Search results for: novel object recognition
2024 A Spatial Hypergraph Based Semi-Supervised Band Selection Method for Hyperspectral Imagery Semantic Interpretation
Authors: Akrem Sellami, Imed Riadh Farah
Abstract:
Hyperspectral imagery (HSI) typically provides a wealth of information captured in a wide range of the electromagnetic spectrum for each pixel in the image. Hence, a pixel in HSI is a high-dimensional vector of intensities with a large spectral range and a high spectral resolution. Therefore, the semantic interpretation is a challenging task of HSI analysis. We focused in this paper on object classification as HSI semantic interpretation. However, HSI classification still faces some issues, among which are the following: The spatial variability of spectral signatures, the high number of spectral bands, and the high cost of true sample labeling. Therefore, the high number of spectral bands and the low number of training samples pose the problem of the curse of dimensionality. In order to resolve this problem, we propose to introduce the process of dimensionality reduction trying to improve the classification of HSI. The presented approach is a semi-supervised band selection method based on spatial hypergraph embedding model to represent higher order relationships with different weights of the spatial neighbors corresponding to the centroid of pixel. This semi-supervised band selection has been developed to select useful bands for object classification. The presented approach is evaluated on AVIRIS and ROSIS HSIs and compared to other dimensionality reduction methods. The experimental results demonstrate the efficacy of our approach compared to many existing dimensionality reduction methods for HSI classification.Keywords: dimensionality reduction, hyperspectral image, semantic interpretation, spatial hypergraph
Procedia PDF Downloads 3052023 Examining the Skills of Establishing Number and Space Relations of Science Students with the 'Integrative Perception Test'
Authors: Ni̇sa Yeni̇kalayci, Türkan Aybi̇ke Akarca
Abstract:
The ability of correlation the number and space relations, one of the basic scientific process skills, is being used in the transformation of a two-dimensional object into a three-dimensional image or in the expression of symmetry axes of the object. With this research, it is aimed to determine the ability of science students to establish number and space relations. The research was carried out with a total of 90 students studying in the first semester of the Science Education program of a state university located in the Turkey’s Black Sea Region in the fall semester of 2017-2018 academic year. An ‘Integrative Perception Test (IPT)’ was designed by the researchers to collect the data. Within the scope of IPT, the courses and workbooks specific to the field of science were scanned and the ones without symmetrical structure from the visual items belonging to the ‘Physics - Chemistry – Biology’ sub-fields were selected and listed. During the application, it was expected that students would imagine and draw images of the missing half of the visual items that were given incomplete in the first place. The data obtained from the test in which there are 30 images or pictures in total (f Physics = 10, f Chemistry = 10, f Biology = 10) were analyzed descriptively based on the drawings created by the students as ‘complete (2 points), incomplete/wrong (1 point), empty (0 point)’. For the teaching of new concepts in small aged groups, images or pictures showing symmetrical structures and similar applications can also be used.Keywords: integrative perception, number and space relations, science education, scientific process skills
Procedia PDF Downloads 1512022 Quality Assurance in Higher Education: Doha Institute for Graduate Studies as a Case Study
Authors: Ahmed Makhoukh
Abstract:
Quality assurance (QA) has recently become a common practice, which is endorsed by most Higher Education (HE) institutions worldwide, due to the pressure of internal and external forces. One of the aims of this quality movement is to make the contribution of university education to socio-economic development highly significant. This entails that graduates are currently required have a high-quality profile, i.e., to be competent and master the 21st-century skills needed in the labor market. This wave of change, mostly imposed by globalization, has the effect that university education should be learner-centered in order to satisfy the different needs of students and meet the expectations of other stakeholders. Such a shift of focus on the student learning outcomes has led HE institutions to reconsider their strategic planning, their mission, the curriculum, the pedagogical competence of the academic staff, among other elements. To ensure that the overall institutional performance is on the right way, a QA system should be established to assume this task of checking regularly the extent to which the set of standards of evaluation are strictly respected as expected. This operation of QA has the advantage of proving the accountability of the institution, gaining the trust of the public with transparency and enjoying an international recognition. This is the case of Doha Institute (DI) for Graduate Studies, in Qatar, the object of the present study. The significance of this contribution is to show that the conception of quality has changed in this digital age, and the need to integrate a department responsible for QA in every HE institution to ensure educational quality, enhance learners and achieve academic leadership. Thus, to undertake the issue of QA in DI for Graduate Studies, an elite university (in the academic sense) that focuses on a small and selected number of students, a qualitative method will be adopted in the description and analysis of the data (document analysis). In an attempt to investigate the extent to which QA is achieved in Doha Institute for Graduate Studies, three broad indicators will be evaluated (input, process and learning outcomes). This investigation will be carried out in line with the UK Quality Code for Higher Education represented by Quality Assurance Agency (QAA).Keywords: accreditation, higher education, quality, quality assurance, standards
Procedia PDF Downloads 1472021 Recognizing Human Actions by Multi-Layer Growing Grid Architecture
Authors: Z. Gharaee
Abstract:
Recognizing actions performed by others is important in our daily lives since it is necessary for communicating with others in a proper way. We perceive an action by observing the kinematics of motions involved in the performance. We use our experience and concepts to make a correct recognition of the actions. Although building the action concepts is a life-long process, which is repeated throughout life, we are very efficient in applying our learned concepts in analyzing motions and recognizing actions. Experiments on the subjects observing the actions performed by an actor show that an action is recognized after only about two hundred milliseconds of observation. In this study, hierarchical action recognition architecture is proposed by using growing grid layers. The first-layer growing grid receives the pre-processed data of consecutive 3D postures of joint positions and applies some heuristics during the growth phase to allocate areas of the map by inserting new neurons. As a result of training the first-layer growing grid, action pattern vectors are generated by connecting the elicited activations of the learned map. The ordered vector representation layer receives action pattern vectors to create time-invariant vectors of key elicited activations. Time-invariant vectors are sent to second-layer growing grid for categorization. This grid creates the clusters representing the actions. Finally, one-layer neural network developed by a delta rule labels the action categories in the last layer. System performance has been evaluated in an experiment with the publicly available MSR-Action3D dataset. There are actions performed by using different parts of human body: Hand Clap, Two Hands Wave, Side Boxing, Bend, Forward Kick, Side Kick, Jogging, Tennis Serve, Golf Swing, Pick Up and Throw. The growing grid architecture was trained by applying several random selections of generalization test data fed to the system during on average 100 epochs for each training of the first-layer growing grid and around 75 epochs for each training of the second-layer growing grid. The average generalization test accuracy is 92.6%. A comparison analysis between the performance of growing grid architecture and self-organizing map (SOM) architecture in terms of accuracy and learning speed show that the growing grid architecture is superior to the SOM architecture in action recognition task. The SOM architecture completes learning the same dataset of actions in around 150 epochs for each training of the first-layer SOM while it takes 1200 epochs for each training of the second-layer SOM and it achieves the average recognition accuracy of 90% for generalization test data. In summary, using the growing grid network preserves the fundamental features of SOMs, such as topographic organization of neurons, lateral interactions, the abilities of unsupervised learning and representing high dimensional input space in the lower dimensional maps. The architecture also benefits from an automatic size setting mechanism resulting in higher flexibility and robustness. Moreover, by utilizing growing grids the system automatically obtains a prior knowledge of input space during the growth phase and applies this information to expand the map by inserting new neurons wherever there is high representational demand.Keywords: action recognition, growing grid, hierarchical architecture, neural networks, system performance
Procedia PDF Downloads 1572020 A Model of the Universe without Expansion of Space
Authors: Jia-Chao Wang
Abstract:
A model of the universe without invoking space expansion is proposed to explain the observed redshift-distance relation and the cosmic microwave background radiation (CMB). The main hypothesized feature of the model is that photons traveling in space interact with the CMB photon gas. This interaction causes the photons to gradually lose energy through dissipation and, therefore, experience redshift. The interaction also causes some of the photons to be scattered off their track toward an observer and, therefore, results in beam intensity attenuation. As observed, the CMB exists everywhere in space and its photon density is relatively high (about 410 per cm³). The small average energy of the CMB photons (about 6.3×10⁻⁴ eV) can reduce the energies of traveling photons gradually and will not alter their momenta drastically as in, for example, Compton scattering, to totally blur the images of distant objects. An object moving through a thermalized photon gas, such as the CMB, experiences a drag. The cause is that the object sees a blue shifted photon gas along the direction of motion and a redshifted one in the opposite direction. An example of this effect can be the observed CMB dipole: The earth travels at about 368 km/s (600 km/s) relative to the CMB. In the all-sky map from the COBE satellite, radiation in the Earth's direction of motion appears 0.35 mK hotter than the average temperature, 2.725 K, while radiation on the opposite side of the sky is 0.35 mK colder. The pressure of a thermalized photon gas is given by Pγ = Eγ/3 = αT⁴/3, where Eγ is the energy density of the photon gas and α is the Stefan-Boltzmann constant. The observed CMB dipole, therefore, implies a pressure difference between the two sides of the earth and results in a CMB drag on the earth. By plugging in suitable estimates of quantities involved, such as the cross section of the earth and the temperatures on the two sides, this drag can be estimated to be tiny. But for a photon traveling at the speed of light, 300,000 km/s, the drag can be significant. In the present model, for the dissipation part, it is assumed that a photon traveling from a distant object toward an observer has an effective interaction cross section pushing against the pressure of the CMB photon gas. For the attenuation part, the coefficient of the typical attenuation equation is used as a parameter. The values of these two parameters are determined by fitting the 748 µ vs. z data points compiled from 643 supernova and 105 γ-ray burst observations with z values up to 8.1. The fit is as good as that obtained from the lambda cold dark matter (ΛCDM) model using online cosmological calculators and Planck 2015 results. The model can be used to interpret Hubble's constant, Olbers' paradox, the origin and blackbody nature of the CMB radiation, the broadening of supernova light curves, and the size of the observable universe.Keywords: CMB as the lowest energy state, model of the universe, origin of CMB in a static universe, photon-CMB photon gas interaction
Procedia PDF Downloads 1332019 An Image Processing Scheme for Skin Fungal Disease Identification
Authors: A. A. M. A. S. S. Perera, L. A. Ranasinghe, T. K. H. Nimeshika, D. M. Dhanushka Dissanayake, Namalie Walgampaya
Abstract:
Nowadays, skin fungal diseases are mostly found in people of tropical countries like Sri Lanka. A skin fungal disease is a particular kind of illness caused by fungus. These diseases have various dangerous effects on the skin and keep on spreading over time. It becomes important to identify these diseases at their initial stage to control it from spreading. This paper presents an automated skin fungal disease identification system implemented to speed up the diagnosis process by identifying skin fungal infections in digital images. An image of the diseased skin lesion is acquired and a comprehensive computer vision and image processing scheme is used to process the image for the disease identification. This includes colour analysis using RGB and HSV colour models, texture classification using Grey Level Run Length Matrix, Grey Level Co-Occurrence Matrix and Local Binary Pattern, Object detection, Shape Identification and many more. This paper presents the approach and its outcome for identification of four most common skin fungal infections, namely, Tinea Corporis, Sporotrichosis, Malassezia and Onychomycosis. The main intention of this research is to provide an automated skin fungal disease identification system that increase the diagnostic quality, shorten the time-to-diagnosis and improve the efficiency of detection and successful treatment for skin fungal diseases.Keywords: Circularity Index, Grey Level Run Length Matrix, Grey Level Co-Occurrence Matrix, Local Binary Pattern, Object detection, Ring Detection, Shape Identification
Procedia PDF Downloads 2282018 The Hijras of Odisha: A Study of the Self-Identity of the Eunuchs and Their Identification with Stereotypical Feminine Roles
Authors: Purnima Anjali Mohanty, Mousumi Padhi
Abstract:
Background of the study: In the background of the passage of the Transgender Bill 2016, which is the first such step of formal recognition of the rights of transgender, the Hijras have been recognized under the wider definition of Transgender. Fascinatingly, in the Hindu social context, Hijras have a long social standing during marriages and childbirths. Other than this ironically, they live an ostracized life. The Bill rather than recognizing their unique characteristics and needs, reinforces the societal dualism through a parallelism of their legal rights with rights available to women. Purpose of the paper: The research objective was to probe why and to what extent did they identify themselves with the feminine gender roles. Originality of the paper: In the Indian context, the subject of eunuch has received relatively little attention. Among the studies that exist, there has been a preponderance of studies from the perspective of social exclusion, rights, and physical health. There has been an absence of research studying the self-identity of Hijras from the gender perspective. Methodology: The paper adopts the grounded theory method to investigate and discuss the underlying gender identity of transgenders. Participants in the study were 30 hijras from various parts of Odisha. 4 Focus group discussions were held for collecting data. The participants were approached in their natural habitat. Following the methodological recommendations of the grounded theory, care was taken to select respondents with varying experiences. The recorded discourses were transcribed verbatim. The transcripts were analysed sentence by sentence, and coded. Common themes were identified, and responses were categorized under the themes. Data collected in the latter group discussions were added till saturation of themes. Finally, the themes were put together to prove that despite the demand for recognition as third gender, the eunuchs of Odisha identify themselves with the feminine roles. Findings: The Hijra have their own social structure and norms which are unique and are in contrast with the mainstream culture. These eunuchs live and reside in KOTHIS (house), where the family is led by a matriarch addressed as Maa (mother) with her daughters (the daughters are eunuchs/effeminate men castrated and not castrated). They all dress up as woman, do womanly duties, expect to be considered and recognized as woman and wife and have the behavioral traits of a woman. Looking from the stance of Feminism one argues that when the Hijras identify themselves with the gender woman then on what grounds they are given the recognition as third gender. As self-identified woman; their claim for recognition as third gender falls flat. Significance of the study: Academically it extends the study of understanding of gender identity and psychology of the Hijras in the Indian context. Practically its significance is far reaching. The findings can be used to address legal and social issues with regards to the rights available to the Hijras.Keywords: feminism, gender perspective, Hijras, rights, self-identity
Procedia PDF Downloads 4312017 Geospatial Techniques and VHR Imagery Use for Identification and Classification of Slums in Gujrat City, Pakistan
Authors: Muhammad Ameer Nawaz Akram
Abstract:
The 21st century has been revealed that many individuals around the world are living in urban settlements than in rural zones. The evolution of numerous cities in emerging and newly developed countries is accompanied by the rise of slums. The precise definition of a slum varies countries to countries, but the universal harmony is that slums are dilapidated settlements facing severe poverty and have lacked access to sanitation, water, electricity, good living styles, and land tenure. The slum settlements always vary in unique patterns within and among the countries and cities. The core objective of this study is the spatial identification and classification of slums in Gujrat city Pakistan from very high-resolution GeoEye-1 (0.41m) satellite imagery. Slums were first identified using GPS for sample site identification and ground-truthing; through this process, 425 slums were identified. Then Object-Oriented Analysis (OOA) was applied to classify slums on digital image. Spatial analysis softwares, e.g., ArcGIS 10.3, Erdas Imagine 9.3, and Envi 5.1, were used for processing data and performing the analysis. Results show that OOA provides up to 90% accuracy for the identification of slums. Jalal Cheema and Allah Ho colonies are severely affected by slum settlements. The ratio of criminal activities is also higher here than in other areas. Slums are increasing with the passage of time in urban areas, and they will be like a hazardous problem in coming future. So now, the executive bodies need to make effective policies and move towards the amelioration process of the city.Keywords: slums, GPS, satellite imagery, object oriented analysis, zonal change detection
Procedia PDF Downloads 1332016 Cognitive Development Theories as Determinant of Children's Brand Recall and Ad Recognition: An Indian Perspective
Authors: Ruchika Sharma
Abstract:
In the past decade, there has been an explosion of research that has examined children’s understanding of TV advertisements and its persuasive intent, socialization of child consumer and child psychology. However, it is evident from the literature review that no studies in this area have covered advertising messages and its impact on children’s brand recall and ad recognition. Copywriters use various creative devices to lure the consumers and very impressionable consumers such as children face far more drastic effects of these creative ways of persuasion. On the basis of Piaget’s theory of cognitive development as a theoretical basis for predicting/understanding children’s response and understanding, a quasi-experiment was carried out for the study, that manipulated measurement timing and advertising messages (familiar vs. unfamiliar) keeping gender and age group as two prominent factors. This study also examines children’s understanding of Advertisements and its elements, predominantly - Language, keeping in view Fishbein’s model. Study revealed significant associations between above mentioned factors and children’s brand recall and ad identification. Further, to test the reliability of the findings on larger sample, bootstrap simulation technique was used. The simulation results are in accordance with the findings of experiment, suggesting that the conclusions obtained from the study can be generalized for entire children’s (as consumers) market in India.Keywords: advertising, brand recall, cognitive development, preferences
Procedia PDF Downloads 2902015 Adding a Few Language-Level Constructs to Improve OOP Verifiability of Semantic Correctness
Authors: Lian Yang
Abstract:
Object-oriented programming (OOP) is the dominant programming paradigm in today’s software industry and it has literally enabled average software developers to develop millions of commercial strength software applications in the era of INTERNET revolution over the past three decades. On the other hand, the lack of strict mathematical model and domain constraint features at the language level has long perplexed the computer science academia and OOP engineering community. This situation resulted in inconsistent system qualities and hard-to-understand designs in some OOP projects. The difficulties with regards to fix the current situation are also well known. Although the power of OOP lies in its unbridled flexibility and enormously rich data modeling capability, we argue that the ambiguity and the implicit facade surrounding the conceptual model of a class and an object should be eliminated as much as possible. We listed the five major usage of class and propose to separate them by proposing new language constructs. By using well-established theories of set and FSM, we propose to apply certain simple, generic, and yet effective constraints at OOP language level in an attempt to find a possible solution to the above-mentioned issues regarding OOP. The goal is to make OOP more theoretically sound as well as to aid programmers uncover warning signs of irregularities and domain-specific issues in applications early on the development stage and catch semantic mistakes at runtime, improving correctness verifiability of software programs. On the other hand, the aim of this paper is more practical than theoretical.Keywords: new language constructs, set theory, FSM theory, user defined value type, function groups, membership qualification attribute (MQA), check-constraint (CC)
Procedia PDF Downloads 2382014 Affective Robots: Evaluation of Automatic Emotion Recognition Approaches on a Humanoid Robot towards Emotionally Intelligent Machines
Authors: Silvia Santano Guillén, Luigi Lo Iacono, Christian Meder
Abstract:
One of the main aims of current social robotic research is to improve the robots’ abilities to interact with humans. In order to achieve an interaction similar to that among humans, robots should be able to communicate in an intuitive and natural way and appropriately interpret human affects during social interactions. Similarly to how humans are able to recognize emotions in other humans, machines are capable of extracting information from the various ways humans convey emotions—including facial expression, speech, gesture or text—and using this information for improved human computer interaction. This can be described as Affective Computing, an interdisciplinary field that expands into otherwise unrelated fields like psychology and cognitive science and involves the research and development of systems that can recognize and interpret human affects. To leverage these emotional capabilities by embedding them in humanoid robots is the foundation of the concept Affective Robots, which has the objective of making robots capable of sensing the user’s current mood and personality traits and adapt their behavior in the most appropriate manner based on that. In this paper, the emotion recognition capabilities of the humanoid robot Pepper are experimentally explored, based on the facial expressions for the so-called basic emotions, as well as how it performs in contrast to other state-of-the-art approaches with both expression databases compiled in academic environments and real subjects showing posed expressions as well as spontaneous emotional reactions. The experiments’ results show that the detection accuracy amongst the evaluated approaches differs substantially. The introduced experiments offer a general structure and approach for conducting such experimental evaluations. The paper further suggests that the most meaningful results are obtained by conducting experiments with real subjects expressing the emotions as spontaneous reactions.Keywords: affective computing, emotion recognition, humanoid robot, human-robot-interaction (HRI), social robots
Procedia PDF Downloads 2342013 The Impact of Undisturbed Flow Speed on the Correlation of Aerodynamic Coefficients as a Function of the Angle of Attack for the Gyroplane Body
Authors: Zbigniew Czyz, Krzysztof Skiba, Miroslaw Wendeker
Abstract:
This paper discusses the results of aerodynamic investigation of the Tajfun gyroplane body designed by a Polish company, Aviation Artur Trendak. This gyroplane has been studied as a 1:8 scale model. Scaling objects for aerodynamic investigation is an inherent procedure in any kind of designing. If scaling, the criteria of similarity need to be satisfied. The basic criteria of similarity are geometric, kinematic and dynamic. Despite the results of aerodynamic research are often reduced to aerodynamic coefficients, one should pay attention to how values of coefficients behave if certain criteria are to be satisfied. To satisfy the dynamic criterion, for example, the Reynolds number should be focused on. This is the correlation of inertial to viscous forces. With the multiplied flow speed by the specific dimension as a numerator (with a constant kinematic viscosity coefficient), flow speed in a wind tunnel research should be increased as many times as an object is decreased. The aerodynamic coefficients specified in this research depend on the real forces that act on an object, its specific dimension, medium speed and variations in its density. Rapid prototyping with a 3D printer was applied to create the research object. The research was performed with a T-1 low-speed wind tunnel (its diameter of the measurement volume is 1.5 m) and a six-element aerodynamic internal scales, WDP1, at the Institute of Aviation in Warsaw. This T-1 wind tunnel is low-speed continuous operation with open space measurement. The research covered a number of the selected speeds of undisturbed flow, i.e. V = 20, 30 and 40 m/s, corresponding to the Reynolds numbers (as referred to 1 m) Re = 1.31∙106, 1.96∙106, 2.62∙106 for the angles of attack ranging -15° ≤ α ≤ 20°. Our research resulted in basic aerodynamic characteristics and observing the impact of undisturbed flow speed on the correlation of aerodynamic coefficients as a function of the angle of attack of the gyroplane body. If the speed of undisturbed flow in the wind tunnel changes, the aerodynamic coefficients are significantly impacted. At speed from 20 m/s to 30 m/s, drag coefficient, Cx, changes by 2.4% up to 9.9%, whereas lift coefficient, Cz, changes by -25.5% up to 15.7% if the angle of attack of 0° excluded or by -25.5% up to 236.9% if the angle of attack of 0° included. Within the same speed range, the coefficient of a pitching moment, Cmy, changes by -21.1% up to 7.3% if the angles of attack -15° and -10° excluded or by -142.8% up to 618.4% if the angle of attack -15° and -10° included. These discrepancies in the coefficients of aerodynamic forces definitely need to consider while designing the aircraft. For example, if load of certain aircraft surfaces is calculated, additional correction factors definitely need to be applied. This study allows us to estimate the discrepancies in the aerodynamic forces while scaling the aircraft. This work has been financed by the Polish Ministry of Science and Higher Education.Keywords: aerodynamics, criteria of similarity, gyroplane, research tunnel
Procedia PDF Downloads 3912012 Intelligent Transport System: Classification of Traffic Signs Using Deep Neural Networks in Real Time
Authors: Anukriti Kumar, Tanmay Singh, Dinesh Kumar Vishwakarma
Abstract:
Traffic control has been one of the most common and irritating problems since the time automobiles have hit the roads. Problems like traffic congestion have led to a significant time burden around the world and one significant solution to these problems can be the proper implementation of the Intelligent Transport System (ITS). It involves the integration of various tools like smart sensors, artificial intelligence, position technologies and mobile data services to manage traffic flow, reduce congestion and enhance driver's ability to avoid accidents during adverse weather. Road and traffic signs’ recognition is an emerging field of research in ITS. Classification problem of traffic signs needs to be solved as it is a major step in our journey towards building semi-autonomous/autonomous driving systems. The purpose of this work focuses on implementing an approach to solve the problem of traffic sign classification by developing a Convolutional Neural Network (CNN) classifier using the GTSRB (German Traffic Sign Recognition Benchmark) dataset. Rather than using hand-crafted features, our model addresses the concern of exploding huge parameters and data method augmentations. Our model achieved an accuracy of around 97.6% which is comparable to various state-of-the-art architectures.Keywords: multiclass classification, convolution neural network, OpenCV
Procedia PDF Downloads 1742011 An Event-Related Potential Study of Individual Differences in Word Recognition: The Evidence from Morphological Knowledge of Sino-Korean Prefixes
Authors: Jinwon Kang, Seonghak Jo, Joohee Ahn, Junghye Choi, Sun-Young Lee
Abstract:
A morphological priming has proved its importance by showing that segmentation occurs in morphemes when visual words are recognized within a noticeably short time. Regarding Sino-Korean prefixes, this study conducted an experiment on visual masked priming tasks with 57 ms stimulus-onset asynchrony (SOA) to see how individual differences in the amount of morphological knowledge affect morphological priming. The relationship between the prime and target words were classified as morphological (e.g., 미개척 migaecheog [unexplored] – 미해결 mihaegyel [unresolved]), semantical (e.g., 친환경 chinhwangyeong [eco-friendly]) – 무공해 mugonghae [no-pollution]), and orthographical (e.g., 미용실 miyongsil [beauty shop] – 미확보 mihwagbo [uncertainty]) conditions. We then compared the priming by configuring irrelevant paired stimuli for each condition’s control group. As a result, in the behavioral data, we observed facilitatory priming from a group with high morphological knowledge only under the morphological condition. In contrast, a group with low morphological knowledge showed the priming only under the orthographic condition. In the event-related potential (ERP) data, the group with high morphological knowledge presented the N250 only under the morphological condition. The findings of this study imply that individual differences in morphological knowledge in Korean may have a significant influence on the segmental processing of Korean word recognition.Keywords: ERP, individual differences, morphological priming, sino-Korean prefixes
Procedia PDF Downloads 2122010 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks
Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez
Abstract:
Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning
Procedia PDF Downloads 3392009 An Ontological Approach to Existentialist Theatre and Theatre of the Absurd in the Works of Jean-Paul Sartre and Samuel Beckett
Authors: Gülten Silindir Keretli
Abstract:
The aim of this study is to analyse the works of playwrights within the framework of existential philosophy. It is to observe the ontological existence in the plays of No Exit and Endgame. Literary works will be discussed separately in each section of this study. The despair of post-war generation of Europe problematized the ‘human condition’ in every field of literature which is the very product of social upheaval. With this concern in his mind, Sartre’s creative works portrayed man as a lonely being, burdened with terrifying freedom to choose and create his own meaning in an apparently meaningless world. The traces of the existential thought are to be found throughout the history of philosophy and literature. On the other hand, the theatre of the absurd is a form of drama showing the absurdity of the human condition and it is heavily influenced by the existential philosophy. Beckett is the most influential playwright of the theatre of the absurd. The themes and thoughts in his plays share many tenets of the existential philosophy. The existential philosophy posits the meaninglessness of existence and it regards man as being thrown into the universe and into desolate isolation. To overcome loneliness and isolation, the human ego needs recognition from the other people. Sartre calls this need of recognition as the need for ‘the Look’ (Le regard) from the Other. In this paper, existentialist philosophy and existentialist angst will be elaborated and then the works of existentialist theatre and theatre of absurd will be discussed within the framework of existential philosophy.Keywords: consciousness, existentialism, the notion of the absurd, the other
Procedia PDF Downloads 1572008 Automatic Target Recognition in SAR Images Based on Sparse Representation Technique
Authors: Ahmet Karagoz, Irfan Karagoz
Abstract:
Synthetic Aperture Radar (SAR) is a radar mechanism that can be integrated into manned and unmanned aerial vehicles to create high-resolution images in all weather conditions, regardless of day and night. In this study, SAR images of military vehicles with different azimuth and descent angles are pre-processed at the first stage. The main purpose here is to reduce the high speckle noise found in SAR images. For this, the Wiener adaptive filter, the mean filter, and the median filters are used to reduce the amount of speckle noise in the images without causing loss of data. During the image segmentation phase, pixel values are ordered so that the target vehicle region is separated from other regions containing unnecessary information. The target image is parsed with the brightest 20% pixel value of 255 and the other pixel values of 0. In addition, by using appropriate parameters of statistical region merging algorithm, segmentation comparison is performed. In the step of feature extraction, the feature vectors belonging to the vehicles are obtained by using Gabor filters with different orientation, frequency and angle values. A number of Gabor filters are created by changing the orientation, frequency and angle parameters of the Gabor filters to extract important features of the images that form the distinctive parts. Finally, images are classified by sparse representation method. In the study, l₁ norm analysis of sparse representation is used. A joint database of the feature vectors generated by the target images of military vehicle types is obtained side by side and this database is transformed into the matrix form. In order to classify the vehicles in a similar way, the test images of each vehicle is converted to the vector form and l₁ norm analysis of the sparse representation method is applied through the existing database matrix form. As a result, correct recognition has been performed by matching the target images of military vehicles with the test images by means of the sparse representation method. 97% classification success of SAR images of different military vehicle types is obtained.Keywords: automatic target recognition, sparse representation, image classification, SAR images
Procedia PDF Downloads 3642007 Being Your Own First Responder: A Training to Identify and Respond to Mental Health
Authors: Joe Voshall, Leigha Shoup
Abstract:
In 2022, the Ohio Peace Officer Training Council and the Attorney General required officers to complete a minimum of 24 hours of continued professional training for the year. Much of the training was based on Mental Health or similarly related topics. This includes Officer Wellness and Officer Mental Health. It is becoming clearer that the stigma of Officer / First Responder Mental Health is a topic that is becoming more prevalently faced. To assist officers and first responders in facing mental health issues, we are developing new training. This training will aid in recognizing mental health-related issues in officers/first responders and citizens, as well as further using the same information to better respond and interact with one another and the public. In general, society has many varying views of mental health, much of which is largely over-sensationalized by television, movies, and other forms of entertainment. There has also been a stigma in law enforcement / first responders related to mental health and being weak as a result of on-the-job-related trauma-induced struggles. It is our hope this new training will assist officers and first responders in not only positively facing and addressing their mental health but using their own experience and education to recognize signs and symptoms of mental health within individuals in the community. Further, we hope that through this recognition, officers and first responders can use their experiences and more in-depth understanding to better interact within the field and with the public. Through recognition and better understanding of mental health issues and more positive interaction with the public, additional achievements are likely to result. This includes in the removal of bias and stigma for everyone.Keywords: law enforcement, mental health, officer related mental health, trauma
Procedia PDF Downloads 1622006 Mirrors and Lenses: Multiple Views on Recognition in Holocaust Literature
Authors: Kirsten A. Bartels
Abstract:
There are a number of similarities between survivor literature and Holocaust fiction for children and young adults. The paper explores three facets of the parallels of recognition found specifically between Livia Bitton-Jackson’s memoir of her experience during the Holocaust as an inmate in Auschwitz, I Have Lived a Thousand Years (1999) and Morris Glietzman series of Holocaust fiction. While Bitton-Jackson reflects on her past and Glietzman designs a fictive character, both are judicious with what they are willing to impart, only providing information about their appearance or themselves when it impacts others or when it serves a necessary purpose to the story. Another similarity lies in another critical aspect of many works of Holocaust literature – the idea of being ‘representatively Jewish’. The authors come to this idea from different angles, perhaps best explained as the difference between showing and telling, for Bitton-Jackson provides personal details, and Gleitzman constructed Felix arguably with this idea in mind. Interwoven through their journeys is a shift in perspectives on being recognized -- from wanting to be seen as individuals to being seen as Jew. With this, being Jewish takes on different meaning, both youths struggle with being labeled as something they do not truly understand, and may have not truly identified with, from a label, to a death warrant. With survivor literature viewed as the most credible and worthwhile type of Holocaust literature and Holocaust fiction is often seen as the least (with children’s and young-adult being the lowest form) the similarities in approaches to telling the stories may go overlooked or be undervalued. This paper serves as an exploration in the some of parallel messages shared between the two.Keywords: holocaust fiction, Holocaust literature, representatively Jewish, survivor literature
Procedia PDF Downloads 1662005 Laser Registration and Supervisory Control of neuroArm Robotic Surgical System
Authors: Hamidreza Hoshyarmanesh, Hosein Madieh, Sanju Lama, Yaser Maddahi, Garnette R. Sutherland, Kourosh Zareinia
Abstract:
This paper illustrates the concept of an algorithm to register specified markers on the neuroArm surgical manipulators, an image-guided MR-compatible tele-operated robot for microsurgery and stereotaxy. Two range-finding algorithms, namely time-of-flight and phase-shift, are evaluated for registration and supervisory control. The time-of-flight approach is implemented in a semi-field experiment to determine the precise position of a tiny retro-reflective moving object. The moving object simulates a surgical tool tip. The tool is a target that would be connected to the neuroArm end-effector during surgery inside the magnet bore of the MR imaging system. In order to apply flight approach, a 905-nm pulsed laser diode and an avalanche photodiode are utilized as the transmitter and receiver, respectively. For the experiment, a high frequency time to digital converter was designed using a field-programmable gate arrays. In the phase-shift approach, a continuous green laser beam with a wavelength of 530 nm was used as the transmitter. Results showed that a positioning error of 0.1 mm occurred when the scanner-target point distance was set in the range of 2.5 to 3 meters. The effectiveness of this non-contact approach exhibited that the method could be employed as an alternative for conventional mechanical registration arm. Furthermore, the approach is not limited by physical contact and extension of joint angles.Keywords: 3D laser scanner, intraoperative MR imaging, neuroArm, real time registration, robot-assisted surgery, supervisory control
Procedia PDF Downloads 2862004 Lexical-Semantic Processing by Chinese as a Second Language Learners
Authors: Yi-Hsiu Lai
Abstract:
The present study aimed to elucidate the lexical-semantic processing for Chinese as second language (CSL) learners. Twenty L1 speakers of Chinese and twenty CSL learners in Taiwan participated in a picture naming task and a category fluency task. Based on their Chinese proficiency levels, these CSL learners were further divided into two sub-groups: ten CSL learners of elementary Chinese proficiency level and ten CSL learners of intermediate Chinese proficiency level. Instruments for the naming task were sixty black-and-white pictures: thirty-five object pictures and twenty-five action pictures. Object pictures were divided into two categories: living objects and non-living objects. Action pictures were composed of two categories: action verbs and process verbs. As in the naming task, the category fluency task consisted of two semantic categories – objects (i.e., living and non-living objects) and actions (i.e., action and process verbs). Participants were asked to report as many items within a category as possible in one minute. Oral productions were tape-recorded and transcribed for further analysis. Both error types and error frequency were calculated. Statistical analysis was further conducted to examine these error types and frequency made by CSL learners. Additionally, category effects, pictorial effects and L2 proficiency were discussed. Findings in the present study helped characterize the lexical-semantic process of Chinese naming in CSL learners of different Chinese proficiency levels and made contributions to Chinese vocabulary teaching and learning in the future.Keywords: lexical-semantic processing, Mandarin Chinese, naming, category effects
Procedia PDF Downloads 4602003 Object-Based Image Analysis for Gully-Affected Area Detection in the Hilly Loess Plateau Region of China Using Unmanned Aerial Vehicle
Authors: Hu Ding, Kai Liu, Guoan Tang
Abstract:
The Chinese Loess Plateau suffers from serious gully erosion induced by natural and human causes. Gully features detection including gully-affected area and its two dimension parameters (length, width, area et al.), is a significant task not only for researchers but also for policy-makers. This study aims at gully-affected area detection in three catchments of Chinese Loess Plateau, which were selected in Changwu, Ansai, and Suide by using unmanned aerial vehicle (UAV). The methodology includes a sequence of UAV data generation, image segmentation, feature calculation and selection, and random forest classification. Two experiments were conducted to investigate the influences of segmentation strategy and feature selection. Results showed that vertical and horizontal root-mean-square errors were below 0.5 and 0.2 m, respectively, which were ideal for the Loess Plateau region. The segmentation strategy adopted in this paper, which considers the topographic information, and optimal parameter combination can improve the segmentation results. Besides, the overall extraction accuracy in Changwu, Ansai, and Suide achieved was 84.62%, 86.46%, and 93.06%, respectively, which indicated that the proposed method for detecting gully-affected area is more objective and effective than traditional methods. This study demonstrated that UAV can bridge the gap between field measurement and satellite-based remote sensing, obtaining a balance in resolution and efficiency for catchment-scale gully erosion research.Keywords: unmanned aerial vehicle (UAV), object-analysis image analysis, gully erosion, gully-affected area, Loess Plateau, random forest
Procedia PDF Downloads 2152002 Correlation between Speech Emotion Recognition Deep Learning Models and Noises
Authors: Leah Lee
Abstract:
This paper examines the correlation between deep learning models and emotions with noises to see whether or not noises mask emotions. The deep learning models used are plain convolutional neural networks (CNN), auto-encoder, long short-term memory (LSTM), and Visual Geometry Group-16 (VGG-16). Emotion datasets used are Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D), Toronto Emotional Speech Set (TESS), and Surrey Audio-Visual Expressed Emotion (SAVEE). To make it four times bigger, audio set files, stretch, and pitch augmentations are utilized. From the augmented datasets, five different features are extracted for inputs of the models. There are eight different emotions to be classified. Noise variations are white noise, dog barking, and cough sounds. The variation in the signal-to-noise ratio (SNR) is 0, 20, and 40. In summation, per a deep learning model, nine different sets with noise and SNR variations and just augmented audio files without any noises will be used in the experiment. To compare the results of the deep learning models, the accuracy and receiver operating characteristic (ROC) are checked.Keywords: auto-encoder, convolutional neural networks, long short-term memory, speech emotion recognition, visual geometry group-16
Procedia PDF Downloads 742001 Gestalt in Music and Brain: A Non-Linear Chaos Based Study with Detrended/Adaptive Fractal Analysis
Authors: Shankha Sanyal, Archi Banerjee, Sayan Biswas, Sourya Sengupta, Sayan Nag, Ranjan Sengupta, Dipak Ghosh
Abstract:
The term ‘gestalt’ has been widely used in the field of psychology which defined the perception of human mind to group any object not in part but as a 'unified' whole. Music, in general, is polyphonic - i.e. a combination of a number of pure tones (frequencies) mixed together in a manner that sounds harmonious. The study of human brain response due to different frequency groups of the acoustic signal can give us an excellent insight regarding the neural and functional architecture of brain functions. Hence, the study of music cognition using neuro-biosensors is becoming a rapidly emerging field of research. In this work, we have tried to analyze the effect of different frequency bands of music on the various frequency rhythms of human brain obtained from EEG data. Four widely popular Rabindrasangeet clips were subjected to Wavelet Transform method for extracting five resonant frequency bands from the original music signal. These frequency bands were initially analyzed with Detrended/Adaptive Fractal analysis (DFA/AFA) methods. A listening test was conducted on a pool of 100 respondents to assess the frequency band in which the music becomes non-recognizable. Next, these resonant frequency bands were presented to 20 subjects as auditory stimulus and EEG signals recorded simultaneously in 19 different locations of the brain. The recorded EEG signals were noise cleaned and subjected again to DFA/AFA technique on the alpha, theta and gamma frequency range. Thus, we obtained the scaling exponents from the two methods in alpha, theta and gamma EEG rhythms corresponding to different frequency bands of music. From the analysis of music signal, it is seen that loss of recognition is proportional to the loss of long range correlation in the signal. From the EEG signal analysis, we obtain frequency specific arousal based response in different lobes of brain as well as in specific EEG bands corresponding to musical stimuli. In this way, we look to identify a specific frequency band beyond which the music becomes non-recognizable and below which in spite of the absence of other bands the music is perceivable to the audience. This revelation can be of immense importance when it comes to the field of cognitive music therapy and researchers of creativity.Keywords: AFA, DFA, EEG, gestalt in music, Hurst exponent
Procedia PDF Downloads 3312000 On Lie Groupoids, Bundles, and Their Categories
Authors: P. G. Romeo
Abstract:
A Lie group is a highly sophisticated structure which is a smooth manifold whose underlying set of elements is equipped with the structure of a group such that the group multiplication and inverse-assigning functions are smooth. This structure was introduced by the Norwegian mathematician So- phus Lie who founded the theory of continuous groups. The Lie groups are well developed and have wide applications in areas including Mathematical Physics. There are several advances and generalizations for Lie groups and Lie groupoids is one such which is termed as a "many-object generalization" of Lie groups. A groupoid is a category whose morphisms are all invertible, obviously, every group is a groupoid but not conversely. Definition 1. A Lie groupoid G ⇒ M is a groupoid G on a base M together with smooth structures on G and M such that the maps α, β: G → M are surjective submertions, the object inclusion map x '→ 1x, M → G is smooth, and the partial multiplication G ∗ G → G is smooth. A bundle is a triple (E, p, B) where E, B are topological spaces p: E → B is a map. Space B is called the base space and space E is called total space and map p is the projection of the bundle. For each b ∈ B, the space p−1(b) is called the fibre of the bundle over b ∈ B. Intuitively a bundle is regarded as a union of fibres p−1(b) for b ∈ B parametrized by B and ’glued together’ by the topology of the space E. A cross-section of a bundle (E, p, B) is a map s: B → E such that ps = 1B. Example 1. Given any space B, a product bundle over B with fibre F is (B × F, p, B) where p is the projection on the first factor. Definition 2. A principal bundle P (M, G, π) consists of a manifold P, a Lie group G, and a free right action of G on P denoted (u, g) '→ ug, such that the orbits of the action coincide with the fibres of the surjective submersion π : P → M, and such that M is covered by the domains of local sections σ: U → P, U ⊆ M, of π. Definition 3. A Lie group bundle, or LGB, is a smooth fibre bundle (K, q, M ) in which each fibre (Km = q−1(m), and the fibre type G, has a Lie group structure, and for which there is an atlas {ψi: Ui × G → KUi } such that each {ψi,m : G → Km}, is an isomorphism of Lie groups. A morphism of LGB from (K, q, M ) to (K′, q′, M′) is a morphism (F, f ) of fibre bundles such that each Fm: Km → K′ is a morphism of Lie groups. In this paper, we will be discussing the Lie groupoid bundles. Here it is seen that to a Lie groupoid Ω on base B there is associated a collection of principal bundles Ωx(B, Ωx), all of which are mutually isomorphic and conversely, associated to any principal bundle P (B, G, p) there is a groupoid called the Ehresmann groupoid which is easily seen to be Lie. Further, some interesting properties of the category of Lie groupoids and bundles will be explored.Keywords: groupoid, lie group, lie groupoid, bundle
Procedia PDF Downloads 761999 The Roman Fora in North Africa Towards a Supportive Protocol to the Decision for the Morphological Restitution
Authors: Dhouha Laribi Galalou, Najla Allani Bouhoula, Atef Hammouda
Abstract:
This research delves into the fundamental question of the morphological restitution of built archaeology in order to place it in its paradigmatic context and to seek answers to it. Indeed, the understanding of the object of the study, its analysis, and the methodology of solving the morphological problem posed, are manageable aspects only by means of a thoughtful strategy that draws on well-defined epistemological scaffolding. In this stream, the crisis of natural reasoning in archaeology has generated multiple changes in this field, ranging from the use of new tools to the integration of an archaeological information system where urbanization involves the interplay of several disciplines. The built archaeological topic is also an architectural and morphological object. It is also a set of articulated elementary data, the understanding of which is about to be approached from a logicist point of view. Morphological restitution is no exception to the rule, and the inter-exchange between the different disciplines uses the capacity of each to frame the reflection on the incomplete elements of a given architecture or on its different phases and multiple states of existence. The logicist sequence is furnished by the set of scattered or destroyed elements found, but also by what can be called a rule base which contains the set of rules for the architectural construction of the object. The knowledge base built from the archaeological literature also provides a reference that enters into the game of searching for forms and articulations. The choice of the Roman Forum in North Africa is justified by the great urban and architectural characteristics of this entity. The research on the forum involves both a fairly large knowledge base but also provides the researcher with material to study - from a morphological and architectural point of view - starting from the scale of the city down to the architectural detail. The experimentation of the knowledge deduced on the paradigmatic level, as well as the deduction of an analysis model, is then carried out on the basis of a well-defined context which contextualises the experimentation from the elaboration of the morphological information container attached to the rule base and the knowledge base. The use of logicist analysis and artificial intelligence has allowed us to first question the aspects already known in order to measure the credibility of our system, which remains above all a decision support tool for the morphological restitution of Roman Fora in North Africa. This paper presents a first experimentation of the model elaborated during this research, a model framed by a paradigmatic discussion and thus trying to position the research in relation to the existing paradigmatic and experimental knowledge on the issue.Keywords: classical reasoning, logicist reasoning, archaeology, architecture, roman forum, morphology, calculation
Procedia PDF Downloads 1451998 A Phenomenological Approach to Computational Modeling of Analogy
Authors: José Eduardo García-Mendiola
Abstract:
In this work, a phenomenological approach to computational modeling of analogy processing is carried out. The paper goes through the consideration of the structure of the analogy, based on the possibility of sustaining the genesis of its elements regarding Husserl's genetic theory of association. Among particular processes which take place in order to get analogical inferences, there is one which arises crucial for enabling efficient base cases retrieval through long-term memory, namely analogical transference grounded on familiarity. In general, it has been argued that analogical reasoning is a way by which a conscious agent tries to determine or define a certain scope of objects and relationships between them using previous knowledge of other familiar domain of objects and relations. However, looking for a complete description of analogy process, a deeper consideration of phenomenological nature is required in so far, its simulation by computational programs is aimed. Also, one would get an idea of how complex it would be to have a fully computational account of the analogy elements. In fact, familiarity is not a result of a mere chain of repetitions of objects or events but generated insofar as the object/attribute or event in question is integrable inside a certain context that is taking shape as functionalities and functional approaches or perspectives of the object are being defined. Its familiarity is generated not by the identification of its parts or objective determinations as if they were isolated from those functionalities and approaches. Rather, at the core of such a familiarity between entities of different kinds lays the way they are functionally encoded. So, and hoping to make deeper inroads towards these topics, this essay allows us to consider that cognitive-computational perspectives can visualize, from the phenomenological projection of the analogy process reviewing achievements already obtained as well as exploration of new theoretical-experimental configurations towards implementation of analogy models in specific as well as in general purpose machines.Keywords: analogy, association, encoding, retrieval
Procedia PDF Downloads 1211997 Service Business Model Canvas: A Boundary Object Operating as a Business Development Tool
Authors: Taru Hakanen, Mervi Murtonen
Abstract:
This study aims to increase understanding of the transition of business models in servitization. The significance of service in all business has increased dramatically during the past decades. Service-dominant logic (SDL) describes this change in the economy and questions the goods-dominant logic on which business has primarily been based in the past. A business model canvas is one of the most cited and used tools in defining end developing business models. The starting point of this paper lies in the notion that the traditional business model canvas is inherently goods-oriented and best suits for product-based business. However, the basic differences between goods and services necessitate changes in business model representations when proceeding in servitization. Therefore, new knowledge is needed on how the conception of business model and the business model canvas as its representation should be altered in servitized firms in order to better serve business developers and inter-firm co-creation. That is to say, compared to products, services are intangible and they are co-produced between the supplier and the customer. Value is always co-created in interaction between a supplier and a customer, and customer experience primarily depends on how well the interaction succeeds between the actors. The role of service experience is even stronger in service business compared to product business, as services are co-produced with the customer. This paper provides business model developers with a service business model canvas, which takes into account the intangible, interactive, and relational nature of service. The study employs a design science approach that contributes to theory development via design artifacts. This study utilizes qualitative data gathered in workshops with ten companies from various industries. In particular, key differences between Goods-dominant logic (GDL) and SDL-based business models are identified when an industrial firm proceeds in servitization. As the result of the study, an updated version of the business model canvas is provided based on service-dominant logic. The service business model canvas ensures a stronger customer focus and includes aspects salient for services, such as interaction between companies, service co-production, and customer experience. It can be used for the analysis and development of a current service business model of a company or for designing a new business model. It facilitates customer-focused new service design and service development. It aids in the identification of development needs, and facilitates the creation of a common view of the business model. Therefore, the service business model canvas can be regarded as a boundary object, which facilitates the creation of a common understanding of the business model between several actors involved. The study contributes to the business model and service business development disciplines by providing a managerial tool for practitioners in service development. It also provides research insight into how servitization challenges companies’ business models.Keywords: boundary object, business model canvas, managerial tool, service-dominant logic
Procedia PDF Downloads 3661996 Effective Nutrition Label Use on Smartphones
Authors: Vladimir Kulyukin, Tanwir Zaman, Sarat Kiran Andhavarapu
Abstract:
Research on nutrition label use identifies four factors that impede comprehension and retention of nutrition information by consumers: label’s location on the package, presentation of information within the label, label’s surface size, and surrounding visual clutter. In this paper, a system is presented that makes nutrition label use more effective for nutrition information comprehension and retention. The system’s front end is a smartphone application. The system’s back end is a four node Linux cluster for image recognition and data storage. Image frames captured on the smartphone are sent to the back end for skewed or aligned barcode recognition. When barcodes are recognized, corresponding nutrition labels are retrieved from a cloud database and presented to the user on the smartphone’s touchscreen. Each displayed nutrition label is positioned centrally on the touchscreen with no surrounding visual clutter. Wikipedia links to important nutrition terms are embedded to improve comprehension and retention of nutrition information. Standard touch gestures (e.g., zoom in/out) available on mainstream smartphones are used to manipulate the label’s surface size. The nutrition label database currently includes 200,000 nutrition labels compiled from public web sites by a custom crawler. Stress test experiments with the node cluster are presented. Implications for proactive nutrition management and food policy are discussed.Keywords: mobile computing, cloud computing, nutrition label use, nutrition management, barcode scanning
Procedia PDF Downloads 3721995 Efficient Residual Road Condition Segmentation Network Based on Reconstructed Images
Authors: Xiang Shijie, Zhou Dong, Tian Dan
Abstract:
This paper focuses on the application of real-time semantic segmentation technology in complex road condition recognition, aiming to address the critical issue of how to improve segmentation accuracy while ensuring real-time performance. Semantic segmentation technology has broad application prospects in fields such as autonomous vehicle navigation and remote sensing image recognition. However, current real-time semantic segmentation networks face significant technical challenges and optimization gaps in balancing speed and accuracy. To tackle this problem, this paper conducts an in-depth study and proposes an innovative Guided Image Reconstruction Module. By resampling high-resolution images into a set of low-resolution images, this module effectively reduces computational complexity, allowing the network to more efficiently extract features within limited resources, thereby improving the performance of real-time segmentation tasks. In addition, a dual-branch network structure is designed in this paper to fully leverage the advantages of different feature layers. A novel Hybrid Attention Mechanism is also introduced, which can dynamically capture multi-scale contextual information and effectively enhance the focus on important features, thus improving the segmentation accuracy of the network in complex road condition. Compared with traditional methods, the proposed model achieves a better balance between accuracy and real-time performance and demonstrates competitive results in road condition segmentation tasks, showcasing its superiority. Experimental results show that this method not only significantly improves segmentation accuracy while maintaining real-time performance, but also remains stable across diverse and complex road conditions, making it highly applicable in practical scenarios. By incorporating the Guided Image Reconstruction Module, dual-branch structure, and Hybrid Attention Mechanism, this paper presents a novel approach to real-time semantic segmentation tasks, which is expected to further advance the development of this field.Keywords: hybrid attention mechanism, image reconstruction, real-time, road status recognition
Procedia PDF Downloads 21