Search results for: stock forecasting
561 Comparative Study of Line Voltage Stability Indices for Voltage Collapse Forecasting in Power Transmission System
Authors: H. H. Goh, Q. S. Chua, S. W. Lee, B. C. Kok, K. C. Goh, K. T. K. Teo
Abstract:
At present, the evaluation of voltage stability assessment experiences sizeable anxiety in the safe operation of power systems. This is due to the complications of a strain power system. With the snowballing of power demand by the consumers and also the restricted amount of power sources, therefore, the system has to perform at its maximum proficiency. Consequently, the noteworthy to discover the maximum ability boundary prior to voltage collapse should be undertaken. A preliminary warning can be perceived to evade the interruption of power system’s capacity. The effectiveness of line voltage stability indices (LVSI) is differentiated in this paper. The main purpose of the indices is used to predict the proximity of voltage instability of the electric power system. On the other hand, the indices are also able to decide the weakest load buses which are close to voltage collapse in the power system. The line stability indices are assessed using the IEEE 14 bus test system to validate its practicability. Results demonstrated that the implemented indices are practically relevant in predicting the manifestation of voltage collapse in the system. Therefore, essential actions can be taken to dodge the incident from arising.Keywords: critical line, line outage, line voltage stability indices (LVSI), maximum loadability, voltage collapse, voltage instability, voltage stability analysis
Procedia PDF Downloads 357560 Development of an Index for Asset Class in Ex-Ante Portfolio Management
Authors: Miang Hong Ngerng, Noor Diyana Jasme, May Jin Theong
Abstract:
Volatile market environment is inevitable. Fund managers are struggling to choose the right strategy to survive and overcome uncertainties and adverse market movement. Therefore, finding certainty in the mist of uncertainty future is one of the key performance objectives for fund managers. Current available theoretical results are not practical due to strong reliance on the investment assumption made. This paper is to identify the component that can be forecasted in Ex-ante setting which is the realistic situation facing a fund manager in the actual execution of asset allocation in portfolio management. Partial lease square method was used to generate an index with 10 years accounting data from 191 companies listed in KLSE. The result shows that the index reflects the inner nature of the business and up to 30% of the stock return can be explained by the index.Keywords: active portfolio management, asset allocation ex-ante investment, asset class, partial lease square
Procedia PDF Downloads 265559 An IM-COH Algorithm Neural Network Optimization with Cuckoo Search Algorithm for Time Series Samples
Authors: Wullapa Wongsinlatam
Abstract:
Back propagation algorithm (BP) is a widely used technique in artificial neural network and has been used as a tool for solving the time series problems, such as decreasing training time, maximizing the ability to fall into local minima, and optimizing sensitivity of the initial weights and bias. This paper proposes an improvement of a BP technique which is called IM-COH algorithm (IM-COH). By combining IM-COH algorithm with cuckoo search algorithm (CS), the result is cuckoo search improved control output hidden layer algorithm (CS-IM-COH). This new algorithm has a better ability in optimizing sensitivity of the initial weights and bias than the original BP algorithm. In this research, the algorithm of CS-IM-COH is compared with the original BP, the IM-COH, and the original BP with CS (CS-BP). Furthermore, the selected benchmarks, four time series samples, are shown in this research for illustration. The research shows that the CS-IM-COH algorithm give the best forecasting results compared with the selected samples.Keywords: artificial neural networks, back propagation algorithm, time series, local minima problem, metaheuristic optimization
Procedia PDF Downloads 151558 An Agent-Based Approach to Examine Interactions of Firms for Investment Revival
Authors: Ichiro Takahashi
Abstract:
One conundrum that macroeconomic theory faces is to explain how an economy can revive from depression, in which the aggregate demand has fallen substantially below its productive capacity. This paper examines an autonomous stabilizing mechanism using an agent-based Wicksell-Keynes macroeconomic model. This paper focuses on the effects of the number of firms and the length of the gestation period for investment that are often assumed to be one in a mainstream macroeconomic model. The simulations found the virtual economy was highly unstable, or more precisely, collapsing when these parameters are fixed at one. This finding may even suggest us to question the legitimacy of these common assumptions. A perpetual decline in capital stock will eventually encourage investment if the capital stock is short-lived because an inactive investment will result in insufficient productive capacity. However, for an economy characterized by a roundabout production method, a gradual decline in productive capacity may not be able to fall below the aggregate demand that is also shrinking. Naturally, one would then ask if our economy cannot rely on an external stimulus such as population growth and technological progress to revive investment, what factors would provide such a buoyancy for stimulating investments? The current paper attempts to answer this question by employing the artificial macroeconomic model mentioned above. The baseline model has the following three features: (1) the multi-period gestation for investment, (2) a large number of heterogeneous firms, (3) demand-constrained firms. The instability is a consequence of the following dynamic interactions. (a) A multiple-period gestation period means that once a firm starts a new investment, it continues to invest over some subsequent periods. During these gestation periods, the excess demand created by the investing firm will spill over to ignite new investment of other firms that are supplying investment goods: the presence of multi-period gestation for investment provides a field for investment interactions. Conversely, the excess demand for investment goods tends to fade away before it develops into a full-fledged boom if the gestation period of investment is short. (b) A strong demand in the goods market tends to raise the price level, thereby lowering real wages. This reduction of real wages creates two opposing effects on the aggregate demand through the following two channels: (1) a reduction in the real labor income, and (2) an increase in the labor demand due to the principle of equality between the marginal labor productivity and real wage (referred as the Walrasian labor demand). If there is only a single firm, a lower real wage will increase its Walrasian labor demand, thereby an actual labor demand tends to be determined by the derived labor demand. Thus, the second positive effect would not work effectively. In contrast, for an economy with a large number of firms, Walrasian firms will increase employment. This interaction among heterogeneous firms is a key for stability. A single firm cannot expect the benefit of such an increased aggregate demand from other firms.Keywords: agent-based macroeconomic model, business cycle, demand constraint, gestation period, representative agent model, stability
Procedia PDF Downloads 162557 Islamic Equity Markets Response to Volatility of Bitcoin
Authors: Zakaria S. G. Hegazy, Walid M. A. Ahmed
Abstract:
This paper examines the dependence structure of Islamic stock markets on Bitcoin’s realized volatility components in bear, normal, and bull market periods. A quantile regression approach is employed, after adjusting raw returns with respect to a broad set of relevant global factors and accounting for structural breaks in the data. The results reveal that upside volatility tends to exert negative influences on Islamic developed-market returns more in bear than in bull market conditions, while downside volatility positively affects returns during bear and bull conditions. For emerging markets, we find that the upside (downside) component exerts lagged negative (positive) effects on returns in bear (all) market regimes. By and large, the dependence structures turn out to be asymmetric. Our evidence provides essential implications for investors.Keywords: cryptocurrency markets, bitcoin, realized volatility measures, asymmetry, quantile regression
Procedia PDF Downloads 184556 Socio-Economic Modelling Approaches Linked to Water Quality: A Review
Authors: Aurelia Samuel
Abstract:
Socio-economic modelling approaches linked to water management have contributed to impact assessments of agricultural policies and management practices on water quality at catchment level. With an increasing interest in informing water management policy that considers complex links between socioeconomic factors, climate change, agricultural production, and water quality, several models have been developed and applied in the literature to capture these relationships. This paper offers an overview of socio-economic approaches that have been incorporated within an integrated framework. It also highlights how data gaps on socio-economic factors have been addressed using forecasting techniques. Findings of the review show that while integrated frameworks have the potential to account for complexities within dynamic systems, they generally do not provide direct, measurable financial impact of socio-economic factors on biophysical water parameters that affect water quality. The paper concludes with a recommendation that modelling framework is kept simple to make it more transparent and easier to capture the most important relationship.Keywords: financial impact, integrated framework, socio-economic modelling, water quality
Procedia PDF Downloads 148555 Neural Network Approaches for Sea Surface Height Predictability Using Sea Surface Temperature
Authors: Luther Ollier, Sylvie Thiria, Anastase Charantonis, Carlos E. Mejia, Michel Crépon
Abstract:
Sea Surface Height Anomaly (SLA) is a signature of the sub-mesoscale dynamics of the upper ocean. Sea Surface Temperature (SST) is driven by these dynamics and can be used to improve the spatial interpolation of SLA fields. In this study, we focused on the temporal evolution of SLA fields. We explored the capacity of deep learning (DL) methods to predict short-term SLA fields using SST fields. We used simulated daily SLA and SST data from the Mercator Global Analysis and Forecasting System, with a resolution of (1/12)◦ in the North Atlantic Ocean (26.5-44.42◦N, -64.25–41.83◦E), covering the period from 1993 to 2019. Using a slightly modified image-to-image convolutional DL architecture, we demonstrated that SST is a relevant variable for controlling the SLA prediction. With a learning process inspired by the teaching-forcing method, we managed to improve the SLA forecast at five days by using the SST fields as additional information. We obtained predictions of a 12 cm (20 cm) error of SLA evolution for scales smaller than mesoscales and at time scales of 5 days (20 days), respectively. Moreover, the information provided by the SST allows us to limit the SLA error to 16 cm at 20 days when learning the trajectory.Keywords: deep-learning, altimetry, sea surface temperature, forecast
Procedia PDF Downloads 89554 The Cost of Solar-Centric Renewable Portfolio
Authors: Timothy J. Considine, Edward J. M. Manderson
Abstract:
This paper develops an econometric forecasting system of energy demand coupled with engineering-economic models of energy supply. The framework is used to quantify the impact of state-level renewable portfolio standards (RPSs) achieved predominately with solar generation on electricity rates, electricity consumption, and environmental quality. We perform the analysis using Arizona’s RPS as a case study. We forecast energy demand in Arizona out to 2035, and find by this time the state will require an additional 35 million MWh of electricity generation. If Arizona implements its RPS when supplying this electricity demand, we find there will be a substantial increase in electricity rates (relative to a business-as-usual scenario of reliance on gas-fired generation). Extending the current regime of tax credits can greatly reduce this increase, at the taxpayers’ expense. We find that by 2025 Arizona’s RPS will implicitly abate carbon dioxide emissions at a cost between $101 and $135 per metric ton, and by 2035 abatement costs are between $64 and $112 per metric ton (depending on the future evolution of nature gas prices).Keywords: electricity demand, renewable portfolio standard, solar, carbon dioxide
Procedia PDF Downloads 483553 An Improved Prediction Model of Ozone Concentration Time Series Based on Chaotic Approach
Authors: Nor Zila Abd Hamid, Mohd Salmi M. Noorani
Abstract:
This study is focused on the development of prediction models of the Ozone concentration time series. Prediction model is built based on chaotic approach. Firstly, the chaotic nature of the time series is detected by means of phase space plot and the Cao method. Then, the prediction model is built and the local linear approximation method is used for the forecasting purposes. Traditional prediction of autoregressive linear model is also built. Moreover, an improvement in local linear approximation method is also performed. Prediction models are applied to the hourly ozone time series observed at the benchmark station in Malaysia. Comparison of all models through the calculation of mean absolute error, root mean squared error and correlation coefficient shows that the one with improved prediction method is the best. Thus, chaotic approach is a good approach to be used to develop a prediction model for the Ozone concentration time series.Keywords: chaotic approach, phase space, Cao method, local linear approximation method
Procedia PDF Downloads 329552 R Data Science for Technology Management
Authors: Sunghae Jun
Abstract:
Technology management (TM) is important issue in a company improving the competitiveness. Among many activities of TM, technology analysis (TA) is important factor, because most decisions for management of technology are decided by the results of TA. TA is to analyze the developed results of target technology using statistics or Delphi. TA based on Delphi is depended on the experts’ domain knowledge, in comparison, TA by statistics and machine learning algorithms use objective data such as patent or paper instead of the experts’ knowledge. Many quantitative TA methods based on statistics and machine learning have been studied, and these have been used for technology forecasting, technological innovation, and management of technology. They applied diverse computing tools and many analytical methods case by case. It is not easy to select the suitable software and statistical method for given TA work. So, in this paper, we propose a methodology for quantitative TA using statistical computing software called R and data science to construct a general framework of TA. From the result of case study, we also show how our methodology is applied to real field. This research contributes to R&D planning and technology valuation in TM areas.Keywords: technology management, R system, R data science, statistics, machine learning
Procedia PDF Downloads 457551 Evaluation of Different Inoculation Methods of Entomopathogenic Fungi on Their Endophytism and Pathogenicity against Chilo partellus (Swinhoe)
Authors: Mubashar Iqbal, Iqra Anjum, Muhammad Dildar Gogi, Muhammad Jalal Arif
Abstract:
The present study was carried to screen out the effective entomopathogenic fungi (EPF) inoculation method in maize and to evaluate pathogenicity and oviposition-choice in C. partellus. Three entomopathogenic fungi (EPF) formulations Pacer® (Metarhizium anisopliae), Racer® (Beauveria bassiana) and Meailkil® (Verticillium lecanii) were evaluated at three concentrations (5000, 10000 and 20000 ppm) for their endophytism in maize and pathogenicity in C. partellus. The stock solution of the highest concentration (20,000 ppm) was prepared and next lower from stock solution. In the first experiment, three EPF was inoculated in maize plant by four methods, i.e., leaf-inoculation (LI), whorl-inoculation (WI), shoot-inoculation (SI) and root-inoculation (RI). Leaf-discs and stem-cutting were sampled in all four inoculation methods and placed on fungus growth media in Petri dishes. In the second experiment, pathogenicity, pupal formation, adult emergence, sex ratio, oviposition-choice, and growth index of C. partellus were calculated. The leaves and stem of the inoculated plants were given to the counted number of larvae of C. Partellus. The mortality of larvae was recorded on daily basis till the pupation. The result shows that maximum percent mortality (86.67%) was recorded at high concentration (20000ppm) of Beauveria bassiana by leaf inoculation method. For oviposition choice bioassay, the newly emerged adults were fed on diet (water, honey and yeast in 9:1:1) for 48 hours. One pair of C. Partellus were aspirated from the rearing cages and were detained in large test tube plugged with diet soaked cotton. A set of four plants for each treatment were prepared and randomized inside the large oviposition chamber. The test tubes were opened and fitted in the hole made in the wall of oviposition chamber in front of each treatment. The oviposition chamber was placed in a completely dark laboratory to eliminate the effect of light on moth’s behavior. The plants were removed from the oviposition chamber after the death of adults. The number of eggs deposited on the plant was counted. The results of 2nd experiment revealed that in all EPF and inoculation methods, the fecundity, egg fertility and growth index of C. partellus decreased with the increase in concentration being significantly higher at low concentration (5000ppm) and lower at higher concentration (20000ppm). Application of B. bassiana demonstrated that minimum fecundity (126.83), egg fertility (119.52) and growth index (15%) in C. partellus followed by M. anisopliae with fecundity (135.93), egg fertility (132.29) and growth index (17.50%) while V. lecanii show higher values of fecundity (137.37), egg fertility (1135.42) and growth index (20%). Overall leaf inoculation method showed least fecundity (123.89) with egg fertility (115.36) and growth index (14%) followed by whorl, shoot inoculation method and root inoculation method show higher values of fecundity, egg fertility and growth index.Keywords: Beauveria bassiana, Chilo partellus, entomopathoganic, Metarhizium anisopliae, Verticillium lecanii
Procedia PDF Downloads 136550 Supplementing Aerial-Roving Surveys with Autonomous Optical Cameras: A High Temporal Resolution Approach to Monitoring and Estimating Effort within a Recreational Salmon Fishery in British Columbia, Canada
Authors: Ben Morrow, Patrick O'Hara, Natalie Ban, Tunai Marques, Molly Fraser, Christopher Bone
Abstract:
Relative to commercial fisheries, recreational fisheries are often poorly understood and pose various challenges for monitoring frameworks. In British Columbia (BC), Canada, Pacific salmon are heavily targeted by recreational fishers while also being a key source of nutrient flow and crucial prey for a variety of marine and terrestrial fauna, including endangered Southern Resident killer whales (Orcinus orca). Although commercial fisheries were historically responsible for the majority of salmon retention, recreational fishing now comprises both greater effort and retention. The current monitoring scheme for recreational salmon fisheries involves aerial-roving creel surveys. However, this method has been identified as costly and having low predictive power as it is often limited to sampling fragments of fluid and temporally dynamic fisheries. This study used imagery from two shore-based autonomous cameras in a highly active recreational fishery around Sooke, BC, and evaluated their efficacy in supplementing existing aerial-roving surveys for monitoring a recreational salmon fishery. This study involved continuous monitoring and high temporal resolution (over one million images analyzed in a single fishing season), using a deep learning-based vessel detection algorithm and a custom image annotation tool to efficiently thin datasets. This allowed for the quantification of peak-season effort from a busy harbour, species-specific retention estimates, high levels of detected fishing events at a nearby popular fishing location, as well as the proportion of the fishery management area represented by cameras. Then, this study demonstrated how it could substantially enhance the temporal resolution of a fishery through diel activity pattern analyses, scaled monthly to visualize clusters of activity. This work also highlighted considerable off-season fishing detection, currently unaccounted for in the existing monitoring framework. These results demonstrate several distinct applications of autonomous cameras for providing enhanced detail currently unavailable in the current monitoring framework, each of which has important considerations for the managerial allocation of resources. Further, the approach and methodology can benefit other studies that apply shore-based camera monitoring, supplement aerial-roving creel surveys to improve fine-scale temporal understanding, inform the optimal timing of creel surveys, and improve the predictive power of recreational stock assessments to preserve important and endangered fish species.Keywords: cameras, monitoring, recreational fishing, stock assessment
Procedia PDF Downloads 122549 Experimental and Numerical Analysis of Mustafa Paşa Mosque in Skopje
Authors: Ozden Saygili, Eser Cakti
Abstract:
The masonry building stock in Istanbul and in other cities of Turkey are exposed to significant earthquake hazard. Determination of the safety of masonry structures against earthquakes is a complex challenge. This study deals with experimental tests and non-linear dynamic analysis of masonry structures modeled through discrete element method. The 1:10 scale model of Mustafa Paşa Mosque was constructed and the data were obtained from the sensors on it during its testing on the shake table. The results were used in the calibration/validation of the numerical model created on the basis of the 1:10 scale model built for shake table testing. 3D distinct element model was developed that represents the linear and nonlinear behavior of the shake table model as closely as possible during experimental tests. Results of numerical analyses with those from the experimental program were compared and discussed.Keywords: dynamic analysis, non-linear modeling, shake table tests, masonry
Procedia PDF Downloads 422548 The Investigation of Relationship between Accounting Information and the Value of Companies
Authors: Golamhassan Ghahramani Aghdam, Pedram Bavili Tabrizi
Abstract:
The aim of this research is to investigate the relationship between accounting information and the value of the companies accepted in Tehran Exchange Market. The dependent variable in this research is the value of a company that is measured by price coefficients, and the independent variables are balance sheet information, profit and loss information, cash flow state information, and profit quality characteristics. The profit quality characteristic index is to be related and to be on-time. This research is an application research, and the research population includes all companies that are active in Tehran exchange market. The number of 194 companies was selected by the systematic method as the statistics sample in the period of 2018-2019. The multi-variable linear regression model was used for the hypotheses test. The results show that there is no relationship between accounting information and companies’ value (stock value) that can be due to the lack of efficiency of the investment market and the inability to use the accounting information by investment market activists.Keywords: accounting information, company value, profit quality characteristics, price coefficient
Procedia PDF Downloads 137547 The Consumer Responses toward the Offensive Product Advertising
Authors: Chin Tangtarntana
Abstract:
The main purpose of this study was to investigate the effects of animation in offensive product advertising. Experiment was conducted to collect consumer responses toward animated and static ads of offensive and non-offensive products. The study was conducted by distributing questionnaires to the target respondents. According to statistics from Innovative Internet Research Center, Thailand, majority of internet users are 18 – 44 years old. The results revealed an interaction between ad design and offensive product. Specifically, when used in offensive product advertisements, animated ads were not effective for consumer attention, but yielded positive response in terms of attitude toward product. The findings support that information processing model is accurate in predicting consumer cognitive response toward cartoon ads, whereas U&G, arousal, and distinctive theory is more accurate in predicting consumer affective response. In practical, these findings can also be used to guide ad designers and marketers that are suitable for offensive products.Keywords: animation, banner ad design, consumer responses, offensive product advertising, stock exchange of Thailand
Procedia PDF Downloads 266546 Case for Simulating Consumer Response to Feed in Tariff Based on Socio-Economic Parameters
Authors: Fahad Javed, Tasneem Akhter, Maria Zafar, Adnan Shafique
Abstract:
Evaluation and quantification of techniques is critical element of research and development of technology. Simulations and models play an important role in providing the tools for such assessments. When we look at technologies which impact or is dependent on an average Joe consumer then modeling the socio-economic and psychological aspects of the consumer also gain an importance. For feed in tariff for home consumers which is being deployed for average consumer may force many consumers to be adapters of the technology. Understanding how consumers will adapt this technologies thus hold as much significance as evaluating how the techniques would work in consumer agnostic scenarios. In this paper we first build the case for simulators which accommodate socio-economic realities of the consumers to evaluate smart grid technologies, provide a glossary of data that can aid in this effort and present an abstract model to capture and simulate consumers' adaptation and behavioral response to smart grid technologies. We provide a case study to express the power of such simulators.Keywords: smart grids, simulation, socio-economic parameters, feed in tariff (FiT), forecasting
Procedia PDF Downloads 356545 Influence of Radio Frequency Identification Technology at Cost of Supply Chain as a Driver for the Generation of Competitive Advantage
Authors: Mona Baniahmadi, Saied Haghanifar
Abstract:
Radio Frequency Identification (RFID) is regarded as a promising technology for the optimization of supply chain processes since it improves manufacturing and retail operations from forecasting demand for planning, managing inventory, and distribution. This study precisely aims at learning to know the RFID technology and at explaining how it can concretely be used for supply chain management and how it can help improving it in the case of Hejrat Company which is located in Iran and works on the distribution of medical drugs and cosmetics. This study uses some statistical analysis to calculate the expected benefits of an integrated RFID system on supply chain obtained through competitive advantages increases with decreasing cost factor. The study investigates how the cost of storage process, labor cost, the cost of missing goods, inventory management optimization, on-time delivery, order cost, lost sales and supply process optimization affect the performance of the integrated RFID supply chain regarding cost factors and provides a competitive advantage.Keywords: cost, competitive advantage, radio frequency identification, supply chain
Procedia PDF Downloads 273544 A New Tactical Optimization Model for Bioenergy Supply Chain
Authors: Birome Holo Ba, Christian Prins, Caroline Prodhon
Abstract:
Optimization is an important aspect of logistics management. It can reduce significantly logistics costs and also be a good tool for decision support. In this paper, we address a planning problem specific to biomass supply chain. We propose a new mixed integer linear programming (MILP) model dealing with different feed stock production operations such as harvesting, packing, storage, pre-processing and transportation, with the objective of minimizing the total logistic cost of the system on a regional basis. It determines the optimal number of harvesting machine, the fleet size of trucks for transportation and the amount of each type of biomass harvested, stored and pre-processed in each period to satisfy demands of refineries in each period. We illustrate the effectiveness of the proposal model with a numerical example, a case study in Aube (France department), which gives preliminary and interesting, results on a small test case.Keywords: biomass logistics, supply chain, modelling, optimization, bioenergy, biofuels
Procedia PDF Downloads 512543 Economic Forecasting Analysis for Solar Photovoltaic Application
Authors: Enas R. Shouman
Abstract:
Economic development with population growth is leading to a continuous increase in energy demand. At the same time, growing global concern for the environment is driving to decrease the use of conventional energy sources and to increase the use of renewable energy sources. The objective of this study is to present the market trends of solar energy photovoltaic technology over the world and to represent economics methods for PV financial analyzes on the basis of expectations for the expansion of PV in many applications. In the course of this study, detailed information about the current PV market was gathered and analyzed to find factors influencing the penetration of PV energy. The paper methodology depended on five relevant economic financial analysis methods that are often used for investment decisions maker. These methods are payback analysis, net benefit analysis, saving-to-investment ratio, adjusted internal rate of return, and life-cycle cost. The results of this study may be considered as a marketing guide that helps diffusion of using PV Energy. The study showed that PV cost is economically reliable. The consumers will pay higher purchase prices for PV system installation but will get lower electricity bill.Keywords: photovoltaic, financial methods, solar energy, economics, PV panel
Procedia PDF Downloads 108542 Modern Trends in Foreign Direct Investments in Georgia
Authors: Rusudan Kinkladze, Guguli Kurashvili, Ketevan Chitaladze
Abstract:
Foreign direct investment is a driving force in the development of the interdependent national economies, and the study and analysis of investments is an urgent problem. It is particularly important for transitional economies, such as Georgia, and the study and analysis of investments is an urgent problem. Consequently, the goal of the research is the study and analysis of direct foreign investments in Georgia, and identification and forecasting of modern trends, and covers the period of 2006-2015. The study uses the methods of statistical observation, grouping and analysis, the methods of analytical indicators of time series, trend identification and the predicted values are calculated, as well as various literary and Internet sources relevant to the research. The findings showed that modern investment policy In Georgia is favorable for domestic as well as foreign investors. Georgia is still a net importer of investments. In 2015, the top 10 investing countries was led by Azerbaijan, United Kingdom and Netherlands, and the largest share of FDIs were allocated in the transport and communication sector; the financial sector was the second, followed by the health and social work sector, and the same trend will continue in the future.Keywords: foreign direct investments, methods, statistics, analysis
Procedia PDF Downloads 329541 The Impact of Technology on Sales Researches and Distribution
Authors: Nady Farag Faragalla Hanna
Abstract:
In the car dealership industry in Japan, the sales specialist is a key factor in the success of the company. I hypothesize that when a company understands the characteristics of sales professionals in its industry, it is easier to recruit and train salespeople effectively. Lean human resources management ensures the economic success and performance of companies, especially small and medium-sized companies.The purpose of the article is to determine the characteristics of sales specialists for small and medium-sized car dealerships using the chi-square test and the proximate variable model. Accordingly, the results show that career change experience, learning ability and product knowledge are important, while university education, career building through internal transfer, leadership experience and people development are not important for becoming a sales professional. I also show that the characteristics of sales specialists are perseverance, humility, improvisation and passion for business.Keywords: electronics engineering, marketing, sales, E-commerce digitalization, interactive systems, sales process ARIMA models, sales demand forecasting, time series, R codetraits of sales professionals, variable precision rough sets theory, sales professional, sales professionals
Procedia PDF Downloads 51540 Corporate Governance and Firm Performance in the UAE
Authors: Bakr Ali Al-Gamrh, Ku Nor Izah B. Ku Ismail
Abstract:
We investigate the relationship between corporate governance, leverage, risk, and firm performance. We use a firm level panel that spans the period 2008 to 2012 of all listed firms on Abu Dhabi Stock Exchange and Dubai Financial Market. After constructing an index of corporate governance strength, we find a negative effect of corporate governance on firm performance. We, however, discover that corporate governance strength indirectly improves the negative influence of leverage on firm performance in normal times. On the contrary, the results completely reversed when there is a black swan event. Corporate governance strength plays a significantly negative role in moderating the relationship between leverage and firm performance during the financial crisis. We also reveal that corporate governance strength increases firms’ risk and deteriorates performance during crisis. Results provide evidence that corporate governance indirectly plays a completely different role in different time periods.Keywords: corporate governance, firm performance, risk, leverage, the UAE
Procedia PDF Downloads 547539 The Impact of Global Financial Crises and Corporate Financial Crisis (Bankruptcy Risk) on Corporate Tax Evasion: Evidence from Emerging Markets
Authors: Seyed Sajjad Habibi
Abstract:
The aim of this study is to investigate the impact of global financial crises and corporate financial crisis on tax evasion of companies listed on the Tehran Stock Exchange. For this purpose, panel data in the periods of financial crisis period (2007 to 2012) and without a financial crisis (2004, 2005, 2006, 2013, 2014, and 2015) was analyzed using multivariate linear regression. The results indicate a significant relationship between the corporate financial crisis (bankruptcy risk) and tax evasion in the global financial crisis period. The results also showed a significant relationship between the corporate bankruptcy risk and tax evasion in the period with no global financial crisis. A significant difference was found between the bankruptcy risk and tax evasion in the period of the global financial crisis and that with no financial crisis so that tax evasion increased in the financial crisis period.Keywords: global financial crisis, corporate financial crisis, bankruptcy risk, tax evasion risk, emerging markets
Procedia PDF Downloads 278538 Innate Immune Expression in Heterophils in Response to LPS
Authors: Rohita Gupta, G. S. Brah, R. Verma, C. S. Mukhopadhayay
Abstract:
Although chicken strains show differences in susceptibility to a number of diseases, the underlying immunological basis is yet to be elucidated. In the present study, heterophils were subjected to LPS stimulation and total RNA extraction, further differential gene expression was studied in broiler, layer and indigenous Aseel strain by Real Time RT-PCR at different time periods before and after induction. The expression of the 14 AvBDs and chTLR 1, 2, 3, 4, 5, 7, 15 and 21 was detectable in heterophils. The expression level of most of the AvBDs significantly increased (P<0.05) 3 hours post in vitro lipopolysaccharide challenge. Higher expression level and stronger activation of most AvBDs, NFkB-1 and IRF-3 in heterophils was observed with the stimulation of LPS in layer compared to broiler, and in Aseel compared to both layer and broiler. This investigation will allow more refined interpretation of immuno-genetic basis of the variable disease resistance/susceptibility in divergent stock of chicken including indigenous breed. Moreover, this study will be helpful in formulation of strategy for isolation of antimicrobial peptides from heterophils.Keywords: differential expression, heterophils, cytokines, defensin, TLR
Procedia PDF Downloads 495537 Forecasting the Fluctuation of Currency Exchange Rate Using Random Forest
Authors: Lule Basha, Eralda Gjika
Abstract:
The exchange rate is one of the most important economic variables, especially for a small, open economy such as Albania. Its effect is noticeable in one country's competitiveness, trade and current account, inflation, wages, domestic economic activity, and bank stability. This study investigates the fluctuation of Albania’s exchange rates using monthly average foreign currency, Euro (Eur) to Albanian Lek (ALL) exchange rate with a time span from January 2008 to June 2021, and the macroeconomic factors that have a significant effect on the exchange rate. Initially, the Random Forest Regression algorithm is constructed to understand the impact of economic variables on the behavior of monthly average foreign currencies exchange rates. Then the forecast of macro-economic indicators for 12 months was performed using time series models. The predicted values received are placed in the random forest model in order to obtain the average monthly forecast of the Euro to Albanian Lek (ALL) exchange rate for the period July 2021 to June 2022.Keywords: exchange rate, random forest, time series, machine learning, prediction
Procedia PDF Downloads 100536 Intermittent Demand Forecast in Telecommunication Service Provider by Using Artificial Neural Network
Authors: Widyani Fatwa Dewi, Subroto Athor
Abstract:
In a telecommunication service provider, quantity and interval of customer demand often difficult to predict due to high dependency on customer expansion strategy and technological development. Demand arrives when a customer needs to add capacity to an existing site or build a network in a new site. Because demand is uncertain for each period, and sometimes there is a null demand for several equipments, it is categorized as intermittent. This research aims to improve demand forecast quality in Indonesia's telecommunication service providers by using Artificial Neural Network. In Artificial Neural Network, the pattern or relationship within data will be analyzed using the training process, followed by the learning process as validation stage. Historical demand data for 36 periods is used to support this research. It is found that demand forecast by using Artificial Neural Network outperforms the existing method if it is reviewed on two criteria: the forecast accuracy, using Mean Absolute Deviation (MAD), Mean of the sum of the Squares of the Forecasting Error (MSE), Mean Error (ME) and service level which is shown through inventory cost. This research is expected to increase the reference for a telecommunication demand forecast, which is currently still limited.Keywords: artificial neural network, demand forecast, forecast accuracy, intermittent, service level, telecommunication
Procedia PDF Downloads 162535 A Mobile Application for Analyzing and Forecasting Crime Using Autoregressive Integrated Moving Average with Artificial Neural Network
Authors: Gajaanuja Megalathan, Banuka Athuraliya
Abstract:
Crime is one of our society's most intimidating and threatening challenges. With the majority of the population residing in cities, many experts and data provided by local authorities suggest a rapid increase in the number of crimes committed in these cities in recent years. There has been an increasing graph in the crime rates. People living in Sri Lanka have the right to know the exact crime rates and the crime rates in the future of the place they are living in. Due to the current economic crisis, crime rates have spiked. There have been so many thefts and murders recorded within the last 6-10 months. Although there are many sources to find out, there is no solid way of searching and finding out the safety of the place. Due to all these reasons, there is a need for the public to feel safe when they are introduced to new places. Through this research, the author aims to develop a mobile application that will be a solution to this problem. It is mainly targeted at tourists, and people who recently relocated will gain advantage of this application. Moreover, the Arima Model combined with ANN is to be used to predict crime rates. From the past researchers' works, it is evidently clear that they haven’t used the Arima model combined with Artificial Neural Networks to forecast crimes.Keywords: arima model, ANN, crime prediction, data analysis
Procedia PDF Downloads 127534 An Analytical Method for Maintenance Cost Estimating Relationships of Helicopters Using Linear Programming
Authors: Meesun Sun, Yongmin Kim
Abstract:
Estimating maintenance cost is crucial in defense management because it affects military budgets and availability of equipment. When it comes to estimating maintenance cost of the deployed equipment, time series forecasting can be applied with the actual historical cost data. It is more difficult issue to estimate maintenance cost of new equipment for which the actual costs are not provided. In this underlying context, this study proposes an analytical method for maintenance cost estimating relationships (CERs) development of helicopters using linear programming. The CERs can be applied to a new helicopter because they use non-cost independent variables such as the number of engines, the empty weight and so on. In the Republic of Korea, the maintenance cost of new equipment has been usually estimated by reflecting maintenance cost to unit price ratio of the legacy equipment. This study confirms that the CERs perform well for the 10 types of airmobile helicopters in terms of mean absolute percentage error by applying leave-one-out cross-validation. The suggested method is very useful to estimate the maintenance cost of new equipment and can help in the affordability assessment of acquisition program portfolios for total life cycle systems management.Keywords: affordability analysis, cost estimating relationship, helicopter, linear programming, maintenance cost
Procedia PDF Downloads 137533 Forecasting the Influences of Information and Communication Technology on the Structural Changes of Japanese Industrial Sectors: A Study Using Statistical Analysis
Authors: Ubaidillah Zuhdi, Shunsuke Mori, Kazuhisa Kamegai
Abstract:
The purpose of this study is to forecast the influences of Information and Communication Technology (ICT) on the structural changes of Japanese economies based on Leontief Input-Output (IO) coefficients. This study establishes a statistical analysis to predict the future interrelationships among industries. We employ the Constrained Multivariate Regression (CMR) model to analyze the historical changes of input-output coefficients. Statistical significance of the model is then tested by Likelihood Ratio Test (LRT). In our model, ICT is represented by two explanatory variables, i.e. computers (including main parts and accessories) and telecommunications equipment. A previous study, which analyzed the influences of these variables on the structural changes of Japanese industrial sectors from 1985-2005, concluded that these variables had significant influences on the changes in the business circumstances of Japanese commerce, business services and office supplies, and personal services sectors. The projected future Japanese economic structure based on the above forecast generates the differentiated direct and indirect outcomes of ICT penetration.Keywords: forecast, ICT, industrial structural changes, statistical analysis
Procedia PDF Downloads 374532 Forecasting the Future Implications of ChatGPT Usage in Education Based on AI Algorithms
Authors: Yakubu Bala Mohammed, Nadire Chavus, Mohammed Bulama
Abstract:
Generative Pre-trained Transformer (ChatGPT) represents an artificial intelligence (AI) tool capable of swiftly generating comprehensive responses to prompts and follow-up inquiries. This emerging AI tool was introduced in November 2022 by OpenAI firm, an American AI research laboratory, utilizing substantial language models. This present study aims to delve into the potential future consequences of ChatGPT usage in education using AI-based algorithms. The paper will bring forth the likely potential risks of ChatGBT utilization, such as academic integrity concerns, unfair learning assessments, excessive reliance on AI, and dissemination of inaccurate information using four machine learning algorithms: eXtreme-Gradient Boosting (XGBoost), Support vector machine (SVM), Emotional artificial neural network (EANN), and Random forest (RF) would be used to analyze the study collected data due to their robustness. Finally, the findings of the study will assist education stakeholders in understanding the future implications of ChatGPT usage in education and propose solutions and directions for upcoming studies.Keywords: machine learning, ChatGPT, education, learning, implications
Procedia PDF Downloads 230