Search results for: potential intelligence
11963 Current Perspectives of Bemitil Use in Sport
Authors: S. Ivanova, K. Ivanov
Abstract:
Bemitil (2-ethylthiobenzimidazole hydrobromide) is a synthetic adaptogen and actoprotector, with wide-ranging pharmacological activities such as nootropic, antihypoxic, antioxidant, immunostimulant. The intake of Bemitil increases mental and physical performance and could be applied under either normal or extreme conditions. Until 2017 Bemitil was not considered as doping and was used by professional athletes more than 30 years because of its high efficiency and safety. The drug was included in WADA monitoring programme for 2018, and most likely it would be included in WADA Prohibited List for 2019. Usually, a substance/method is included in WADA Prohibited List if it meets any two of the following three criteria: the potential to enhance or enhances sports performance/ potential health risk to the athlete/ violates the spirit of sport. Bemitil has high performance-enhancing potential, but it is also safe- it is controversial whether it should be considered as doping.Keywords: doping, bemitil, sport, actoprotector
Procedia PDF Downloads 47411962 Revolutionizing Higher Education: AI-Powered Gamification for Enhanced Learning
Authors: Gina L. Solano
Abstract:
This project endeavors to enhance learning experiences for undergraduate pre-service teachers and graduate K-12 educators by leveraging artificial intelligence (AI). Firstly, the initiative delves into integrating AI within undergraduate education courses, fostering traditional literacy skills essential for academic success and extending their applicability beyond the classroom. Education students will explore AI tools to design literacy-focused activities aligned with their curriculum. Secondly, the project investigates the utilization of AI to craft instructional materials employing gamification strategies (e.g., digital and classic games, badges, quests) to amplify student engagement and motivation in mastering course content. Lastly, it aims to create a professional repertoire that can be applied by pre-service and current teachers in P-12 classrooms, promoting seamless integration for those already in teaching positions. The project's impact extends to benefiting college students, including pre-service and graduate teachers, as they enhance literacy and digital skills through AI. It also benefits current P-12 educators who can integrate AI into their classrooms, fostering innovative teaching practices. Moreover, the project contributes to faculty development, allowing them to cultivate low-risk and engaging classroom environments, ultimately enriching the learning journey. The insights gained from this project can be shared within and beyond the discipline to advance the broader field of study.Keywords: artificial intelligence, gamification, learning experiences, literacy skills, engagement
Procedia PDF Downloads 6211961 Quantum Dot Biosensing for Advancing Precision Cancer Detection
Authors: Sourav Sarkar, Manashjit Gogoi
Abstract:
In the evolving landscape of cancer diagnostics, optical biosensing has emerged as a promising tool due to its sensitivity and specificity. This study explores the potential of CdS/ZnS core-shell quantum dots (QDs) capped with 3-Mercaptopropionic acid (3-MPA), which aids in the linking chemistry of QDs to various cancer antibodies. The QDs, with their unique optical and electronic properties, have been integrated into the biosensor design. Their high quantum yield and size-dependent emission spectra have been exploited to improve the sensor’s detection capabilities. The study presents the design of this QD-enhanced optical biosensor. The use of these QDs can also aid multiplexed detection, enabling simultaneous monitoring of different cancer biomarkers. This innovative approach holds significant potential for advancing cancer diagnostics, contributing to timely and accurate detection. Future work will focus on optimizing the biosensor design for clinical applications and exploring the potential of QDs in other biosensing applications. This study underscores the potential of integrating nanotechnology and biosensing for cancer research, paving the way for next-generation diagnostic tools. It is a step forward in our quest for achieving precision oncology.Keywords: quantum dots, biosensing, cancer, device
Procedia PDF Downloads 5611960 Optimizing PharmD Education: Quantifying Curriculum Complexity to Address Student Burnout and Cognitive Overload
Authors: Frank Fan
Abstract:
PharmD (Doctor of Pharmacy) education has confronted an increasing challenge — curricular overload, a phenomenon resulting from the expansion of curricular requirements, as PharmD education strives to produce graduates who are practice-ready. The aftermath of the global pandemic has amplified the need for healthcare professionals, leading to a growing trend of assigning more responsibilities to them to address the global healthcare shortage. For instance, the pharmacist’s role has expanded to include not only compounding and distributing medication but also providing clinical services, including minor ailments management, patient counselling and vaccination. Consequently, PharmD programs have responded by continually expanding their curricula adding more requirements. While these changes aim to enhance the education and training of future professionals, they have also led to unintended consequences, including curricular overload, student burnout, and a potential decrease in program quality. To address the issue and ensure program quality, there is a growing need for evidence-based curriculum reforms. My research seeks to integrate Cognitive Load Theory, emerging machine learning algorithms within artificial intelligence (AI), and statistical approaches to develop a quantitative framework for optimizing curriculum design within the PharmD program at the University of Toronto, the largest PharmD program within Canada, to provide quantification and measurement of issues that currently are only discussed in terms of anecdote rather than data. This research will serve as a guide for curriculum planners, administrators, and educators, aiding in the comprehension of how the pharmacy degree program compares to others within and beyond the field of pharmacy. It will also shed light on opportunities to reduce the curricular load while maintaining its quality and rigor. Given that pharmacists constitute the third-largest healthcare workforce, their education shares similarities and challenges with other health education programs. Therefore, my evidence-based, data-driven curriculum analysis framework holds significant potential for training programs in other healthcare professions, including medicine, nursing, and physiotherapy.Keywords: curriculum, curriculum analysis, health professions education, reflective writing, machine learning
Procedia PDF Downloads 6111959 Factors Affecting Employee Decision Making in an AI Environment
Authors: Yogesh C. Sharma, A. Seetharaman
Abstract:
The decision-making process in humans is a complicated system influenced by a variety of intrinsic and extrinsic factors. Human decisions have a ripple effect on subsequent decisions. In this study, the scope of human decision making is limited to employees. In an organisation, a person makes a variety of decisions from the time they are hired to the time they retire. The goal of this research is to identify various elements that influence decision-making. In addition, the environment in which a decision is made is a significant aspect of the decision-making process. Employees in today's workplace use artificial intelligence (AI) systems for automation and decision augmentation. The impact of AI systems on the decision-making process is examined in this study. This research is designed based on a systematic literature review. Based on gaps in the literature, limitations and the scope of future research have been identified. Based on these findings, a research framework has been designed to identify various factors affecting employee decision making. Employee decision making is influenced by technological advancement, data-driven culture, human trust, decision automation-augmentation, and workplace motivation. Hybrid human-AI systems require the development of new skill sets and organisational design. Employee psychological safety and supportive leadership influences overall job satisfaction.Keywords: employee decision making, artificial intelligence (AI) environment, human trust, technology innovation, psychological safety
Procedia PDF Downloads 10811958 Malware Beaconing Detection by Mining Large-scale DNS Logs for Targeted Attack Identification
Authors: Andrii Shalaginov, Katrin Franke, Xiongwei Huang
Abstract:
One of the leading problems in Cyber Security today is the emergence of targeted attacks conducted by adversaries with access to sophisticated tools. These attacks usually steal senior level employee system privileges, in order to gain unauthorized access to confidential knowledge and valuable intellectual property. Malware used for initial compromise of the systems are sophisticated and may target zero-day vulnerabilities. In this work we utilize common behaviour of malware called ”beacon”, which implies that infected hosts communicate to Command and Control servers at regular intervals that have relatively small time variations. By analysing such beacon activity through passive network monitoring, it is possible to detect potential malware infections. So, we focus on time gaps as indicators of possible C2 activity in targeted enterprise networks. We represent DNS log files as a graph, whose vertices are destination domains and edges are timestamps. Then by using four periodicity detection algorithms for each pair of internal-external communications, we check timestamp sequences to identify the beacon activities. Finally, based on the graph structure, we infer the existence of other infected hosts and malicious domains enrolled in the attack activities.Keywords: malware detection, network security, targeted attack, computational intelligence
Procedia PDF Downloads 26311957 Impact of Fin Cross Section Shape on Potential Distribution of Nanoscale Trapezoidal FinFETs
Authors: Ahmed Nassim Moulai Khatir
Abstract:
Fin field effect transistors (FinFETs) deliver superior levels of scalability than the classical structure of MOSFETs by offering the elimination of short channel effects. Modern FinFETs are 3D structures that rise above the planar substrate, but some of these structures have inclined surfaces, which results in trapezoidal cross sections instead of rectangular sections usually used. Fin cross section shape of FinFETs results in some device issues, like potential distribution performance. This work analyzes that impact with three-dimensional numeric simulation of several triple-gate FinFETs with various top and bottom widths of fin. Results of the simulation show that the potential distribution and the electrical field in the fin depend on the sidewall inclination angle.Keywords: FinFET, cross section shape, SILVACO, trapezoidal FinFETs
Procedia PDF Downloads 4711956 Human Mesenchymal Stem Cells as a Potential Source for Cell Therapy in Liver Disorders
Authors: Laila Montaser, Hala Gabr, Maha El-Bassuony, Gehan Tawfeek
Abstract:
Orthotropic liver transplantation (OLT) is the final procedure of both end stage and metabolic liver diseases. Hepatocyte transplantation is an alternative for OLT, but the sources of hepatocytes are limited. Bone marrow mesenchymal stem cells (BM-MSCs) can differentiate into hepatocyte-like cells and are a potential alternative source for hepatocytes. The MSCs from bone marrow are a promising target population as they are capable of differentiating along multiple lineages and, at least in vitro, have significant expansion capability. MSCs from bone marrow may have the potential to differentiate in vitro and in vivo into hepatocytes. Our study examined whether mesenchymal stem cells (MSCs), which are stem cells originated from human bone marrow, are able to differentiate into functional hepatocyte-like cells in vitro. Our aim was to investigate the differentiation potential of BM-MSCs into hepatocyte-like cells. Adult stem cell therapy could solve the problem of degenerative disorders, including liver disease.Keywords: bone marrow, differentiation, hepatocyte, stem cells
Procedia PDF Downloads 51911955 Decoding Gender Disparities in AI: An Experimental Exploration Within the Realm of AI and Trust Building
Authors: Alexander Scott English, Yilin Ma, Xiaoying Liu
Abstract:
The widespread use of artificial intelligence in everyday life has triggered a fervent discussion covering a wide range of areas. However, to date, research on the influence of gender in various segments and factors from a social science perspective is still limited. This study aims to explore whether there are gender differences in human trust in AI for its application in basic everyday life and correlates with human perceived similarity, perceived emotions (including competence and warmth), and attractiveness. We conducted a study involving 321 participants using a two-subject experimental design with a two-factor (masculinized vs. feminized voice of the AI) multiplied by a two-factor (pitch level of the AI's voice) between-subject experimental design. Four contexts were created for the study and randomly assigned. The results of the study showed significant gender differences in perceived similarity, trust, and perceived emotion of the AIs, with females rating them significantly higher than males. Trust was higher in relation to AIs presenting the same gender (e.g., human female to female AI, human male to male AI). Mediation modeling tests indicated that emotion perception and similarity played a sufficiently mediating role in trust. Notably, although trust in AIs was strongly correlated with human gender, there was no significant effect on the gender of the AI. In addition, the study discusses the effects of subjects' age, job search experience, and job type on the findings.Keywords: artificial intelligence, gender differences, human-robot trust, mediation modeling
Procedia PDF Downloads 4511954 The Relationship between the Speed of Light and Cosmic Background Potential
Authors: Youping Dai, Xinping Dai, Xiaoyun Li
Abstract:
In this paper, the effect of Cosmic Background Gravitational Potential (CBGP) was discussed. It is helpful to reveal the equivalence of gravitational and inertial mass, and to understand the origin of inertia. The derivation is similar to the classic approach adopted by Landau in the book 'Classical Theory of Fields'.The main differences are that we used CBGP = Lambda^2 instead of c^2, and used CBGP energy E = m*Lambda^2 instead of kinetic energy E = (1/2)m*v^2 as initial assumptions (where Lambda has the same units for measuring velocity). It showed that Lorentz transformation, rest energy and Newtonian mechanics are all affected by $CBGP$, and the square of the speed of light is equal to CBGP too. Finally, the top value of cosmic mass density and cosmic radius were discussed.Keywords: the origin of inertia, Mach's principle, equivalence principle, cosmic background potential
Procedia PDF Downloads 37611953 Feasibility Study of Wind Energy Potential in Turkey: Case Study of Catalca District in Istanbul
Authors: Mohammed Wadi, Bedri Kekezoglu, Mustafa Baysal, Mehmet Rida Tur, Abdulfetah Shobole
Abstract:
This paper investigates the technical evaluation of the wind potential for present and future investments in Turkey taking into account the feasibility of sites, installments, operation, and maintenance. This evaluation based on the hourly measured wind speed data for the three years 2008–2010 at 30 m height for Çatalca district. These data were obtained from national meteorology station in Istanbul–Republic of Turkey are analyzed in order to evaluate the feasibility of wind power potential and to assure supreme assortment of wind turbines installing for the area of interest. Furthermore, the data are extrapolated and analyzed at 60 m and 80 m regarding the variability of roughness factor. Weibull bi-parameter probability function is used to approximate monthly and annually wind potential and power density based on three calculation methods namely, the approximated, the graphical and the energy pattern factor methods. The annual mean wind power densities were to be 400.31, 540.08 and 611.02 W/m² for 30, 60, and 80 m heights respectively. Simulation results prove that the analyzed area is an appropriate place for constructing large-scale wind farms.Keywords: wind potential in Turkey, Weibull bi-parameter probability function, the approximated method, the graphical method, the energy pattern factor method, capacity factor
Procedia PDF Downloads 25911952 Solar Energy Potential Studies of Sindh Province, Pakistan for Power Generation
Authors: M. Akhlaque Ahmed, Sidra A. Shaikh, Maliha Afshan Siddiqui
Abstract:
Solar radiation studies of Sindh province have been studied to evaluate the solar energy potential of the area. Global and diffuse solar radiation on horizontal surface over five cities namely Karachi, Hyderabad, Nawabshah, Chore and Padidan of Sindh province were carried out using sun shine hour data of the area to assess the feasibility of solar energy utilization. The result obtained shows a large variation of direct and diffuse component of solar radiation in winter and summer months. 50% direct and 50% diffuse solar radiation for Karachi and Hyderabad were observed and for Chore in summer month July and August the diffuse radiation is about 33 to 39%. For other areas of Sindh such as Nawabshah and Patidan the contribution of direct solar radiation is high throughout the year. The Kt values for Nawabshah and Patidan indicates a clear sky almost throughout the year. In Nawabshah area the percentage of diffuse radiation does not exceed more than 29%. The appearance of cloud is rare even in the monsoon months July and August whereas Karachi and Hyderabad and Chore has low solar potential during the monsoon months. During the monsoon period Karachi and Hyderabad can utilize hybrid system with wind power as wind speed is higher. From the point of view of power generation the estimated values indicate that Karachi and Hyderabad and chore has low solar potential for July and August while Nawabshah, and Padidan has high solar potential Throughout the year.Keywords: global and diffuse solar radiation, province of Sindh, solar energy potential, solar radiation studies for power generation
Procedia PDF Downloads 25911951 Design and Fabrication of a Smart Quadruped Robot
Authors: Shivani Verma, Amit Agrawal, Pankaj Kumar Meena, Ashish B. Deoghare
Abstract:
Over the decade robotics has been a major area of interest among the researchers and scientists in reducing human efforts. The need for robots to replace human work in different dangerous fields such as underground mining, nuclear power station and war against terrorist attack has gained huge attention. Most of the robot design is based on human structure popularly known as humanoid robots. However, the problems encountered in humanoid robots includes low speed of movement, misbalancing in structure, poor load carrying capacity, etc. The simplification and adaptation of the fundamental design principles seen in animals have led to the creation of bio-inspired robots. But the major challenges observed in naturally inspired robot include complexity in structure, several degrees of freedom and energy storage problem. The present work focuses on design and fabrication of a bionic quadruped walking robot which is based on different joint of quadruped mammals like a dog, cheetah, etc. The design focuses on the structure of the robot body which consists of four legs having three degrees of freedom per leg and the electronics system involved in it. The robot is built using readily available plastics and metals. The proposed robot is simple in construction and is able to move through uneven terrain, detect and locate obstacles and take images while carrying additional loads which may include hardware and sensors. The robot will find possible application in the artificial intelligence sector.Keywords: artificial intelligence, bionic, quadruped robot, degree of freedom
Procedia PDF Downloads 21511950 The Artificial Intelligence Driven Social Work
Authors: Avi Shrivastava
Abstract:
Our world continues to grapple with a lot of social issues. Economic growth and scientific advancements have not completely eradicated poverty, homelessness, discrimination and bias, gender inequality, health issues, mental illness, addiction, and other social issues. So, how do we improve the human condition in a world driven by advanced technology? The answer is simple: we will have to leverage technology to address some of the most important social challenges of the day. AI, or artificial intelligence, has emerged as a critical tool in the battle against issues that deprive marginalized and disadvantaged groups of the right to enjoy benefits that a society offers. Social work professionals can transform their lives by harnessing it. The lack of reliable data is one of the reasons why a lot of social work projects fail. Social work professionals continue to rely on expensive and time-consuming primary data collection methods, such as observation, surveys, questionnaires, and interviews, instead of tapping into AI-based technology to generate useful, real-time data and necessary insights. By leveraging AI’s data-mining ability, we can gain a deeper understanding of how to solve complex social problems and change lives of people. We can do the right work for the right people and at the right time. For example, AI can enable social work professionals to focus their humanitarian efforts on some of the world’s poorest regions, where there is extreme poverty. An interdisciplinary team of Stanford scientists, Marshall Burke, Stefano Ermon, David Lobell, Michael Xie, and Neal Jean, used AI to spot global poverty zones – identifying such zones is a key step in the fight against poverty. The scientists combined daytime and nighttime satellite imagery with machine learning algorithms to predict poverty in Nigeria, Uganda, Tanzania, Rwanda, and Malawi. In an article published by Stanford News, Stanford researchers use dark of night and machine learning, Ermon explained that they provided the machine-learning system, an application of AI, with the high-resolution satellite images and asked it to predict poverty in the African region. “The system essentially learned how to solve the problem by comparing those two sets of images [daytime and nighttime].” This is one example of how AI can be used by social work professionals to reach regions that need their aid the most. It can also help identify sources of inequality and conflict, which could reduce inequalities, according to Nature’s study, titled The role of artificial intelligence in achieving the Sustainable Development Goals, published in 2020. The report also notes that AI can help achieve 79 percent of the United Nation’s (UN) Sustainable Development Goals (SDG). AI is impacting our everyday lives in multiple amazing ways, yet some people do not know much about it. If someone is not familiar with this technology, they may be reluctant to use it to solve social issues. So, before we talk more about the use of AI to accomplish social work objectives, let’s put the spotlight on how AI and social work can complement each other.Keywords: social work, artificial intelligence, AI based social work, machine learning, technology
Procedia PDF Downloads 10211949 In-silico Target Identification and Molecular Docking of Withaferin A and Withanolide D to Understand their Anticancer Therapeutic Potential
Authors: Devinder Kaur Sugga, Ekamdeep Kaur, Jaspreet Kaur, C. Rajesh, Preeti Rajesh, Harsimran Kaur
Abstract:
Withanolides are steroidal lactones and are highly oxygenated phytoconstituents that can be developed as potential anti-carcinogenic agents. The two main withanolides, namely Withaferin A and Withanolides D, have been extensively studied for their pharmacological activities. Both these withanolides are present in the Withania somnifera (WS) leaves belonging to the family Solanaceae, also known as “Indian ginseng .”In this study effects of WS leaf extract on the MCF7 breast cancer cell line were investigated by performing a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay to evaluate the cytotoxic effects and in vitro wound-healing assay to study the effect on cancer cell migration. Our data suggest WS extracts have cytotoxic effects and are effective anti-migrating agents and thus can be a source of potential candidates for the development of potential agents against metastasis. Thus, it can be a source of potential candidates for the development of potential agents against metastasis. Insight into these results, the in-silico approach to identify the possible protein targets interacting with withanolides was taken. Protein kinase C alpha (PKCα) was among the selected 5 top-ranked target proteins identified by the Swiss Target Prediction tool. PKCα is known to promote the growth and invasion of cancer cells and is being evaluated as a prognostic biomarker and therapeutic target in clinically aggressive tumors. Molecular docking of Withaferin A and Withanolides D was performed using AutoDock Vina. Both the bioactive compounds interacted with PKCα. The targets predicted using this approach will serve as leads for the possible therapeutic potential of withanolides, the bioactive ingredients of WS extracts, as anti-cancer drugs.Keywords: withania somnifera, withaferin A, withanolides D, PKCα
Procedia PDF Downloads 14611948 Screening of Lactobacilli and Bifidobacteria from Bangladeshi Indigenous Poultry for Their Potential Use as Probiotics
Authors: K. B. M. Islam, Syeeda Shiraj-Um-Mahmuda, Afroj Jahan, A. A. Bhuiyan
Abstract:
In Bangladesh, the use of imported probiotics in poultry is gradually being increased. But surprisingly, no probiotic bacteria have been isolated yet in Bangladesh despite the existence of scavenging native poultry as potential source that is seemingly more resistant to GIT infection as well as other diseases. Therefore, the study was undertaken to isolate, identify and characterize the potential probiotic Lactobacillus and Bifidobacteria strains from Bangladeshi indigenous poultry, and to evaluate their suitability to use in poultry industry. Crop and cecal samples from 61 healthy indigenous birds were used to isolate potential probiotics strains following conventional cultural methods. A total of 216 isolates were identified following physical, biochemical and molecular methods that belonged to the genus Lactobacillus and Bifidobacteria. An auto-aggregation test was performed for 180 and 136 isolated lactobacilli and bifidobacteria strains, respectively. Twelve lactobacilli isolates and 7 bifidobacteria isolates were selected because of their convenient aggregation. In vitro tests including antibacterial activity, resistance to low pH, hemolytic activities etc. were performed for evaluation of probiotic potential of each strain. Under the in vitro conditions and with respects to the probiotic traits, three lactobacilli; LS16, LS45, LS133 and two bifidobacteria, BS21 and BS90 were found to be potential probiotic strains. Thus, they are proposed to be evaluated for their in vivo probiotic properties. If the proposed strains are found suitable as the probiotics to be used in commercial poultry industry, it is expected that the local probiotics would be more beneficial and would save the huge amount of money that Bangladesh spends every year for the importation of such materials from abroad.Keywords: Bangladeshi poultry, gut microbiota, lactic acid bacteria, scavenging chicken, GIT health
Procedia PDF Downloads 30311947 Development of Fault Diagnosis Technology for Power System Based on Smart Meter
Authors: Chih-Chieh Yang, Chung-Neng Huang
Abstract:
In power system, how to improve the fault diagnosis technology of transmission line has always been the primary goal of power grid operators. In recent years, due to the rise of green energy, the addition of all kinds of distributed power also has an impact on the stability of the power system. Because the smart meters are with the function of data recording and bidirectional transmission, the adaptive Fuzzy Neural inference system, ANFIS, as well as the artificial intelligence that has the characteristics of learning and estimation in artificial intelligence. For transmission network, in order to avoid misjudgment of the fault type and location due to the input of these unstable power sources, combined with the above advantages of smart meter and ANFIS, a method for identifying fault types and location of faults is proposed in this study. In ANFIS training, the bus voltage and current information collected by smart meters can be trained through the ANFIS tool in MATLAB to generate fault codes to identify different types of faults and the location of faults. In addition, due to the uncertainty of distributed generation, a wind power system is added to the transmission network to verify the diagnosis correctness of the study. Simulation results show that the method proposed in this study can correctly identify the fault type and location of fault with more efficiency, and can deal with the interference caused by the addition of unstable power sources.Keywords: ANFIS, fault diagnosis, power system, smart meter
Procedia PDF Downloads 13811946 Digital Transformation and Digitalization of Public Administration
Authors: Govind Kumar
Abstract:
The concept of ‘e-governance’ that was brought about by the new wave of reforms, namely ‘LPG’ in the early 1990s, has been enabling governments across the globe to digitally transform themselves. Digital transformation is leading the governments with qualitative decisions, optimization in rational use of resources, facilitation of cost-benefit analyses, and elimination of redundancy and corruption with the help of ICT-based applications interface. ICT-based applications/technologies have enormous potential for impacting positive change in the social lives of the global citizenry. Supercomputers test and analyze millions of drug molecules for developing candidate vaccines to combat the global pandemic. Further, e-commerce portals help distribute and supply household items and medicines, while videoconferencing tools provide a visual interface between the clients and hosts. Besides, crop yields are being maximized with the help of drones and machine learning, whereas satellite data, artificial intelligence, and cloud computing help governments with the detection of illegal mining, tackling deforestation, and managing freshwater resources. Such e-applications have the potential to take governance an extra mile by achieving 5 Es (effective, efficient, easy, empower, and equity) of e-governance and six Rs (reduce, reuse, recycle, recover, redesign and remanufacture) of sustainable development. If such digital transformation gains traction within the government framework, it will replace the traditional administration with the digitalization of public administration. On the other hand, it has brought in a new set of challenges, like the digital divide, e-illiteracy, technological divide, etc., and problems like handling e-waste, technological obsolescence, cyber terrorism, e-fraud, hacking, phishing, etc. before the governments. Therefore, it would be essential to bring in a rightful mixture of technological and humanistic interventions for addressing the above issues. This is on account of the reason that technology lacks an emotional quotient, and the administration does not work like technology. Both are self-effacing unless a blend of technology and a humane face are brought in into the administration. The paper will empirically analyze the significance of the technological framework of digital transformation within the government set up for the digitalization of public administration on the basis of the synthesis of two case studies undertaken from two diverse fields of administration and present a future framework of the study.Keywords: digital transformation, electronic governance, public administration, knowledge framework
Procedia PDF Downloads 9911945 Evaluation of the Nutritional Potential of a Developed Spice Formulation for nah poh (An Emulsion-Based Gravy): Physicochemical and Techno-Functional Characterisations
Authors: Djiazet Stève, Mezajoug Kenfack Laurette Blandine, Ravi Pullakhandam, Bethala L. A. Prabhavathi Devi, Tchiegang Clergé, Prathapkumar Halady Shetty
Abstract:
The nutritional potential of a developed spice formulation for nah poh was evaluated. It was found that when spices were used for the formulation for nah poh, the concentration of some nutrients is diluted while that of some of them increases. The proportion of unsaturated fats was estimated to be 76.2% of the total fat content while the chemical score varied between 31 to 39%. The contents of some essential minerals of nutritional interest in mg are as follows for 100g of spice: 2372.474 ± 0.007 for potassium, 16.447 ± 0.010 for iron, 4.772 ± 0.005 for zinc, 0.537 ± 0.001 for cupper, 0.138 ± 0.005 for selenium, and 112.954 ± 0.003 for manganese. This study shows that the consumption of these spices in the form of formulation significantly contributes to meet the mineral requirements of the populations whose food habits regularly require these spices.Keywords: spice formulation, characterisation, nutritional potential, nah poh, techno functional properties
Procedia PDF Downloads 22611944 Ergonomical Study of Hand-Arm Vibrational Exposure in a Gear Manufacturing Plant in India
Authors: Santosh Kumar, M. Muralidhar
Abstract:
The term ‘ergonomics’ is derived from two Greek words: ‘ergon’, meaning work and ‘nomoi’, meaning natural laws. Ergonomics is the study of how working conditions, machines and equipment can be arranged in order that people can work with them more efficiently. In this research communication an attempt has been made to study the effect of hand-arm vibrational exposure on the workers of a gear manufacturing plant by comparison of potential Carpal Tunnel Syndrome (CTS) symptoms and effect of different exposure levels of vibration on occurrence of CTS in actual industrial environment. Chi square test and correlation analysis have been considered for statistical analysis. From Chi square test, it has been found that the potential CTS symptoms occurrence is significantly dependent on the level of vibrational exposure. Data analysis indicates that 40.51% workers having potential CTS symptoms are exposed to vibration. Correlation analysis reveals that potential CTS symptoms are significantly correlated with exposure to level of vibration from handheld tools and to repetitive wrist movements.Keywords: CTS symptoms, hand-arm vibration, ergonomics, physical tests
Procedia PDF Downloads 37111943 A Fuzzy Inference System for Predicting Air Traffic Demand Based on Socioeconomic Drivers
Authors: Nur Mohammad Ali, Md. Shafiqul Alam, Jayanta Bhusan Deb, Nowrin Sharmin
Abstract:
The past ten years have seen significant expansion in the aviation sector, which during the previous five years has steadily pushed emerging countries closer to economic independence. It is crucial to accurately forecast the potential demand for air travel to make long-term financial plans. To forecast market demand for low-cost passenger carriers, this study suggests working with low-cost airlines, airports, consultancies, and governmental institutions' strategic planning divisions. The study aims to develop an artificial intelligence-based methods, notably fuzzy inference systems (FIS), to determine the most accurate forecasting technique for domestic low-cost carrier demand in Bangladesh. To give end users real-world applications, the study includes nine variables, two sub-FIS, and one final Mamdani Fuzzy Inference System utilizing a graphical user interface (GUI) made with the app designer tool. The evaluation criteria used in this inquiry included mean square error (MSE), accuracy, precision, sensitivity, and specificity. The effectiveness of the developed air passenger demand prediction FIS is assessed using 240 data sets, and the accuracy, precision, sensitivity, specificity, and MSE values are 90.83%, 91.09%, 90.77%, and 2.09%, respectively.Keywords: aviation industry, fuzzy inference system, membership function, graphical user interference
Procedia PDF Downloads 7211942 Associations between Sleep Problems and Disordered Eating in Japanese Adolescents: A Cross-Sectional Study
Authors: Takaharu Hirai, Yuta Mitobe, Hiromi Hirai
Abstract:
Introduction: Eating disorders (ED) are serious psychiatric disorders that affect individuals, especially adolescents. It has been suggested that nonclinical ED-like characteristics are related to sleep problems. However, studies exploring the association between potential ED and sleep disorders have primarily been conducted in Europe and the United States. We conducted a survey of Japanese adolescents to investigate this claim. Method: In this cross-sectional study, 398 school-aged adolescents, aged 12–18 years old, matched for gender ratio, responded to a self-administered questionnaire survey. We used the Eating Attitudes Test-26 (EAT-26) and the Athens Insomnia Scale (AIS) to measure potential ED and sleep problems, respectively. In this study, participants with an EAT-26 total score of 0–19 points were classified as non-ED, while those with scores of 20 points or higher were classified as potential ED. Result: Of the 398 participants, 17 (4.3%) had an EAT-26 total score of 20 or higher. Among boys, the rate was 6 of 199 participants (3%), and among girls, the rate was 11 of 182 participants (6%). There were 89 participants (22.4%) with an AIS score of 6 points or higher, of which 36 (17.6%) were boys, and 53 (27.5%) were girls. Adolescents with potential ED had significantly higher rates of daytime sleep problems than those without ED. Further, while examining the types of sleep problems, adolescents with potential ED had greater problems with a sense of well-being and physical and mental functioning during the day. In contrast, no significant associations were found between potential ED and sleep initiation, awakenings during the night, early morning awakening, total sleep duration, or overall quality of sleep. Finally, nocturnal and daytime sleep scores were significantly associated with dieting, bulimia, and oral control EAT-26 sub-scores. Discussion: While Japanese adolescents with possible ED do not experience nighttime sleep problems, they do experience problems related to well-being and mental and physical functioning, which are indicators of daytime sleep problems. This may assist with early detection of disordered eating in adolescents. The study suggested that professionals working towards adolescent mental health issues need an approach that comprehensively integrates both sleep problems and potential ED.Keywords: adolescents, potential eating disorders, sleep problems, eating attitudes test-26
Procedia PDF Downloads 17411941 The Determinants of Trade Flow and Potential between Ethiopia and Group of Twenty
Authors: Terefe Alemu
Abstract:
This study is intended to examine Ethiopia’s trade flow determinants and trade potential with G20 countries whether it was overtraded or there is/are trade potential by using trade gravity model. The sources of panel data used were IMF, WDI, United Nations population division, The Heritage Foundation, Washington's No. 1 think tank online website database, online distance calculator, and others for the duration of 2010 to 2019 for 10 consecutive years. The empirical data analyzing tool used was Random effect model (REM), which is effective in estimation of time-invariant data. The empirical data analyzed using STATA software result indicates that Ethiopia has a trade potential with seven countries of G20, whereas Ethiopia overtrade with 12 countries and EU region. The Ethiopia’s and G20 countries/region bilateral trade flow statistically significant/ p<0.05/determinants were the population of G20 countries, growth domestic products of G20 countries, growth domestic products of Ethiopia, geographical distance between Ethiopia and G20 countries. The top five G20 countries exported to Ethiopia were china, United State of America, European Union, India, and South Africa, whereas the top five G20 countries imported from Ethiopia were EU, China, United State of America, Saudi Arabia, and Germany, respectively. Finally, the policy implication were Ethiopia has to Keep the consistence of trade flow with overtraded countries and improve with under traded countries through trade policy revision, and secondly, focusing on the trade determinants to improve trade flow is recommended.Keywords: trade gravity model, trade determinants, G20, international trade, trade potential
Procedia PDF Downloads 21311940 Knowledge Management in the Interactive Portal for Decision Makers on InKOM Example
Authors: K. Marciniak, M. Owoc
Abstract:
Managers as decision-makers present in different sectors should be supported in efficient and more and more sophisticated way. There are huge number of software tools developed for such users starting from simple registering data from business area – typical for operational level of management – up to intelligent techniques with delivering knowledge - for tactical and strategic levels of management. There is a big challenge for software developers to create intelligent management dashboards allowing to support different decisions. In more advanced solutions there is even an option for selection of intelligent techniques useful for managers in particular decision-making phase in order to deliver valid knowledge-base. Such a tool (called Intelligent Dashboard for SME Managers–InKOM) is prepared in the Business Intelligent framework of Teta products. The aim of the paper is to present solutions assumed for InKOM concerning on management of stored knowledge bases offering for business managers. The paper is managed as follows. After short introduction concerning research context the discussed supporting managers via information systems the InKOM platform is presented. In the crucial part of paper a process of knowledge transformation and validation is demonstrated. We will focus on potential and real ways of knowledge-bases acquiring, storing and validation. It allows for formulation conclusions interesting from knowledge engineering point of view.Keywords: business intelligence, decision support systems, knowledge management, knowledge transformation, knowledge validation, managerial systems
Procedia PDF Downloads 51211939 Enabling Cloud Adoption Based Secured Mobile Banking through Backend as a Service
Authors: P. S. Jagadeesh Kumar, S. Meenakshi Sundaram
Abstract:
With the increase of prevailing non-traditional rivalry, mobile banking experiences an ever changing commercial backdrop. Substantial customer demands have established to be more intricate as customers request more expediency and superintend over their banking services. To enterprise advance and modernization in mobile banking applications, it is gradually obligatory to deeply leapfrog the scuffle using business model transformation. The dramaturgical vicissitudes taking place in mobile banking entail advanced traditions to exploit security. By reforming and transforming older back office into integrated mobile banking applications, banks can engender a supple and nimble banking environment that can rapidly respond to new business requirements over cloud computing. Cloud computing is transfiguring ecosystems in numerous industries, and mobile banking is no exemption providing services innovation, greater flexibility to respond to improved security and enhanced business intelligence with less cost. Cloud technology offer secure deployment possibilities that can provision banks in developing new customer experiences, empower operative relationship and advance speed to efficient banking transaction. Cloud adoption is escalating quickly since it can be made secured for commercial mobile banking transaction through backend as a service in scrutinizing the security strategies of the cloud service provider along with the antiquity of transaction details and their security related practices.Keywords: cloud adoption, backend as a service, business intelligence, secured mobile banking
Procedia PDF Downloads 25411938 Investor Sentiment and Satisfaction in Automated Investment: A Sentimental Analysis of Robo-Advisor Platforms
Authors: Vertika Goswami, Gargi Sharma
Abstract:
The rapid evolution of fintech has led to the rise of robo-advisor platforms that utilize artificial intelligence (AI) and machine learning to offer personalized investment solutions efficiently and cost-effectively. This research paper conducts a comprehensive sentiment analysis of investor experiences with these platforms, employing natural language processing (NLP) and sentiment classification techniques. The study investigates investor perceptions, engagement, and satisfaction, identifying key drivers of positive sentiment such as clear communication, low fees, consistent returns, and robust security. Conversely, negative sentiment is linked to issues like inconsistent performance, hidden fees, poor customer support, and a lack of transparency. The analysis reveals that addressing these pain points—through improved transparency, enhanced customer service, and ongoing technological advancements—can significantly boost investor trust and satisfaction. This paper contributes valuable insights into the fields of behavioral finance and fintech innovation, offering actionable recommendations for stakeholders, practitioners, and policymakers. Future research should explore the long-term impact of these factors on investor loyalty, the role of emerging technologies, and the effects of ethical investment choices and regulatory compliance on investor sentiment.Keywords: artificial intelligence in finance, automated investment, financial technology, investor satisfaction, investor sentiment, robo-advisors, sentimental analysis
Procedia PDF Downloads 1711937 Critical Design Futures: A Foresight 3.0 Approach to Business Transformation and Innovation
Authors: Nadya Patel, Jawn Lim
Abstract:
Foresight 3.0 is a synergistic methodology that encompasses systems analysis, future studies, capacity building, and forward planning. These components are interconnected, fostering a collective anticipatory intelligence that promotes societal resilience (Ravetz, 2020). However, traditional applications of these strands can often fall short, leading to missed opportunities and narrow perspectives. Therefore, Foresight 3.0 champions a holistic approach to tackling complex issues, focusing on systemic transformations and power dynamics. Businesses are pivotal in preparing the workforce for an increasingly uncertain and complex world. This necessitates the adoption of innovative tools and methodologies, such as Foresight 3.0, that can better equip young employees to anticipate and navigate future challenges. Firstly, the incorporation of its methodology into workplace training can foster a holistic perspective among employees. This approach encourages employees to think beyond the present and consider wider social, economic, and environmental contexts, thereby enhancing their problem-solving skills and resilience. This paper discusses our research on integrating Foresight 3.0's transformative principles with a newly developed Critical Design Futures (CDF) framework to equip organisations with the ability to innovate for the world's most complex social problems. This approach is grounded in 'collective forward intelligence,' enabling mutual learning, co-innovation, and co-production among a diverse stakeholder community, where business transformation and innovation are achieved.Keywords: business transformation, innovation, foresight, critical design
Procedia PDF Downloads 8111936 Using Machine Learning as an Alternative for Predicting Exchange Rates
Authors: Pedro Paulo Galindo Francisco, Eli Dhadad Junior
Abstract:
This study addresses the Meese-Rogoff Puzzle by introducing the latest machine learning techniques as alternatives for predicting the exchange rates. Using RMSE as a comparison metric, Meese and Rogoff discovered that economic models are unable to outperform the random walk model as short-term exchange rate predictors. Decades after this study, no statistical prediction technique has proven effective in overcoming this obstacle; although there were positive results, they did not apply to all currencies and defined periods. Recent advancements in artificial intelligence technologies have paved the way for a new approach to exchange rate prediction. Leveraging this technology, we applied five machine learning techniques to attempt to overcome the Meese-Rogoff puzzle. We considered daily data for the real, yen, British pound, euro, and Chinese yuan against the US dollar over a time horizon from 2010 to 2023. Our results showed that none of the presented techniques were able to produce an RMSE lower than the Random Walk model. However, the performance of some models, particularly LSTM and N-BEATS were able to outperform the ARIMA model. The results also suggest that machine learning models have untapped potential and could represent an effective long-term possibility for overcoming the Meese-Rogoff puzzle.Keywords: exchage rate, prediction, machine learning, deep learning
Procedia PDF Downloads 3111935 Prioritization of Customer Order Selection Factors by Utilizing Conjoint Analysis: A Case Study for a Structural Steel Firm
Authors: Burcu Akyildiz, Cigdem Kadaifci, Y. Ilker Topcu, Burc Ulengin
Abstract:
In today’s business environment, companies should make strategic decisions to gain sustainable competitive advantage. Order selection is a crucial issue among these decisions especially for steel production industry. When the companies allocate a high proportion of their design and production capacities to their ongoing projects, determining which customer order should be chosen among the potential orders without exceeding the remaining capacity is the major critical problem. In this study, it is aimed to identify and prioritize the evaluation factors for the customer order selection problem. Conjoint analysis is used to examine the importance level of each factor which is determined as the potential profit rate per unit of time, the compatibility of potential order with available capacity, the level of potential future order with higher profit, customer credit of future business opportunity, and the negotiability level of production schedule for the order.Keywords: conjoint analysis, order prioritization, profit management, structural steel firm
Procedia PDF Downloads 38411934 Environmental Impact Assessment of Conventional Tyre Manufacturing Process
Authors: G. S. Dangayach, Gaurav Gaurav, Alok Bihari Singh
Abstract:
The popularity of vehicles in both industrialized and developing economies led to a rise in the production of tyres. People have become increasingly concerned about the tyre industry's possible environmental impact in the last two decades. The life cycle assessment (LCA) methodology was used to assess the environmental impacts of industrial tyres throughout their life cycle, which included four stages: manufacture, transportation, consumption, and end-of-life. The majority of prior studies focused on tyre recycling and disposal. Only a few studies have been conducted on the environmental impact of tyre production process. LCA methodology was employed to determine the environmental impact of tyre manufacture process (gate to gate) at an Indian firm. Comparative analysis was also conducted to identify the environmental hotspots in various stages of tire manufacturing. This study is limited to gate-to-gate analysis of manufacturing processes with the functional unit of a single tyre weighing 50 kg. GaBi software was used to do both qualitative and quantitative analysis. Different environmental impact indicators are measured in terms of CO2, SO2, NOx, GWP (global warming potential), AP (acidification potential), EP (eutrophication potential), POCP (photochemical oxidant formation potential), and HTP (toxic human potential). The results demonstrate that the major contributor to environmental pollution is electricity. The Banbury process has a very high negative environmental impact, which causes respiratory problems to workers and operators.Keywords: life cycle assessment (LCA), environmental impact indicators, tyre manufacturing process, environmental impact assessment
Procedia PDF Downloads 151