Search results for: predictive biomarker
503 Knowledge, Attitude and Practice of Anemia among Females Attending Bolan Medical Complex Quetta, Balochistan
Authors: A. Abdullah, N. ul Haq, A. Nasim
Abstract:
Objectives: This study was aimed to assess the knowledge, attitude, and practice of anemia among females attending Bolan Medical Complex Quetta, Balochistan. Methods: A quantitative cross-sectional study by adopting a questionnaire containing 3 dimensions knowledge (15 questions), Attitude (5 questions), and Practice (4 questions) for the assessment of knowledge, attitude and practice of anemia among females was conducted. All females attending Bolan Medical Complex Quetta, Balochistan were approached for the study. Descriptive statistics were used to describe demographic and KAP related characteristics of the females regarding anemia.All data were analyzed by using SPSS (Statistical Package of Social Sciences) software program version 20.0. Results: Data was collected from six hundred and thirteen (613) participants. Majority of the respondents (n=180, 29.4%) were categorized in the age group of 29-33 years. Participants had knowledge regarding anemia was (n= 564, 91.9%), and attitude was (n= 516, 84.0%) whereas practice was (n=437, 71.3%). Multitative analysis revealed the negative correlation between Attitude-practice (P= -0.040) and a significant figure (0.001) was present between knowledge-attitude. Occupation and reason of diagnosis were not predictive of better KAP. Conclusions: Knowledge, attitude, and practice of Anemia shows a satisfactory response in this study. Furthermore, study finding implicates the need for health promotion among females. Improving nutritional knowledge and information related Anemia can result in better control and management.Keywords: anemia, knowledge attitude and practice, females, college
Procedia PDF Downloads 193502 Eco-Drive Predictive Analytics
Authors: Sharif Muddsair, Eisels Martin, Giesbrecht Eugenie
Abstract:
With development of society increase the demand for the movement of people also increases gradually. The various modes of the transport in different extent which expat impacts, which depends on mainly technical-operating conditions. The up-to-date telematics systems provide the transport industry a revolutionary. Appropriate use of these systems can help to substantially improve the efficiency. Vehicle monitoring and fleet tracking are among services used for improving efficiency and effectiveness of utility vehicle. There are many telematics systems which may contribute to eco-driving. Generally, they can be grouped according to their role in driving cycle. • Before driving - eco-route selection, • While driving – Advanced driver assistance, • After driving – remote analysis. Our point of interest is regulated in third point [after driving – remote analysis]. TS [Telematics-system] make it possible to record driving patterns in real time and analysis the data later on, So that driver- classification-specific hints [fast driver, slow driver, aggressive driver…)] are given to imitate eco-friendly driving style. Together with growing number of vehicle and development of information technology, telematics become an ‘active’ research subject in IT and the car industry. Telematics has gone a long way from providing navigation solution/assisting the driver to become an integral part of the vehicle. Today’s telematics ensure safety, comfort and become convenience of the driver.Keywords: internet of things, iot, connected vehicle, cv, ts, telematics services, ml, machine learning
Procedia PDF Downloads 307501 Automatic Differential Diagnosis of Melanocytic Skin Tumours Using Ultrasound and Spectrophotometric Data
Authors: Kristina Sakalauskiene, Renaldas Raisutis, Gintare Linkeviciute, Skaidra Valiukeviciene
Abstract:
Cutaneous melanoma is a melanocytic skin tumour, which has a very poor prognosis while is highly resistant to treatment and tends to metastasize. Thickness of melanoma is one of the most important biomarker for stage of disease, prognosis and surgery planning. In this study, we hypothesized that the automatic analysis of spectrophotometric images and high-frequency ultrasonic 2D data can improve differential diagnosis of cutaneous melanoma and provide additional information about tumour penetration depth. This paper presents the novel complex automatic system for non-invasive melanocytic skin tumour differential diagnosis and penetration depth evaluation. The system is composed of region of interest segmentation in spectrophotometric images and high-frequency ultrasound data, quantitative parameter evaluation, informative feature extraction and classification with linear regression classifier. The segmentation of melanocytic skin tumour region in ultrasound image is based on parametric integrated backscattering coefficient calculation. The segmentation of optical image is based on Otsu thresholding. In total 29 quantitative tissue characterization parameters were evaluated by using ultrasound data (11 acoustical, 4 shape and 15 textural parameters) and 55 quantitative features of dermatoscopic and spectrophotometric images (using total melanin, dermal melanin, blood and collagen SIAgraphs acquired using spectrophotometric imaging device SIAscope). In total 102 melanocytic skin lesions (including 43 cutaneous melanomas) were examined by using SIAscope and ultrasound system with 22 MHz center frequency single element transducer. The diagnosis and Breslow thickness (pT) of each MST were evaluated during routine histological examination after excision and used as a reference. The results of this study have shown that automatic analysis of spectrophotometric and high frequency ultrasound data can improve non-invasive classification accuracy of early-stage cutaneous melanoma and provide supplementary information about tumour penetration depth.Keywords: cutaneous melanoma, differential diagnosis, high-frequency ultrasound, melanocytic skin tumours, spectrophotometric imaging
Procedia PDF Downloads 270500 Septin 11, Cytoskeletal Protein Involved in the Regulation of Lipid Metabolism in Adipocytes
Authors: Natalia Moreno-Castellanos, Amaia Rodriguez, Gema Frühbeck
Abstract:
Introduction: In adipocytes, the cytoskeleton undergoes important expression and distribution in adipocytes rearrangements during adipogenesis and in obesity. Indeed, a role for these proteins in the regulation of adipocyte differentiation and response to insulin has been demonstrated. Recently, septins have been considered as new components of the cytoskeletal network that interact with other cytoskeletal elements (actin and tubulin) profoundly modifying their dynamics. However, these proteins have not been characterized as yet in adipose tissue. In this work, were examined the cellular, molecular and functional features of a member of this family, septin 11 (SEPT11), in adipocytes and evaluated the impact of obesity on the expression of this protein in human adipose tissue. Methods: Adipose gene and protein expression levels of SEPT11 were analysed in human samples. SEPT11 distribution was evaluated by immunocytochemistry, electronic microscopy, and subcellular fractionation techniques. GST-pull down, immunoprecipitation and a Yeast-Two Hybrid (Y2H) screening were used to identify the SEPT11 interactome. Gene silencing was employed to assess the role of SEPT11 in the regulation of insulin signaling and lipid metabolism in adipocytes. Results: SEPT11 is expressed in human adipocytes, and its levels increased in both omental and subcutaneous adipose tissue in obesity, with SEPT11 mRNA content positively correlating with parameters of insulin resistance in subcutaneous fat. In non-stimulated adipocytes, SEPT11 immunoreactivity showed a ring-like distribution at the cell surface and associated to caveolae. Biochemical analyses showed that SEPT11 interacted with the main component of caveolae, caveolin-1 (CAV1) as well as with the fatty acid-binding protein, FABP5. Notably, the three proteins redistributed and co-localized at the surface of lipid droplets upon exposure of adipocytes to oleate. In this line, SEPT11 silencing in 3T3-L1 adipocytes impaired insulin signaling and decreased insulin-induced lipogenesis. Conclusions: Those findings demonstrate that SEPT11 is a novel component of the adipocyte cytoskeleton that plays an important role in the regulation of lipid traffic, metabolism and can thus represent a potential biomarker of insulin resistance in obesity in adipocytes through its interaction with both CAV1 and FABP5.Keywords: caveolae, lipid metabolism, obesity, septins
Procedia PDF Downloads 214499 Sensitivity and Specificity of Clinical Testing for Digital Nerve Injury
Authors: Guy Rubin, Ravit Shay, Nimrod Rozen
Abstract:
The accuracy of a diagnostic test used to classify a patient as having disease or being disease-free is a valuable piece of information to be used by the physician when making treatment decisions. Finger laceration, suspected to have nerve injury is a challenging decision for the treating surgeon. The purpose of this study was to evaluate the sensitivity, specificity and predictive values of six clinical tests in the diagnosis of digital nerve injury. The six clinical tests included light touch, pin prick, static and dynamic 2-point discrimination, Semmes Weinstein monofilament and wrinkle test. Data comparing pre-surgery examination with post-surgery results of 42 patients with 52 digital nerve injury was evaluated. The subjective examinations, light touch, pin prick, static and dynamic 2-point discrimination and Semmes-Weinstein monofilament were not sensitive (57.6, 69.7, 42.4, 40 and 66.8% respectively) and specific (36.8, 36.8, 47.4, 42.1 and 31.6% respectively). Wrinkle test, the only objective examination, was the most sensitive (78.1%) and specific (55.6%). This result gives no pre-operative examination the ability to predict the result of explorative surgery.Keywords: digital nerve, injury, nerve examination, Semmes-Weinstein monofilamen, sensitivity, specificity, two point discrimination, wrinkle test
Procedia PDF Downloads 345498 Current and Future Global Distribution of Drosophila suzukii
Authors: Yousef Naserzadeh, Niloufar Mahmoudi
Abstract:
The spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), a vinegar fly native to South East Asia, has recently invaded Europe, North- and South America and is spreading rapidly. Species distribution modeling has been widely employed to indicate probable areas of invasion and to guide management strategies. Drosophila sp. is native to Asia, but since 2015, it has invaded almost every country in the world, including Africa, Australia, India, and most recently, the Americas. The growth of this species of Drosophila suzukii has been rapidly multiplying and spreading in the last decade. In fact, we examine and model the potential geographical distribution of D. suzukii for both present and future scenarios. Finally, we determine the environmental variables that affect its distribution, as well as assess the risk of encroachment on protected areas. D.suzukii has the potential to expand its occurrence, especially on continents that have already been invaded. The predictive models obtained in this study indicate potential regions that could be at risk of invasion by D. suzukii, including protected areas. These results are important and can assist in the establishment of management plans to avoid the possible harm caused by biological invasions.Keywords: climate change, Drosophila suzukii, environmental variables, host preference, host plant, nutrition
Procedia PDF Downloads 85497 Antioxidant Status in Synovial Fluid from Osteoarthritis Patients: A Pilot Study in Indian Demography
Authors: S. Koppikar, P. Kulkarni, D. Ingale , N. Wagh, S. Deshpande, A. Mahajan, A. Harsulkar
Abstract:
Crucial role of reactive oxygen species (ROS) in the progression Osteoarthritis (OA) pathogenesis has been endorsed several times though its exact mechanism remains unclear. Oxidative stress is known to instigate classical stress factors such as cytokines, chemokines and ROS, which hampers cartilage remodelling process and ultimately results in worsening the disease. Synovial fluid (SF) is a biological communicator between cartilage and synovium that accumulates redox and biochemical signalling mediators. The present work attempts to measure several oxidative stress markers in the synovial fluid obtained from knee OA patients with varying degree of disease severity. Thirty OA and five Meniscal-tear (MT) patients were graded using Kellgren-Lawrence scale and assessed for Nitric oxide (NO), Nitrate-Nitrite (NN), 2,2-diphenyl-1-picrylhydrazyl (DPPH), Ferric Reducing Antioxidant Potential (FRAP), Catalase (CAT), Superoxide dismutase (SOD) and Malondialdehyde (MDA) levels for comparison. Out of various oxidative markers studied, NO and SOD showed significant difference between moderate and severe OA (p= 0.007 and p= 0.08, respectively), whereas CAT demonstrated significant difference between MT and mild group (p= 0.07). Interestingly, NN revealed statistically positive correlation with OA severity (p= 0.001 and p= 0.003). MDA, a lipid peroxidation by-product was estimated maximum in early OA when compared to MT (p= 0.06). However, FRAP did not show any correlation with OA severity or MT control. NO is an essential bio-regulatory molecule essential for several physiological processes, and inflammatory conditions. However, due to its short life, exact estimation of NO becomes difficult. NO and its measurable stable products are still it is considered as one of the important biomarker of oxidative damage. Levels of NO and nitrite-nitrate in SF of patients with OA indicated its involvement in the disease progression. When SF groups were compared, a significant correlation among moderate, mild and MT groups was established. To summarize, present data illustrated higher levels of NO, SOD, CAT, DPPH and MDA in early OA in comparison with MT, as a control group. NN had emerged as a prognostic bio marker in knee OA patients, which may act as futuristic targets in OA treatment.Keywords: antioxidant, knee osteoarthritis, oxidative stress, synovial fluid
Procedia PDF Downloads 477496 The Impact of Artificial Intelligence on Spare Parts Technology
Authors: Amir Andria Gad Shehata
Abstract:
Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model.Keywords: spare part, spare part inventory, inventory model, optimization, maintenanceneural network, LSTM, MLP, forecasting demand, inventory management
Procedia PDF Downloads 65495 Pharmacophore-Based Modeling of a Series of Human Glutaminyl Cyclase Inhibitors to Identify Lead Molecules by Virtual Screening, Molecular Docking and Molecular Dynamics Simulation Study
Authors: Ankur Chaudhuri, Sibani Sen Chakraborty
Abstract:
In human, glutaminyl cyclase activity is highly abundant in neuronal and secretory tissues and is preferentially restricted to hypothalamus and pituitary. The N-terminal modification of β-amyloids (Aβs) peptides by the generation of a pyro-glutamyl (pGlu) modified Aβs (pE-Aβs) is an important process in the initiation of the formation of neurotoxic plaques in Alzheimer’s disease (AD). This process is catalyzed by glutaminyl cyclase (QC). The expression of QC is characteristically up-regulated in the early stage of AD, and the hallmark of the inhibition of QC is the prevention of the formation of pE-Aβs and plaques. A computer-aided drug design (CADD) process was employed to give an idea for the designing of potentially active compounds to understand the inhibitory potency against human glutaminyl cyclase (QC). This work elaborates the ligand-based and structure-based pharmacophore exploration of glutaminyl cyclase (QC) by using the known inhibitors. Three dimensional (3D) quantitative structure-activity relationship (QSAR) methods were applied to 154 compounds with known IC50 values. All the inhibitors were divided into two sets, training-set, and test-sets. Generally, training-set was used to build the quantitative pharmacophore model based on the principle of structural diversity, whereas the test-set was employed to evaluate the predictive ability of the pharmacophore hypotheses. A chemical feature-based pharmacophore model was generated from the known 92 training-set compounds by HypoGen module implemented in Discovery Studio 2017 R2 software package. The best hypothesis was selected (Hypo1) based upon the highest correlation coefficient (0.8906), lowest total cost (463.72), and the lowest root mean square deviation (2.24Å) values. The highest correlation coefficient value indicates greater predictive activity of the hypothesis, whereas the lower root mean square deviation signifies a small deviation of experimental activity from the predicted one. The best pharmacophore model (Hypo1) of the candidate inhibitors predicted comprised four features: two hydrogen bond acceptor, one hydrogen bond donor, and one hydrophobic feature. The Hypo1 was validated by several parameters such as test set activity prediction, cost analysis, Fischer's randomization test, leave-one-out method, and heat map of ligand profiler. The predicted features were then used for virtual screening of potential compounds from NCI, ASINEX, Maybridge and Chembridge databases. More than seven million compounds were used for this purpose. The hit compounds were filtered by drug-likeness and pharmacokinetics properties. The selective hits were docked to the high-resolution three-dimensional structure of the target protein glutaminyl cyclase (PDB ID: 2AFU/2AFW) to filter these hits further. To validate the molecular docking results, the most active compound from the dataset was selected as a reference molecule. From the density functional theory (DFT) study, ten molecules were selected based on their highest HOMO (highest occupied molecular orbitals) energy and the lowest bandgap values. Molecular dynamics simulations with explicit solvation systems of the final ten hit compounds revealed that a large number of non-covalent interactions were formed with the binding site of the human glutaminyl cyclase. It was suggested that the hit compounds reported in this study could help in future designing of potent inhibitors as leads against human glutaminyl cyclase.Keywords: glutaminyl cyclase, hit lead, pharmacophore model, simulation
Procedia PDF Downloads 131494 Constructing a Physics Guided Machine Learning Neural Network to Predict Tonal Noise Emitted by a Propeller
Authors: Arthur D. Wiedemann, Christopher Fuller, Kyle A. Pascioni
Abstract:
With the introduction of electric motors, small unmanned aerial vehicle designers have to consider trade-offs between acoustic noise and thrust generated. Currently, there are few low-computational tools available for predicting acoustic noise emitted by a propeller into the far-field. Artificial neural networks offer a highly non-linear and adaptive model for predicting isolated and interactive tonal noise. But neural networks require large data sets, exceeding practical considerations in modeling experimental results. A methodology known as physics guided machine learning has been applied in this study to reduce the required data set to train the network. After building and evaluating several neural networks, the best model is investigated to determine how the network successfully predicts the acoustic waveform. Lastly, a post-network transfer function is developed to remove discontinuity from the predicted waveform. Overall, methodologies from physics guided machine learning show a notable improvement in prediction performance, but additional loss functions are necessary for constructing predictive networks on small datasets.Keywords: aeroacoustics, machine learning, propeller, rotor, neural network, physics guided machine learning
Procedia PDF Downloads 230493 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model
Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park
Abstract:
In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.Keywords: human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, prior distribution and approximate posterior distribution, KTH dataset
Procedia PDF Downloads 354492 Organic Geochemistry and Oil-Source Correlation of Cretaceous Sediments in the Kohat Basin, Pakistan
Authors: Syed Mamoon Siyar, Fayaz Ali, Sajjad Ahmad, Samina Jahandad, George Kontakiotis, Hammad T. Janjuhah, Assimina Antonarakou, Waqas Naseem
Abstract:
The Cretaceous Chichali Formation in the Chanda-01, Chanda-02, Chanda-03 and Mela-05 wells and the oil samples from Chanda-01 and Chanda-01 wells located in the Kohat Basin, Pakistan, were analyzed with the objectives of evaluating the hydrocarbon generation potential, source, thermal maturity and depositional of organic matter, and oil-source correlation by employing geochemical screening techniques and biomarker studies. The total organic carbon (TOC) values in Chanda-02, Chanda-03 and Mela-05 indicate, in general, poor to fair, fair and fair to good source rock potential with low genetic potential, respectively. The nature of organic matter has been determined by standard cross plots of Rock Eval pyrolysis parameters, indicating that studied cuttings from the Chichali Formation dominantly contain type III kerogen at present and show maturity for oil generation in the studied wells. The organic petrographic study also confirmed the vitrinite (type III) as a major maceral in the investigated Chichali Shales and its reflectance values show maturity for oil. The different ratios of non-biomarkers and biomarkers i.e., steranes, terpenes and aromatics parameters, indicate the marine source of organic matter deposited in the anoxic environment for the Chichali Formation in Chanda-01 and Chanda-02 wells and mixed source input of organic matter deposited in suboxic conditions for oil in the same wells. The CPI, and different biomarkers parameters such as C29 S/S+R, ββ/αα+ββ), M29/H30, Ts/Ts+Tm, H31 (S/S+R) and aromatic compounds methyl phenanthrene index (MPI) and organic petrographic analysis (vitrinite reflectance) suggest mature stage of oil generation for Chichali Shales and oil samples in the study area with little high thermal maturity in case of oils. Based on source and thermal maturity biomarkers and non-biomarkers parameters, the produced oils have no correlation with the Cretaceous Chichali Formation in the studied Chanda-01 and Chanda-02 wells in Kohat Basin, Pakistan, but it has been suggested that these oils have been generated by the strata containing high terrestrial organic input compare to Chichali Shales.Keywords: Organic geochemistry, Chichali Shales and crude oils, Kohat Basin, Pakistan
Procedia PDF Downloads 83491 Long-Term Indoor Air Monitoring for Students with Emphasis on Particulate Matter (PM2.5) Exposure
Authors: Seyedtaghi Mirmohammadi, Jamshid Yazdani, Syavash Etemadi Nejad
Abstract:
One of the main indoor air parameters in classrooms is dust pollution and it depends on the particle size and exposure duration. However, there is a lake of data about the exposure level to PM2.5 concentrations in rural area classrooms. The objective of the current study was exposure assessment for PM2.5 for students in the classrooms. One year monitoring was carried out for fifteen schools by time-series sampling to evaluate the indoor air PM2.5 in the rural district of Sari city, Iran. A hygrometer and thermometer were used to measure some psychrometric parameters (temperature, relative humidity, and wind speed) and Real-Time Dust Monitor, (MicroDust Pro, Casella, UK) was used to monitor particulate matters (PM2.5) concentration. The results show the mean indoor PM2.5 concentration in the studied classrooms was 135µg/m3. The regression model indicated that a positive correlation between indoor PM2.5 concentration and relative humidity, also with distance from city center and classroom size. Meanwhile, the regression model revealed that the indoor PM2.5 concentration, the relative humidity, and dry bulb temperature was significant at 0.05, 0.035, and 0.05 levels, respectively. A statistical predictive model was obtained from multiple regressions modeling for indoor PM2.5 concentration and indoor psychrometric parameters conditions.Keywords: classrooms, concentration, humidity, particulate matters, regression
Procedia PDF Downloads 336490 Structural Strength Potentials of Nigerian Groundnut Husk Ash as Partial Cement Replacement in Mortar
Authors: F. A. Olutoge, O.R. Olulope, M. O. Odelola
Abstract:
This study investigates the strength potentials of groundnut husk ash as partial cement replacement in mortar and also develops a predictive model using Artificial Neural Network. Groundnut husks sourced from Ogbomoso, Nigeria, was sun dried, calcined to ash in a furnace at a controlled temperature of 600⁰ C for a period of 6 hours, and sieved through the 75 microns. The ash was subjected to chemical analysis and setting time test. Fine aggregate (sand) for the mortar was sourced from Ado Ekiti, Nigeria. The cement: GHA constituents were blended in ratios 100:0, 95:5, 90:10, 85:15 and 80:20 %. The sum of SiO₂, Al₂O₃, and Fe₂O₃ content in GHA is 26.98%. The compressive strength for mortars PC, GHA5, GHA10, GHA15, and GHA20 ranged from 6.3-10.2 N/mm² at 7days, 7.5-12.3 N/mm² at 14 days, 9.31-13.7 N/mm² at 28 days, 10.4-16.7 N/mm² at 56days and 13.35- 22.3 N/mm² at 90 days respectively, PC, GHA5 and GHA10 had competitive values up to 28 days, but GHA10 gave the highest values at 56 and 90 days while GHA20 had the lowest values at all ages due to dilution effect. Flexural strengths values at 28 days ranged from 1.08 to 1.87 N/mm² and increased to a range of 1.53-4.10 N/mm² at 90 days. The ANN model gave good prediction for compressive strength of the mortars. This study has shown that groundnut husk ash as partial cement replacement improves the strength properties of mortar.Keywords: compressive strength, groundnut husk ash, mortar, pozzolanic index
Procedia PDF Downloads 155489 Constructing Optimized Criteria of Objective Assessment Indicators among Elderly Frailty
Authors: Shu-Ching Chiu, Shu-Fang Chang
Abstract:
The World Health Organization (WHO) has been actively developing intervention programs to deal with geriatric frailty. In its White Paper on Healthcare Policy 2020, the Department of Health, Bureau of Health Promotion proposed that active aging and the prevention of disability are essential for elderly people to maintain good health. The paper recommended five main policies relevant to this objective, one of which is the prevention of frailty and disability. Scholars have proposed a number of different criteria to diagnose and assess frailty; no consistent or normative standard of measurement is currently available. In addition, many methods of assessment are recursive, which can easily result in recall bias. Due to the relationship between frailty and physical fitness with regard to co-morbidity, it is important that academics optimize the criteria used to assess frailty by objectively evaluating the physical fitness of senior citizens. This study used a review of the literature to identify fitness indicators suitable for measuring frailty in the elderly. This study recommends that measurement criteria be integrated to produce an optimized predictive value for frailty score. Healthcare professionals could use this data to detect frailty at an early stage and provide appropriate care to prevent further debilitation and increase longevity.Keywords: frailty, aging, physical fitness, optimized criteria, healthcare
Procedia PDF Downloads 355488 Phenomenological Ductile Fracture Criteria Applied to the Cutting Process
Authors: František Šebek, Petr Kubík, Jindřich Petruška, Jiří Hůlka
Abstract:
Present study is aimed on the cutting process of circular cross-section rods where the fracture is used to separate one rod into two pieces. Incorporating the phenomenological ductile fracture model into the explicit formulation of finite element method, the process can be analyzed without the necessity of realizing too many real experiments which could be expensive in case of repetitive testing in different conditions. In the present paper, the steel AISI 1045 was examined and the tensile tests of smooth and notched cylindrical bars were conducted together with biaxial testing of the notched tube specimens to calibrate material constants of selected phenomenological ductile fracture models. These were implemented into the Abaqus/Explicit through user subroutine VUMAT and used for cutting process simulation. As the calibration process is based on variables which cannot be obtained directly from experiments, numerical simulations of fracture tests are inevitable part of the calibration. Finally, experiments regarding the cutting process were carried out and predictive capability of selected fracture models is discussed. Concluding remarks then make the summary of gained experience both with the calibration and application of particular ductile fracture criteria.Keywords: ductile fracture, phenomenological criteria, cutting process, explicit formulation, AISI 1045 steel
Procedia PDF Downloads 458487 Analyzing Migration Patterns Using Public Disorder Event Data
Authors: Marie E. Docken
Abstract:
At some point in the lifecycle of a country, patterns of political and social unrest of varying degrees are observed. Events involving public disorder or civil disobedience may produce effects that range a wide spectrum of varying outcomes, depending on the level of unrest. Many previous studies, primarily theoretical in nature, have attempted to measure public disorder in answering why or how it occurs in society by examining causal factors or underlying issues in the social or political position of a population. The main objective in doing so is to understand how these activities evolve or seek some predictive capability for the events. In contrast, this research involves the fusion of analytics and social studies to provide more knowledge of the public disorder and civil disobedience intensity in populations. With a greater understanding of the magnitude of these events, it is believed that we may learn how they relate to extreme actions such as mass migration or violence. Upon establishing a model for measuring civil unrest based upon empirical data, a case study on various Latin American countries is performed. Interpretations of historical events are combined with analytical results to provide insights regarding the magnitude and effect of social and political activism.Keywords: public disorder, civil disobedience, Latin America, metrics, data analysis
Procedia PDF Downloads 147486 Pioneering Technology of Night Photo-Stimulation of the Brain Lymphatic System: Therapy of Brain Diseases during Sleep
Authors: Semyachkina-Glushkovskaya Oxana, Fedosov Ivan, Blokhina Inna, Terskov Andrey, Evsukova Arina, Elovenko Daria, Adushkina Viktoria, Dubrovsky Alexander, Jürgen Kurths
Abstract:
In modern neurobiology, sleep is considered a novel biomarker and a promising therapeutic target for brain diseases. This is due to recent discoveries of the nighttime activation of the brain lymphatic system (BLS), playing an important role in the removal of wastes and toxins from the brain and contributes neuroprotection of the central nervous system (CNS). In our review, we discuss that night stimulation of BLS might be a breakthrough strategy in a new treatment of Alzheimer’s and Parkinson’s disease, stroke, brain trauma, and oncology. Although this research is in its infancy, however, there are pioneering and promising results suggesting that night transcranial photostimulation (tPBM) stimulates more effectively lymphatic removal of amyloid-beta from mouse brain than daily tPBM that is associated with a greater improvement of the neurological status and recognition memory of animals. In our previous study, we discovered that tPBM modulates the tone and permeability of the lymphatic endothelium by stimulating NO formation, promoting lymphatic clearance of wastes and toxins from the brain tissues. We also demonstrate that tPBM can also lead to angio- and lymphangiogenesis, which is another mechanism underlying tPBM-mediated stimulation of BLS. Thus, photo-augmentation of BLS might be a promising therapeutic target for preventing or delaying brain diseases associated with BLS dysfunction. Here we present pioneering technology for simultaneous tPBM in humans and sleep monitoring for stimulation of BLS to remove toxins from CNS and modulation of brain immunity. The wireless-controlled gadget includes a flexible organic light-emitting diode (LED) source that is controlled directly by a sleep-tracking device via a mobile application. The designed autonomous LED source is capable of providing the required therapeutic dose of light radiation at a certain region of the patient’s head without disturbing of sleeping patient. To minimize patients' discomfort, advanced materials like flexible organic LEDs were used. Acknowledgment: This study was supported by RSF project No. 23-75-30001.Keywords: brain diseases, brain lymphatic system, phototherapy, sleep
Procedia PDF Downloads 72485 Analytical Authentication of Butter Using Fourier Transform Infrared Spectroscopy Coupled with Chemometrics
Authors: M. Bodner, M. Scampicchio
Abstract:
Fourier Transform Infrared (FT-IR) spectroscopy coupled with chemometrics was used to distinguish between butter samples and non-butter samples. Further, quantification of the content of margarine in adulterated butter samples was investigated. Fingerprinting region (1400-800 cm–1) was used to develop unsupervised pattern recognition (Principal Component Analysis, PCA), supervised modeling (Soft Independent Modelling by Class Analogy, SIMCA), classification (Partial Least Squares Discriminant Analysis, PLS-DA) and regression (Partial Least Squares Regression, PLS-R) models. PCA of the fingerprinting region shows a clustering of the two sample types. All samples were classified in their rightful class by SIMCA approach; however, nine adulterated samples (between 1% and 30% w/w of margarine) were classified as belonging both at the butter class and at the non-butter one. In the two-class PLS-DA model’s (R2 = 0.73, RMSEP, Root Mean Square Error of Prediction = 0.26% w/w) sensitivity was 71.4% and Positive Predictive Value (PPV) 100%. Its threshold was calculated at 7% w/w of margarine in adulterated butter samples. Finally, PLS-R model (R2 = 0.84, RMSEP = 16.54%) was developed. PLS-DA was a suitable classification tool and PLS-R a proper quantification approach. Results demonstrate that FT-IR spectroscopy combined with PLS-R can be used as a rapid, simple and safe method to identify pure butter samples from adulterated ones and to determine the grade of adulteration of margarine in butter samples.Keywords: adulterated butter, margarine, PCA, PLS-DA, PLS-R, SIMCA
Procedia PDF Downloads 146484 Pharmacovigilance: An Empowerment in Safe Utilization of Pharmaceuticals
Authors: Pankaj Prashar, Bimlesh Kumar, Ankita Sood, Anamika Gautam
Abstract:
Pharmacovigilance (PV) is a rapidly growing discipline in pharmaceutical industries as an integral part of clinical research and drug development over the past few decades. PV carries a breadth of scope from drug manufacturing to its regulation with safer utilization. The fundamental steps of PV not only includes data collection and verification, coding of drugs with adverse drug reactions, causality assessment and timely reporting to the authorities but also monitoring drug manufacturing, safety issues, product quality and conduction of due diligence. Standardization of adverse event information, collaboration of multiple departments in different companies, preparation of documents in accordance to both governmental as well as non-governmental organizations (FDA, EMA, GVP, ICH) are the advancements in discipline of PV. De-harmonization, lack of predictive drug safety models, improper funding by government, non-reporting, and non-acceptability of ADRs by developing countries and reports directly from patients to the monitoring centres respectively are the major road backs of PV. Mandatory pharmacovigilance reporting, frequent inspections, funding by government, educating and training medical students, pharmacists and nurses in this segment can bring about empowerment in PV. This area needs to be addressed with a sense of urgency for the safe utilization of pharmaceuticals.Keywords: pharmacovigilance, regulatory, adverse event, drug safety
Procedia PDF Downloads 124483 Application of Latent Class Analysis and Self-Organizing Maps for the Prediction of Treatment Outcomes for Chronic Fatigue Syndrome
Authors: Ben Clapperton, Daniel Stahl, Kimberley Goldsmith, Trudie Chalder
Abstract:
Chronic fatigue syndrome (CFS) is a condition characterised by chronic disabling fatigue and other symptoms that currently can't be explained by any underlying medical condition. Although clinical trials support the effectiveness of cognitive behaviour therapy (CBT), the success rate for individual patients is modest. Patients vary in their response and little is known which factors predict or moderate treatment outcomes. The aim of the project is to develop a prediction model from baseline characteristics of patients, such as demographics, clinical and psychological variables, which may predict likely treatment outcome and provide guidance for clinical decision making and help clinicians to recommend the best treatment. The project is aimed at identifying subgroups of patients with similar baseline characteristics that are predictive of treatment effects using modern cluster analyses and data mining machine learning algorithms. The characteristics of these groups will then be used to inform the types of individuals who benefit from a specific treatment. In addition, results will provide a better understanding of for whom the treatment works. The suitability of different clustering methods to identify subgroups and their response to different treatments of CFS patients is compared.Keywords: chronic fatigue syndrome, latent class analysis, prediction modelling, self-organizing maps
Procedia PDF Downloads 226482 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence
Authors: Muhammad Bilal Shaikh
Abstract:
Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.Keywords: multimodal AI, computer vision, NLP, mineral processing, mining
Procedia PDF Downloads 68481 A Comparative Analysis of Machine Learning Techniques for PM10 Forecasting in Vilnius
Authors: Mina Adel Shokry Fahim, Jūratė Sužiedelytė Visockienė
Abstract:
With the growing concern over air pollution (AP), it is clear that this has gained more prominence than ever before. The level of consciousness has increased and a sense of knowledge now has to be forwarded as a duty by those enlightened enough to disseminate it to others. This realisation often comes after an understanding of how poor air quality indices (AQI) damage human health. The study focuses on assessing air pollution prediction models specifically for Lithuania, addressing a substantial need for empirical research within the region. Concentrating on Vilnius, it specifically examines particulate matter concentrations 10 micrometers or less in diameter (PM10). Utilizing Gaussian Process Regression (GPR) and Regression Tree Ensemble, and Regression Tree methodologies, predictive forecasting models are validated and tested using hourly data from January 2020 to December 2022. The study explores the classification of AP data into anthropogenic and natural sources, the impact of AP on human health, and its connection to cardiovascular diseases. The study revealed varying levels of accuracy among the models, with GPR achieving the highest accuracy, indicated by an RMSE of 4.14 in validation and 3.89 in testing.Keywords: air pollution, anthropogenic and natural sources, machine learning, Gaussian process regression, tree ensemble, forecasting models, particulate matter
Procedia PDF Downloads 54480 Cost Analysis of Optimized Fast Network Mobility in IEEE 802.16e Networks
Authors: Seyyed Masoud Seyyedoshohadaei, Borhanuddin Mohd Ali
Abstract:
To support group mobility, the NEMO Basic Support Protocol has been standardized as an extension of Mobile IP that enables an entire network to change its point of attachment to the Internet. Using NEMO in IEEE 802.16e (WiMax) networks causes latency in handover procedure and affects seamless communication of real-time applications. To decrease handover latency and service disruption time, an integrated scheme named Optimized Fast NEMO (OFNEMO) was introduced by authors of this paper. In OFNEMO a pre-establish multi tunnels concept, cross function optimization and cross layer design are used. In this paper, an analytical model is developed to evaluate total cost consisting of signaling and packet delivery costs of the OFNEMO compared with RFC3963. Results show that OFNEMO increases probability of predictive mode compared with RFC3963 due to smaller handover latency. Even though OFNEMO needs extra signalling to pre-establish multi tunnel, it has less total cost thanks to its optimized algorithm. OFNEMO can minimize handover latency for supporting real time application in moving networks.Keywords: fast mobile IPv6, handover latency, IEEE802.16e, network mobility
Procedia PDF Downloads 198479 Machine Learning Predictive Models for Hydroponic Systems: A Case Study Nutrient Film Technique and Deep Flow Technique
Authors: Kritiyaporn Kunsook
Abstract:
Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), decision tree, support vector machines (SVMs), Naïve Bayes, and ensemble classifier by voting are powerful data driven methods that are relatively less widely used in the mapping of technique of system, and thus have not been comparatively evaluated together thoroughly in this field. The performances of a series of MLAs, ANNs, decision tree, SVMs, Naïve Bayes, and ensemble classifier by voting in technique of hydroponic systems prospectively modeling are compared based on the accuracy of each model. Classification of hydroponic systems only covers the test samples from vegetables grown with Nutrient film technique (NFT) and Deep flow technique (DFT). The feature, which are the characteristics of vegetables compose harvesting height width, temperature, require light and color. The results indicate that the classification performance of the ANNs is 98%, decision tree is 98%, SVMs is 97.33%, Naïve Bayes is 96.67%, and ensemble classifier by voting is 98.96% algorithm respectively.Keywords: artificial neural networks, decision tree, support vector machines, naïve Bayes, ensemble classifier by voting
Procedia PDF Downloads 374478 Digital Wellbeing: A Multinational Study and Global Index
Authors: Fahad Al Beyahi, Justin Thomas, Md Mamunur Rashid
Abstract:
Various definitions of digital well-being have emerged in recent years, most of which center on the impacts -beneficial and detrimental- of digital technology on health and well-being (psychological, social, and financial). Other definitions go further, emphasizing the attainment of balance, viewing digital well-being as wholly subjective, the individual’s perception of optimal balance between the benefits and ills associated with online connectivity. Based on this broad conceptualization of digital well-being, we undertook a global survey measuring various dimensions of this emerging construct. The survey was administered across 35 nations and 7 world regions, with 1000 participants within each territory (N= 35000). Along with attitudinal, behavioral, and sociodemographic variables, the survey included measures of depression, anxiety, problematic social media use, gaming disorder, and other relevant metrics. Coupled with nation-level policy audits, these data were used to create a multinational (global) digital well-being index. Nations are ranked based on various dimensions of digital well-being, and predictive models are used to identify resilience and risk factors for problem technology use. In this paper, we will discuss key findings from the survey and the index. This work can inform public policy and shape our responses to the emerging implications of lives increasingly lived online and interconnected with digital technology.Keywords: technology, health, behavioral addiction, digital wellbeing
Procedia PDF Downloads 81477 Data Model to Predict Customize Skin Care Product Using Biosensor
Authors: Ashi Gautam, Isha Shukla, Akhil Seghal
Abstract:
Biosensors are analytical devices that use a biological sensing element to detect and measure a specific chemical substance or biomolecule in a sample. These devices are widely used in various fields, including medical diagnostics, environmental monitoring, and food analysis, due to their high specificity, sensitivity, and selectivity. In this research paper, a machine learning model is proposed for predicting the suitability of skin care products based on biosensor readings. The proposed model takes in features extracted from biosensor readings, such as biomarker concentration, skin hydration level, inflammation presence, sensitivity, and free radicals, and outputs the most appropriate skin care product for an individual. This model is trained on a dataset of biosensor readings and corresponding skin care product information. The model's performance is evaluated using several metrics, including accuracy, precision, recall, and F1 score. The aim of this research is to develop a personalised skin care product recommendation system using biosensor data. By leveraging the power of machine learning, the proposed model can accurately predict the most suitable skin care product for an individual based on their biosensor readings. This is particularly useful in the skin care industry, where personalised recommendations can lead to better outcomes for consumers. The developed model is based on supervised learning, which means that it is trained on a labeled dataset of biosensor readings and corresponding skin care product information. The model uses these labeled data to learn patterns and relationships between the biosensor readings and skin care products. Once trained, the model can predict the most suitable skin care product for an individual based on their biosensor readings. The results of this study show that the proposed machine learning model can accurately predict the most appropriate skin care product for an individual based on their biosensor readings. The evaluation metrics used in this study demonstrate the effectiveness of the model in predicting skin care products. This model has significant potential for practical use in the skin care industry for personalised skin care product recommendations. The proposed machine learning model for predicting the suitability of skin care products based on biosensor readings is a promising development in the skin care industry. The model's ability to accurately predict the most appropriate skin care product for an individual based on their biosensor readings can lead to better outcomes for consumers. Further research can be done to improve the model's accuracy and effectiveness.Keywords: biosensors, data model, machine learning, skin care
Procedia PDF Downloads 97476 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models
Authors: Jay L. Fu
Abstract:
Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction
Procedia PDF Downloads 143475 In Silico Analysis of Salivary miRNAs to Identify the Diagnostic Biomarkers for Oral Cancer
Authors: Andleeb Zahra, Itrat Rubab, Sumaira Malik, Amina Khan, Muhammad Jawad Khan, M. Qaiser Fatmi
Abstract:
Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide. Recent studies have highlighted the role of miRNA in disease pathology, indicating its potential use in an early diagnostic tool. miRNAs are small, double stranded, non-coding RNAs that regulate gene expression by deregulating mRNAs. miRNAs play important roles in modifying various cellular processes such as cell growth, differentiation, apoptosis, and immune response. Dis-regulated expression of miRNAs is known to affect the cell growth, and this may function as tumor suppressors or oncogenes in various cancers. Objectives: The main objectives of this study were to characterize the extracellular miRNAs involved in oral cancer (OC) to assist early detection of cancer as well as to propose a list of genes that can potentially be used as biomarkers of OC. We used gene expression data by microarrays already available in literature. Materials and Methods: In the first step, a total of 318 miRNAs involved in oral carcinoma were shortlisted followed by the prediction of their target genes. Simultaneously, the differentially expressed genes (DEGs) of oral carcinoma from all experiments were identified. The common genes between lists of DEGs of OC based on experimentally proven data and target genes of each miRNA were identified. These common genes are the targets of specific miRNA, which is involved in OC. Finally, a list of genes was generated which may be used as biomarker of OC. Results and Conclusion: In results, we included some of pathways in cancer to show the change in gene expression under the control of specific miRNA. Ingenuity pathway analysis (IPA) provided a list of major biomarkers like CDH2, CDK7 and functional enrichment analysis identified the role of miRNA in major pathways like cell adhesion molecules pathway affected by cancer. We observed that at least 25 genes are regulated by maximum number of miRNAs, and thereby, they can be used as biomarkers of OC. To better understand the role of miRNA with respect to their target genes further experiments are required, and our study provides a platform to better understand the miRNA-OC relationship at genomics level.Keywords: biomarkers, gene expression, miRNA, oral carcinoma
Procedia PDF Downloads 375474 Preferred Left-Handed Conformation of Glycyls at Pathogenic Sites
Authors: Purva Mishra, Rajesh Potlia, Kuljeet Singh Sandhu
Abstract:
The role of glycyl residues in the protein structure has lingered within the research community for the last several decades. Glycyl residue is the only amino acid that is achiral due to the lack of a side chain and can, therefore, exhibit Ramachandran conformations that are disallowed for L-amino acids. The structural and functional significance of glycyl residues with L-disallowed conformation, however, remains obscure. Through statistical analysis of various datasets, we found that the glycyls with L-disallowed conformations are over-represented at disease-associated sites and tend to be evolutionarily conserved. The mutations of L-disallowed glycyls tend to destabilize the native conformation, reduce protein solubility, and promote inter-molecular aggregations. We uncovered a structural motif referred to as “β-crescent” formed around the L-disallowed glycyl, which prevents β-sheet aggregation by disrupting the alternating pattern of β-pleats. The L-disallowed conformation of glycyls also holds predictive power to infer the pathogenic missense variants. Altogether, our observations highlight that the L-disallowed conformation of glycyls is selected to facilitate native folding and prevent inter-molecular aggregations. The findings may also have implications for designing more stable proteins and prioritizing the genetic lesions implicated in diseases.Keywords: Ramachandran plot, β-sheet, protein stability, protein aggregation
Procedia PDF Downloads 72