Search results for: long range transport
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13323

Search results for: long range transport

12573 The Spherical Geometric Model of Absorbed Particles: Application to the Electron Transport Study

Authors: A. Bentabet, A. Aydin, N. Fenineche

Abstract:

The mean penetration depth has a most important in the absorption transport phenomena. Analytical model of light ion backscattering coefficients from solid targets have been made by Vicanek and Urbassek. In the present work, we showed a mathematical expression (deterministic model) for Z1/2. In advantage, in the best of our knowledge, relatively only one analytical model exit for electron or positron mean penetration depth in solid targets. In this work, we have presented a simple geometric spherical model of absorbed particles based on CSDA scheme. In advantage, we have showed an analytical expression of the mean penetration depth by combination between our model and the Vicanek and Urbassek theory. For this, we have used the Relativistic Partial Wave Expansion Method (RPWEM) and the optical dielectric model to calculate the elastic cross sections and the ranges respectively. Good agreement was found with the experimental and theoretical data.

Keywords: Bentabet spherical geometric model, continuous slowing down approximation, stopping powers, ranges, mean penetration depth

Procedia PDF Downloads 633
12572 The Chemical Transport Mechanism of Emitter Micro-Particles in Tungsten Electrode: A Metallurgical Study

Authors: G. Singh, H.Schuster, U. Füssel

Abstract:

The stability of electric arc and durability of electrode tip used in Tungsten Inert Gas (TIG) welding demand a metallurgical study about the chemical transport mechanism of emitter oxide particles in tungsten electrode during its real welding conditions. The tungsten electrodes doped with emitter oxides of rare earth oxides such as La₂O₃, Th₂O₃, Y₂O₃, CeO₂ and ZrO₂ feature a comparatively lower work function than tungsten and thus have superior emission characteristics due to lesser surface temperature of the cathode. The local change in concentration of these emitter particles in tungsten electrode due to high temperature diffusion (chemical transport) can change its functional properties like electrode temperature, work function, electron emission, and stability of the electrode tip shape. The resulting increment in tip surface temperature results in the electrode material loss. It was also observed that the tungsten recrystallizes to large grains at high temperature. When the shape of grain boundaries are granular in shape, the intergranular diffusion of oxide emitter particles takes more time to reach the electrode surface. In the experimental work, the microstructure of the used electrode's tip surface will be studied by scanning electron microscope and reflective X-ray technique in order to gauge the extent of the diffusion and chemical reaction of emitter particles. Besides, a simulated model is proposed to explain the effect of oxide particles diffusion on the electrode’s microstructure, electron emission characteristics, and electrode tip erosion. This model suggests metallurgical modifications in tungsten electrode to enhance its erosion resistance.

Keywords: rare-earth emitter particles, temperature-dependent diffusion, TIG welding, Tungsten electrode

Procedia PDF Downloads 174
12571 Value Creation of Public Financial Management Reforms through Their Long-Term Impacts

Authors: Christoph Schuler, Oriana Ponta

Abstract:

Public Financial Management (PFM) reforms are promoted by various international organizations such as the International Monetary Fund (IMF) or the World Bank, local development banks and the donor country community to strengthen governance and accountability in developing countries across the world. Reform efforts undertaken are often systematically measured against international best practice by the application of standardized analytical instruments such as the Public Expenditure and Financial Accountability Framework (PEFA) or the Poverty Reduction Action Plan (PARP). While those instruments analyze direct achievements of PFM reforms, the long-term benefits of such reforms for society remain untapped. This gives rise to the question why the concept of impact evaluation with its experimental or quasi-experimental settings in the form of randomized control trials has rarely been applied in the context of PFM reforms. To close this gap, this study provides examples where the concept of impact evaluation can be applied to PFM reforms and thereby shifting the focus from outcome towards a long-term impact. As it is a new approach, this study does not attempt to conduct a fully flagged impact evaluation of a certain PFM reform. However, it will outline, as a form of pre-test the applicability of the impact evaluation methodology in this context, for example, by more closely analyzing the commonly used indicators (for example within PEFA or PARP). This would mean to scrutinize these indicators as to how they were designed and how they are related to the long-term impact, they should be producing. The analysis of PFM reform indicators and their relation to long-term impacts should provide practitioners and scholars alike with new insights on how to strengthen the accountability of public service delivery through successful and sustainable PFM reforms.

Keywords: accountability, impact evaluation, PFM reforms, public financial management

Procedia PDF Downloads 308
12570 Optimization of the Feedstock Supply of an Oilseeds Conversion Unit for Biofuel Production in West Africa: A Comparative Study of the Supply of Jatropha curcas and Balanites aegyptiaca Seeds

Authors: Linda D. F. Bambara, Marie Sawadogo

Abstract:

Jatropha curcas (jatropha) is the plant that has been the most studied for biofuel production in West Africa. There exist however other plants such as Balanites aegyptiaca (balanites) that have been targeted as a potential feedstock for biofuel production. This biomass could be an alternative feedstock for the production of straight vegetable oil (SVO) at costs lower than jatropha-based SVO production costs. This study aims firstly to determine, through an MILP model, the optimal organization that minimizes the costs of the oilseeds supply of two biomass conversion units (BCU) exploiting respectively jatropha seeds and the balanitès seeds. Secondly, the study aims to carry out a comparative study of these costs obtained for each BCU. The model was then implemented on two theoretical cases studies built on the basis of the common practices in Burkina Faso and two scenarios were carried out for each case study. In Scenario 1, 3 pre-processing locations ("at the harvesting area", "at the gathering points", "at the BCU") are possible. In scenario 2, only one location ("at the BCU") is possible. For each biomass, the system studied is the upstream supply chain (harvesting, transport and pre-processing (drying, dehulling, depulping)), including cultivation (for jatropha). The model optimizes the area of land to be exploited based on the productivity of the studied plants and material losses that may occur during the harvesting and the supply of the BCU. It then defines the configuration of the logistics network allowing an optimal supply of the BCU taking into account the most common means of transport in West African rural areas. For the two scenarios, the results of the implementation showed that the total area exploited for balanites (1807 ha) is 4.7 times greater than the total area exploited for Jatropha (381 ha). In both case studies, the location of pre-processing “at the harvesting area” was always chosen for scenario1. As the balanites trees were not planted and because the first harvest of the jatropha seeds took place 4 years after planting, the cost price of the seeds at the BCU without the pre-processing costs was about 430 XOF/kg. This cost is 3 times higher than the balanites's one, which is 140 XOF/kg. After the first year of harvest, i.e. 5 years after planting, and assuming that the yield remains constant, the same cost price is about 200 XOF/kg for Jatropha. This cost is still 1.4 times greater than the balanites's one. The transport cost of the balanites seeds is about 120 XOF/kg. This cost is similar for the jatropha seeds. However, when the pre-processing is located at the BCU, i.e. for scenario2, the transport costs of the balanites seeds is 1200 XOF/kg. These costs are 6 times greater than the transport costs of jatropha which is 200 XOF/kg. These results show that the cost price of the balanites seeds at the BCU can be competitive compared to the jatropha's one if the pre-processing is located at the harvesting area.

Keywords: Balanites aegyptiaca, biomass conversion, Jatropha curcas, optimization, post-harvest operations

Procedia PDF Downloads 325
12569 Bismuth Telluride Topological Insulator: Physical Vapor Transport vs Molecular Beam Epitaxy

Authors: Omar Concepcion, Osvaldo De Melo, Arturo Escobosa

Abstract:

Topological insulator (TI) materials are insulating in the bulk and conducting in the surface. The unique electronic properties associated with these surface states make them strong candidates for exploring innovative quantum phenomena and as practical applications for quantum computing, spintronic and nanodevices. Many materials, including Bi₂Te₃, have been proposed as TIs and, in some cases, it has been demonstrated experimentally by angle-resolved photoemission spectroscopy (ARPES), scanning tunneling spectroscopy (STM) and/or magnetotransport measurements. A clean surface is necessary in order to make any of this measurements. Several techniques have been used to produce films and different kinds of nanostructures. Growth and characterization in situ is usually the best option although cleaving the films can be an alternative to have a suitable surface. In the present work, we report a comparison of Bi₂Te₃ grown by physical vapor transport (PVT) and molecular beam epitaxy (MBE). The samples were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and ARPES. The Bi₂Te₃ samples grown by PVT, were cleaved in the ultra-high vacuum in order to obtain a surface free of contaminants. In both cases, the XRD shows a c-axis orientation and the pole diagrams proved the epitaxial relationship between film and substrate. The ARPES image shows the linear dispersion characteristic of the surface states of the TI materials. The samples grown by PVT, a relatively simple and cost-effective technique shows the same high quality and TI properties than the grown by MBE.

Keywords: Bismuth telluride, molecular beam epitaxy, physical vapor transport, topological insulator

Procedia PDF Downloads 177
12568 Statistical Analysis of Cables in Long-Span Cable-Stayed Bridges

Authors: Ceshi Sun, Yueyu Zhao, Yaobing Zhao, Zhiqiang Wang, Jian Peng, Pengxin Guo

Abstract:

With the rapid development of transportation, there are more than 100 cable-stayed bridges with main span larger than 300 m in China. In order to ascertain the statistical relationships among the design parameters of stay cables and their distribution characteristics, 1500 cables were selected from 25 practical long-span cable-stayed bridges. A new relationship between the first order frequency and the length of cable was found by conducting the curve fitting. Then, based on this relationship other interesting relationships were deduced. Several probability density functions (PDFs) were used to investigate the distributions of the parameters of first order frequency, stress level and the Irvine parameter. It was found that these parameters obey the Lognormal distribution, the Weibull distribution and the generalized Pareto distribution, respectively. Scatter diagrams of the three parameters were plotted and their 95% confidence intervals were also investigated.

Keywords: cable, cable-stayed bridge, long-span, statistical analysis

Procedia PDF Downloads 618
12567 Challenges in the Construction of a 6M Diameter and 1.6km Long Tunnel Under Crossing a Channel in the West of Singapore

Authors: David Loh, Wan Chee Wai, Pei Nan, Chen Zhe

Abstract:

To increase the conveyance capacity to Western Singapore and to meet Singapore’s long-term water needs in a more cost-effective manner, four new transmission pipelines consisting of two 2200 mm diameter water pipes and two 1200mm diameter water pipes will be needed by 2024 to convey water from a Water Reclamation Plant to existing networks in the west region of Singapore. Out of the several possible routes studied, the most cost-effective and technically feasible route was selected to lay the proposed 1.6km-long pipelines that cross a channel via a 6m diameter subsea tunnel. This paper outlines the challenges the team faced throughout the project thus far. It also examined the difficulties such as (1) construction of a 56m-deep launching shaft near a highly sensitive 700mm diameter Gas Transmission Pipeline (GTP) and at a location with high groundwater; (2) manpower and supply disruptions caused by the COVID-19 pandemic situation.

Keywords: underwater tunnel, subsea engineering, subsea tunnel construction, waterpipe construction

Procedia PDF Downloads 9
12566 Colloids and Heavy Metals in Groundwaters: Tangential Flow Filtration Method for Study of Metal Distribution on Different Sizes of Colloids

Authors: Jiancheng Zheng

Abstract:

When metals are released into water from mining activities, they undergo changes chemically, physically and biologically and then may become more mobile and transportable along the waterway from their original sites. Natural colloids, including both organic and inorganic entities, are naturally occurring in any aquatic environment with sizes in the nanometer range. Natural colloids in a water system play an important role, quite often a key role, in binding and transporting compounds. When assessing and evaluating metals in natural waters, their sources, mobility, fate, and distribution patterns in the system are the major concerns from the point of view of assessing environmental contamination and pollution during resource development. There are a few ways to quantify colloids and accordingly study how metals distribute on different sizes of colloids. Current research results show that the presence of colloids can enhance the transport of some heavy metals in water, while heavy metals may also have an influence on the transport of colloids when cations in the water system change colloids and/or the ion strength of the water system changes. Therefore, studies into the relationship between different sizes of colloids and different metals in a water system are necessary and needed as natural colloids in water systems are complex mixtures of both organic and inorganic as well as biological materials. Their stability could be sensitive to changes in their shapes, phases, hardness and functionalities due to coagulation and deposition et al. and chemical, physical, and biological reactions. Because metal contaminants’ adsorption on surfaces of colloids is closely related to colloid properties, it is desired to fraction water samples as soon as possible after a sample is taken in the natural environment in order to avoid changes to water samples during transportation and storage. For this reason, this study carried out groundwater sample processing in the field, using Prep/Scale tangential flow filtration systems with 3-level cartridges (1 kDa, 10 kDa and 100 kDa). Groundwater samples from seven sites at Fort MacMurray, Alberta, Canada, were fractionated during the 2015 field sampling season. All samples were processed within 3 hours after samples were taken. Preliminary results show that although the distribution pattern of metals on colloids may vary with different samples taken from different sites, some elements often tend to larger colloids (such as Fe and Re), some to finer colloids (such as Sb and Zn), while some of them mainly in the dissolved form (such as Mo and Be). This information is useful to evaluate and project the fate and mobility of different metals in the groundwaters and possibly in environmental water systems.

Keywords: metal, colloid, groundwater, mobility, fractionation, sorption

Procedia PDF Downloads 344
12565 Stability of Pump Station Cavern in Chagrin Shale with Time

Authors: Mohammad Moridzadeh, Mohammad Djavid, Barry Doyle

Abstract:

An assessment of the long-term stability of a cavern in Chagrin shale excavated by the sequential excavation method was performed during and after construction. During the excavation of the cavern, deformations of rock mass were measured at the surface of excavation and within the rock mass by surface and deep measurement instruments. Rock deformations were measured during construction which appeared to result from the as-built excavation sequence that had potentially disturbed the rock and its behavior. Also some additional time dependent rock deformations were observed during and post excavation. Several opinions have been expressed to explain this time dependent deformation including stress changes induced by excavation, strain softening (or creep) in the beddings with and without clay and creep of the shaley rock under compressive stresses. In order to analyze and replicate rock behavior observed during excavation, including current and post excavation elastic, plastic, and time dependent deformation, Finite Element Analysis (FEA) was performed. The analysis was also intended to estimate long term deformation of the rock mass around the excavation. Rock mass behavior including time dependent deformation was measured by means of rock surface convergence points, MPBXs, extended creep testing on the long anchors, and load history data from load cells attached to several long anchors. Direct creep testing of Chagrin Shale was performed on core samples from the wall of the Pump Room. Results of these measurements were used to calibrate the FEA of the excavation. These analyses incorporate time dependent constitutive modeling for the rock to evaluate the potential long term movement in the roof, walls, and invert of the cavern. The modeling was performed due to the concerns regarding the unanticipated behavior of the rock mass as well as the forecast of long term deformation and stability of rock around the excavation.

Keywords: Cavern, Chagrin shale, creep, finite element.

Procedia PDF Downloads 336
12564 Shoulder Range of Motion Measurements using Computer Vision Compared to Hand-Held Goniometric Measurements

Authors: Lakshmi Sujeesh, Aaron Ramzeen, Ricky Ziming Guo, Abhishek Agrawal

Abstract:

Introduction: Range of motion (ROM) is often measured by physiotherapists using hand-held goniometer as part of mobility assessment for diagnosis. Due to the nature of hand-held goniometer measurement procedure, readings often tend to have some variations depending on the physical therapist taking the measurements (Riddle et al.). This study aims to validate computer vision software readings against goniometric measurements for quick and consistent ROM measurements to be taken by clinicians. The use of this computer vision software hopes to improve the future of musculoskeletal space with more efficient diagnosis from recording of patient’s ROM with minimal human error across different physical therapists. Methods: Using the hand-held long arm goniometer measurements as the “gold-standard”, healthy study participants (n = 20) were made to perform 4 exercises: Front elevation, Abduction, Internal Rotation, and External Rotation, using both arms. Assessment of active ROM using computer vision software at different angles set by goniometer for each exercise was done. Interclass Correlation Coefficient (ICC) using 2-way random effects model, Box-Whisker plots, and Root Mean Square error (RMSE) were used to find the degree of correlation and absolute error measured between set and recorded angles across the repeated trials by the same rater. Results: ICC (2,1) values for all 4 exercises are above 0.9, indicating excellent reliability. Lowest overall RMSE was for external rotation (5.67°) and highest for front elevation (8.00°). Box-whisker plots showed have showed that there is a potential zero error in the measurements done by the computer vision software for abduction, where absolute error for measurements taken at 0 degree are shifted away from the ideal 0 line, with its lowest recorded error being 8°. Conclusion: Our results indicate that the use of computer vision software is valid and reliable to use in clinical settings by physiotherapists for measuring shoulder ROM. Overall, computer vision helps improve accessibility to quality care provided for individual patients, with the ability to assess ROM for their condition at home throughout a full cycle of musculoskeletal care (American Academy of Orthopaedic Surgeons) without the need for a trained therapist.

Keywords: physiotherapy, frozen shoulder, joint range of motion, computer vision

Procedia PDF Downloads 85
12563 Effects of the Visual and Auditory Stimuli with Emotional Content on Eyewitness Testimony

Authors: İrem Bulut, Mustafa Z. Söyük, Ertuğrul Yalçın, Simge Şişman-Bal

Abstract:

Eyewitness testimony is one of the most frequently used methods in criminal cases for the determination of crime and perpetrator. In the literature, the number of studies about the reliability of eyewitness testimony is increasing. The study aims to reveal the factors that affect the short-term and long-term visual memory performance of the participants in the event of an accident. In this context, the effect of the emotional content of the accident and the sounds during the accident on visual memory performance was investigated with eye-tracking. According to the results, the presence of visual and auditory stimuli with emotional content during the accident decreases the participants' both short-term and long-term recall performance. Moreover, the data obtained from the eye monitoring device showed that the participants had difficulty in answering even the questions they focused on at the time of the accident.

Keywords: eye tracking, eyewitness testimony, long-term recall, short-term recall, visual memory

Procedia PDF Downloads 149
12562 Polymeric Composites with Synergetic Carbon and Layered Metallic Compounds for Supercapacitor Application

Authors: Anukul K. Thakur, Ram Bilash Choudhary, Mandira Majumder

Abstract:

In this technologically driven world, it is requisite to develop better, faster and smaller electronic devices for various applications to keep pace with fast developing modern life. In addition, it is also required to develop sustainable and clean sources of energy in this era where the environment is being threatened by pollution and its severe consequences. Supercapacitor has gained tremendous attention in the recent years because of its various attractive properties such as it is essentially maintenance-free, high specific power, high power density, excellent pulse charge/discharge characteristics, exhibiting a long cycle-life, require a very simple charging circuit and safe operation. Binary and ternary composites of conducting polymers with carbon and other layered transition metal dichalcogenides have shown tremendous progress in the last few decades. Compared with bulk conducting polymer, these days conducting polymers have gained more attention because of their high electrical conductivity, large surface area, short length for the ion transport and superior electrochemical activity. These properties make them very suitable for several energy storage applications. On the other hand, carbon materials have also been studied intensively, owing to its rich specific surface area, very light weight, excellent chemical-mechanical property and a wide range of the operating temperature. These have been extensively employed in the fabrication of carbon-based energy storage devices and also as an electrode material in supercapacitors. Incorporation of carbon materials into the polymers increases the electrical conductivity of the polymeric composite so formed due to high electrical conductivity, high surface area and interconnectivity of the carbon. Further, polymeric composites based on layered transition metal dichalcogenides such as molybdenum disulfide (MoS2) are also considered important because they are thin indirect band gap semiconductors with a band gap around 1.2 to 1.9eV. Amongst the various 2D materials, MoS2 has received much attention because of its unique structure consisting of a graphene-like hexagonal arrangement of Mo and S atoms stacked layer by layer to give S-Mo-S sandwiches with weak Van-der-Waal forces between them. It shows higher intrinsic fast ionic conductivity than oxides and higher theoretical capacitance than the graphite.

Keywords: supercapacitor, layered transition-metal dichalcogenide, conducting polymer, ternary, carbon

Procedia PDF Downloads 242
12561 Characterization of the MOSkin Dosimeter for Accumulated Dose Assessment in Computed Tomography

Authors: Lenon M. Pereira, Helen J. Khoury, Marcos E. A. Andrade, Dean L. Cutajar, Vinicius S. M. Barros, Anatoly B. Rozenfeld

Abstract:

With the increase of beam widths and the advent of multiple-slice and helical scanners, concerns related to the current dose measurement protocols and instrumentation in computed tomography (CT) have arisen. The current methodology of dose evaluation, which is based on the measurement of the integral of a single slice dose profile using a 100 mm long cylinder ionization chamber (Ca,100 and CPPMA, 100), has been shown to be inadequate for wide beams as it does not collect enough of the scatter-tails to make an accurate measurement. In addition, a long ionization chamber does not offer a good representation of the dose profile when tube current modulation is used. An alternative approach has been suggested by translating smaller detectors through the beam plane and assessing the accumulated dose trough the integral of the dose profile, which can be done for any arbitrary length in phantoms or in the air. For this purpose, a MOSFET dosimeter of small dosimetric volume was used. One of its recently designed versions is known as the MOSkin, which is developed by the Centre for Medical Radiation Physics at the University of Wollongong, and measures the radiation dose at a water equivalent depth of 0.07 mm, allowing the evaluation of skin dose when placed at the surface, or internal point doses when placed within a phantom. Thus, the aim of this research was to characterize the response of the MOSkin dosimeter for X-ray CT beams and to evaluate its application for the accumulated dose assessment. Initially, tests using an industrial x-ray unit were carried out at the Laboratory of Ionization Radiation Metrology (LMRI) of Federal University of Pernambuco, in order to investigate the sensitivity, energy dependence, angular dependence, and reproducibility of the dose response for the device for the standard radiation qualities RQT 8, RQT 9 and RQT 10. Finally, the MOSkin was used for the accumulated dose evaluation of scans using a Philips Brilliance 6 CT unit, with comparisons made between the CPPMA,100 value assessed with a pencil ionization chamber (PTW Freiburg TW 30009). Both dosimeters were placed in the center of a PMMA head phantom (diameter of 16 cm) and exposed in the axial mode with collimation of 9 mm, 250 mAs and 120 kV. The results have shown that the MOSkin response was linear with doses in the CT range and reproducible (98.52%). The sensitivity for a single MOSkin in mV/cGy was as follows: 9.208, 7.691 and 6.723 for the RQT 8, RQT 9 and RQT 10 beams qualities respectively. The energy dependence varied up to a factor of ±1.19 among those energies and angular dependence was not greater than 7.78% within the angle range from 0 to 90 degrees. The accumulated dose and the CPMMA, 100 value were 3,97 and 3,79 cGy respectively, which were statistically equivalent within the 95% confidence level. The MOSkin was shown to be a good alternative for CT dose profile measurements and more than adequate to provide accumulated dose assessments for CT procedures.

Keywords: computed tomography dosimetry, MOSFET, MOSkin, semiconductor dosimetry

Procedia PDF Downloads 296
12560 Long Waves Inundating through and around an Array of Circular Cylinders

Authors: Christian Klettner, Ian Eames, Tristan Robinson

Abstract:

Tsunami is characterised by their very long time periods and can have devastating consequences when these inundate through built-up coastal regions as in the 2004 Indian Ocean and 2011 Tohoku Tsunami. This work aims to investigate the effect of these long waves on the flow through and around a group of buildings, which are abstracted to circular cylinders. The research approach used in this study was using experiments and numerical simulations. Large-scale experiments were carried out at HR Wallingford. The novelty of these experiments is (I) the number of bodies present (up to 64), (II) the long wavelength of the input waves (80 seconds) and (III) the width of the tank (4m) which gives the unique opportunity to investigate three length scales, namely the diameter of the building, the diameter of the array and the width of the tank. To complement the experiments, dam break flow past the same arrays is investigated using three-dimensional numerical simulations in OpenFOAM. Dam break flow was chosen as it is often used as a surrogate for the tsunami in previous research and is used here as there are well defined initial conditions and high quality previous experimental data for the case of a single cylinder is available. The focus of this work is to better understand the effect of the solid void fraction on the force and flow through and around the array. New qualitative and quantitative diagnostics are developed and tested to analyse the complex coupled interaction between the cylinders.

Keywords: computational fluid dynamics, tsunami, forces, complex geometry

Procedia PDF Downloads 182
12559 Sediment Patterns from Fluid-Bed Interactions: A Direct Numerical Simulations Study on Fluvial Turbulent Flows

Authors: Nadim Zgheib, Sivaramakrishnan Balachandar

Abstract:

We present results on the initial formation of ripples from an initially flattened erodible bed. We use direct numerical simulations (DNS) of turbulent open channel flow over a fixed sinusoidal bed coupled with hydrodynamic stability analysis. We use the direct forcing immersed boundary method to account for the presence of the sediment bed. The resolved flow provides the bed shear stress and consequently the sediment transport rate, which is needed in the stability analysis of the Exner equation. The approach is different from traditional linear stability analysis in the sense that the phase lag between the bed topology, and the sediment flux is obtained from the DNS. We ran 11 simulations at a fixed shear Reynolds number of 180, but for different sediment bed wavelengths. The analysis allows us to sweep a large range of physical and modelling parameters to predict their effects on linear growth. The Froude number appears to be the critical controlling parameter in the early linear development of ripples, in contrast with the dominant role of particle Reynolds number during the equilibrium stage.

Keywords: direct numerical simulation, immersed boundary method, sediment-bed interactions, turbulent multiphase flow, linear stability analysis

Procedia PDF Downloads 169
12558 Structural and Phase Transformations of Pure and Silica Treated Nanofibrous Al₂O₃

Authors: T. H. N. Nguyen, A. Khodan, M. Amamra, J-V. Vignes, A. Kanaev

Abstract:

The ultraporous nanofibrous alumina (NOA, Al2O3·nH2O) was synthesized by oxidation of laminated aluminium plates through a liquid mercury-silver layer in a humid atmosphere ~80% at 25°C. The material has an extremely high purity (99%), porosity (90%) and specific area (300 m2/g). The subsequent annealing of raw NOA permits obtaining pure transition phase (γ and θ) nanostructured materials. In this combination, we report on chemical, structural and phase transformations of pure and modified NOA by an impregnation of trimethylethoxysilane (TMES) and tetraethoxysilane (TEOS) during thermal annealing in the temperature range between 20 and 1650°C. The mass density, specific area, average diameter and specific area are analysed. The 3D model of pure NOA monoliths and silica modified NOA is proposed, which successfully describes the evolution of specific area, mass density and phase transformations. Activation energies of the mass transport in two regimes of surface diffusion and bulk sintering were obtained based on this model. We conclude about a common origin of modifications of the NOA morphology, chemical composition and phase transition.

Keywords: nanostructured materials, alumina (Al₂O₃), morphology, phase transitions

Procedia PDF Downloads 374
12557 Understanding the Accumulation of Microplastics in Riverbeds and Soils

Authors: Gopala Krishna Darbha

Abstract:

Microplastics (MPs) are secondary fragments of large-sized plastic debris released into the environment and fall in the size range of less than 5 mm. Though reports indicate the abundance of MPs in both riverine and soil environments, their fate is still not completely understood due to the complexity of natural conditions. Mineral particles are ubiquitous in the rivers and may play a vital role in accumulating MPs to the riverbed, thus affecting the benthic life and posing a threat to the river's health. Apart, the chemistry (pH, ionic strength, humics) at the interface can be very prominent. The MPs can also act as potential vectors to transport other contaminants in the environment causing secondary water pollution. The present study focuses on understanding the interaction of MPs with weathering sequence of minerals (feldspar, kaolinite and gibbsite) under batch mode under relevant environmental and natural conditions. Simultaneously, we performed stability studies and transport (column) experiments to understand the mobility of MPs under varying soil solutions (SS) chemistry and the influence of contaminants (CuO nanoparticles). Results showed that the charge and morphology of the gibbsite played an significant role in sorption of NPs (108.1 mg/g) compared to feldspar (7.7 mg/g) and kaolinite (11.9 mg/g). The Fourier transform infrared spectroscopy data supports the complexation of NPs with gibbsite particles via hydrogen bonding. In case of feldspar and kaolinite, a weak interaction with NPs was observed which can be due to electrostatic repulsions and low surface area to volume ration of the mineral particles. The study highlights the enhanced mobility in presence of feldspar and kaolinite while gibbsite rich zones can cause entrapment of NPs accumulating in the riverbeds. In the case of soils, in the absence of MPs, a very high aggregation of CuO NPs observed in SS extracted from black, lateritic, and red soils, which can be correlated with ionic strength (IS) and type of ionic species. The sedimentation rate (Ksed(1/h)) for CuO NPs was >0.5 h−1 in the case of these SS. Interestingly, the stability and sedimentation behavior of CuO NPs varied significantly in the presence of MPs. The Ksed for CuO NPs decreased to half and found <0.25 h−1 in the presence of MPs in all SS. C/C0 values in breakthrough curves increased drastically (black < alluvial < laterite < red) in the presence of MPs. Results suggest that the release of MPs in the terrestrial ecosystem is a potential threat leading to increased mobility of metal nanoparticles in the environment.

Keywords: microplastics, minerals, sorption, soils

Procedia PDF Downloads 80
12556 Comparison of Dynamic Balance Ability and Flexibility in Different Sports

Authors: Inci Kesilmis, Manolya Akin, Mehmet Melih Kesilmis

Abstract:

The aim of this research was to compare dynamic balance ability (bipedal, right, left foot) and plantar-dorsi flexion range of motion in fencers and swimmers. 43 fencers participated as volunteer with mean age 15.74±1.90year and mean training year 4.97±2.37year. 25 swimmers participated as volunteer with mean age 15.36±1.65 yr. and mean training year 5.98±2.35 yr. Dynamic balance measured while participants were standing in the anatomical position with prokin tecno body for bipedal, right, left foot. Plantar and dorsal flexion range of motion measured while participants in seated position on the examination table and goniometer placed on the lateral malleolus. For statistical analyses; independent samples t test was used. There were significant differences between bipedal (p < 0.05), right foot (p < 0.05), left foot (p < 0.05) dynamic balance ability in favor of fencers. Also there was significant difference between right and left foot dorsal flexion range of motion (p < 0.001) in favor of fencers. There was no significant difference in plantar flexion range of motion between fencers and swimmers. The difference observed in fencers may be due to the use of more dorsal flexion in action moves and that swimming does not impact loading sport and it is performed in pool.

Keywords: fencing, swimming, dynamic balance, flexibility

Procedia PDF Downloads 363
12555 Co-Integration Model for Predicting Inflation Movement in Nigeria

Authors: Salako Rotimi, Oshungade Stephen, Ojewoye Opeyemi

Abstract:

The maintenance of price stability is one of the macroeconomic challenges facing Nigeria as a nation. This paper attempts to build a co-integration multivariate time series model for inflation movement in Nigeria using data extracted from the abstract of statistics of the Central Bank of Nigeria (CBN) from 2008 to 2017. The Johansen cointegration test suggests at least one co-integration vector describing the long run relationship between Consumer Price Index (CPI), Food Price Index (FPI) and Non-Food Price Index (NFPI). All three series show increasing pattern, which indicates a sign of non-stationary in each of the series. Furthermore, model predictability was established with root-mean-square-error, mean absolute error, mean average percentage error, and Theil’s unbiased statistics for n-step forecasting. The result depicts that the long run coefficient of a consumer price index (CPI) has a positive long-run relationship with the food price index (FPI) and non-food price index (NFPI).

Keywords: economic, inflation, model, series

Procedia PDF Downloads 233
12554 CO2 Adsorption on the Activated Klaten-Indonesian Natural Zeolite in a Packed Bed Adsorber

Authors: Sang Kompiang Wirawan, Chandra Purnomo

Abstract:

Carbon dioxide (CO2) adsorption on the activated Klaten-Indonesian natural zeolite (AKINZ) in a packed bed adsorber has been studied. Experiment works consisted of acid activation and adsorption experiments. The natural zeolite sample was activated using 0.3 M HCl at the temperature of 353 K. In the adsorption experiments the feed gas concentrations were 40 and 80 % CO2 in helium within various temperatures of 303; 323 and 373 K. The experiments were conducted by using transient step change adsorption and 20 % Ar/He tracer experiment was conducted to measure dispersion and time lag effect of the packed bed system. A mathematical model of CO2 adsorption had been set up by assuming plug flow;isothermal;isobaric and no gas film mass transport resistance. Single site Langmuir physisorption and Maxwell Stefan mass transport in micropore were applied. All the data were then optimized to get the best value of modified fitted parameter. The model was in a good agreement with the experiment data. Diffusivity tended to increase by increasing temperatures.

Keywords: adsorption, Langmuir, Maxwell-Stefan, natural zeolite, surface diffusion

Procedia PDF Downloads 343
12553 Financial Development, Institutional Quality and Environmental Conditions in the Middle East and North Africa Region: Evidence From Oil- And Non-oil-Producing Countries

Authors: Jamel Boukhatem, Semia Rachid, Marmar Nasr

Abstract:

Considering the differences between oil- and non-oil-producing countries, this paper aims to evaluate the impact of financial development (FD) and institutional quality (IQ) on CO2 emissions in 15 MENA (Middle East and North Africa) countries over the period 1996-2018 using the Panel ARDL approach. We found evidence to support an unconditional long run effect of FD on environmental conditions (EC), with quite significant differences between the two groups of countries. While FD leads to environmental degradation (ED) in non-oil-producing countries, it helps protect the environment in oil-producing ones. Regarding the effects of IQ on EC, they are not significant in both short- and long run for non-oil-producing countries, but they are significant for oil-producing ones only in the long run. In the short run, IQ indicators haven’t significant effects on EC for the two groups of countries.

Keywords: financial development, institutional quality, environmental conditions, Panel ARDL

Procedia PDF Downloads 68
12552 A Novel Approach of Power Transformer Diagnostic Using 3D FEM Parametrical Model

Authors: M. Brandt, A. Peniak, J. Makarovič, P. Rafajdus

Abstract:

This paper deals with a novel approach of power transformers diagnostics. This approach identifies the exact location and the range of a fault in the transformer and helps to reduce operation costs related to handling of the faulty transformer, its disassembly and repair. The advantage of the approach is a possibility to simulate healthy transformer and also all faults, which can occur in transformer during its operation without its disassembling, which is very expensive in practice. The approach is based on creating frequency dependent impedance of the transformer by sweep frequency response analysis measurements and by 3D FE parametrical modeling of the fault in the transformer. The parameters of the 3D FE model are the position and the range of the axial short circuit. Then, by comparing the frequency dependent impedances of the parametrical models with the measured ones, the location and the range of the fault is identified. The approach was tested on a real transformer and showed high coincidence between the real fault and the simulated one.

Keywords: transformer, parametrical model of transformer, fault, sweep frequency response analysis, finite element method

Procedia PDF Downloads 471
12551 Smart Alert System for Dangerous Bend

Authors: Sathapath Kilaso

Abstract:

Thailand has a large range of geographic diversity. Thailand can be divided into 5 regions which are North Region, East Region, West Region, South Region and North-East Region which each region has a different geographic and climate. Especially in North Region, the geographic is mountain and intermontane plateau which will be a reason that the roads in the North Region have a lot of bends. So the driver in the North Region road will have to have a very high skill of driving. If the accident is occurred, the emergency rescue will have a hard time to reach the accident area and rescue the victim of the accident as the long distance and steep road. This article will apply the concept of the wireless sensor network with the micro-controller to alert the driver when the driver reaches the very dangerous bend.

Keywords: wireless sensor network, motion sensor, smart alert, dangerous bend

Procedia PDF Downloads 266
12550 Vibration Analysis of a Solar Powered UAV

Authors: Kevin Anderson, Sukhwinder Singh Sandhu, Nouh Anies, Shilpa Ravichandra, Steven Dobbs, Donald Edberg

Abstract:

This paper presents the results of a Finite Element based vibration analysis of a solar powered Unmanned Aerial Vehicle (UAV). The purpose of this paper was to quantify the free vibration, forced vibration response due to differing point inputs in order to mimic the vibration induced by actuators (magnet in coil generators) used to aid in the flight of the UAV. A Fluid-Structure Interaction (FSI) study was performed in order to ascertain pertinent deigns stresses and deflections as well as aerodynamic parameters of the UAV airfoil. The 10 ft span airfoil is modeled using Mylar as the primary material. Results show that the free mode in bending is 4.8 Hz while the first forced bending mode is in the range of 16.2 to 16.7 Hz depending on the location of excitation. The free torsional bending mode is 28.3 Hz, and the first forced torsional mode is in the range of 26.4 to 27.8 Hz, depending on the location of excitation. The FSI results predict the coefficients of aerodynamic drag and lift of 0.0052 and 0.077, respectively, which matches hand-calculations used to validate the Finite Element based results. FSI based maximum von Mises stresses and deflections were found to be 0.282 MPa and 3.4 mm, respectively. Dynamic pressures on the airfoil range of 1.04 to 1.23 kPa corresponding to velocity magnitudes in the range of 22 to 66 m/s.

Keywords: ANSYS, finite element, FSI, UAV, vibrations

Procedia PDF Downloads 490
12549 The Influence of Forest Management Histories on Dead and Habitat Trees in the Old Growth Forest in Northern Iran

Authors: Kiomars Sefidi

Abstract:

Dead and habitat tree such as fallen logs, snags, stumps and cracks and loos bark etc. is regarded as an important ecological component of forests on which many forest dwelling species depend, yet its relation to management history in Caspian forest has gone unreported. The aim of research was to compare the amounts of dead tree and habitat in the forests with historically different intensities of management, including: forests with the long term implication of management (PS), the short-term implication of management (NS) which were compared with semi virgin forest (GS). The number of 405 individual dead and habitat trees were recorded and measured at 109 sampling locations. ANOVA revealed volume of the dead tree in the form and decay classes significantly differ within sites and dead volume in the semi virgin forest significantly higher than managed sites. Comparing the amount of dead and habitat tree in three sites showed that dead tree volume related with management history and significantly differ in three study sites. Also, the numbers of habitat trees including cavities, Cracks and loose bark and Fork split trees significantly vary among sites. Reaching their highest in virgin site and their lowest in the site with the long term implication of management, it was concluded that forest management cause reduction of the amount of dead and habitat tree. Forest management history affect the forest's ability to generate dead tree especially in a large size, thus managing this forest according to ecological sustainable principles require a commitment to maintaining stand structure that allow, continued generation of dead tree in a full range of size.

Keywords: forest biodiversity, cracks trees, fork split trees, sustainable management, Fagus orientalis, Iran

Procedia PDF Downloads 543
12548 Air Quality Health Index in Windsor, Canada, and the Impact of Regional Scale Transport

Authors: Xiaohong Xu, Tianchu Zhang, Yangfan Chen, Rongtai Tan

Abstract:

In Canada, Air Quality Health Index (AQHI) is a scale designed to help residences understand the impact of air quality on human health. In Ontario, Canada, AQHI was implemented in June 2015. This study investigated temporal variability of daily AQHI and impact of regional transport on AQHI in Windsor, Ontario, Canada from 2016 to 2019. During 2016–2019, 1428 daily AQHIs were recorded in Windsor Downtown Station. Among those, the AQHIs were at the low health risk level (AQHI = 1, 2 or 3) in 82% of days, only a few days at high risk level (AQHI = 7), the rest were at moderate health risk level (AQHI = 4, 5, 6), indicating air quality in Windsor was fairly good with relatively low health risk. The annual mean AQHI value decreased from 2.95 in 2016 to 2.81 in 2019, demonstrating the improvement of air quality. Half of the days, AQHI were 3 regardless of season. AQHI was higher in the warm season (3.1) than in the cold season (2.6) due to more frequent moderate risk days (27%, AQHI = 4) in warm season and more frequent low risk days (42%, AQHI = 2) in the cold season. Among the three pollutants considered in AQHI calculation, O3 was the most frequently reported dominant contributor to daily AQHI (88% of days), followed by NO2 (12%), especially in the cold season, with small contribution from PM2.5 (<1%). In the past two decades, NO2 concentrations had decreased significantly and O3 concentrations had increased, resulting in daily AQHI being less reliance on NO2 (from 51% of days being the primary contributor during 2003–2010 to 12% during 2016–2019) and more on O3 concentrations (49% to 88%). Trajectory analysis found that AQHI ≤ 3 days were closely associated with air masses from the north and northwest, whereas AQHI > 3 days were closely associated with air masses from the west and southwest. This is because northerly flows brought in clear air mass owing to less industrial facilities, while polluted air masses were transported from the south of Windsor, where several industrial states of the US were located. Overall, O3 concentrations dictate the daily AQHI values, the seasonal variability of AQHI, and the impact of regional transport on AQHI in Windsor. This makes further reductions of AQHI challenging because O3 concentrations are likely to continue increasing due to weakened consumption of O3 by NO owing to decreasing NO emissions and more hot days because of climate change. The predominant and increasing contribution of O3 to AQHI calls for more effective control measures to mitigate O3 pollution and its impact on human health and the environment.

Keywords: air quality, Air Quality Health Index (AQHI), hysplit, regional transport, windsor

Procedia PDF Downloads 60
12547 Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Cross-Linked Redox Enzyme/Nanomaterials

Authors: A. K. M. Kafi, S. N. Nina, Mashitah M. Yusoff

Abstract:

In this work, we have described a new 3-dimensional (3D) network of cross-linked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor.

Keywords: redox enzyme, nanomaterials, biosensors, electrical communication

Procedia PDF Downloads 445
12546 Popular eReaders

Authors: Tom D. Gedeon, Ujala Rampaul

Abstract:

The evaluation of electronic consumer goods are most often done from the perspective of analysing the latest models, comparing their advantages and disadvantages with respect to price. This style of evaluation is often performed by one or a few product experts on a wide range of features that may not be applicable to each user. We instead used a scenario-based approach to evaluate a number of e-readers. The setting is similar to a user who is interested in a new product or technology and has allocated a limited budget. We evaluate the quality and usability of e-readers available within that budget range. This is based on the assumption of a rational market which prices older second hand devices the same as functionally equivalent new devices. We describe our evaluation and comparison of four branded eReaders, as the initial stage of a larger project. The scenario has a range of tasks approximating a busy person who does not bother to read the manual. We found that navigation within books to be the most significant differentiator between the eReaders in our scenario based evaluation process.

Keywords: eReader, scenario based, price comparison, Kindle, Kobo, Nook, Sony, technology adoption

Procedia PDF Downloads 519
12545 Hypersonic Propulsion Requirements for Sustained Hypersonic Flight for Air Transportation

Authors: James Rate, Apostolos Pesiridis

Abstract:

In this paper, the propulsion requirements required to achieve sustained hypersonic flight for commercial air transportation are evaluated. In addition, a design methodology is developed and used to determine the propulsive capabilities of both ramjet and scramjet engines. Twelve configurations are proposed for hypersonic flight using varying combinations of turbojet, turbofan, ramjet and scramjet engines. The optimal configuration was determined based on how well each of the configurations met the projected requirements for hypersonic commercial transport. The configurations were separated into four sub-configurations each comprising of three unique derivations. The first sub-configuration comprised four afterburning turbojets and either one or two ramjets idealised for Mach 5 cruise. The number of ramjets required was dependent on the thrust required to accelerate the vehicle from a speed where the turbojets cut out to Mach 5 cruise. The second comprised four afterburning turbojets and either one or two scramjets, similar to the first configuration. The third used four turbojets, one scramjet and one ramjet to aid acceleration from Mach 3 to Mach 5. The fourth configuration was the same as the third, but instead of turbojets, it implemented turbofan engines for the preliminary acceleration of the vehicle. From calculations which determined the fuel consumption at incremental Mach numbers this paper found that the ideal solution would require four turbojet engines and two Scramjet engines. The ideal mission profile was determined as being an 8000km sortie based on an averaging of popular long haul flights with strong business ties, which included Los Angeles to Tokyo, London to New York and Dubai to Beijing. This paper deemed that these routes would benefit from hypersonic transport links based on the previously mentioned factors. This paper has found that this configuration would be sufficient for the 8000km flight to be completed in approximately two and a half hours and would consume less fuel than Concord in doing so. However, this propulsion configuration still result in a greater fuel cost than a conventional passenger. In this regard, this investigation contributes towards the specification of the engine requirements throughout a mission profile for a hypersonic passenger vehicle. A number of assumptions have had to be made for this theoretical approach but the authors believe that this investigation lays the groundwork for appropriate framing of the propulsion requirements for sustained hypersonic flight for commercial air transportation. Despite this, it does serve as a crucial step in the development of the propulsion systems required for hypersonic commercial air transportation. This paper provides a methodology and a focus for the development of the propulsion systems that would be required for sustained hypersonic flight for commercial air transportation.

Keywords: hypersonic, ramjet, propulsion, Scramjet, Turbojet, turbofan

Procedia PDF Downloads 306
12544 Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Crosslinked Redox Enzyme/Carbon Nanotube on a Thiol-Modified Au Surface

Authors: A. K. M. Kafi, S. N. Nina, Mashitah M. Yusoff

Abstract:

In this work, we have described a new 3-dimensional (3D) network of crosslinked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor.

Keywords: biosensor, nanomaterials, redox enzyme, thiol-modified Au surface

Procedia PDF Downloads 317