Search results for: support sector machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11916

Search results for: support sector machine

11166 Evaluation and Proposal for Improvement of the Flow Measurement Equipment in the Bellavista Drinking Water System of the City of Azogues

Authors: David Quevedo, Diana Coronel

Abstract:

The present article carries out an evaluation of the drinking water system in the Bellavista sector of the city of Azogues, with the purpose of determining the appropriate equipment to record the actual consumption flows of the inhabitants in said sector. Taking into account that the study area is located in a rural and economically disadvantaged area, there is an urgent need to establish a control system for the consumption of drinking water in order to conserve and manage the vital resource in the best possible way, considering that the water source supplying this sector is approximately 9km away. The research began with the collection of cartographic, demographic, and statistical data of the sector, determining the coverage area, population projection, and a provision that guarantees the supply of drinking water to meet the water needs of the sector's inhabitants. By using hydraulic modeling through the United States Environmental Protection Agency Application for Modeling Drinking Water Distribution Systems EPANET 2.0 software, theoretical hydraulic data were obtained, which were used to design and justify the most suitable measuring equipment for the Bellavista drinking water system. Taking into account a minimum service life of the drinking water system of 30 years, future flow rates were calculated for the design of the macro-measuring device. After analyzing the network, it was evident that the Bellavista sector has an average consumption of 102.87 liters per person per day, but considering that Ecuadorian regulations recommend a provision of 180 liters per person per day for the geographical conditions of the sector, this value was used for the analysis. With all the collected and calculated information, the conclusion was reached that the Bellavista drinking water system needs to have a 125mm electromagnetic macro-measuring device for the first three quinquenniums of its service life and a 150mm diameter device for the following three quinquenniums. The importance of having equipment that provides real and reliable data will allow for the control of water consumption by the population of the sector, measured through micro-measuring devices installed at the entrance of each household, which should match the readings of the macro-measuring device placed after the water storage tank outlet, in order to control losses that may occur due to leaks in the drinking water system or illegal connections.

Keywords: macrometer, hydraulics, endowment, water

Procedia PDF Downloads 72
11165 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM

Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad

Abstract:

Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.

Keywords: cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet

Procedia PDF Downloads 332
11164 The Impact of Corporate Governance Regulation in the Nigerian Banking Sector

Authors: Simisola I. Akintoye, Sunday K. Iyaniwura

Abstract:

Recent global corporate failures have called for increase in the need to regulate corporate governance across the world. In Nigeria, the impact of corporate governance regulation in the banking sector has reached epidemic levels contributing to the country’s economic depression. This study critically evaluates Nigeria’s corporate governance regime and explores how weak regulation has impacted on the banking sector. By adopting a socio legal methodology, the study analyses both theoretical and empirical works from a socio-scientific point of view to examine the role of Nigeria’s legal, cultural and social arrangements in corporate governance regulation. The study reveals that Nigeria’s institutional arrangement has contributed to its weak system of corporate governance regulation with adverse effects on the banking sector. The research mainly impacts on current global corporate governance literature in sub-Saharan Africa by contributing to knowledge of the peculiarities of corporate governance regulation in different institutional jurisdictions. The particular focus on emerging economies such as Nigeria expands on the need for countries to develop a bespoke system of corporate governance regulation that takes into consideration the peculiarities of individual countries devoid of external influence.

Keywords: banks, corporate governance, emerging economies, Nigeria

Procedia PDF Downloads 322
11163 Machine Learning Approach to Project Control Threshold Reliability Evaluation

Authors: Y. Kim, H. Lee, M. Park, B. Lee

Abstract:

Planning is understood as the determination of what has to be performed, how, in which sequence, when, what resources are needed, and their cost within the organization before execution. In most construction project, it is evident that the inherent nature of planning is dynamic, and initial planning is subject to be changed due to various uncertain conditions of construction project. Planners take a continuous revision process during the course of a project and until the very end of project. However, current practice lacks reliable, systematic tool for setting variance thresholds to determine when and what corrective actions to be taken. Rather it is heavily dependent on the level of experience and knowledge of the planner. Thus, this paper introduces a machine learning approach to evaluate project control threshold reliability incorporating project-specific data and presents a method to automate the process. The results have shown that the model improves the efficiency and accuracy of the monitoring process as an early warning.

Keywords: machine learning, project control, project progress monitoring, schedule

Procedia PDF Downloads 242
11162 Prioritizing Quality Dimensions in ‘Servitised’ Business through AHP

Authors: Mohita Gangwar Sharma

Abstract:

Different factors are compelling manufacturers to move towards the phenomenon of servitization i.e. when firms go beyond giving support to the customers in operating the equipment. The challenges that are being faced in this transition by the manufacturing firms from being a product provider to a product- service provider are multipronged. Product-Service Systems (PSS) lies in between the pure-product and pure-service continuum. Through this study, we wish to understand the dimensions of ‘PSS-quality’. We draw upon the quality literature for both the product and services and through an expert survey for a specific transportation sector using analytical hierarchical process (AHP) derive a conceptual model that can be used as a comprehensive measurement tool for PSS offerings.

Keywords: servitisation, quality, product-service system, AHP

Procedia PDF Downloads 306
11161 A Study of the Frequency of Individual Support for the Pupils With Developmental Disabilities or Suspected Developmental Disabilities in Regular Japanese School Classes - From a Questionnaire Survey of Teachers

Authors: Maho Komura

Abstract:

The purpose of this study was to determine from a questionnaire survey of teachers the status of implementation of individualized support for the pupils with suspected developmental disabilities in regular elementary school classes in Japan. In inclusive education, the goal is for all pupils to learn in the same place as much as possible by receiving the individualized support they need. However, in the Japanese school culture, strong "homogeneity" sometimes surfaces, and it is pointed out that it is difficult to provide individualized support from the viewpoint of formal equality. Therefore, we decided to conduct this study in order to examine whether there is a difference in the frequency of implementation depending on the content of individualized support and to consider the direction of future individualized support. The subjects of the survey were 196 public elementary school teachers who had been in charge of regular classes within the past five years. In the survey, individualized support was defined as individualized consideration including rational consideration, and did not include support for the entire class or all pupils enrolled in the class (e.g., reducing the amount of homework for pupils who have trouble learning, changing classroom rules, etc.). (e.g., reducing the amount of homework for pupils with learning difficulties, allowing pupils with behavioral concerns to use the library or infirmary when they are unstable). The respondents were asked to choose one answer from four options, ranging from "very much" to "not at all," regarding the degree to which they implemented the nine individual support items that were set up with reference to previous studies. As a result, it became clear that the majority of teachers had pupils with developmental disabilities or pupils who require consideration in terms of learning and behavior, and that the majority of teachers had experience in providing individualized support to these pupils. Investigating the content of the individualized support that had been implemented, it became clear that the frequency with which it was implemented varied depending on the individualized support. Individualized support that allowed pupils to perform the same learning tasks was implemented more frequently, but individualized support that allowed different learning tasks or use of places other than the classroom was implemented less frequently. It was suggested that flexible support methods tailored to each pupil may not have been considered.

Keywords: inclusive education, ndividualized support, regular class, elementary school

Procedia PDF Downloads 129
11160 Early Diagnosis of Myocardial Ischemia Based on Support Vector Machine and Gaussian Mixture Model by Using Features of ECG Recordings

Authors: Merve Begum Terzi, Orhan Arikan, Adnan Abaci, Mustafa Candemir

Abstract:

Acute myocardial infarction is a major cause of death in the world. Therefore, its fast and reliable diagnosis is a major clinical need. ECG is the most important diagnostic methodology which is used to make decisions about the management of the cardiovascular diseases. In patients with acute myocardial ischemia, temporary chest pains together with changes in ST segment and T wave of ECG occur shortly before the start of myocardial infarction. In this study, a technique which detects changes in ST/T sections of ECG is developed for the early diagnosis of acute myocardial ischemia. For this purpose, a database of real ECG recordings that contains a set of records from 75 patients presenting symptoms of chest pain who underwent elective percutaneous coronary intervention (PCI) is constituted. 12-lead ECG’s of the patients were recorded before and during the PCI procedure. Two ECG epochs, which are the pre-inflation ECG which is acquired before any catheter insertion and the occlusion ECG which is acquired during balloon inflation, are analyzed for each patient. By using pre-inflation and occlusion recordings, ECG features that are critical in the detection of acute myocardial ischemia are identified and the most discriminative features for the detection of acute myocardial ischemia are extracted. A classification technique based on support vector machine (SVM) approach operating with linear and radial basis function (RBF) kernels to detect ischemic events by using ST-T derived joint features from non-ischemic and ischemic states of the patients is developed. The dataset is randomly divided into training and testing sets and the training set is used to optimize SVM hyperparameters by using grid-search method and 10fold cross-validation. SVMs are designed specifically for each patient by tuning the kernel parameters in order to obtain the optimal classification performance results. As a result of implementing the developed classification technique to real ECG recordings, it is shown that the proposed technique provides highly reliable detections of the anomalies in ECG signals. Furthermore, to develop a detection technique that can be used in the absence of ECG recording obtained during healthy stage, the detection of acute myocardial ischemia based on ECG recordings of the patients obtained during ischemia is also investigated. For this purpose, a Gaussian mixture model (GMM) is used to represent the joint pdf of the most discriminating ECG features of myocardial ischemia. Then, a Neyman-Pearson type of approach is developed to provide detection of outliers that would correspond to acute myocardial ischemia. Neyman – Pearson decision strategy is used by computing the average log likelihood values of ECG segments and comparing them with a range of different threshold values. For different discrimination threshold values and number of ECG segments, probability of detection and probability of false alarm values are computed, and the corresponding ROC curves are obtained. The results indicate that increasing number of ECG segments provide higher performance for GMM based classification. Moreover, the comparison between the performances of SVM and GMM based classification showed that SVM provides higher classification performance results over ECG recordings of considerable number of patients.

Keywords: ECG classification, Gaussian mixture model, Neyman–Pearson approach, support vector machine

Procedia PDF Downloads 160
11159 Blockchain: Institutional and Technological Disruptions in the Public Sector

Authors: Maria Florencia Ferrer, Saulo Fabiano Amancio-Vieira

Abstract:

The use of the blockchain in the public sector is present today and no longer the future of disruptive institutional and technological models. There are still some cultural barriers and resistance to the proper use of its potential. This research aims to present the strengths and weaknesses of using a public-permitted and distributed network in the context of the public sector. Therefore, bibliographical/documentary research was conducted to raise the main aspects of the studied platform, focused on the use of the main demands of the public sector. The platform analyzed was LACChain, which is a global alliance composed of different actors in the blockchain environment, led by the Innovation Laboratory of the Inter-American Development Bank Group (IDB Lab) for the development of the blockchain ecosystem in Latin America and the Caribbean. LACChain provides blockchain infrastructure, which is a distributed ratio technology (DLT). The platform focuses on two main pillars: community and infrastructure. It is organized as a consortium for the management and administration of an infrastructure classified as public, following the ISO typologies (ISO / TC 307). It is, therefore, a network open to any participant who agrees with the established rules, which are limited to being identified and complying with the regulations. As benefits can be listed: public network (open to all), decentralized, low transaction cost, greater publicity of transactions, reduction of corruption in contracts / public acts, in addition to improving transparency for the population in general. It is also noteworthy that the platform is not based on cryptocurrency and is not anonymous; that is, it is possible to be regulated. It is concluded that the use of record platforms, such as LACChain, can contribute to greater security on the part of the public agent in the migration process of their informational applications.

Keywords: blockchain, LACChain, public sector, technological disruptions

Procedia PDF Downloads 172
11158 South Korean Discourse on Bioecomomy in the Sector of Agriculture

Authors: Mi Sun Park

Abstract:

Biotechnology provides us with technological solutions to resource-based challenges facing the global society. A bioeconomy or bio-based economy emerged as all economic activities derived from biotechnology. This paper aims to understand discourses on bioeconomy in the sector of agriculture with three dimensions; media discourse, science discourse, and policy discourse. For achieving research goals, content analysis was applied to this research. Media articles, academic journal articles and policy documents published from 2000 to 2016 were collected in South Korea. The text was coded and analyzed with the categories of speakers and their arguments. The research findings indicate that powerful actors and key messages of bioeconomy in South Korean agriculture. Differences and similarities among media, science, and policy were examined. Therefore this case study can contribute to understanding dynamic interaction and interfaces of media, science and policy discourse on biotechnology in the sector of agriculture.

Keywords: media, discourse, bioeconomy, agriculture

Procedia PDF Downloads 235
11157 Impact of Health Sector Economic Reforms in Underdeveloped Countries

Authors: Haga Abdelrahman Elimam

Abstract:

This paper investigates the connotation, and some of the realistic implications, of the economic reform of health sector in under developed countries. The paper investigates the issues that economic reforms have to address, and the policy targets they are considered to accomplish. The work argues that the development of economic reform is not connected only with understanding the priorities and refining them, furthermore with reformation and restructuring the organizations through which health policies are employed. Considering various organizational values, that are likely to be regular to all economic reform programs, a regulatory approach to institutional reform is unsuitable. The paper further investigates the selection of economic reform that may as well influence via technical suggestions and analysis, but the verdict to continue, and the consequent success of execution, eventually depends on the progressive political sustainability. The paper concludes by giving examples of institutional reforms from various underdeveloped countries and includes recommendation of the responsibility and control of donor organizations.

Keywords: economic reform, health sector, underdeveloped countries, technical suggestions

Procedia PDF Downloads 422
11156 Development of a Framework for Assessment of Market Penetration of Oil Sands Energy Technologies in Mining Sector

Authors: Saeidreza Radpour, Md. Ahiduzzaman, Amit Kumar

Abstract:

Alberta’s mining sector consumed 871.3 PJ in 2012, which is 67.1% of the energy consumed in the industry sector and about 40% of all the energy consumed in the province of Alberta. Natural gas, petroleum products, and electricity supplied 55.9%, 20.8%, and 7.7%, respectively, of the total energy use in this sector. Oil sands mining and upgrading to crude oil make up most of the mining energy sector activities in Alberta. Crude oil is produced from the oil sands either by in situ methods or by the mining and extraction of bitumen from oil sands ore. In this research, the factors affecting oil sands production have been assessed and a framework has been developed for market penetration of new efficient technologies in this sector. Oil sands production amount is a complex function of many different factors, broadly categorized into technical, economic, political, and global clusters. The results of developed and implemented statistical analysis in this research show that the importance of key factors affecting on oil sands production in Alberta is ranked as: Global energy consumption (94% consistency), Global crude oil price (86% consistency), and Crude oil export (80% consistency). A framework for modeling oil sands energy technologies’ market penetration (OSETMP) has been developed to cover related technical, economic and environmental factors in this sector. It has been assumed that the impact of political and social constraints is reflected in the model by changes of global oil price or crude oil price in Canada. The market share of novel in situ mining technologies with low energy and water use are assessed and calculated in the market penetration framework include: 1) Partial upgrading, 2) Liquid addition to steam to enhance recovery (LASER), 3) Solvent-assisted process (SAP), also called solvent-cyclic steam-assisted gravity drainage (SC-SAGD), 4) Cyclic solvent, 5) Heated solvent, 6) Wedge well, 7) Enhanced modified steam and Gas push (emsagp), 8) Electro-thermal dynamic stripping process (ET-DSP), 9) Harris electro-magnetic heating applications (EMHA), 10) Paraffin froth separation. The results of the study will show the penetration profile of these technologies over a long term planning horizon.

Keywords: appliances efficiency improvement, diffusion models, market penetration, residential sector

Procedia PDF Downloads 328
11155 Support Provided by Teachers to Learners With Special Education Needs in Selected Amathole West District Primary Schools South Africa

Authors: Toyin Mary Adewumi, Cina Mosito

Abstract:

Part of enabling learners with special education needs (SEN) to succeed is providing them with adequate support. Support is all activities in a school that enhance its capacity to respond to diversity by making learning contexts and lessons accessible to all learners. The paper reports findings of support provided by teachers to learners with SEN and the pockets of good practice found in the support provided by teachers to these learners in schools in the Amathole West District, Eastern Cape. A purposeful sample, comprising eight teachers, eight principals in eight schools, including one provincial and two district education officials, was selected. Thematic analysis was used for analyzing data gathered through semi-structured interviews. The results established that despite the challenges such as lack of qualifications and training in special education needs, learners with SEN received varied support from teachers which include extra exercises, extra time, special attention during break times or after school hours and homework. The study reveals pockets of good practice in some selected primary schools particularly in the poverty-stricken locations in the Amathole West District. This paper recommends adequate training for teachers for the support of learners with SEN.

Keywords: good practice, learner, special education needs, inclusion, support

Procedia PDF Downloads 131
11154 Using AI for Analysing Political Leaders

Authors: Shuai Zhao, Shalendra D. Sharma, Jin Xu

Abstract:

This research uses advanced machine learning models to learn a number of hypotheses regarding political executives. Specifically, it analyses the impact these powerful leaders have on economic growth by using leaders’ data from the Archigos database from 1835 to the end of 2015. The data is processed by the AutoGluon, which was developed by Amazon. Automated Machine Learning (AutoML) and AutoGluon can automatically extract features from the data and then use multiple classifiers to train the data. Use a linear regression model and classification model to establish the relationship between leaders and economic growth (GDP per capita growth), and to clarify the relationship between their characteristics and economic growth from a machine learning perspective. Our work may show as a model or signal for collaboration between the fields of statistics and artificial intelligence (AI) that can light up the way for political researchers and economists.

Keywords: comparative politics, political executives, leaders’ characteristics, artificial intelligence

Procedia PDF Downloads 85
11153 Supporting Students with Autism Spectrum Disorder: A Model of Partnership and Capacity Building in Hong Kong

Authors: Irene T. Ho

Abstract:

Students with Autism Spectrum Disorder (ASD) studying in mainstream schools often face difficulties adjusting to school life and teachers often find it challenging to meet the needs of these students. The Hong Kong Jockey Club Autism Support Network (JC A-Connect) is an initiative launched in 2015 to enhance support for students with ASD as well as their families and schools. The School Support Programme of the Project aims at building the capacity of schools to provide quality education for these students. The present report provides a summary of the main features of the support model and the related evaluation results. The school support model was conceptualized in response to four observed needs: (1) inadequate teacher expertise in dealing with the related challenges, (2) the need to promote evidence-based practices in schools, (3) less than satisfactory home-school collaboration and whole-school participation, and (4) lack of concerted effort by different parties involved in providing support to schools. The resulting model had partnership and capacity building as two guiding tenets for the School Support Programme. There were two levels of partnership promoted in the project. At the programme support level, a platform that enables effective collaboration among major stakeholders was established, including the funding body that provides the necessary resources, the Education Bureau that helps to engage schools, university experts who provide professional leadership and research support, as well as non-governmental organization (NGO) professionals who provide services to the schools. At the programme implementation level, tripartite collaboration among teachers, parents and professionals was emphasized. This notion of partnership permeated efforts at capacity building targeting students with ASD, school personnel, parents and peers. During 2015 to 2018, school-based programmes were implemented in over 400 primary and secondary schools with the following features: (1) spiral Tier 2 (group) training for students with ASD to enhance their adaptive skills, led by professionals but with strong teacher involvement to promote transfer of knowledge and skills; (2) supplementary programmes for teachers, parents and peers to enhance their capability to support students with ASD; and (3) efforts at promoting continuing or transfer of learning, on the part of both students and teachers, to Tier 1 (classroom practice) and Tier 3 (individual training) contexts. Over 5,000 students participated in the Programme, representing about 50% of students diagnosed with ASD in mainstream public sector schools in Hong Kong. Results showed that the Programme was effective in helping students improve to various extents at three levels: achievement of specific training goals, improvement in adaptive skills in school, and change in ASD symptoms. The sense of competence of teachers and parents in dealing with ASD-related issues, measured by self-report rating scales, was also significantly enhanced. Moreover, effects on enhancing the school system to provide support for students with ASD, assessed according to indicators of inclusive education, were seen. The process and results of this Programme illustrate how obstacles to inclusive education for students with ASD could be overcome by strengthening the necessary partnerships and building the required capabilities of all parties concerned.

Keywords: autism, school support, skills training, teacher development, three-tier model

Procedia PDF Downloads 97
11152 Social Support and Depressive Symptoms in Participants of a University of the Third Age: Evidences From a Cross-Sectional Study in Brazil

Authors: Ana Luiza Blanco, Juliana Cordeiro Carvalho, Tábatta Renata Pereira Brito, Ariene Angelini dos Santos Orlandi, Ligiana Pires Corona, Daniella Pires Nunes

Abstract:

Depressive symptoms are recurrent in older adults and affect the quality of life and well-being of individuals. One of the strategies to reduce depression is social support, but studies are still needed to determine which types of social support are most effective in moderating this effect in certain populations. The objective was to identify the relationship between social support and depressive symptoms in participants of a University of the Third Age. This is a cross-sectional study. Participants were 82 individuals (≥ 50 years) who responded to the Geriatric Depression Scale - GDS and the Medical Outcomes Study - MOS. Data collection was carried out from November 2020 to May 2021. The Chi-Square and Mann Whitney tests were used, at a significance level of 5% for data analysis. Among the participants, 83.4% were female, 57.3% were age between 60 to 69 years, 83.1% studied 12 year or more and 48.1% receive from 4 to 10 minimum wages. The prevalence of depressive symptoms was 12.2%. The type of support with the highest median score was affective (100 points) and the lowest, or emotional (87.5 points). The results showed that participants without depressive symptoms had higher median scores for informational support when compared to those with depressive symptoms (p=0.029). The other types of social support were not statistically significant. The findings suggested that informational support is related to depressive symptoms in older adults. Promote informational support and educational actions in Universities of the Third Age may be an important strategy for preventing depressive symptoms and improve the quality of life of this population.

Keywords: aged, depressive symptoms, social support, university of the third age

Procedia PDF Downloads 120
11151 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain

Authors: Zachary Blanks, Solomon Sonya

Abstract:

Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.

Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection

Procedia PDF Downloads 290
11150 Improving Public Sectors’ Policy Direction on Large Infrastructure Investment Projects: A Developmental Approach

Authors: Ncedo Cameron Xhala

Abstract:

Several public sector institutions lack policy direction on how to successfully implement their large infrastructure investment projects. It is significant to improve strategic policy direction in public sector institutions in order to improve planning, management and implementation of large infrastructure investment projects. It is significant to improve an understanding of internal and external pressures that exerts pressure on large infrastructure projects. The significance is to fulfill the public sector’s mandate, align the sectors’ scarce resources, stakeholders and to improve project management processes. The study used a case study approach which was underpinned by a constructionist approach. The study used a theoretical sampling technique when selecting study participants, and was followed by a snowball sampling technique that was used to select an identified case study project purposefully. The study was qualitative in nature, collected and analyzed qualitative empirical data from the purposefully selected five subject matter experts and has analyzed the case study documents. The study used a semi-structured interview approach, analysed case study documents in a qualitative approach. The interviews were on a face-to-face basis and were guided by an interview guide with focused questions. The study used a three coding process step comprising of one to three steps when analysing the qualitative empirical data. Findings reveal that an improvement of strategic policy direction in public sector institutions improves the integration in planning, management and on implementation on large infrastructure investment projects. Findings show the importance of understanding the external and internal pressures when implementing public sector’s large infrastructure investment projects. The study concludes that strategic policy direction in public sector institutions results in improvement of planning, financing, delivery, monitoring and evaluation and successful implementation of the public sector’s large infrastructure investment projects.

Keywords: implementation, infrastructure, investment, management

Procedia PDF Downloads 151
11149 Servitization in Machine and Plant Engineering: Leveraging Generative AI for Effective Product Portfolio Management Amidst Disruptive Innovations

Authors: Till Gramberg

Abstract:

In the dynamic world of machine and plant engineering, stagnation in the growth of new product sales compels companies to reconsider their business models. The increasing shift toward service orientation, known as "servitization," along with challenges posed by digitalization and sustainability, necessitates an adaptation of product portfolio management (PPM). Against this backdrop, this study investigates the current challenges and requirements of PPM in this industrial context and develops a framework for the application of generative artificial intelligence (AI) to enhance agility and efficiency in PPM processes. The research approach of this study is based on a mixed-method design. Initially, qualitative interviews with industry experts were conducted to gain a deep understanding of the specific challenges and requirements in PPM. These interviews were analyzed using the Gioia method, painting a detailed picture of the existing issues and needs within the sector. This was complemented by a quantitative online survey. The combination of qualitative and quantitative research enabled a comprehensive understanding of the current challenges in the practical application of machine and plant engineering PPM. Based on these insights, a specific framework for the application of generative AI in PPM was developed. This framework aims to assist companies in implementing faster and more agile processes, systematically integrating dynamic requirements from trends such as digitalization and sustainability into their PPM process. Utilizing generative AI technologies, companies can more quickly identify and respond to trends and market changes, allowing for a more efficient and targeted adaptation of the product portfolio. The study emphasizes the importance of an agile and reactive approach to PPM in a rapidly changing environment. It demonstrates how generative AI can serve as a powerful tool to manage the complexity of a diversified and continually evolving product portfolio. The developed framework offers practical guidelines and strategies for companies to improve their PPM processes by leveraging the latest technological advancements while maintaining ecological and social responsibility. This paper significantly contributes to deepening the understanding of the application of generative AI in PPM and provides a framework for companies to manage their product portfolios more effectively and adapt to changing market conditions. The findings underscore the relevance of continuous adaptation and innovation in PPM strategies and demonstrate the potential of generative AI for proactive and future-oriented business management.

Keywords: servitization, product portfolio management, generative AI, disruptive innovation, machine and plant engineering

Procedia PDF Downloads 81
11148 Robustness of the Fuzzy Adaptive Speed Control of a Multi-Phase Asynchronous Machine

Authors: Bessaad Taieb, Benbouali Abderrahmen

Abstract:

Fuzzy controllers are a powerful tool for controlling complex processes. However, its robustness capacity remains moderately limited because it loses its property for large ranges of parametric variations. In this paper, the proposed control method is designed, based on a fuzzy adaptive controller used as a remedy for this problem. For increase the robustness of the vector control and to maintain the performance of the five-phase asynchronous machine despite the presence of disturbances (variation of rotor resistance, rotor inertia variations, sudden variations in the load etc.), by applying the method of behaviour model control (BMC). The results of simulation show that the fuzzy adaptive control provides best performance and has a more robustness as the fuzzy (FLC) and as a conventional (PI) controller.

Keywords: fuzzy adaptive control, behaviour model control, vector control, five-phase asynchronous machine

Procedia PDF Downloads 94
11147 Using Machine Learning to Enhance Win Ratio for College Ice Hockey Teams

Authors: Sadixa Sanjel, Ahmed Sadek, Naseef Mansoor, Zelalem Denekew

Abstract:

Collegiate ice hockey (NCAA) sports analytics is different from the national level hockey (NHL). We apply and compare multiple machine learning models such as Linear Regression, Random Forest, and Neural Networks to predict the win ratio for a team based on their statistics. Data exploration helps determine which statistics are most useful in increasing the win ratio, which would be beneficial to coaches and team managers. We ran experiments to select the best model and chose Random Forest as the best performing. We conclude with how to bridge the gap between the college and national levels of sports analytics and the use of machine learning to enhance team performance despite not having a lot of metrics or budget for automatic tracking.

Keywords: NCAA, NHL, sports analytics, random forest, regression, neural networks, game predictions

Procedia PDF Downloads 113
11146 Role of Emotional Support and Work Motivation for Quality of Work Life on Balinese Working Women

Authors: Komang Rahayu Indrawati, Ni Wayan Sinthia Widiastuti, Ratna Dewi Santosa

Abstract:

Today the career of Balinese working women has been highly developed where able to work with loyalty and high professionalism. Career for a woman is one conscious choice and a call of conscience, which provides financial support for her family. Career for women can develop their own potencies, intellectually, and socially, so women feel that their role is meaningful and beneficial for herself and others. Emotional support becomes important to understand certainly for women who have multirole like Balinese working women to meet the demands of their role and also enhancing their work motivation and the quality of work life. This research used quantitative research method with questionnaires dissemination to 120 respondents and analyzed using Multiple Regression Analysis. The purpose of this study was to see the role of emotional support for work motivation and quality of work life in working Balinese women. The results of this study showed that emotional support and work motivation give a significant role in the quality of work life on Balinese working women.

Keywords: Balinese working women, emotional support, quality of work life, work motivation

Procedia PDF Downloads 197
11145 Knowledge Management in Public Sector Employees: A Case Study of Training Participants at National Institute of Management, Pakistan

Authors: Muhammad Arif Khan, Haroon Idrees, Imran Aziz, Sidra Mushtaq

Abstract:

The purpose of this study is to investigate the current level of knowledge mapping skills of the public sector employees in Pakistan. National Institute of Management is one of the premiere public sector training organization for mid-career public sector employees in Pakistan. This study is conducted on participants of fourteen weeks long training course called Mid-Career Management Course (MCMC) which is mandatory for public sector employees in order to ascertain how to enhance their knowledge mapping skills. Methodology: Researcher used both qualitative and quantitative approach to conduct this study. Primary data about current level of participants’ understanding of knowledge mapping was collected through structured questionnaire. Later on, Participant Observation method was used where researchers acted as part of the group to gathered data from the trainees during their performance in training activities and tasks. Findings: Respondents of the study were examined for skills and abilities to organizing ideas, helping groups to develop conceptual framework, identifying critical knowledge areas of an organization, study large networks and identifying the knowledge flow using nodes and vertices, visualizing information, represent organizational structure etc. Overall, the responses varied in different skills depending on the performance and presentations. However, generally all participants have demonstrated average level of using both the IT and Non-IT K-mapping tools and techniques during simulation exercises, analysis paper de-briefing, case study reports, post visit presentation, course review, current issue presentation, syndicate meetings, and daily synopsis. Research Limitations: This study is conducted on a small-scale population of 67 public sector employees nominated by federal government to undergo 14 weeks extensive training program called MCMC (Mid-Career Management Course) at National Institute of Management, Peshawar, Pakistan. Results, however, reflects only a specific class of public sector employees i.e. working in grade 18 and having more than 5 years of work. Practical Implications: Research findings are useful for trainers, training agencies, government functionaries, and organizations working for capacity building of public sector employees.

Keywords: knowledge management, km in public sector, knowledge management and professional development, knowledge management in training, knowledge mapping

Procedia PDF Downloads 254
11144 Optimal Location of the I/O Point in the Parking System

Authors: Jing Zhang, Jie Chen

Abstract:

In this paper, we deal with the optimal I/O point location in an automated parking system. In this system, the S/R machine (storage and retrieve machine) travels independently in vertical and horizontal directions. Based on the characteristics of the parking system and the basic principle of AS/RS system (Automated Storage and Retrieval System), we obtain the continuous model in units of time. For the single command cycle using the randomized storage policy, we calculate the probability density function for the system travel time and thus we develop the travel time model. And we confirm that the travel time model shows a good performance by comparing with discrete case. Finally in this part, we establish the optimal model by minimizing the expected travel time model and it is shown that the optimal location of the I/O point is located at the middle of the left-hand above corner.

Keywords: parking system, optimal location, response time, S/R machine

Procedia PDF Downloads 408
11143 DAG Design and Tradeoff for Full Live Virtual Machine Migration over XIA Network

Authors: Dalu Zhang, Xiang Jin, Dejiang Zhou, Jianpeng Wang, Haiying Jiang

Abstract:

Traditional TCP/IP network is showing lots of shortages and research for future networks is becoming a hotspot. FIA (Future Internet Architecture) and FIA-NP (Next Phase) are supported by US NSF for future Internet designing. Moreover, virtual machine migration is a significant technique in cloud computing. As a network application, it should also be supported in XIA (expressive Internet Architecture), which is in both FIA and FIA-NP projects. This paper is an experimental study aims at verifying the feasibility of VM migration over XIA. We present three ways to maintain VM connectivity and communication states concerning DAG design and routing table modification. VM migration experiments are conducted intra-AD and inter-AD with KVM instances. The procedure is achieved by a migration control protocol which is suitable for the characters of XIA. Evaluation results show that our solutions can well supports full live VM migration over XIA network respectively, keeping services seamless.

Keywords: DAG, downtime, virtual machine migration, XIA

Procedia PDF Downloads 854
11142 Moral Identity and Moral Attentiveness as Predictors of Ethical Leadership in Financial Sector

Authors: Pilar Gamarra Gamarra, Michele Girotto

Abstract:

In the expanding field of leaders’ ethical behavior research, little attention has been paid to the association between finance leaders’ ethical traits (beyond personality) and ethical leadership, and more importantly, how these ethical characteristics can be predictors of ethical behavior at the leadership level in the financial sector. In this study, we tested a theoretical model based on uponsocial cognitive theory (Bandura, 1986) and the cognitive-developmental model (Piaget, 1932) to examine leaders’ moral identity and moral attentiveness as antecedents of ethical leadership. After the 2008 economic crisis, the marketplace has awakened to the potential dangers of unethical behavior. The unethical behavior of the leaders of the financial sector was identified as guilty of this economic catastrophe. For that reason, it seems increasingly prudent for organizations to have leaders who are cognitively inclined toward ethical behavior. This evidence suggests that moral attentiveness and moral identity is perhaps one way of identifying those kinds of leaders. For leaders who are morally attentive and have a high moral identity, themes of ethics interventions are consistent with their way of seeing the word. As a result, these leaders could become critical components of change in organizations and could provide the energy and skills necessary for these efforts to be successful. Ethical behavior of leader from the financial sector and marketing sectors must be joined to manage the change. In this study, a leader’s moral identity, leader’s moral attentiveness, and self-importance of Ethical Leadership are measured for financial and marketing leaders to be compared to determine the relationship between the three variables in each sector. Other conclusion related to gender, educational level or generation are obtained.

Keywords: ethical leadership, moral identity, moral attentiveness, financial leaders, marketing leaders, ethical behavior

Procedia PDF Downloads 174
11141 Dogmatic Instrumant in Financing Micro Project

Authors: Adel Fatima Zohra, Guendouz Abdelkader

Abstract:

The solitary sector seems to appear nowadays as a third sector along the private and public ones, because of their ineptitude to take in charge the social exigency of the society regarding the lack in their local assets and the weakness of their financial institutions. The role of this sector is promoting a set of activities in the field of the charity, without aiming neither the individual profit nor a power practice. With the rise in the need of domestic resources, it is possible to count on the Zakat funding to realize some investment projects in order to develop the local society in many sectors as health, agriculture … etc. In the Islamic financial system, the Zakat is likely one of the most important instruments in financing the local development with the respect of the “Charia” rules: the amount of the Zakat is 2.5% of a wealth equivalent of each 85 gr of gold possessed since one year at least. In Algeria a fund of Zakat, was created since 2003 as an alternative to the public finding of development. This fund is a religious and social institution under the supervision of the ministry of religious affairs. This supervision covers two tasks: the first is traditional witch concern the distribution and the forwarding of the zakat to the poor people, and the second is modern concerning the financing of microcredits in the aim to enhance social and economic development. In this paper, we try to highlight the main role of the Zakat fund and its impact on the both social and economic development in Algeria.

Keywords: dogmatic instrument, solidary sector, zakat fund, micro project

Procedia PDF Downloads 273
11140 The Impact of Experiential Learning on the Success of Upper Division Mechanical Engineering Students

Authors: Seyedali Seyedkavoosi, Mohammad Obadat, Seantorrion Boyle

Abstract:

The purpose of this study is to assess the effectiveness of a nontraditional experiential learning strategy in improving the success and interest of mechanical engineering students, using the Kinematics/Dynamics of Machine course as a case study. This upper-division technical course covers a wide range of topics, including mechanism and machine system analysis and synthesis, yet the complexities of ideas like acceleration, motion, and machine component relationships are hard to explain using standard teaching techniques. To solve this problem, a thorough design project was created that gave students hands-on experience developing, manufacturing, and testing their inventions. The main goals of the project were to improve students' grasp of machine design and kinematics, to develop problem-solving and presenting abilities, and to familiarize them with professional software. A questionnaire survey was done to evaluate the effect of this technique on students' performance and interest in mechanical engineering. The outcomes of the study shed light on the usefulness of nontraditional experiential learning approaches in engineering education.

Keywords: experiential learning, nontraditional teaching, hands-on design project, engineering education

Procedia PDF Downloads 95
11139 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis

Authors: Mehrnaz Mostafavi

Abstract:

The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.

Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans

Procedia PDF Downloads 98
11138 Key Performance Indicators of Cold Supply Chain Practices in Agriculture Sector: Empirical Study on the Egyptian Export Companies

Authors: Ahmed Barakat, Nourhan Ahmed Saad, Mahmoud Hammad

Abstract:

Tracking and monitoring agricultural products, cold chain activities, and transportation in real-time can effectively ensure both the quality and safety of agricultural products, as well as reduce overall logistics costs. Effective supply chain practices are one of the main requirements for enhancing agricultural business in Egypt. Cold chain is among the best practices for the storage and transportation of perishable goods and has potential within the agricultural sector in Egypt. This practice has the scope of reducing the wastage of food and increasing the profitability with a reduction in costs. Even though it has several implementation challenges for the farmers, traders, and people involved in the entire supply chain, it has highlighted better benefits for all and for the export of goods for the economic progression for Egypt. The aim of this paper is to explore cold supply chain practices for the agriculture sector in Egypt, to enhance the export performance of fresh goods. In this context, this study attempts to explore those aspects of the performance of cold supply chain practices that can enhance the functioning of the agriculture sector in Egypt from the perspective of export companies (traders) and farmers. Based on the empirical results obtained by data collection from the farmers and traders, the study argues that there is a significant association between cold supply chain practices and enhancement of the agriculture value chain. The paper thus highlights the contribution of the study with final conclusions and limitations with scope for future research.

Keywords: agriculture sector, cold chain management, export companies, non-traded goods, supply chain management

Procedia PDF Downloads 159
11137 Prediction of Formation Pressure Using Artificial Intelligence Techniques

Authors: Abdulmalek Ahmed

Abstract:

Formation pressure is the main function that affects drilling operation economically and efficiently. Knowing the pore pressure and the parameters that affect it will help to reduce the cost of drilling process. Many empirical models reported in the literature were used to calculate the formation pressure based on different parameters. Some of these models used only drilling parameters to estimate pore pressure. Other models predicted the formation pressure based on log data. All of these models required different trends such as normal or abnormal to predict the pore pressure. Few researchers applied artificial intelligence (AI) techniques to predict the formation pressure by only one method or a maximum of two methods of AI. The objective of this research is to predict the pore pressure based on both drilling parameters and log data namely; weight on bit, rotary speed, rate of penetration, mud weight, bulk density, porosity and delta sonic time. A real field data is used to predict the formation pressure using five different artificial intelligence (AI) methods such as; artificial neural networks (ANN), radial basis function (RBF), fuzzy logic (FL), support vector machine (SVM) and functional networks (FN). All AI tools were compared with different empirical models. AI methods estimated the formation pressure by a high accuracy (high correlation coefficient and low average absolute percentage error) and outperformed all previous. The advantage of the new technique is its simplicity, which represented from its estimation of pore pressure without the need of different trends as compared to other models which require a two different trend (normal or abnormal pressure). Moreover, by comparing the AI tools with each other, the results indicate that SVM has the advantage of pore pressure prediction by its fast processing speed and high performance (a high correlation coefficient of 0.997 and a low average absolute percentage error of 0.14%). In the end, a new empirical correlation for formation pressure was developed using ANN method that can estimate pore pressure with a high precision (correlation coefficient of 0.998 and average absolute percentage error of 0.17%).

Keywords: Artificial Intelligence (AI), Formation pressure, Artificial Neural Networks (ANN), Fuzzy Logic (FL), Support Vector Machine (SVM), Functional Networks (FN), Radial Basis Function (RBF)

Procedia PDF Downloads 149