Search results for: simple sequence repeat markers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5018

Search results for: simple sequence repeat markers

4268 A Simple Colorimetric Assay for Paraquat Detection Using Negatively Charged Silver Nanopaticles

Authors: Weena Siangphro, Orawon Chailapakul, Kriangsak Songsrirote

Abstract:

A simple, rapid, sensitive, and economical method based on colorimetry for the determination of paraquat, a widely used herbicide, was developed. Citrate-coated silver nanoparticles (AgNPs) were synthesized as colorimetric probe. The mechanism of the assay is related to aggregation of negatively charged AgNPs induced by positively-charged paraquat resulting from coulombic attraction which causes the color change from deep greenish yellow to pale yellow upon the concentrations of paraquat. Silica gel was exploited as paraquat adsorbent for purification and pre-concentration prior to the direct determination with negatively charged AgNPs without elution step required. The validity of the proposed approach was evaluated by spiking standard paraquat in water and plant samples. Recoveries of paraquat in water samples were 93.6-95.4%, while those in plant samples were 86.6-89.5% by using the optimized extraction procedure. The absorbance of AgNPs at 400 nm was linearly related to the concentration of paraquat over the range of 0.05-50 mg/L with detection limits of 0.05 ppm for water samples, and 0.10 ppm for plant samples.

Keywords: colorimetric assay, paraquat, silica gel, silver nanoparticles

Procedia PDF Downloads 239
4267 A Pedagogical Case Study on Consumer Decision Making Models: A Selection of Smart Phone Apps

Authors: Yong Bum Shin

Abstract:

This case focuses on Weighted additive difference, Conjunctive, Disjunctive, and Elimination by aspects methodologies in consumer decision-making models and the Simple additive weighting (SAW) approach in the multi-criteria decision-making (MCDM) area. Most decision-making models illustrate that the rank reversal phenomenon is unpreventable. This paper presents that rank reversal occurs in popular managerial methods such as Weighted Additive Difference (WAD), Conjunctive Method, Disjunctive Method, Elimination by Aspects (EBA) and MCDM methods as well as such as the Simple Additive Weighting (SAW) and finally Unified Commensurate Multiple (UCM) models which successfully addresses these rank reversal problems in most popular MCDM methods in decision-making area.

Keywords: multiple criteria decision making, rank inconsistency, unified commensurate multiple, analytic hierarchy process

Procedia PDF Downloads 83
4266 Probabilistic Gathering of Agents with Simple Sensors: Distributed Algorithm for Aggregation of Robots Equipped with Binary On-Board Detectors

Authors: Ariel Barel, Rotem Manor, Alfred M. Bruckstein

Abstract:

We present a probabilistic gathering algorithm for agents that can only detect the presence of other agents in front of or behind them. The agents act in the plane and are identical and indistinguishable, oblivious, and lack any means of direct communication. They do not have a common frame of reference in the plane and choose their orientation (direction of possible motion) at random. The analysis of the gathering process assumes that the agents act synchronously in selecting random orientations that remain fixed during each unit time-interval. Two algorithms are discussed. The first one assumes discrete jumps based on the sensing results given the randomly selected motion direction, and in this case, extensive experimental results exhibit probabilistic clustering into a circular region with radius equal to the step-size in time proportional to the number of agents. The second algorithm assumes agents with continuous sensing and motion, and in this case, we can prove gathering into a very small circular region in finite expected time.

Keywords: control, decentralized, gathering, multi-agent, simple sensors

Procedia PDF Downloads 164
4265 An Overview of Bioinformatics Methods to Detect Novel Riboswitches Highlighting the Importance of Structure Consideration

Authors: Danny Barash

Abstract:

Riboswitches are RNA genetic control elements that were originally discovered in bacteria and provide a unique mechanism of gene regulation. They work without the participation of proteins and are believed to represent ancient regulatory systems in the evolutionary timescale. One of the biggest challenges in riboswitch research is that many are found in prokaryotes but only a small percentage of known riboswitches have been found in certain eukaryotic organisms. The few examples of eukaryotic riboswitches were identified using sequence-based bioinformatics search methods that include some slight structural considerations. These pattern-matching methods were the first ones to be applied for the purpose of riboswitch detection and they can also be programmed very efficiently using a data structure called affix arrays, making them suitable for genome-wide searches of riboswitch patterns. However, they are limited by their ability to detect harder to find riboswitches that deviate from the known patterns. Several methods have been developed since then to tackle this problem. The most commonly used by practitioners is Infernal that relies on Hidden Markov Models (HMMs) and Covariance Models (CMs). Profile Hidden Markov Models were also carried out in the pHMM Riboswitch Scanner web application, independently from Infernal. Other computational approaches that have been developed include RMDetect by the use of 3D structural modules and RNAbor that utilizes Boltzmann probability of structural neighbors. We have tried to incorporate more sophisticated secondary structure considerations based on RNA folding prediction using several strategies. The first idea was to utilize window-based methods in conjunction with folding predictions by energy minimization. The moving window approach is heavily geared towards secondary structure consideration relative to sequence that is treated as a constraint. However, the method cannot be used genome-wide due to its high cost because each folding prediction by energy minimization in the moving window is computationally expensive, enabling to scan only at the vicinity of genes of interest. The second idea was to remedy the inefficiency of the previous approach by constructing a pipeline that consists of inverse RNA folding considering RNA secondary structure, followed by a BLAST search that is sequence-based and highly efficient. This approach, which relies on inverse RNA folding in general and our own in-house fragment-based inverse RNA folding program called RNAfbinv in particular, shows capability to find attractive candidates that are missed by Infernal and other standard methods being used for riboswitch detection. We demonstrate attractive candidates found by both the moving-window approach and the inverse RNA folding approach performed together with BLAST. We conclude that structure-based methods like the two strategies outlined above hold considerable promise in detecting riboswitches and other conserved RNAs of functional importance in a variety of organisms.

Keywords: riboswitches, RNA folding prediction, RNA structure, structure-based methods

Procedia PDF Downloads 235
4264 Simple Ecofriendly Cyclodextrine-Surfactant Modified UHPLC Method for Quantification of Multivitamins in Pharmaceutical and Food Samples

Authors: Hassan M. Albishri, Abdullah Almalawi, Deia Abd El-Hady

Abstract:

A simple and ecofriendly cyclodextrine-surfactant modified UHPLC (CDS-UPLC) method for rapid and sensitive simultaneous determination of multi water-soluble vitamins such as ascorbic acid, pyridoxine hydrochloride and thiamine hydrochloride in commercial pharmaceuticals and milk samples have been firstly developed. Several chromatographic effective parameters have been changed in a systematic way. Adequate results have been achieved by a mixture of β-cyclodextrine (β-CD) and cationic surfactant under acidic conditions as an eco-friendly isocratic mobile phase at 0.02 mL/min flow rate. The proposed CDS- UHPLC method has been validated for the quantitative determination of multivitamins within 8 min in food and pharmaceutical samples. The method showed excellent linearity for analytes in a wide range of 10-1000 ng/µL. The repeatability and reproducibility of data were about 2.14 and 4.69 RSD%, respectively. The limits of detection (LODs) of analytes ranged between 0.86 and 5.6 ng/µL with a range of 81.8 -115.8% recoveries in tablets and milk samples. The current first CDS- UHPLC method could have vast applications for the precise analysis of multivitamins in complicated matrices.

Keywords: ecofriendly, cyclodextrine-surfactant, multivitamins, UHPLC

Procedia PDF Downloads 273
4263 Study and Solving Partial Differential Equation of Danel Equation in the Vibration Shells

Authors: Hesamoddin Abdollahpour, Roghayeh Abdollahpour, Elham Rahgozar

Abstract:

This paper we deal with an analysis of the free vibrations of the governing partial differential equation that it is Danel equation in the shells. The problem considered represents the governing equation of the nonlinear, large amplitude free vibrations of the hinged shell. A new implementation of the new method is presented to obtain natural frequency and corresponding displacement on the shell. Our purpose is to enhance the ability to solve the mentioned complicated partial differential equation (PDE) with a simple and innovative approach. The results reveal that this new method to solve Danel equation is very effective and simple, and can be applied to other nonlinear partial differential equations. It is necessary to mention that there are some valuable advantages in this way of solving nonlinear differential equations and also most of the sets of partial differential equations can be answered in this manner which in the other methods they have not had acceptable solutions up to now. We can solve equation(s), and consequently, there is no need to utilize similarity solutions which make the solution procedure a time-consuming task.

Keywords: large amplitude, free vibrations, analytical solution, Danell Equation, diagram of phase plane

Procedia PDF Downloads 322
4262 Necessary Condition to Utilize Adaptive Control in Wind Turbine Systems to Improve Power System Stability

Authors: Javad Taherahmadi, Mohammad Jafarian, Mohammad Naser Asefi

Abstract:

The global capacity of wind power has dramatically increased in recent years. Therefore, improving the technology of wind turbines to take different advantages of this enormous potential in the power grid, could be interesting subject for scientists. The doubly-fed induction generator (DFIG) wind turbine is a popular system due to its many advantages such as the improved power quality, high energy efficiency and controllability, etc. With an increase in wind power penetration in the network and with regard to the flexible control of wind turbines, the use of wind turbine systems to improve the dynamic stability of power systems has been of significance importance for researchers. Subsynchronous oscillations are one of the important issues in the stability of power systems. Damping subsynchronous oscillations by using wind turbines has been studied in various research efforts, mainly by adding an auxiliary control loop to the control structure of the wind turbine. In most of the studies, this control loop is composed of linear blocks. In this paper, simple adaptive control is used for this purpose. In order to use an adaptive controller, the convergence of the controller should be verified. Since adaptive control parameters tend to optimum values in order to obtain optimum control performance, using this controller will help the wind turbines to have positive contribution in damping the network subsynchronous oscillations at different wind speeds and system operating points. In this paper, the application of simple adaptive control in DFIG wind turbine systems to improve the dynamic stability of power systems is studied and the essential condition for using this controller is considered. It is also shown that this controller has an insignificant effect on the dynamic stability of the wind turbine, itself.

Keywords: almost strictly positive real (ASPR), doubly-fed induction generator (DIFG), simple adaptive control (SAC), subsynchronous oscillations, wind turbine

Procedia PDF Downloads 377
4261 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network

Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.

Keywords: big data, k-NN, machine learning, traffic speed prediction

Procedia PDF Downloads 365
4260 Exploring the Synergistic Effects of Aerobic Exercise and Cinnamon Extract on Metabolic Markers in Insulin-Resistant Rats through Advanced Machine Learning and Deep Learning Techniques

Authors: Masoomeh Alsadat Mirshafaei

Abstract:

The present study aims to explore the effect of an 8-week aerobic training regimen combined with cinnamon extract on serum irisin and leptin levels in insulin-resistant rats. Additionally, this research leverages various machine learning (ML) and deep learning (DL) algorithms to model the complex interdependencies between exercise, nutrition, and metabolic markers, offering a groundbreaking approach to obesity and diabetes research. Forty-eight Wistar rats were selected and randomly divided into four groups: control, training, cinnamon, and training cinnamon. The training protocol was conducted over 8 weeks, with sessions 5 days a week at 75-80% VO2 max. The cinnamon and training-cinnamon groups were injected with 200 ml/kg/day of cinnamon extract. Data analysis included serum data, dietary intake, exercise intensity, and metabolic response variables, with blood samples collected 72 hours after the final training session. The dataset was analyzed using one-way ANOVA (P<0.05) and fed into various ML and DL models, including Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural Networks (CNN). Traditional statistical methods indicated that aerobic training, with and without cinnamon extract, significantly increased serum irisin and decreased leptin levels. Among the algorithms, the CNN model provided superior performance in identifying specific interactions between cinnamon extract concentration and exercise intensity, optimizing the increase in irisin and the decrease in leptin. The CNN model achieved an accuracy of 92%, outperforming the SVM (85%) and RF (88%) models in predicting the optimal conditions for metabolic marker improvements. The study demonstrated that advanced ML and DL techniques could uncover nuanced relationships and potential cellular responses to exercise and dietary supplements, which is not evident through traditional methods. These findings advocate for the integration of advanced analytical techniques in nutritional science and exercise physiology, paving the way for personalized health interventions in managing obesity and diabetes.

Keywords: aerobic training, cinnamon extract, insulin resistance, irisin, leptin, convolutional neural networks, exercise physiology, support vector machines, random forest

Procedia PDF Downloads 41
4259 Comparison of Effects over the Autonomic Nervous System When Using Force Training and Interval Training in Indoor Cycling with University Students

Authors: Daniel Botero, Oscar Rubiano, Pedro P. Barragan, Jaime Baron, Leonardo Rodriguez Perdomo, Jaime Rodriguez

Abstract:

In the last decade interval training (IT) has gained importance when is compare with strength training (ST). However, there are few studies analyzing the impact of these training over the autonomic nervous system (ANS). This work has aimed to compare the activity of the autonomic nervous system, when is expose to an IT or ST indoor cycling mode. After approval by the ethics committee, a cross-over clinical trial with 22 healthy participants (age 21 ± 3 years) was implemented. The selection of participants for the groups with sequence force-interval (F-I) and interval-force (I-F) was made randomly with assignation of 11 participants for each group. The temporal series of heart rate was obtained before and after each training using the POLAR TEAM® heart monitor. The evaluation of the ANS was performed with spectral analysis of the heart rate variability (HRV) using the fast Fourier transform (Kubios software). A training of 8 weeks in each sequence (4 weeks with each training) with an intermediate period of two weeks of washout was implemented for each group. The power parameter of the HRV in the low frequency band (LF = 0.04-0.15Hz related to the sympathetic nervous system), high frequency (HF = 0.15-0.4Hz, related to the parasympathetic) and LF/HF (with reference to a modulation of parasympathetic over the sympathetic), were calculated. Afterward, the difference between the parameters before and after was realized. Then, to evaluate statistical differences between each training was implemented the method of Wellek (Wellek and Blettner, 2012, Medicine, 109 (15), 276-81). To determine the difference of effect over parasympathetic when FT and IT are used, the T test is implemented obtaining a T value of 0.73 with p-value ≤ 0.1. For the sympathetic was obtained a T of 0.33 with p ≤ 0.1 and for LF/HF the T was 1.44 with a p ≥ 0.1. Then, the carry over effect was evaluated and was not present. Significant changes over autonomic activity with strength or interval training were not observed. However, a modulation of the parasympathetic over the sympathetic can be observed. Probably, these findings should be explained because the sample is little and/or the time of training was insufficient to generate changes.

Keywords: autonomic nervous, force training, indoor cycling, interval training

Procedia PDF Downloads 226
4258 Herbal Based Fingerprint Powder Formulation for Latent Fingermark Visualization: Catechu (Kattha)

Authors: Pallavi Thakur, Rakesh K. Garg

Abstract:

Latent fingerprints are commonly encountered evidence at the scene of the crime. It is very important to decipher these fingerprints in order to explore their identity and a lot of research has been made on the visualization of latent fingermarks on various substrates by numerous researchers. During the past few years large number of powder formulations has been evolved for the development of latent fingermarks on different surfaces. This paper reports a new and simple fingerprint powder which is non-toxic and has been employed on different substrates successfully for the development and visualization of latent fingermarks upto the time period of twelve days in varying temperature conditions. In this study, a less expensive, simple and easily available catechu (kattha) powder has been used to decipher the latent fingermarks on different substrates namely glass, plastic, metal, aluminium foil, white paper, wall tile and wooden sheet. It is observed that it gives very clear results on all the mentioned substrates and can be successfully used for the development and visualization of twelve days old latent fingermarks in varying temperature conditions on wall tiles.

Keywords: fingermarks, catechu, visualization, aged fingermarks

Procedia PDF Downloads 189
4257 An Equivalence between a Harmonic Form and a Closed Co-Closed Differential Form in L^Q and Non-L^Q Spaces

Authors: Lina Wu, Ye Li

Abstract:

An equivalent relation between a harmonic form and a closed co-closed form is established on a complete non-compact manifold. This equivalence has been generalized for a differential k-form ω from Lq spaces to non-Lq spaces when q=2 in the context of p-balanced growth where p=2. Especially for a simple differential k-form on a complete non-compact manifold, the equivalent relation has been verified with the extended scope of q for from finite q-energy in Lq spaces to infinite q-energy in non-Lq spaces when with 2-balanced growth. Generalized Hadamard Theorem, Cauchy-Schwarz Inequality, and Calculus skills including Integration by Parts as well as Convergent Series have been applied as estimation techniques to evaluate growth rates for a differential form. In particular, energy growth rates as indicated by an appropriate power range in a selected test function lead to a balance between a harmonic differential form and a closed co-closed differential form. Research ideas and computational methods in this paper could provide an innovative way in the study of broadening Lq spaces to non-Lq spaces with a wide variety of infinite energy growth for a differential form.

Keywords: closed forms, co-closed forms, harmonic forms, L^q spaces, p-balanced growth, simple differential k-forms

Procedia PDF Downloads 452
4256 Impedance Matching of Axial Mode Helical Antennas

Authors: Hossein Mardani, Neil Buchanan, Robert Cahill, Vincent Fusco

Abstract:

In this paper, we study the input impedance characteristics of axial mode helical antennas to find an effective way for matching it to 50 Ω. The study is done on the important matching parameters such as like wire diameter and helix to the ground plane gap. It is intended that these parameters control the matching without detrimentally affecting the radiation pattern. Using transmission line theory, a simple broadband technique is proposed, which is applicable for perfect matching of antennas with similar design parameters. We provide design curves to help to choose the proper dimensions of the matching section based on the antenna’s unmatched input impedance. Finally, using the proposed technique, a 4-turn axial mode helix is designed at 2.5 GHz center frequency and the measurement results of the manufactured antenna will be included. This parametric study gives a good insight into the input impedance characteristics of axial mode helical antennas and the proposed impedance matching approach provides a simple, useful method for matching these types of antennas.

Keywords: antenna, helix, helical, axial mode, wireless power transfer, impedance matching

Procedia PDF Downloads 314
4255 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker

Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.

Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation

Procedia PDF Downloads 28
4254 Modeling of Nanocomposite Films Made of Cloisite 30b- Metal Nanoparticle in Packaging of Soy Burger

Authors: Faranak Beigmohammadi, Seyed Hadi Peighambardoust, Seyed Jamaledin Peighambardoust

Abstract:

This study undertakes to investigate the ability of different kinds of nanocomposite films made of cloisite-30B with different percentages of silver and copper oxide nanoparticles incorporated into a low-density polyethylene (LDPE) polymeric matrix by a melt mixing method in order to inhibit the growth of microorganism in soy burger. The number of surviving cell of the total count was decreased by 3.61 log and mold and yeast diminished by 2.01 log after 8 weeks storage at 18 ± 0.5°C below zero, whilst pure LDPE did not has any antimicrobial effect. A composition of 1.3 % cloisite 30B-Ag and 2.7 % cloisite 30B-CuO for total count and 0 % cloisite 30B-Ag and 4 % cloisite 30B-CuO for yeast & mold gave optimum points in combined design test in Design Expert 7.1.5. Suitable microbial models were suggested for retarding above microorganisms growth in soy burger. To validation of optimum point, the difference between the optimum point of nanocomposite film and its repeat was not significant (p<0.05) by one-way ANOVA analysis using SPSS 17.0 software, while the difference was significant for pure film. Migration of metallic nanoparticles into a food stimulant was within the accepted safe level.

Keywords: modeling, nanocomposite film, packaging, soy burger

Procedia PDF Downloads 303
4253 Antibacterial Activity of Endophytic Bacteria against Multidrug-Resistant Bacteria: Isolation, Characterization, and Antibacterial Activity

Authors: Maryam Beiranvand, Sajad Yaghoubi

Abstract:

Background: Some microbes can colonize plants’ inner tissues without causing obvious damage and can even produce useful bioactive substances. In the present study, the diversity of the endophytic bacteria associated with medicinal plants from Iran was investigated by culturing techniques, molecular gene identification, as well as measuring them for antibacterial activity. Results: In the spring season from 2013 to 2014, 35 herb pharmacology samples were collected, sterilized, meshed, and then cultured on selective media culture. A total of 199 endophytic bacteria were successfully isolated from 35 tissue cultures of medical plants, and sixty-seven out of 199 bacterial isolates were subjected to identification by the 16S rRNA gene sequence analysis method. Based on the sequence similarity gene and phylogenetic analyses, these isolates were grouped into five classes, fourteen orders, seventeen families, twenty-one genera, and forty strains. The most abundant group of endophytic bacteria was actinobacterial, consisting of thirty-two (47%) out of 67 bacterial isolates. Ten (22.3%) out of 67 bacterial isolates remained unidentified and classified at the genus level. The signature of the 16S rRNA gene formed a distinct line in a phylogenetic tree showing that they might be new species of bacteria. One (5.2%) out of 67 bacterial isolates was still not well categorized. Forty-two out of 67 strains were candidates for antimicrobial activity tests. Nineteen (45%) out of 42 strains showed antimicrobial activity multidrug resistance (MDR); thirteen (68%) out of 19 strains were allocated to classes actinobacteria. Four (21%) out of 19 strains belonged to the Bacillaceae family, one (5.2%) out of 19 strains was the Paenibacillaceae family, and one (5.2%) out of 19 strains belonged to the Pseudomonadaceae family. The other twenty-three strains did not show inhibitory activities. Conclusions: Our research showed a high-level phylogenetic diversity and the intoxicating antibiotic activity of endophytic bacteria in the herb pharmacology of Iran.

Keywords: Antibacterial activity, endophytic bacteria, multidrug-resistant bacteria, whole genom sequencing

Procedia PDF Downloads 86
4252 A Computational Framework for Decoding Hierarchical Interlocking Structures with SL Blocks

Authors: Yuxi Liu, Boris Belousov, Mehrzad Esmaeili Charkhab, Oliver Tessmann

Abstract:

This paper presents a computational solution for designing reconfigurable interlocking structures that are fully assembled with SL Blocks. Formed by S-shaped and L-shaped tetracubes, SL Block is a specific type of interlocking puzzle. Analogous to molecular self-assembly, the aggregation of SL blocks will build a reversible hierarchical and discrete system where a single module can be numerously replicated to compose semi-interlocking components that further align, wrap, and braid around each other to form complex high-order aggregations. These aggregations can be disassembled and reassembled, responding dynamically to design inputs and changes with a unique capacity for reconfiguration. To use these aggregations as architectural structures, we developed computational tools that automate the configuration of SL blocks based on architectural design objectives. There are three critical phases in our work. First, we revisit the hierarchy of the SL block system and devise a top-down-type design strategy. From this, we propose two key questions: 1) How to translate 3D polyominoes into SL block assembly? 2) How to decompose the desired voxelized shapes into a set of 3D polyominoes with interlocking joints? These two questions can be considered the Hamiltonian path problem and the 3D polyomino tiling problem. Then, we derive our solution to each of them based on two methods. The first method is to construct the optimal closed path from an undirected graph built from the voxelized shape and translate the node sequence of the resulting path into the assembly sequence of SL blocks. The second approach describes interlocking relationships of 3D polyominoes as a joint connection graph. Lastly, we formulate the desired shapes and leverage our methods to achieve their reconfiguration within different levels. We show that our computational strategy will facilitate the efficient design of hierarchical interlocking structures with a self-replicating geometric module.

Keywords: computational design, SL-blocks, 3D polyomino puzzle, combinatorial problem

Procedia PDF Downloads 130
4251 Telomerase, a Biomarker in Oral Cancer Cell Proliferation and Tool for Its Prevention at Initial Stage

Authors: Shaista Suhail

Abstract:

As cancer populations is increasing sharply, the incidence of oral squamous cell carcinoma (OSCC) has also been expected to increase. Oral carcinogenesis is a highly complex, multistep process which involves accumulation of genetic alterations that lead to the induction of proteins promoting cell growth (encoded by oncogenes), increased enzymatic (telomerase) activity promoting cancer cell proliferation. The global increase in frequency and mortality, as well as the poor prognosis of oral squamous cell carcinoma, has intensified current research efforts in the field of prevention and early detection of this disease. The advances in the understanding of the molecular basis of oral cancer should help in the identification of new markers. The study of the carcinogenic process of the oral cancer, including continued analysis of new genetic alterations, along with their temporal sequencing during initiation, promotion and progression, will allow us to identify new diagnostic and prognostic factors, which will provide a promising basis for the application of more rational and efficient treatments. Telomerase activity has been readily found in most cancer biopsies, in premalignant lesions or germ cells. Activity of telomerase is generally absent in normal tissues. It is known to be induced upon immortalization or malignant transformation of human cells such as in oral cancer cells. Maintenance of telomeres plays an essential role during transformation of precancer to malignant stage. Mammalian telomeres, a specialized nucleoprotein structures are composed of large conctamers of the guanine-rich sequence 5_-TTAGGG-3_. The roles of telomeres in regulating both stability of genome and replicative immortality seem to contribute in essential ways in cancer initiation and progression. It is concluded that activity of telomerase can be used as a biomarker for diagnosis of malignant oral cancer and a target for inactivation in chemotherapy or gene therapy. Its expression will also prove to be an important diagnostic tool as well as a novel target for cancer therapy. The activation of telomerase may be an important step in tumorgenesis which can be controlled by inactivating its activity during chemotherapy. The expression and activity of telomerase are indispensable for cancer development. There are no drugs which can effect extremely to treat oral cancers. There is a general call for new emerging drugs or methods that are highly effective towards cancer treatment, possess low toxicity, and have a minor environment impact. Some novel natural products also offer opportunities for innovation in drug discovery. Natural compounds isolated from medicinal plants, as rich sources of novel anticancer drugs, have been of increasing interest with some enzyme (telomerase) blockage property. The alarming reports of cancer cases increase the awareness amongst the clinicians and researchers pertaining to investigate newer drug with low toxicity.

Keywords: oral carcinoma, telomere, telomerase, blockage

Procedia PDF Downloads 175
4250 Analysis of Rural Roads in Developing Countries Using Principal Component Analysis and Simple Average Technique in the Development of a Road Safety Performance Index

Authors: Muhammad Tufail, Jawad Hussain, Hammad Hussain, Imran Hafeez, Naveed Ahmad

Abstract:

Road safety performance index is a composite index which combines various indicators of road safety into single number. Development of a road safety performance index using appropriate safety performance indicators is essential to enhance road safety. However, a road safety performance index in developing countries has not been given as much priority as needed. The primary objective of this research is to develop a general Road Safety Performance Index (RSPI) for developing countries based on the facility as well as behavior of road user. The secondary objectives include finding the critical inputs in the RSPI and finding the better method of making the index. In this study, the RSPI is developed by selecting four main safety performance indicators i.e., protective system (seat belt, helmet etc.), road (road width, signalized intersections, number of lanes, speed limit), number of pedestrians, and number of vehicles. Data on these four safety performance indicators were collected using observation survey on a 20 km road section of the National Highway N-125 road Taxila, Pakistan. For the development of this composite index, two methods are used: a) Principal Component Analysis (PCA) and b) Equal Weighting (EW) method. PCA is used for extraction, weighting, and linear aggregation of indicators to obtain a single value. An individual index score was calculated for each road section by multiplication of weights and standardized values of each safety performance indicator. However, Simple Average technique was used for weighting and linear aggregation of indicators to develop a RSPI. The road sections are ranked according to RSPI scores using both methods. The two weighting methods are compared, and the PCA method is found to be much more reliable than the Simple Average Technique.

Keywords: indicators, aggregation, principle component analysis, weighting, index score

Procedia PDF Downloads 159
4249 An Alternative Method for Computing Clothoids

Authors: Gerardo Casal, Miguel E. Vázquez-Méndez

Abstract:

The clothoid (also known as Cornu spiral or Euler spiral) is a curve that is characterized because its curvature is proportional to its length. This property makes that it would be widely used as transition curve for designing the layout of roads and railway tracks. In this work, from the geometrical property characterizing the clothoid, its parametric equations are obtained and two algorithms to compute it are compared. The first (classical), is widely used in Surveying Schools and it is based on the use of explicit formulas obtained from Taylor expansions of sine and cosine functions. The second one (alternative) is a very simple algorithm, based on the numerical solution of the initial value problems giving the clothoid parameterization. Both methods are compared in some typical surveying problems. The alternative method does not use complex formulas and so it is conceptually very simple and easy to apply. It gives good results, even if the classical method goes wrong (if the quotient between length and radius of curvature is high), needs no subsequent translations nor rotations and, consequently, it seems an efficient tool for designing the layout of roads and railway tracks.

Keywords: transition curves, railroad and highway engineering, Runge-Kutta methods

Procedia PDF Downloads 284
4248 Low-Voltage Multiphase Brushless DC Motor for Electric Vehicle Application

Authors: Mengesha Mamo Wogari

Abstract:

In this paper, low voltage multiphase brushless DC motor with square wave air-gap flux distribution for electric vehicle application is proposed. Ten-phase, 5 kW motor, has been designed and simulated by finite element methods demonstrating the desired high torque capability at low speed and flux weakening operation for high-speed operations. The motor torque is proportional to number of phases for a constant phase current and air-gap flux. The concept of vector control and simple space vector modulation technique is used on MATLAB to control the motor demonstrating simple switching pattern for selected number of phases. The low voltage DC and inverter output AC are desired characteristics to avoid any electric shock in the vehicle, accidentally and during abnormal conditions. The switching devices for inverter are of low-voltage rating and cost effective though their number is equal to twice the number of phases.

Keywords: brushless DC motors, electric Vehicle, finite element methods, Low-voltage inverter, multiphase

Procedia PDF Downloads 155
4247 Design Evaluation Tool for Small Wind Turbine Systems Based on the Simple Load Model

Authors: Jihane Bouabid

Abstract:

The urgency to transition towards sustainable energy sources has revealed itself imperative. Today, in the 21st Century, the intellectual society have imposed technological advancements and improvements, and anticipates expeditious outcomes as an integral component of its relentless pursuit of an elevated standard of living. As a part of empowering human development, driving economic growth and meeting social needs, the access to energy services has become a necessity. As a part of these improvements, we are introducing the project "Mywindturbine" - an interactive web user interface for design and analysis in the field of wind energy, with a particular adherence to the IEC (International Electrotechnical Commission) standard 61400-2 "Wind turbines – Part 2: Design requirements for small wind turbines". Wind turbines play a pivotal role in Morocco's renewable energy strategy, leveraging the nation's abundant wind resources. The IEC 61400-2 standard ensures the safety and design integrity of small wind turbines deployed in Morocco, providing guidelines for performance and safety protocols. The conformity with this standard ensures turbine reliability, facilitates standards alignment, and accelerates the integration of wind energy into Morocco's energy landscape. The aim of the GUI (Graphical User Interface) for engineers and professionals from the field of wind energy systems who would like to design a small wind turbine system following the safety requirements of the international standards IEC 61400-2. The interface provides an easy way to analyze the structure of the turbine machine under normal and extreme load conditions based on the specific inputs provided by the user. The platform introduces an overview to sustainability and renewable energy, with a focus on wind turbines. It features a cross-examination of the input parameters provided from the user for the SLM (Simple Load Model) of small wind turbines, and results in an analysis according to the IEC 61400-2 standard. The analysis of the simple load model encompasses calculations for fatigue loads on blades and rotor shaft, yaw error load on blades, etc. for the small wind turbine performance. Through its structured framework and adherence to the IEC standard, "Mywindturbine" aims to empower professionals, engineers, and intellectuals with the knowledge and tools necessary to contribute towards a sustainable energy future.

Keywords: small wind turbine, IEC 61400-2 standard, user interface., simple load model

Procedia PDF Downloads 63
4246 Numerical Investigation of Poling Vector Angle on Adaptive Sandwich Plate Deflection

Authors: Alireza Pouladkhan, Mohammad Yavari Foroushani, Ali Mortazavi

Abstract:

This paper presents a finite element model for a sandwich plate containing a piezoelectric core. A sandwich plate with a piezoelectric core is constructed using the shear mode of piezoelectric materials. The orientation of poling vector has a significant effect on deflection and stress induced in the piezo-actuated adaptive sandwich plate. In the present study, the influence of this factor for a clamped-clamped-free-free and simple-simple-free-free square sandwich plate is investigated using Finite Element Method. The study uses ABAQUS (v.6.7) software to derive the finite element model of the sandwich plate. By using this model, the study gives the influences of the poling vector angle on the response of the smart structure and determines the maximum transverse displacement and maximum stress induced.

Keywords: finite element method, sandwich plate, poling vector, piezoelectric materials, smart structure, electric enthalpy

Procedia PDF Downloads 233
4245 Design and Development of Real-Time Optimal Energy Management System for Hybrid Electric Vehicles

Authors: Masood Roohi, Amir Taghavipour

Abstract:

This paper describes a strategy to develop an energy management system (EMS) for a charge-sustaining power-split hybrid electric vehicle. This kind of hybrid electric vehicles (HEVs) benefit from the advantages of both parallel and series architecture. However, it gets relatively more complicated to manage power flow between the battery and the engine optimally. The applied strategy in this paper is based on nonlinear model predictive control approach. First of all, an appropriate control-oriented model which was accurate enough and simple was derived. Towards utilization of this controller in real-time, the problem was solved off-line for a vast area of reference signals and initial conditions and stored the computed manipulated variables inside look-up tables. Look-up tables take a little amount of memory. Also, the computational load dramatically decreased, because to find required manipulated variables the controller just needed a simple interpolation between tables.

Keywords: hybrid electric vehicles, energy management system, nonlinear model predictive control, real-time

Procedia PDF Downloads 355
4244 Collision Detection Algorithm Based on Data Parallelism

Authors: Zhen Peng, Baifeng Wu

Abstract:

Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.

Keywords: data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability

Procedia PDF Downloads 292
4243 Isolation, Characterization, and Antibacterial Activity of Endophytic Bacteria from Iranian Medicinal Plants

Authors: Maryam Beiranvand, Sajad Yaghoubi

Abstract:

Background: Some microbes can colonize plants’ inner tissues without causing obvious damage and can even produce useful bioactive substances. In the present study, the diversity of the endophytic bacteria associated with medicinal plants from Iran was investigated by culturing techniques, molecular gene identification, as well as measuring them for antibacterial activity. Results: In the spring season from 2013 to 2014, 35 herb pharmacology samples were collected, sterilized, meshed, and then cultured on selective media culture. A total of 199 endophytic bacteria were successfully isolated from 35 tissue cultures of medical plants, and sixty-seven out of 199 bacterial isolates were subjected to identification by the 16S rRNA gene sequence analysis method. Based on the sequence similarity gene and phylogenetic analyses, these isolates were grouped into five classes, fourteen orders, seventeen families, twenty-one genera, and forty strains. The most abundant group of endophytic bacteria was actinobacterial, consisting of thirty-two (47%) out of 67 bacterial isolates. Ten (22.3%) out of 67 bacterial isolates remained unidentified and classified at the genus level. The signature of the 16S rRNA gene formed a distinct line in a phylogenetic tree showing that they might be new species of bacteria. One (5.2%) out of 67 bacterial isolates was still not well categorized. Forty-two out of 67 strains were candidates for antimicrobial activity tests. Nineteen (45%) out of 42 strains showed antimicrobial activity multidrug-resistance (MDR); thirteen (68%) out of 19 strains were allocated to classes actinobacteria. Four (21%) out of 19 strains belonged to the Bacillaceae family, one (5.2%) out of 19 strains was the Paenibacillaceae family, and one (5.2%) out of 19 strains belonged to the Pseudomonadaceae family. The other twenty-three strains did not show inhibitory activities. Conclusions: Our research showed a high-level phylogenetic diversity and the intoxicating antibiotic activity of endophytic bacteria in the herb pharmacology of Iran.

Keywords: medical plant, endophytic bacteria, antimicrobial activity, whole genome sequencing analysis

Procedia PDF Downloads 124
4242 Cognitive Decline in People Living with HIV in India and Correlation with Neurometabolites Using 3T Magnetic Resonance Spectroscopy (MRS): A Cross-Sectional Study

Authors: Kartik Gupta, Virendra Kumar, Sanjeev Sinha, N. Jagannathan

Abstract:

Introduction: A significant number of patients having human immunodeficiency virus (HIV) infection show a neurocognitive decline (NCD) ranging from minor cognitive impairment to severe dementia. The possible causes of NCD in HIV-infected patients include brain injury by HIV before cART, neurotoxic viral proteins and metabolic abnormalities. In the present study, we compared the level of NCD in asymptomatic HIV-infected patients with changes in brain metabolites measured by using magnetic resonance spectroscopy (MRS). Methods: 43 HIV-positive patients (30 males and 13 females) coming to ART center of the hospital and HIV-seronegative healthy subjects were recruited for the study. All the participants completed MRI and MRS examination, detailed clinical assessments and a battery of neuropsychological tests. All the MR investigations were carried out at 3.0T MRI scanner (Ingenia/Achieva, Philips, Netherlands). MRI examination protocol included the acquisition of T2-weighted imaging in axial, coronal and sagittal planes, T1-weighted, FLAIR, and DWI images in the axial plane. Patients who showed any apparent lesion on MRI were excluded from the study. T2-weighted images in three orthogonal planes were used to localize the voxel in left frontal lobe white matter (FWM) and left basal ganglia (BG) for single voxel MRS. Single voxel MRS spectra were acquired with a point resolved spectroscopy (PRESS) localization pulse sequence at an echo time (TE) of 35 ms and a repetition time (TR) of 2000 ms with 64 or 128 scans. Automated preprocessing and determination of absolute concentrations of metabolites were estimated using LCModel by water scaling method and the Cramer-Rao lower bounds for all metabolites analyzed in the study were below 15\%. Levels of total N-acetyl aspartate (tNAA), total choline (tCho), glutamate + glutamine (Glx), total creatine (tCr), were measured. Cognition was tested using a battery of tests validated for Indian population. The cognitive domains tested were the memory, attention-information processing, abstraction-executive, simple and complex perceptual motor skills. Z-scores normalized according to age, sex and education standard were used to calculate dysfunction in these individual domains. The NCD was defined as dysfunction with Z-score ≤ 2 in at least two domains. One-way ANOVA was used to compare the difference in brain metabolites between the patients and healthy subjects. Results: NCD was found in 23 (53%) patients. There was no significant difference in age, CD4 count and viral load between the two groups. Maximum impairment was found in the domains of memory and simple motor skills i.e., 19/43 (44%). The prevalence of deficit in attention-information processing, complex perceptual motor skills and abstraction-executive function was 37%, 35%, 33% respectively. Subjects with NCD had a higher level of Glutamate in the Frontal region (8.03 ± 2.30 v/s. 10.26 ± 5.24, p-value 0.001). Conclusion: Among newly diagnosed, ART-naïve retroviral disease patients from India, cognitive decline was found in 53\% patients using tests validated for this population. Those with neurocognitive decline had a significantly higher level of Glutamate in the left frontal region. There was no significant difference in age, CD4 count and viral load at initiation of ART between the two groups.

Keywords: HIV, neurocognitive decline, neurometabolites, magnetic resonance spectroscopy

Procedia PDF Downloads 214
4241 Legal Judgment Prediction through Indictments via Data Visualization in Chinese

Authors: Kuo-Chun Chien, Chia-Hui Chang, Ren-Der Sun

Abstract:

Legal Judgment Prediction (LJP) is a subtask for legal AI. Its main purpose is to use the facts of a case to predict the judgment result. In Taiwan's criminal procedure, when prosecutors complete the investigation of the case, they will decide whether to prosecute the suspect and which article of criminal law should be used based on the facts and evidence of the case. In this study, we collected 305,240 indictments from the public inquiry system of the procuratorate of the Ministry of Justice, which included 169 charges and 317 articles from 21 laws. We take the crime facts in the indictments as the main input to jointly learn the prediction model for law source, article, and charge simultaneously based on the pre-trained Bert model. For single article cases where the frequency of the charge and article are greater than 50, the prediction performance of law sources, articles, and charges reach 97.66, 92.22, and 60.52 macro-f1, respectively. To understand the big performance gap between articles and charges, we used a bipartite graph to visualize the relationship between the articles and charges, and found that the reason for the poor prediction performance was actually due to the wording precision. Some charges use the simplest words, while others may include the perpetrator or the result to make the charges more specific. For example, Article 284 of the Criminal Law may be indicted as “negligent injury”, "negligent death”, "business injury", "driving business injury", or "non-driving business injury". As another example, Article 10 of the Drug Hazard Control Regulations can be charged as “Drug Control Regulations” or “Drug Hazard Control Regulations”. In order to solve the above problems and more accurately predict the article and charge, we plan to include the article content or charge names in the input, and use the sentence-pair classification method for question-answer problems in the BERT model to improve the performance. We will also consider a sequence-to-sequence approach to charge prediction.

Keywords: legal judgment prediction, deep learning, natural language processing, BERT, data visualization

Procedia PDF Downloads 122
4240 Sportomics Analysis of Metabolic Responses in Olympic Sprint Canoeists

Authors: A. Magno-França, A. M. Magalhães-Neto, F. Bachini, E. Cataldi, A. Bassini, L. C. Cameron

Abstract:

Sprint canoeing (SC) is part of the Olympic Games since 1936. Athletes compete in solo or double races of 200m and 1000m (40 sec and 240 sec, respectively). Due to its high intensity and duration, SC is extremely useful to study the blood kinetics of some metabolites in high energetic demand. Sportomics is a field of study combining “-omics” sciences with classical biochemical analyses in order to understand sports induced systemic changes. Here, we compare Sportomics findings during SC training sessions to describe metabolic responses of five top-level canoeists. Five Olympic world-class male athletes were evaluated during two days of training.

Keywords: biochemistry of exercise, metabolomics, injury markers, sportomics

Procedia PDF Downloads 516
4239 A Cross Cultural Study of Jewish and Arab Listeners: Perception of Harmonic Sequences

Authors: Roni Granot

Abstract:

Musical intervals are the building blocks of melody and harmony. Intervals differ in terms of their size, direction, or quality as consonants or dissonants. In Western music, perceptual dissonance is mostly associated with the sensation of beats or periodicity, whereas cognitive dissonance is associated with rules of harmony and voice leading. These two perceptions can be studied separately in musical cultures which include melodic with little or no harmonic structures. In the Arab musical system, there is a number of different quarter- tone intervals creating various combinations of consonant and dissonant intervals. While traditional Arab music includes only melody, today’s Arab pop music includes harmonization of songs, often using typical Western harmonic sequences. Therefore, the Arab population in Israel presents an interesting case which enables us to examine the distinction between perceptual and cognitive dissonance. In the current study, we compared the responses of 34 Jewish Western listeners and 56 Arab listeners to two types of stimuli and their relationships: Harmonic sequences and isolated harmonic intervals (dyads). Harmonic sequences were presented in synthesized piano tones and represented five levels of Harmonic prototypicality (Tonic ending; Tonic ending with half flattened third; Deceptive cadence; Half cadence; and Dissonant unrelated ending) and were rated on 5-point scales of closure and surprise. Here we report only findings related to the harmonic sequences. One-way repeated measures ANOVA with one within subjects factor with five levels (Type of sequence) and one between- subjects factor (Musical background) indicates a main effect of Type of sequence for surprise ratings F (4, 85) = 51 p<.001, and for closure ratings F (4, 78) 9.54 p < .001, no main effect of Background on either surprise or closure ratings, and a marginally significant Type X Background interaction for surprise F (4, 352) = 6.05 p = .069 and closure ratings F (4, 324) 3.89 p < .01). Planned comparisons show that the interaction of Type of sequence X Background center around surprise and closure ratings of the regular versus the half- flattened third tonic and the deceptive versus the half cadence. The half- flattened third tonic is rated as less surprising and as demanding less continuation than the regular tonic by the Arab listeners as compared to the Western listeners. In addition, the half cadence is rated as more surprising but demanding less continuation than the deceptive cadence in the Arab listeners as compared to the Western listeners. Together, our results suggest that despite the vast exposure of Arab listeners to Western harmony, sensitivity to harmonic rules seems to be partial with preference to oriental sonorities such as half flattened third. In addition, the percept of directionality which demands sensitivity to the level on which closure is obtained and which is strongly entrenched in Western harmony, may not be fully integrated into the Arab listeners’ mental harmonic scheme. Results will be discussed in terms of broad differences between Western and Eastern aesthetic ideals.

Keywords: harmony, cross cultural, Arab music, closure

Procedia PDF Downloads 275