of both sexes (from 18 years of age) developed with an agile methodology. Its task consists in drawing up the biomedical and clinical profile of the specific patient by applying two algorithmic optimization approaches on nutritional data and a symbolic solution, obtained by transforming the relational database underlying the system into a deductive database. For all three solution approaches, particular emphasis has been given to the explainability of the suggested clinical decisions through flexible and customizable user interfaces. Furthermore, the system has multiple software modules based on time series and visual analytics techniques that allow to evaluate the complete picture of the situation and the evolution of the diet assigned for specific pathologies.

Keywords: medical decision support, physiological data extraction, data driven diagnosis, human centered AI, symbiotic AI paradigm

Procedia PDF Downloads 22
2318 Railway Process Automation to Ensure Human Safety with the Aid of IoT and Image Processing

Authors: K. S. Vedasingha, K. K. M. T. Perera, K. I. Hathurusinghe, H. W. I. Akalanka, Nelum Chathuranga Amarasena, Nalaka R. Dissanayake

Abstract:

Railways provide the most convenient and economically beneficial mode of transportation, and it has been the most popular transportation method among all. According to the past analyzed data, it reveals a considerable number of accidents which occurred at railways and caused damages to not only precious lives but also to the economy of the countries. There are some major issues which need to be addressed in railways of South Asian countries since they fall under the developing category. The goal of this research is to minimize the influencing aspect of railway level crossing accidents by developing the “railway process automation system”, as there are high-risk areas that are prone to accidents, and safety at these places is of utmost significance. This paper describes the implementation methodology and the success of the study. The main purpose of the system is to ensure human safety by using the Internet of Things (IoT) and image processing techniques. The system can detect the current location of the train and close the railway gate automatically. And it is possible to do the above-mentioned process through a decision-making system by using past data. The specialty is both processes working parallel. As usual, if the system fails to close the railway gate due to technical or a network failure, the proposed system can identify the current location and close the railway gate through a decision-making system, which is a revolutionary feature. The proposed system introduces further two features to reduce the causes of railway accidents. Railway track crack detection and motion detection are those features which play a significant role in reducing the risk of railway accidents. Moreover, the system is capable of detecting rule violations at a level crossing by using sensors. The proposed system is implemented through a prototype, and it is tested with real-world scenarios to gain the above 90% of accuracy.

Keywords: crack detection, decision-making, image processing, Internet of Things, motion detection, prototype, sensors

Procedia PDF Downloads 176
2317 Comparison of Machine Learning-Based Models for Predicting Streptococcus pyogenes Virulence Factors and Antimicrobial Resistance

Authors: Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Diego Santibañez Oyarce, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

Streptococcus pyogenes is a gram-positive bacteria involved in a wide range of diseases and is a major-human-specific bacterial pathogen. In Chile, this year the 'Ministerio de Salud' declared an alert due to the increase in strains throughout the year. This increase can be attributed to the multitude of factors including antimicrobial resistance (AMR) and Virulence Factors (VF). Understanding these VF and AMR is crucial for developing effective strategies and improving public health responses. Moreover, experimental identification and characterization of these pathogenic mechanisms are labor-intensive and time-consuming. Therefore, new computational methods are required to provide robust techniques for accelerating this identification. Advances in Machine Learning (ML) algorithms represent the opportunity to refine and accelerate the discovery of VF associated with Streptococcus pyogenes. In this work, we evaluate the accuracy of various machine learning models in predicting the virulence factors and antimicrobial resistance of Streptococcus pyogenes, with the objective of providing new methods for identifying the pathogenic mechanisms of this organism.Our comprehensive approach involved the download of 32,798 genbank files of S. pyogenes from NCBI dataset, coupled with the incorporation of data from Virulence Factor Database (VFDB) and Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. These datasets provided labeled examples of both virulent and non-virulent genes, enabling a robust foundation for feature extraction and model training. We employed preprocessing, characterization and feature extraction techniques on primary nucleotide/amino acid sequences and selected the optimal more for model training. The feature set was constructed using sequence-based descriptors (e.g., k-mers and One-hot encoding), and functional annotations based on database prediction. The ML models compared are logistic regression, decision trees, support vector machines, neural networks among others. The results of this work show some differences in accuracy between the algorithms, these differences allow us to identify different aspects that represent unique opportunities for a more precise and efficient characterization and identification of VF and AMR. This comparative analysis underscores the value of integrating machine learning techniques in predicting S. pyogenes virulence and AMR, offering potential pathways for more effective diagnostic and therapeutic strategies. Future work will focus on incorporating additional omics data, such as transcriptomics, and exploring advanced deep learning models to further enhance predictive capabilities.

Keywords: antibiotic resistance, streptococcus pyogenes, virulence factors., machine learning

Procedia PDF Downloads 29
2316 A Study of the Atlantoaxial Fracture or Dislocation in Motorcyclists with Helmet Accidents

Authors: Shao-Huang Wu, Ai-Yun Wu, Meng-Chen Wu, Chun-Liang Wu, Kai-Ping Shaw, Hsiao-Ting Chen

Abstract:

Objective: To analyze the forensic autopsy data of known passengers and compare it with the National database of the autopsy report in 2017, and obtain the special patterned injuries, which can be used as the reference for the reconstruction of hit-and-run motor vehicle accidents. Methods: Analyze the items of the Motor Vehicle Accident Report, including Date of accident, Time occurred, Day, Acc. severity, Acc. Location, Acc. Class, Collision with Vehicle, Motorcyclists Codes, Safety equipment use, etc. Analyzed the items of the Autopsy Report included, including General Description, Clothing and Valuables, External Examination, Head and Neck Trauma, Trunk Trauma, Other Injuries, Internal Examination, Associated Items, Autopsy Determinations, etc. Materials: Case 1. The process of injury formation: the car was chased forward and collided with the scooter. The passenger wearing the helmet fell to the ground. The helmet crashed under the bottom of the sedan, and the bottom of the sedan was raised. Additionally, the sedan was hit on the left by the other sedan behind, resulting in the front sedan turning 180 degrees on the spot. The passenger’s head was rotated, and the cervical spine was fractured. Injuries: 1. Fracture of atlantoaxial joint 2. Fracture of the left clavicle, scapula, and proximal humerus 3. Fracture of the 1-10 left ribs and 2-7 right ribs with lung contusion and hemothorax 4. Fracture of the transverse process of 2-5 lumbar vertebras 5. Comminuted fracture of the right femur 6. Suspected subarachnoid space and subdural hemorrhage 7. Laceration of the spleen. Case 2. The process of injury formation: The motorcyclist wearing the helmet fell to the left by himself, and his chest was crushed by the car going straight. Only his upper body was under the car and the helmet finally fell off. Injuries: 1. Dislocation of atlantoaxial joint 2. Laceration on the left posterior occipital 3. Laceration on the left frontal 4. Laceration on the left side of the chin 5. Strip bruising on the anterior neck 6. Open rib fracture of the right chest wall 7. Comminuted fracture of both 1-12 ribs 8. Fracture of the sternum 9. Rupture of the left lung 10. Rupture of the left and right atria, heart tip and several large vessels 11. The aortic root is nearly transected 12. Severe rupture of the liver. Results: The common features of the two cases were the fracture or dislocation of the atlantoaxial joint and both helmets that were crashed. There were no atlantoaxial fractures or dislocations in 27 pedestrians (without wearing a helmet) versus motor vehicle accidents in 2017 the National database of an autopsy report, but there were two atlantoaxial fracture or dislocation cases in the database, both of which were cases of falling from height. Conclusion: The cervical spine fracture injury of the motorcyclist, who was wearing a helmet, is very likely to be a patterned injury caused by his/her fall and rollover under the sedan. It could provide a reference for forensic peers.

Keywords: patterned injuries, atlantoaxial fracture or dislocation, accident reconstruction, motorcycle accident with helmet, forensic autopsy data

Procedia PDF Downloads 91
2315 The Correlation between Clostridium Difficile Infection and Bronchial Lung Cancer Occurrence

Authors: Molnar Catalina, Lexi Frankel, Amalia Ardeljan, Enoch Kim, Marissa Dallara, Omar Rashid

Abstract:

Introduction: Clostridium difficile (C. diff) is a toxin-producing bacteria that can cause diarrhea and colitis. U.S. Center for Disease Control and Prevention revealed that C. difficile infection (CDI) has increased from 31 cases per 100,000 persons per year in 1996 to 61 per 100,000 in 2003. Approximately 500,000 cases per year occur in the United States. After exposure, the bacteria colonize the colon, where it adheres to the intestinal epithelium where it produces two toxins: TcdA and TcdB. TcdA affects the intestinal epithelium, causing fluid secretion, inflammation, and tissue necrosis, while TcdB acts as a cytotoxin purpose of this study was to evaluate the association between C diff infection and bronchial lung cancer development. Methods: Using ICD- 9 and ICD-10 codes, the data was provided by a Health Insurance Portability and Accountability Act (HIPAA) compliant national database to assess the patients infected with C diff as opposed to the non-infected patients. The Holy Cross Health, Fort Lauderdale, granted access to the database for the purpose of academic research. Patients were matched for age and Charlson Comorbidity Index (CCI). Standard statistical methods were used. Results: Bronchial lung cancer occurrence in the population not infected with C diff infection was 4741, as opposed to the population infected with C. diff, where 2039 cases of lung cancer were observed. The difference was statistically significant (p-value < 2.2x10^e-16), which reveals that C diff might be protective against bronchial lung cancer. The data was then matched by treatment to create to minimize the effect of treatment bias. Bronchial cancer incidence was 422 and 861 in infected vs. non-infected (p-value of < 2.2x10^e-16), which once more indicates that C diff infection could be beneficial in diminishing bronchial cancer development. Conclusion: This retrospective study conveys a statistical correlation between C diff infection and decreased incidence of lung bronchial cancer. Further studies are needed to comprehend the protective mechanisms of C. Diff infection on lung cancer.

Keywords: C. diff, lung cancer, protective, microbiology

Procedia PDF Downloads 233
2314 The Effectiveness of Energy-related Tax in Curbing Transport-related Carbon Emissions: The Role of Green Finance and Technology in OECD Economies

Authors: Hassan Taimoor, Piotr Krajewski, Piotr Gabrielzcak

Abstract:

Being responsible for the largest source of energy-related emissions, the transportation sector is driven by more than half of global oil demand and total energy consumption, making it a crucial factor in tackling climate change and environmental degradation. The present study empirically tests the effectives of the energy-related tax (TXEN) in curbing transport-related carbon emissions (CO2TRANSP) in Organization for Economic Cooperation and Development (OECD) economies over the period of 1990-2020. Moreover, Green Finance (GF), Technology (TECH), and Gross domestic product (GDP) have also been added as explanatory factors which might affect CO2TRANSP emissions. The study employs the Method of Moment Quantile Regression (MMQR), an advance econometric technique to observe the variations along each quantile. Based on the results of the preliminary test, we confirm the presence of cross-sectional dependence and slope heterogeneity. Whereas the result of the panel unit root test report mixed order of variables’ integration. The findings reveal that rise in income level activates CO2TRANSP, confirming the first stage of Environmental Kuznet Hypothesis. Surprisingly, the present TXEN policies of OECD member states are not mature enough to tackle the CO2TRANSP emissions. However, the findings confirm that GF and TECH are solely responsible for the reduction in the CO2TRANSP. The outcomes of Bootstrap Quantile Regression (BSQR) further validate and support the earlier findings of MMQR. Based on the findings of this study, it is revealed that the current TXEN policies are too moderate, and an incremental and progressive rise in TXEN may help in a transition toward a cleaner and sustainable transportation sector in the study region.

Keywords: transport-related CO2 emissions, energy-related tax, green finance, technological development, oecd member states

Procedia PDF Downloads 75
2313 Present Status, Driving Forces and Pattern Optimization of Territory in Hubei Province, China

Authors: Tingke Wu, Man Yuan

Abstract:

“National Territorial Planning (2016-2030)” was issued by the State Council of China in 2017. As an important initiative of putting it into effect, territorial planning at provincial level makes overall arrangement of territorial development, resources and environment protection, comprehensive renovation and security system construction. Hubei province, as the pivot of the “Rise of Central China” national strategy, is now confronted with great opportunities and challenges in territorial development, protection, and renovation. Territorial spatial pattern experiences long time evolution, influenced by multiple internal and external driving forces. It is not clear what are the main causes of its formation and what are effective ways of optimizing it. By analyzing land use data in 2016, this paper reveals present status of territory in Hubei. Combined with economic and social data and construction information, driving forces of territorial spatial pattern are then analyzed. Research demonstrates that the three types of territorial space aggregate distinctively. The four aspects of driving forces include natural background which sets the stage for main functions, population and economic factors which generate agglomeration effect, transportation infrastructure construction which leads to axial expansion and significant provincial strategies which encourage the established path. On this basis, targeted strategies for optimizing territory spatial pattern are then put forward. Hierarchical protection pattern should be established based on development intensity control as respect for nature. By optimizing the layout of population and industry and improving the transportation network, polycentric network-based development pattern could be established. These findings provide basis for Hubei Territorial Planning, and reference for future territorial planning in other provinces.

Keywords: driving forces, Hubei, optimizing strategies, spatial pattern, territory

Procedia PDF Downloads 105
2312 Epigenetic Modifying Potential of Dietary Spices: Link to Cure Complex Diseases

Authors: Jeena Gupta

Abstract:

In the today’s world of pharmaceutical products, one should not forget the healing properties of inexpensive food materials especially spices. They are known to possess hidden pharmaceutical ingredients, imparting them the qualities of being anti-microbial, anti-oxidant, anti-inflammatory and anti-carcinogenic. Further aberrant epigenetic regulatory mechanisms like DNA methylation, histone modifications or altered microRNA expression patterns, which regulates gene expression without changing DNA sequence, contribute significantly in the development of various diseases. Changing lifestyles and diets exert their effect by influencing these epigenetic mechanisms which are thus the target of dietary phytochemicals. Bioactive components of plants have been in use since ages but their potential to reverse epigenetic alterations and prevention against diseases is yet to be explored. Spices being rich repositories of many bioactive constituents are responsible for providing them unique aroma and taste. Some spices like curcuma and garlic have been well evaluated for their epigenetic regulatory potential, but for others, it is largely unknown. We have evaluated the biological activity of phyto-active components of Fennel, Cardamom and Fenugreek by in silico molecular modeling, in vitro and in vivo studies. Ligand-based similarity studies were conducted to identify structurally similar compounds to understand their biological phenomenon. The database searching has been done by using Fenchone from fennel, Sabinene from cardamom and protodioscin from fenugreek as a query molecule in the different small molecule databases. Moreover, the results of the database searching exhibited that these compounds are having potential binding with the different targets found in the Protein Data Bank. Further in addition to being epigenetic modifiers, in vitro study had demonstrated the antimicrobial, antifungal, antioxidant and cytotoxicity protective effects of Fenchone, Sabinene and Protodioscin. To best of our knowledge, such type of studies facilitate the target fishing as well as making the roadmap in drug design and discovery process for identification of novel therapeutics.

Keywords: epigenetics, spices, phytochemicals, fenchone

Procedia PDF Downloads 156
2311 Statistical Characteristics of Code Formula for Design of Concrete Structures

Authors: Inyeol Paik, Ah-Ryang Kim

Abstract:

In this research, a statistical analysis is carried out to examine the statistical properties of the formula given in the design code for concrete structures. The design formulas of the Korea highway bridge design code - the limit state design method (KHBDC) which is the current national bridge design code and the design code for concrete structures by Korea Concrete Institute (KCI) are applied for the analysis. The safety levels provided by the strength formulas of the design codes are defined based on the probabilistic and statistical theory.KHBDC is a reliability-based design code. The load and resistance factors of this code were calibrated to attain the target reliability index. It is essential to define the statistical properties for the design formulas in this calibration process. In general, the statistical characteristics of a member strength are due to the following three factors. The first is due to the difference between the material strength of the actual construction and that used in the design calculation. The second is the difference between the actual dimensions of the constructed sections and those used in design calculation. The third is the difference between the strength of the actual member and the formula simplified for the design calculation. In this paper, the statistical study is focused on the third difference. The formulas for calculating the shear strength of concrete members are presented in different ways in KHBDC and KCI. In this study, the statistical properties of design formulas were obtained through comparison with the database which comprises the experimental results from the reference publications. The test specimen was either reinforced with the shear stirrup or not. For an applied database, the bias factor was about 1.12 and the coefficient of variation was about 0.18. By applying the statistical properties of the design formula to the reliability analysis, it is shown that the resistance factors of the current design codes satisfy the target reliability indexes of both codes. Also, the minimum resistance factors of the KHBDC which is written in the material resistance factor format and KCE which is in the member resistance format are obtained and the results are presented. A further research is underway to calibrate the resistance factors of the high strength and high-performance concrete design guide.

Keywords: concrete design code, reliability analysis, resistance factor, shear strength, statistical property

Procedia PDF Downloads 319
2310 Sedimentological and Geochemical Characteristics of Aeolian Sediments and Their Implication for Sand Origin in the Yarlung Zangbo River Valley, Southern Qinghai-Tibetan Plateau

Authors: Na Zhou, Chun-Lai Zhang, Qing Li, Bingqi Zhu, Xun-Ming Wang

Abstract:

The understanding of the dynamics of aeolian sand in the Yarlung Zangbo River Valley (YLZBV), southern Qinghai-Tibetan Plateau, including its origins, transportation,and deposition, remains preliminary. In this study, we investigated the extensive origin of aeolian sediments in the YLZBV by analyzing the distribution and composition of sediment’s grain size and geochemical composition in dune sediments collected from the wide river terraces. The major purpose is to characterize the sedimentological and geochemical compositions of these aeolian sediments, trace back to their sources, and understand their influencing factors. As a result, the grain size and geochemistry variations, which showed a significant correlation between grain sizes distribution and element abundances, give a strong evidence that the important part of the aeolian sediments in the downstream areas was firstly derived from the upper reaches by intense fluvial processes. However, the sediments experienced significant mixing process with local inputs and reconstructed by regional wind transportation. The diverse compositions and tight associations in the major and trace element geochemistry between the up- and down-stream aeolian sediments and the local detrital rocks, which were collected from the surrounding mountains, suggest that the upstream aeolian sediments had originated from the various close-range rock types, and experienced intensive mixing processes via aeolian- fluvial dynamics. Sand mass transported by water and wind was roughly estimated to qualify the interplay between the aeolian and fluvial processes controlling the sediment transport, yield, and ultimately shaping the aeolian landforms in the mainstream of the YLZBV.

Keywords: grain size distribution, geochemistry, wind and water load, sand source, Yarlung Zangbo River Valley

Procedia PDF Downloads 96
2309 Classification of Forest Types Using Remote Sensing and Self-Organizing Maps

Authors: Wanderson Goncalves e Goncalves, José Alberto Silva de Sá

Abstract:

Human actions are a threat to the balance and conservation of the Amazon forest. Therefore the environmental monitoring services play an important role as the preservation and maintenance of this environment. This study classified forest types using data from a forest inventory provided by the 'Florestal e da Biodiversidade do Estado do Pará' (IDEFLOR-BIO), located between the municipalities of Santarém, Juruti and Aveiro, in the state of Pará, Brazil, covering an area approximately of 600,000 hectares, Bands 3, 4 and 5 of the TM-Landsat satellite image, and Self - Organizing Maps. The information from the satellite images was extracted using QGIS software 2.8.1 Wien and was used as a database for training the neural network. The midpoints of each sample of forest inventory have been linked to images. Later the Digital Numbers of the pixels have been extracted, composing the database that fed the training process and testing of the classifier. The neural network was trained to classify two forest types: Rain Forest of Lowland Emerging Canopy (Dbe) and Rain Forest of Lowland Emerging Canopy plus Open with palm trees (Dbe + Abp) in the Mamuru Arapiuns glebes of Pará State, and the number of examples in the training data set was 400, 200 examples for each class (Dbe and Dbe + Abp), and the size of the test data set was 100, with 50 examples for each class (Dbe and Dbe + Abp). Therefore, total mass of data consisted of 500 examples. The classifier was compiled in Orange Data Mining 2.7 Software and was evaluated in terms of the confusion matrix indicators. The results of the classifier were considered satisfactory, and being obtained values of the global accuracy equal to 89% and Kappa coefficient equal to 78% and F1 score equal to 0,88. It evaluated also the efficiency of the classifier by the ROC plot (receiver operating characteristics), obtaining results close to ideal ratings, showing it to be a very good classifier, and demonstrating the potential of this methodology to provide ecosystem services, particularly in anthropogenic areas in the Amazon.

Keywords: artificial neural network, computational intelligence, pattern recognition, unsupervised learning

Procedia PDF Downloads 359
2308 Roots of Terror in Pakistan: Analyzing the Effects of Education and Economic Deprivation on Incidences of Terrorism

Authors: Laraib Niaz

Abstract:

This paper analyzes the ways in which education and economic deprivation are linked to terrorism in Pakistan using data for terrorist incidents from the Global Terrorism Database (GTD). It employs the technique of negative binomial regression for the years between 1990 and 2013, presenting evidence for a positive association between education and terrorism. Conversely, a negative correlation with economic deprivation is signified in the results. The study highlights the element of radicalization as witnessed in the curriculum and textbooks of public schools as a possible reason for extremism, which in turn may lead to terrorism.

Keywords: education, Pakistan, terrorism, poverty

Procedia PDF Downloads 387
2307 The Effectiveness of Online Learning in the Wisconsin Technical College System

Authors: Julie Furst-Bowe

Abstract:

Over the past decade, there has been significant growth in online courses and programs at all levels of education in the United States. This study explores the growth of online and blended (or hybrid) programs offered by the sixteen technical colleges in the Wisconsin Technical College System (WTCS). The WTCS provides education and training programs to more than 300,000 students each year in career clusters including agriculture, business, energy, information technology, healthcare, human services, manufacturing, and transportation. These programs range from short-term training programs that may lead to a certificate to two-year programs that lead to an associate degree. Students vary in age from high school students who are exploring career interests to employees who are seeking to gain additional skills or enter a new career. Because there is currently a shortage of skilled workers in nearly all sectors in the state of Wisconsin, it is critical that the WTCS is providing fully educated and trained graduates to fill workforce needs in a timely manner. For this study, information on online and blended programs for the past five years was collected from the WTCS, including types of programs, course and program enrollments, course completion rates, program completion rates, time to completion and graduate employment rates. The results of this study indicate that the number of online and blended courses and programs is continuing to increase each year. Online and blended programs are most commonly found in the business, human services, and information technology areas, and they are less commonly found in agriculture, healthcare, manufacturing, and transportation programs. Overall, course and program completion rates were higher for blended programs when compared to fully online programs. Students preferred the blended programs over the fully online programs. Overall, graduates were placed into related jobs at a rate of approximately 90 percent, although there was some variation in graduate placement rates by programs and by colleges. Differences in graduate employment rate appeared to be based on geography and sector as employers did not distinguish between graduates who had completed their programs via traditional, blended or fully online instruction. Recommendations include further exploration as to the reasons that blended courses and programs appear to be more effective than fully online courses and programs. It is also recommended that those program areas that are not using blended or online delivery methods, including agriculture, health, manufacturing and transportation, explore the use of these methods to make their courses and programs more accessible to students, particularly working adults. In some instances, colleges were partnering with specific companies to ensure that groups of employees were completing online coursework leading to a certificate or a degree. Those partnerships are to be encouraged in order for the state to continue to improve the skills of its workforce. Finally, it is recommended that specific colleges specialize in the delivery of specific programs using online technology since it is not bound by geographic considerations. This approach would take advantage of the strengths of the individual colleges and avoid unnecessary duplication.

Keywords: career and technical education, online learning, skills shortage, technical colleges

Procedia PDF Downloads 133
2306 Identification of Shark Species off The Nigerian Coast Using DNA Barcoding

Authors: O. O. Fola-Matthews, O. O. Soyinka, D. N. Bitalo

Abstract:

Nigeria is one of the major shark fishing nations in Africa, but its fisheries managers still record catch data in aggregates ‘sharks’ with no species-specific details. This is because most of the shark specimens look identical in morphology, and field identification of some closely related species is tricky. This study uses DNA barcoding as a method to identify shark species from five different landing areas off the Nigerian Coast. 100 dorsal fins were sampled in order to provide a Chondrichthyan sequence that would be matched to reference specimens in a DNA barcode database

Keywords: BOLD, DNA barcoding, nigeria, sharks

Procedia PDF Downloads 165
2305 Life-Cycle Cost and Life-Cycle Assessment of Photovoltaic/Thermal Systems (PV/T) in Swedish Single-Family Houses

Authors: Arefeh Hesaraki

Abstract:

The application of photovoltaic-thermal hybrids (PVT), which delivers both electricity and heat simultaneously from the same system, has become more popular during the past few years. This study addresses techno-economic and environmental impacts assessment of photovoltaic/thermal systems combined with a ground-source heat pump (GSHP) for three single-family houses located in Stockholm, Sweden. Three case studies were: (1) A renovated building built in 1936, (2) A renovated building built in 1973, and (3) A new building built-in 2013. Two simulation programs of SimaPro 9.1 and IDA Indoor Climate and Energy 4.8 (IDA ICE) were applied to analyze environmental impacts and energy usage, respectively. The cost-effectiveness of the system was evaluated using net present value (NPV), internal rate of return (IRR), and discounted payback time (DPBT) methods. In addition to cost payback time, the studied PVT system was evaluated using the energy payback time (EPBT) method. EPBT presents the time that is needed for the installed system to generate the same amount of energy which was utilized during the whole lifecycle (fabrication, installation, transportation, and end-of-life) of the system itself. Energy calculation by IDA ICE showed that a 5 m² PVT was sufficient to create a balance between the maximum heat production and the domestic hot water consumption during the summer months for all three case studies. The techno-economic analysis revealed that combining a 5 m² PVT with GSHP in the second case study possess the smallest DPBT and the highest NPV and IRR among the three case studies. It means that DPBTs (IRR) were 10.8 years (6%), 12.6 years (4%), and 13.8 years (3%) for the second, first, and the third case study, respectively. Moreover, environmental assessment of embodied energy during cradle- to- grave life cycle of the studied PVT, including fabrication, delivery of energy and raw materials, manufacture process, installation, transportation, operation phase, and end of life, revealed approximately two years of EPBT in all cases.

Keywords: life-cycle cost, life-cycle assessment, photovoltaic/thermal, IDA ICE, net present value

Procedia PDF Downloads 113
2304 A System Dynamics Approach for Assessing Policy Impacts on Closed-Loop Supply Chain Efficiency: A Case Study on Electric Vehicle Batteries

Authors: Guannan Ren, Thomas Mazzuchi, Shahram Sarkani

Abstract:

Electric vehicle battery recycling has emerged as a critical process in the transition toward sustainable transportation. As the demand for electric vehicles continues to rise, so does the need to address the end-of-life management of their batteries. Electric vehicle battery recycling benefits resource recovery and supply chain stability by reclaiming valuable metals like lithium, cobalt, nickel, and graphite. The reclaimed materials can then be reintroduced into the battery manufacturing process, reducing the reliance on raw material extraction and the environmental impacts of waste. Current battery recycling rates are insufficient to meet the growing demands for raw materials. While significant progress has been made in electric vehicle battery recycling, many areas can still improve. Standardization of battery designs, increased collection and recycling infrastructures, and improved efficiency in recycling processes are essential for scaling up recycling efforts and maximizing material recovery. This work delves into key factors, such as regulatory frameworks, economic incentives, and technological processes, that influence the cost-effectiveness and efficiency of battery recycling systems. A system dynamics model that considers variables such as battery production rates, demand and price fluctuations, recycling infrastructure capacity, and the effectiveness of recycling processes is created to study how these variables are interconnected, forming feedback loops that affect the overall supply chain efficiency. Such a model can also help simulate the effects of stricter regulations on battery disposal, incentives for recycling, or investments in research and development for battery designs and advanced recycling technologies. By using the developed model, policymakers, industry stakeholders, and researchers may gain insights into the effects of applying different policies or process updates on electric vehicle battery recycling rates.

Keywords: environmental engineering, modeling and simulation, circular economy, sustainability, transportation science, policy

Procedia PDF Downloads 90
2303 Constructing a Semi-Supervised Model for Network Intrusion Detection

Authors: Tigabu Dagne Akal

Abstract:

While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. These attacks or intrusions start with attackers infiltrating a network through a vulnerable host and then launching further attacks on the local network or Intranet. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools and systems using data mining technology. In this study, the experiments were conducted following the Knowledge Discovery in Database Process Model. The Knowledge Discovery in Database Process Model starts from selection of the datasets. The dataset used in this study has been taken from Massachusetts Institute of Technology Lincoln Laboratory. After taking the data, it has been pre-processed. The major pre-processing activities include fill in missed values, remove outliers; resolve inconsistencies, integration of data that contains both labelled and unlabelled datasets, dimensionality reduction, size reduction and data transformation activity like discretization tasks were done for this study. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. For building a predictive model for intrusion detection J48 decision tree and the Naïve Bayes algorithms have been tested as a classification approach for both with and without feature selection approaches. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances as normal, DOS, U2R, R2L and probe classes. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.

Keywords: intrusion detection, data mining, computer science, data mining

Procedia PDF Downloads 294
2302 On the Limits of Board Diversity: Impact of Network Effect on Director Appointments

Authors: Vijay Marisetty, Poonam Singh

Abstract:

Research on the effect of director's network connections on investor welfare is inconclusive. Some studies suggest that directors' connections are beneficial, in terms of, improving earnings information, firms valuation for new investors. On the other hand, adverse effects of directorial networks are also reported, in terms of higher earnings management, options back dating fraud, reduction in firm performance, lower board monitoring. From regulatory perspective, the role of directorial networks on corporate welfare is crucial. Cognizant of the possible ill effects associated with directorial networks, large investors, for better representation on the boards, are building their own database of prospective directors who are highly qualified, however, sourced from outside the highly connected directorial labor market. For instance, following Dodd-Frank Reform Act, California Public Employees' Retirement Systems (CalPERs) has initiated a database for registering aspiring and highly qualified directors to nominate them for board seats (proxy access). Our paper stems from this background and tries to explore the chances of outside directors getting directorships who lack established network connections. The paper is able to identify such aspiring directors' information by accessing a unique Indian data sourced from an online portal that aims to match the supply of registered aspirants with the growing demand for outside directors in India. The online portal's tie-up with stock exchanges ensures firms to access the new pool of directors. Such direct access to the background details of aspiring directors over a period of 10 years, allows us to examine the chances of aspiring directors without corporate network, to enter directorial network. Using this resume data of 16105 aspiring corporate directors in India, who have no prior board experience in the directorial labor market, the paper analyses the entry dynamics in corporate directors' labor market. The database also allows us to investigate the value of corporate network by comparing non-network new entrants with incumbent networked directors. The study develops measures of network centrality and network degree based on merit, i.e. network of individuals belonging to elite educational institutions, like Indian Institute of Management (IIM) or Indian Institute of Technology (IIT) and based on job or company, i.e. network of individuals serving in the same company. The paper then measures the impact of these networks on the appointment of first time directors and subsequent appointment of directors. The paper reports the following main results: 1. The likelihood of becoming a corporate director, without corporate network strength, is only 1 out 100 aspirants. This is inspite of comparable educational background and similar duration of corporate experience; 2. Aspiring non-network directors' elite educational ties help them to secure directorships. However, for post-board appointments, their newly acquired corporate network strength overtakes as their main determinant for subsequent board appointments and compensation. The results thus highlight the limitations in increasing board diversity.

Keywords: aspiring corporate directors, board diversity, director labor market, director networks

Procedia PDF Downloads 312
2301 Applications and Development of a Plug Load Management System That Automatically Identifies the Type and Location of Connected Devices

Authors: Amy Lebar, Kim L. Trenbath, Bennett Doherty, William Livingood

Abstract:

Plug and process loads (PPLs) account for 47% of U.S. commercial building energy use. There is a huge potential to reduce whole building consumption by targeting PPLs for energy savings measures or implementing some form of plug load management (PLM). Despite this potential, there has yet to be a widely adopted commercial PLM technology. This paper describes the Automatic Type and Location Identification System (ATLIS), a PLM system framework with automatic and dynamic load detection (ADLD). ADLD gives PLM systems the ability to automatically identify devices as they are plugged into the outlets of a building. The ATLIS framework takes advantage of smart, connected devices to identify device locations in a building, meter and control their power, and communicate this information to a central database. ATLIS includes five primary capabilities: location identification, communication, control, energy metering and data storage. A laboratory proof of concept (PoC) demonstrated all but the data storage capabilities and these capabilities were validated using an office building scenario. The PoC can identify when a device is plugged into an outlet and the location of the device in the building. When a device is moved, the PoC’s dashboard and database are automatically updated with the new location. The PoC implements controls to devices from the system dashboard so that devices maintain correct schedules regardless of where they are plugged in within a building. ATLIS’s primary technology application is improved PLM, but other applications include asset management, energy audits, and interoperability for grid-interactive efficient buildings. A system like ATLIS could also be used to direct power to critical devices, such as ventilators, during a brownout or blackout. Such a framework is an opportunity to make PLM more widespread and reduce the amount of energy consumed by PPLs in current and future commercial buildings.

Keywords: commercial buildings, grid-interactive efficient buildings (GEB), miscellaneous electric loads (MELs), plug loads, plug load management (PLM)

Procedia PDF Downloads 131