Search results for: group learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14422

Search results for: group learning

13672 The Influence of Aerobic Physical Exercise with Different Frequency to Concentration of Vascular Endothelial Growth Factor in Brain Tissue of Wistar Rat

Authors: Rostika Flora, Muhammad Zulkarnain, Syokumawena

Abstract:

Background: Aerobic physical exercises are recommended to keep body fit and healthy although physical exercises themselves can increase body metabolism and oxygen and can lead into tissue hypoxia. Oxygen pressure can serve as Vascular Endhothelial Growth Factor (VEGF) regulator. Hypoxia increases gene expression of VEGF through ascendant regulation of HIF-1. VEGF is involved in regulating angiogenesis process. Aerobic physical exercises can increase the concentration of VEGF in brain and enables angiogenesis process. We have investigated the influence of aerobic physical exercise to the VGEF concentration of wistar rat’s brain. Methods: This was experimental study using post test only control group design. Independent t-test was used as statistical test. The samples were twenty four wistar rat (Rattus Norvegicus) which were divided into four groups: group P1 (control group), group P2 (treatment group with once-a-week exercise), group P3 (treatment group with three time-a-week exercise), and group P4 (treatment group with seven time-a-week exercise). Group P2, P3, and P4 were treated with treadmil with speed of 20 m/minute for 30 minutes. The concentration of VEGF was determined by ELISA. Results: There was a significant increase of VEGF in treatment group compared with control one (<0.05). The maximum increase was found in group P2 (129.02±64.49) and the minimum increase was in group P4 (96.98±11.20). Conclusion: The frequency of aerobic physical exercises influenced the concentration of Vascular Endhothelial Growth Factor (VEGF) of brain tissue of Rattus Norvegicus.

Keywords: brain tissue, hypoxia, physical exercises, vascular endhothelial growth factor

Procedia PDF Downloads 490
13671 A Family of Distributions on Learnable Problems without Uniform Convergence

Authors: César Garza

Abstract:

In supervised binary classification and regression problems, it is well-known that learnability is equivalent to a uniform convergence of the hypothesis class, and if a problem is learnable, it is learnable by empirical risk minimization. For the general learning setting of unsupervised learning tasks, there are non-trivial learning problems where uniform convergence does not hold. We present here the task of learning centers of mass with an extra feature that “activates” some of the coordinates over the unit ball in a Hilbert space. We show that the learning problem is learnable under a stable RLM rule. We introduce a family of distributions over the domain space with some mild restrictions for which the sample complexity of uniform convergence for these problems must grow logarithmically with the dimension of the Hilbert space. If we take this dimension to infinity, we obtain a learnable problem for which the uniform convergence property fails for a vast family of distributions.

Keywords: statistical learning theory, learnability, uniform convergence, stability, regularized loss minimization

Procedia PDF Downloads 127
13670 Students and Teachers Perceptions about Interactive Learning in Teaching Health Promotion Course: Implication for Nursing Education and Practice

Authors: Ahlam Alnatour

Abstract:

Background: To our knowledge, there is lack of studies that describe the experience of studying health promotion courses using an interactive approach, and compare students’ and teachers perceptions about this method of teaching. The purpose of this study is to provide a comparison between student and teacher experiences and perspectives in learning health promotion course using interactive learning. Design: A descriptive qualitative design was used to provide an in-depth description and understanding of students’ and teachers experiences and perceptions of learning health promotion courses using an interactive learning. Study Participants: About 14 fourteen students (seven male, seven female) and eight teachers at governmental university in northern Jordan participated in this study. Data Analysis: Conventional content analysis approach was used for participants’ scripts to gain an in-depth description for both students' and teacher’s experiences. Results: The main themes emerged from the data analysis describing the students’ and teachers perceptions of the interactive health promotion class: teachers’ and students positive experience in adopting interactive learning, advantages and benefits of interactive teaching, barriers to interactive teaching, and suggestions for improvement. Conclusion: Both teachers and students reflected positive attitudes toward interactive learning. Interactive learning helped to engage in learning process physically and cognitively. Interactive learning enhanced learning process, promote student attention, enhanced final performance, and satisfied teachers and students accordingly. Interactive learning approach should be adopted in teaching graduate and undergraduate courses using updated and contemporary strategies. Nursing scholars and educators should be motivated to integrate interactive learning in teaching different nursing courses.

Keywords: interactive learning, nursing, health promotion, qualitative study

Procedia PDF Downloads 248
13669 Physical Physics: Enhancing the Learning Experience for Undergraduate Game Development Students

Authors: Y. Kavanagh, N. O'Hara, R. Palmer, P. Lowe, D. Rafferty

Abstract:

Physical Physics is a physics education methodology for games programfmes that integrates physical activity with movement tracking and modelling. It significantly enhances the learning experience and it is effective in illustrating how physics is core in games design and programming, while allowing students to be active participants and take ownership of the learning process. It has been successfully piloted with undergraduate students studying Games Development.

Keywords: activity, enhanced learning, game development, physics

Procedia PDF Downloads 287
13668 An Augmented-Reality Interactive Card Game for Teaching Elementary School Students

Authors: YuLung Wu, YuTien Wu, ShuMey Yu

Abstract:

Game-based learning can enhance the learning motivation of students and provide a means for them to learn through playing games. This study used augmented reality technology to develop an interactive card game as a game-based teaching aid for delivering elementary school science course content with the aim of enhancing student learning processes and outcomes. Through playing the proposed card game, students can familiarize themselves with appearance, features, and foraging behaviors of insects. The system records the actions of students, enabling teachers to determine their students’ learning progress. In this study, 37 students participated in an assessment experiment and provided feedback through questionnaires. Their responses indicated that they were significantly more motivated to learn after playing the game, and their feedback was mostly positive.

Keywords: game-based learning, learning motivation, teaching aid, augmented reality

Procedia PDF Downloads 373
13667 A Study of Achievement and Attitude on Learning Science in English by Using Co – Teaching Method

Authors: Sakchai Rachniyom

Abstract:

Owing to the ASEAN community will formally take place in the few months; therefore, Thais should realize about the importance of English language. Since, it is regarded as a working language in the community. To promote Science students’ English proficiency, teacher should be able to teach in English language appropriately and effectively. The purposes of the quasi – experimental research are (1) to measure the learning achievement, (2) to evaluate students’ satisfaction on the teaching and learning and (3) to study the consequences of co – teaching method in order comprehend the learning achievement and improvement. The participants were 40 general science students teacher. Two types of research instruments were included; (1) an achievement test, and (2) a questionnaire. This research was conducted for 1 semester. The statistics used in this research were arithmetic mean and standard deviation. The findings of the study revealed that students’ achievement score was significantly increased at statistical level .05 and the students satisfied the teaching and learning at the highest level . The students’ involvement and teachers’ support were promoted. It was also reported students’ learning was improved by co – teaching method.

Keywords: co – teaching method, learning science in english, teacher, education

Procedia PDF Downloads 477
13666 Investigating Teachers’ Perceptions about the Use of Technology in Second Language Learning at Universities in Pakistan

Authors: Nadir Ali Mugheri

Abstract:

This study has explored the perceptions of English language teachers (ELT) regarding use of technology in learning English as a second language (L2) at Universities in Pakistan. In this regard, 200 ELT teachers from 80 leading universities were selected through a judgmental sampling method. Results established that most of the teachers supported integration and incorporation of technology in the language classroom so as to teach L2 in an effective and efficient way. This study unearthed that the teachers termed the use of technology in learning English as a second language (ESL) as a positive step towards enhancing the learning capabilities and improving the personal traits of the students or learners. Findings suggest that the integration of technology in the language learning makes the learners within the classroom active and enthusiastic, and the teachers need to be equipped with the latest knowledge of mobile assisted language learning (MALL) and computer assisted language learning (CALL) so that they may ensure use of this innovative technology in their teaching practices. Results also indicated that the technology has proved itself a stimulus for improving language in the ELT milieu. The use of technology helps teachers develop themselves professionally. This study discovered that there are many determinants that make teaching and learning within the classroom efficacious, while the use of technology is one of them. Data was collected through qualitative design in order to get a complete depiction. Semi-structured interviews were conducted and analyzed through thematic analysis.

Keywords: english language teaching, computer assisted language learning, use of technology, thematic analysis

Procedia PDF Downloads 68
13665 Anxiety Caused by the Single Mode of Instruction in Multilingual Classrooms: The Case of African Language Learners

Authors: Stanle Madonsela

Abstract:

For learning to take place effectively, learners have to use language. Language becomes a critical tool by which to communicate, to express feelings, desires and thoughts, and most of all to learn. However, each individual’s capacity to use language is unique. In multilingual countries, classrooms usually comprise learners from different language backgrounds, and therefore the language used for teaching and learning requires rethinking. Interaction in the classroom, if done in a language that is understood by the learners, could maximise the outcomes of learning. This paper explores the extent to which the use of a single code becomes a source of anxiety to learners in multilingual classrooms in South African schools. It contends that a multilingual approach in the learning process should be explored in order to promote learner autonomy in the learning process.

Keywords: anxiety, classroom, foreign language teaching, multilingual

Procedia PDF Downloads 533
13664 Facial Emotion Recognition Using Deep Learning

Authors: Ashutosh Mishra, Nikhil Goyal

Abstract:

A 3D facial emotion recognition model based on deep learning is proposed in this paper. Two convolution layers and a pooling layer are employed in the deep learning architecture. After the convolution process, the pooling is finished. The probabilities for various classes of human faces are calculated using the sigmoid activation function. To verify the efficiency of deep learning-based systems, a set of faces. The Kaggle dataset is used to verify the accuracy of a deep learning-based face recognition model. The model's accuracy is about 65 percent, which is lower than that of other facial expression recognition techniques. Despite significant gains in representation precision due to the nonlinearity of profound image representations.

Keywords: facial recognition, computational intelligence, convolutional neural network, depth map

Procedia PDF Downloads 229
13663 The Effects of the Inference Process in Reading Texts in Arabic

Authors: May George

Abstract:

Inference plays an important role in the learning process and it can lead to a rapid acquisition of a second language. When learning a non-native language, i.e., a critical language like Arabic, the students depend on the teacher’s support most of the time to learn new concepts. The students focus on memorizing the new vocabulary and stress on learning all the grammatical rules. Hence, the students became mechanical and cannot produce the language easily. As a result, they are unable to predict the meaning of words in the context by relying heavily on the teacher, in that they cannot link their prior knowledge or even identify the meaning of the words without the support of the teacher. This study explores how the teacher guides students learning during the inference process and what are the processes of learning that can direct student’s inference.

Keywords: inference, reading, Arabic, language acquisition

Procedia PDF Downloads 530
13662 Data Clustering Algorithm Based on Multi-Objective Periodic Bacterial Foraging Optimization with Two Learning Archives

Authors: Chen Guo, Heng Tang, Ben Niu

Abstract:

Clustering splits objects into different groups based on similarity, making the objects have higher similarity in the same group and lower similarity in different groups. Thus, clustering can be treated as an optimization problem to maximize the intra-cluster similarity or inter-cluster dissimilarity. In real-world applications, the datasets often have some complex characteristics: sparse, overlap, high dimensionality, etc. When facing these datasets, simultaneously optimizing two or more objectives can obtain better clustering results than optimizing one objective. However, except for the objectives weighting methods, traditional clustering approaches have difficulty in solving multi-objective data clustering problems. Due to this, evolutionary multi-objective optimization algorithms are investigated by researchers to optimize multiple clustering objectives. In this paper, the Data Clustering algorithm based on Multi-objective Periodic Bacterial Foraging Optimization with two Learning Archives (DC-MPBFOLA) is proposed. Specifically, first, to reduce the high computing complexity of the original BFO, periodic BFO is employed as the basic algorithmic framework. Then transfer the periodic BFO into a multi-objective type. Second, two learning strategies are proposed based on the two learning archives to guide the bacterial swarm to move in a better direction. On the one hand, the global best is selected from the global learning archive according to the convergence index and diversity index. On the other hand, the personal best is selected from the personal learning archive according to the sum of weighted objectives. According to the aforementioned learning strategies, a chemotaxis operation is designed. Third, an elite learning strategy is designed to provide fresh power to the objects in two learning archives. When the objects in these two archives do not change for two consecutive times, randomly initializing one dimension of objects can prevent the proposed algorithm from falling into local optima. Fourth, to validate the performance of the proposed algorithm, DC-MPBFOLA is compared with four state-of-art evolutionary multi-objective optimization algorithms and one classical clustering algorithm on evaluation indexes of datasets. To further verify the effectiveness and feasibility of designed strategies in DC-MPBFOLA, variants of DC-MPBFOLA are also proposed. Experimental results demonstrate that DC-MPBFOLA outperforms its competitors regarding all evaluation indexes and clustering partitions. These results also indicate that the designed strategies positively influence the performance improvement of the original BFO.

Keywords: data clustering, multi-objective optimization, bacterial foraging optimization, learning archives

Procedia PDF Downloads 137
13661 On the Cyclic Property of Groups of Prime Order

Authors: Ying Yi Wu

Abstract:

The study of finite groups is a central topic in algebraic structures, and one of the most fundamental questions in this field is the classification of finite groups up to isomorphism. In this paper, we investigate the cyclic property of groups of prime order, which is a crucial result in the classification of finite abelian groups. We prove the following statement: If p is a prime, then every group G of order p is cyclic. Our proof utilizes the properties of group actions and the class equation, which provide a powerful tool for studying the structure of finite groups. In particular, we first show that any non-identity element of G generates a cyclic subgroup of G. Then, we establish the existence of an element of order p, which implies that G is generated by a single element. Finally, we demonstrate that any two generators of G are conjugate, which shows that G is a cyclic group. Our result has significant implications in the classification of finite groups, as it implies that any group of prime order is isomorphic to the cyclic group of the same order. Moreover, it provides a useful tool for understanding the structure of more complicated finite groups, as any finite abelian group can be decomposed into a direct product of cyclic groups. Our proof technique can also be extended to other areas of group theory, such as the classification of finite p-groups, where p is a prime. Therefore, our work has implications beyond the specific result we prove and can contribute to further research in algebraic structures.

Keywords: group theory, finite groups, cyclic groups, prime order, classification.

Procedia PDF Downloads 82
13660 Understanding Learning Styles of Hong Kong Tertiary Students for Engineering Education

Authors: K. M. Wong

Abstract:

Engineering education is crucial to technological innovation and advancement worldwide by generating young talents who are able to integrate scientific principles and design practical solutions for real-world problems. Graduates of engineering curriculums are expected to demonstrate an extensive set of learning outcomes as required in international accreditation agreements for engineering academic qualifications, such as the Washington Accord and the Sydney Accord. On the other hand, students have different learning preferences of receiving, processing and internalizing knowledge and skills. If the learning environment is advantageous to the learning styles of the students, there is a higher chance that the students can achieve the intended learning outcomes. With proper identification of the learning styles of the students, corresponding teaching strategies can then be developed for more effective learning. This research was an investigation of learning styles of tertiary students studying higher diploma programmes in Hong Kong. Data from over 200 students in engineering programmes were collected and analysed to identify the learning characteristics of students. A small-scale longitudinal study was then started to gather academic results of the students throughout their two-year engineering studies. Preliminary results suggested that the sample students were reflective, sensing, visual, and sequential learners. Observations from the analysed data not only provided valuable information for teachers to design more effective teaching strategies, but also provided data for further analysis with the students’ academic results. The results generated from the longitudinal study shed light on areas of improvement for more effective engineering curriculum design for better teaching and learning.

Keywords: learning styles, learning characteristics, engineering education, vocational education, Hong Kong

Procedia PDF Downloads 262
13659 Effectiveness of Short-Term Cognitive-Behavioral Group Therapy on Binge Eating Disorder in Females

Authors: Saeed Dehnavi, Ismail Asadallahi, Fatemeh Rahmatian, Elahe Rahimian

Abstract:

Purpose: Due to an increasing prevalence of over eating disorders, this paper aims to investigate the effectiveness of short-term group cognitive-behavioral therapy on reducing binge eating behavior and depression symptoms among females suffered from binge eating disorder (BED) in Qazvin, Iran. Methodology: This is aquasi-experimental study (pre-post testing plan with control group). Using a convenience sampling technique, binge eating scale (BES) and clinical interviews, 30 persons were selected among all clients who had referred to weight loss centers in Qazvin, these persons were randomly placed into two control and experimental groups. The experimental group participated in a seven-session plan on short-term cognitive-behavioral group therapy. Results: The results showed that the short term group cognitive-behavioral therapy results in a significant reduction in binge eating signs and depressive symptoms within the experimental group, compared to the control. Conclusion: Regarding the results, it is known that short-term group cognitive-behavioral therapy is effective in reducing overeating symptoms. Hence, it can be used as an economical and effective treatment method for individuals suffering from BED.

Keywords: cognitive-behavioral group therapy, binge eating disorder, depression

Procedia PDF Downloads 281
13658 Enabling Non-invasive Diagnosis of Thyroid Nodules with High Specificity and Sensitivity

Authors: Sai Maniveer Adapa, Sai Guptha Perla, Adithya Reddy P.

Abstract:

Thyroid nodules can often be diagnosed with ultrasound imaging, although differentiating between benign and malignant nodules can be challenging for medical professionals. This work suggests a novel approach to increase the precision of thyroid nodule identification by combining machine learning and deep learning. The new approach first extracts information from the ultrasound pictures using a deep learning method known as a convolutional autoencoder. A support vector machine, a type of machine learning model, is then trained using these features. With an accuracy of 92.52%, the support vector machine can differentiate between benign and malignant nodules. This innovative technique may decrease the need for pointless biopsies and increase the accuracy of thyroid nodule detection.

Keywords: thyroid tumor diagnosis, ultrasound images, deep learning, machine learning, convolutional auto-encoder, support vector machine

Procedia PDF Downloads 56
13657 Assessment of Obesity Parameters in Terms of Metabolic Age above and below Chronological Age in Adults

Authors: Orkide Donma, Mustafa M. Donma

Abstract:

Chronologic age (CA) of individuals is closely related to obesity and generally affects the magnitude of obesity parameters. On the other hand, close association between basal metabolic rate (BMR) and metabolic age (MA) is also a matter of concern. It is suggested that MA higher than CA is the indicator of the need to improve the metabolic rate. In this study, the aim was to assess some commonly used obesity parameters, such as obesity degree, visceral adiposity, BMR, BMR-to-weight ratio, in several groups with varying differences between MA and CA values. The study comprises adults, whose ages vary between 18 and 79 years. Four groups were constituted. Group 1, 2, 3 and 4 were composed of 55, 33, 76 and 47 adults, respectively. The individuals exhibiting -1, 0 and +1 for their MA-CA values were involved in Group 1, which was considered as the control group. Those, whose MA-CA values varying between -5 and -10 participated in Group 2. Those, whose MAs above their real ages were divided into two groups [Group 3 (MA-CA; from +5 to + 10) and Group 4 (MA-CA; from +11 to + 12)]. Body mass index (BMI) values were calculated. TANITA body composition monitor using bioelectrical impedance analysis technology was used to obtain values for obesity degree, visceral adiposity, BMR and BMR-to-weight ratio. The compiled data were evaluated statistically using a statistical package program; SPSS. Mean ± SD values were determined. Correlation analyses were performed. The statistical significance degree was accepted as p < 0.05. The increase in BMR was positively correlated with obesity degree. MAs and CAs of the groups were 39.9 ± 16.8 vs 39.9 ± 16.7 years for Group 1, 45.0 ± 15.3 vs 51.4 ± 15.7 years for Group 2, 47.2 ± 12.7 vs 40.0 ± 12.7 years for Group 3, and 53.6 ± 14.8 vs 42 ± 14.8 years for Group 4. BMI values of the groups were 24.3 ± 3.6 kg/m2, 23.2 ± 1.7 kg/m2, 30.3 ± 3.8 kg/m2, and 40.1 ± 5.1 kg/m2 for Group 1, 2, 3 and 4, respectively. Values obtained for BMR were 1599 ± 328 kcal in Group 1, 1463 ± 198 kcal in Group 2, 1652 ± 350 kcal in Group 3, and 1890 ± 360 kcal in Group 4. A correlation was observed between BMR and MA-CA values in Group 1. No correlation was detected in other groups. On the other hand, statistically significant correlations between MA-CA values and obesity degree, BMI as well as BMR/weight were found in Group 3 and in Group 4. It was concluded that upon consideration of these findings in terms of MA-CA values, BMR-to-weight ratio was found to be much more useful indicator of the severe increase in obesity development than BMR. Also, the lack of associations between MA and BMR as well as BMR-to-weight ratio emphasize the importance of consideration of MA-CA values rather than MA.

Keywords: basal metabolic rate, basal metabolic rate-to-weight-ratio, chronologic age, metabolic age, obesity degree

Procedia PDF Downloads 96
13656 Promoting Stem Education and a Cosmic Perspective by Using 21st Century Science of Learning

Authors: Rohan Roberts

Abstract:

The purpose of this project was to collaborate with a group of high-functioning, more-able students (aged 15-18) to promote STEM Education and a love for science by bringing a cosmic perspective into the classroom and high school environment. This was done using 21st century science of learning, a focus on the latest research on Neuroeducation, and modern pedagogical methods based on Howard Gardner's theory of Multiple Intelligences, Bill Lucas’ theory of New Smarts, and Sir Ken Robinson’s recommendations on encouraging creativity. The result was an increased sense of passion, excitement, and wonder about science in general, and about the marvels of space and the universe in particular. In addition to numerous unique and innovative science-based initiatives, clubs, workshops, and science trips, this project also saw a marked rise in student-teacher collaboration in science learning and in student engagement with the general public through the press, social media, and community-based initiatives. This paper also outlines the practical impact that bringing a cosmic perspective into the classroom has had on the lives, interests, and future career prospects of the students involved in this endeavour.

Keywords: cosmic perspective, gifted and talented, neuro-education, STEM education

Procedia PDF Downloads 333
13655 The Use of Mobile Applications for Language Learning in 21st-Century Teacher Education for Sustainable Development in Africa

Authors: Carol C. Opara, Olukemi E. Adetuyi-Olu-Francis

Abstract:

The need for ICT in Teacher Education due to the nature of 21st-century learners who are computer citizens is essential. The recent increase in the use of Mobile phones has equally revealed the importance of Mobile Applications for learning purposes. However, teacher-trainees and the trainers need to be well-grounded in basic ICT skills for an appropriate outcome. This study seeks to assess the use of Mobile Applications for language learning in Teacher Education teaching-learning process. A 22-item e-questionnaire was used to elicit information from teacher-trainers and teachers-trainees from Faculties of Education in Nigerian Universities. Major findings of this study include: That teacher-education sector is not adequately prepared for manipulative use of ICT and Mobile Applications for teaching and learning process; etc. It was recommended among others that, teacher-trainers should be trained and re-trained on the manipulative use of Mobile devices and the several applications for teaching-learning purpose, especially language education.

Keywords: information and communications technology, ICT, language learning, mobile application, sustainable development, teacher education

Procedia PDF Downloads 164
13654 Investigating the Dynamics of Knowledge Acquisition in Learning Using Differential Equations

Authors: Gilbert Makanda, Roelf Sypkens

Abstract:

A mathematical model for knowledge acquisition in teaching and learning is proposed. In this study we adopt the mathematical model that is normally used for disease modelling into teaching and learning. We derive mathematical conditions which facilitate knowledge acquisition. This study compares the effects of dropping out of the course at early stages with later stages of learning. The study also investigates effect of individual interaction and learning from other sources to facilitate learning. The study fits actual data to a general mathematical model using Matlab ODE45 and lsqnonlin to obtain a unique mathematical model that can be used to predict knowledge acquisition. The data used in this study was obtained from the tutorial test results for mathematics 2 students from the Central University of Technology, Free State, South Africa in the department of Mathematical and Physical Sciences. The study confirms already known results that increasing dropout rates and forgetting taught concepts reduce the population of knowledgeable students. Increasing teaching contacts and access to other learning materials facilitate knowledge acquisition. The effect of increasing dropout rates is more enhanced in the later stages of learning than earlier stages. The study opens up a new direction in further investigations in teaching and learning using differential equations.

Keywords: differential equations, knowledge acquisition, least squares nonlinear, dynamical systems

Procedia PDF Downloads 363
13653 Learning from Small Amount of Medical Data with Noisy Labels: A Meta-Learning Approach

Authors: Gorkem Algan, Ilkay Ulusoy, Saban Gonul, Banu Turgut, Berker Bakbak

Abstract:

Computer vision systems recently made a big leap thanks to deep neural networks. However, these systems require correctly labeled large datasets in order to be trained properly, which is very difficult to obtain for medical applications. Two main reasons for label noise in medical applications are the high complexity of the data and conflicting opinions of experts. Moreover, medical imaging datasets are commonly tiny, which makes each data very important in learning. As a result, if not handled properly, label noise significantly degrades the performance. Therefore, a label-noise-robust learning algorithm that makes use of the meta-learning paradigm is proposed in this article. The proposed solution is tested on retinopathy of prematurity (ROP) dataset with a very high label noise of 68%. Results show that the proposed algorithm significantly improves the classification algorithm's performance in the presence of noisy labels.

Keywords: deep learning, label noise, robust learning, meta-learning, retinopathy of prematurity

Procedia PDF Downloads 159
13652 Efficiency of Treatment in Patients with Newly Diagnosed Destructive Pulmonary Tuberculosis Using Intravenous Chemotherapy

Authors: M. Kuzhko, M. Gumeniuk, D. Butov, T. Tlustova, O. Denysov, T. Sprynsian

Abstract:

Background: The aim of the research was to determine the effectiveness of chemotherapy using intravenous antituberculosis drugs compared with their oral administration during the intensive phase of treatment. Methods: 152 tuberculosis patients were randomized into 2 groups: Main (n=65) who received isoniazid, ethambutol and sodium rifamycin intravenous + pyrazinamide per os and control (n=87) who received all the drugs (isoniazid, rifampicin, ethambutol, pyrazinamide) orally. Results: After 2 weeks of treatment symptoms of intoxication disappeared in 59 (90.7±3.59 %) of patients of the main group and 60 (68.9±4.9 %) patients in the control group, p<0.05. The mean duration of symptoms of intoxication in patients main group was 9.6±0.7 days, in control group – 13.7±0.9 days. After completing intensive phase sputum conversion was found in all the patients main group and 71 (81.6±4.1 %) patients control group p < 0.05. The average time of sputum conversion in main group was 1.6±0.1 months and 1.9±0.1 months in control group, p > 0.05. In patients with destructive pulmonary tuberculosis time to sputum conversion was 1.7±0.1 months in main group and 2.2±0.2 months in control group, p < 0.05. The average time of cavities healing in main group was 2.9±0.2 months and 3.9±0.2 months in the control group, p < 0.05. Conclusions: In patients with newly diagnosed destructive pulmonary tuberculosis use of isoniazid, ethambutol and sodium rifamycin intravenous in the intensive phase of chemotherapy resulted in a significant reduction in terms of the disappearance of symptoms of intoxication and sputum conversion.

Keywords: intravenous chemotherapy, tuberculosis, treatment efficiency, tuberculosis drugs

Procedia PDF Downloads 201
13651 The Effect of Excel on Undergraduate Students’ Understanding of Statistics and the Normal Distribution

Authors: Masomeh Jamshid Nejad

Abstract:

Nowadays, statistical literacy is no longer a necessary skill but an essential skill with broad applications across diverse fields, especially in operational decision areas such as business management, finance, and economics. As such, learning and deep understanding of statistical concepts are essential in the context of business studies. One of the crucial topics in statistical theory and its application is the normal distribution, often called a bell-shaped curve. To interpret data and conduct hypothesis tests, comprehending the properties of normal distribution (the mean and standard deviation) is essential for business students. This requires undergraduate students in the field of economics and business management to visualize and work with data following a normal distribution. Since technology is interconnected with education these days, it is important to teach statistics topics in the context of Python, R-studio, and Microsoft Excel to undergraduate students. This research endeavours to shed light on the effect of Excel-based instruction on learners’ knowledge of statistics, specifically the central concept of normal distribution. As such, two groups of undergraduate students (from the Business Management program) were compared in this research study. One group underwent Excel-based instruction and another group relied only on traditional teaching methods. We analyzed experiential data and BBA participants’ responses to statistic-related questions focusing on the normal distribution, including its key attributes, such as the mean and standard deviation. The results of our study indicate that exposing students to Excel-based learning supports learners in comprehending statistical concepts more effectively compared with the other group of learners (teaching with the traditional method). In addition, students in the context of Excel-based instruction showed ability in picturing and interpreting data concentrated on normal distribution.

Keywords: statistics, excel-based instruction, data visualization, pedagogy

Procedia PDF Downloads 53
13650 A Review of Applying Serious Games on Learning

Authors: Carlos Oliveira, Ulrick Pimentel

Abstract:

Digital games have conquered a growing space in the lives of children, adolescents and adults. In this perspective, the use of this resource has shown to be an important strategy that facilitates the learning process. This research is a literature review on the use of serious games in teaching, which shows the characteristics of these games, the benefits and possible harms that this resource can produce, in addition to the possible methods of evaluating the effectiveness of this resource in teaching. The results point out that Serious Games have significant potential as a tool for instruction. However, their effectiveness in terms of learning outcomes is still poorly studied, mainly due to the complexity involved in evaluating intangible measures.

Keywords: serious games, learning, application, literature review

Procedia PDF Downloads 307
13649 The Role of Motivational Beliefs and Self-Regulated Learning Strategies in The Prediction of Mathematics Teacher Candidates' Technological Pedagogical And Content Knowledge (TPACK) Perceptions

Authors: Ahmet Erdoğan, Şahin Kesici, Mustafa Baloğlu

Abstract:

Information technologies have lead to changes in the areas of communication, learning, and teaching. Besides offering many opportunities to the learners, these technologies have changed the teaching methods and beliefs of teachers. What the Technological Pedagogical Content Knowledge (TPACK) means to the teachers is considerably important to integrate technology successfully into teaching processes. It is necessary to understand how to plan and apply teacher training programs in order to balance students’ pedagogical and technological knowledge. Because of many inefficient teacher training programs, teachers have difficulties in relating technology, pedagogy and content knowledge each other. While providing an efficient training supported with technology, understanding the three main components (technology, pedagogy and content knowledge) and their relationship are very crucial. The purpose of this study is to determine whether motivational beliefs and self-regulated learning strategies are significant predictors of mathematics teacher candidates' TPACK perceptions. A hundred seventy five Turkish mathematics teachers candidates responded to the Motivated Strategies for Learning Questionnaire (MSLQ) and the Technological Pedagogical And Content Knowledge (TPACK) Scale. Of the group, 129 (73.7%) were women and 46 (26.3%) were men. Participants' ages ranged from 20 to 31 years with a mean of 23.04 years (SD = 2.001). In this study, a multiple linear regression analysis was used. In multiple linear regression analysis, the relationship between the predictor variables, mathematics teacher candidates' motivational beliefs, and self-regulated learning strategies, and the dependent variable, TPACK perceptions, were tested. It was determined that self-efficacy for learning and performance and intrinsic goal orientation are significant predictors of mathematics teacher candidates' TPACK perceptions. Additionally, mathematics teacher candidates' critical thinking, metacognitive self-regulation, organisation, time and study environment management, and help-seeking were found to be significant predictors for their TPACK perceptions.

Keywords: candidate mathematics teachers, motivational beliefs, self-regulated learning strategies, technological and pedagogical knowledge, content knowledge

Procedia PDF Downloads 481
13648 The Use of Social Media and Its Impact on the Learning Behavior of ESL University Students for Sustainable Education in Pakistan

Authors: Abdullah Mukhtar, Shehroz Mukhtar, Amina Mukhtar, Choudhry Shahid, Hafiz Raza Razzaq, Saif Ur Rahman

Abstract:

The aim of this study is to find out the negative and positive impacts of social media platforms on the attitude of learning and educational environment of student’s community. Social Media platforms have become a source of collaboration with one another throughout the globe making it a small world. This study performs focalized investigation of the adverse and constructive factors that have a strong impact not only on the psychological adjustments but also on the academic performance of peers. This study is a quantitative research adopting random sampling method in which the participants were the students of university. Researcher distributed 1000 questionnaires among the university students from different departments and asked them to fill the data on Lickert Scale. The participants are from the age group of 18-24 years. Study applies user and gratification theory in order to examine behavior of students practicing social media in their academic and personal life. Findings of the study reveal that the use of social media platforms in Pakistani context has less positive impact as compared to negative impacts on the behavior of students towards learning. The research suggests that usage of online social media platforms should be taught to students; awareness must the created among the users of social media by the means of seminars, workshops and by media itself to overcome the negative impacts of social media leading towards sustainable education in Pakistan.

Keywords: social media, positive impact, negative impact, learning behaviour

Procedia PDF Downloads 61
13647 Comparison of Two Online Intervention Protocols on Reducing Habitual Upper Body Postures: A Randomized Trial

Authors: Razieh Karimian, Kim Burton, Mohammad Mehdi Naghizadeh, Maryam Karimian

Abstract:

Introduction: Habitual upper body postures are associated with online learning during the COVID-19 pandemic. This study explored whether adding an exercise routine to an ergonomic advice intervention improves these postures. Methods: In this randomized trial, 42 male adolescent students with a forward head posture were randomly divided into two equal groups, one allocated to ergonomic advice alone and the other to ergonomic advice plus an exercise routine. The angles of forward head, shoulder, and back postures were measured with a photogrammetric profile technique before and after the 8-week intervention period. Findings: During home quarantine, 76% of the students used their mobile phones, while 35% used a table-chair-computer for online learning. While significant reductions of the forward, shoulder, and back angles were found in both groups (P < 0.001), the effect was significantly greater in the exercise group (P < 0.001: forward head, shoulder, and back angles reduced by some 9, 6, and 5 degrees respectively, compared with 4 degrees in the forward head, and 2 degrees in the shoulder and back angles for ergonomic advice alone. Conclusion: The exercise routine produced a greater improvement in habitual upper body postures than ergonomic advice alone, a finding that may extend beyond online learning at home.

Keywords: randomized trial, online learning, adolescent, posture, exercise, ergonomic advice

Procedia PDF Downloads 62
13646 MRI Findings in Children with Intrac Table Epilepsy Compared to Children with Medical Responsive Epilepsy

Authors: Susan Amirsalari, Azime Khosrinejad, Elham Rahimian

Abstract:

Objective: Epilepsy is a common brain disorder characterized by a persistent tendency to develop in neurological, cognitive, and psychological contents. Magnetic Resonance Imaging (MRI) is a neuroimaging test facilitating the detection of structural epileptogenic lesions. This study aimed to compare the MRI findings between patients with intractable and drug-responsive epilepsy. Material & methods: This case-control study was conducted from 2007 to 2019. The research population encompassed all 1-16- year-old patients with intractable epilepsy referred to the Shafa Neuroscience Center (n=72) (a case group) and drug-responsive patients referred to the pediatric neurology clinic of Baqiyatallah Hospital (a control group). Results: There were 72 (23.5%) patients in the intractable epilepsy group and 200 (76.5%) patients in the drug-responsive group. The participants' mean age was 6.70 ±4.13 years, and there were 126 males and 106 females in this study Normal brain MRI was noticed in 21 (29.16%) patients in the case group and 184 (92.46%) patients in the control group. Neuronal migration disorder (NMD)was also exhibited in 7 (9.72%) patients in the case group and no patient in the control group. There were hippocampal abnormalities and focal lesions (mass, dysplasia, etc.) in 10 (13.88%) patients in the case group and only 1 (0.05%) patient in the control group. Gliosis and porencephalic cysts were presented in 3 (4.16%) patients in the case group and no patient in the control group. Cerebral and cerebellar atrophy was revealed in 8 (11.11%) patients in the case group and 4 (2.01%) patients in the control group. Corpus callosum agenesis, hydrocephalus, brain malacia, and developmental cyst were more frequent in the case group; however, the difference between the groups was not significant. Conclusion: The MRI findings such as hippocampal abnormalities, focal lesions (mass, dysplasia), NMD, porencephalic cysts, gliosis, and atrophy are significantly more frequent in children with intractable epilepsy than in those with drug-responsive epilepsy.

Keywords: magnetic resonance imaging, intractable epilepsy, drug responsive epilepsy, neuronal migrational disorder

Procedia PDF Downloads 43
13645 The Effects of a Digital Dialogue Game on Higher Education Students’ Argumentation-Based Learning

Authors: Omid Noroozi

Abstract:

Digital dialogue games have opened up opportunities for learning skills by engaging students in complex problem solving that mimic real world situations, without importing unwanted constraints and risks of the real world. Digital dialogue games can be motivating and engaging to students for fun, creative thinking, and learning. This study explored how undergraduate students engage with argumentative discourse activities which have been designed to intensify debate. A pre-test, post-test design was used with students who were assigned to groups of four and asked to debate a controversial topic with the aim of exploring various 'pros and cons' on the 'Genetically Modified Organisms (GMOs)'. Findings reveal that the Digital dialogue game can facilitate argumentation-based learning. The digital Dialogue game was also evaluated positively in terms of students’ satisfaction and learning experiences.

Keywords: argumentation, dialogue, digital game, learning, motivation

Procedia PDF Downloads 318
13644 Mathematics Professional Development: Uptake and Impacts on Classroom Practice

Authors: Karen Koellner, Nanette Seago, Jennifer Jacobs, Helen Garnier

Abstract:

Although studies of teacher professional development (PD) are prevalent, surprisingly most have only produced incremental shifts in teachers’ learning and their impact on students. There is a critical need to understand what teachers take up and use in their classroom practice after attending PD and why we often do not see greater changes in learning and practice. This paper is based on a mixed methods efficacy study of the Learning and Teaching Geometry (LTG) video-based mathematics professional development materials. The extent to which the materials produce a beneficial impact on teachers’ mathematics knowledge, classroom practices, and their students’ knowledge in the domain of geometry through a group-randomized experimental design are considered. Included is a close-up examination of a small group of teachers to better understand their interpretations of the workshops and their classroom uptake. The participants included 103 secondary mathematics teachers serving grades 6-12 from two US states in different regions. Randomization was conducted at the school level, with 23 schools and 49 teachers assigned to the treatment group and 18 schools and 54 teachers assigned to the comparison group. The case study examination included twelve treatment teachers. PD workshops for treatment teachers began in Summer 2016. Nine full days of professional development were offered to teachers, beginning with the one-week institute (Summer 2016) and four days of PD throughout the academic year. The same facilitator-led all of the workshops, after completing a facilitator preparation process that included a multi-faceted assessment of fidelity. The overall impact of the LTG PD program was assessed from multiple sources: two teacher content assessments, two PD embedded assessments, pre-post-post videotaped classroom observations, and student assessments. Additional data were collected from the case study teachers including additional videotaped classroom observations and interviews. Repeated measures ANOVA analyses were used to detect patterns of change in the treatment teachers’ content knowledge before and after completion of the LTG PD, relative to the comparison group. No significant effects were found across the two groups of teachers on the two teacher content assessments. Teachers were rated on the quality of their mathematics instruction captured in videotaped classroom observations using the Math in Common Observation Protocol. On average, teachers who attended the LTG PD intervention improved their ability to engage students in mathematical reasoning and to provide accurate, coherent, and well-justified mathematical content. In addition, the LTG PD intervention and instruction that engaged students in mathematical practices both positively and significantly predicted greater student knowledge gains. Teacher knowledge was not a significant predictor. Twelve treatment teachers self-selected to serve as case study teachers to provide additional videotapes in which they felt they were using something from the PD they learned and experienced. Project staff analyzed the videos, compared them to previous videos and interviewed the teachers regarding their uptake of the PD related to content knowledge, pedagogical knowledge and resources used. The full paper will include the case study of Ana to illustrate the factors involved in what teachers take up and use from participating in the LTG PD.

Keywords: geometry, mathematics professional development, pedagogical content knowledge, teacher learning

Procedia PDF Downloads 123
13643 Enhancing Sell-In and Sell-Out Forecasting Using Ensemble Machine Learning Method

Authors: Vishal Das, Tianyi Mao, Zhicheng Geng, Carmen Flores, Diego Pelloso, Fang Wang

Abstract:

Accurate sell-in and sell-out forecasting is a ubiquitous problem in the retail industry. It is an important element of any demand planning activity. As a global food and beverage company, Nestlé has hundreds of products in each geographical location that they operate in. Each product has its sell-in and sell-out time series data, which are forecasted on a weekly and monthly scale for demand and financial planning. To address this challenge, Nestlé Chilein collaboration with Amazon Machine Learning Solutions Labhas developed their in-house solution of using machine learning models for forecasting. Similar products are combined together such that there is one model for each product category. In this way, the models learn from a larger set of data, and there are fewer models to maintain. The solution is scalable to all product categories and is developed to be flexible enough to include any new product or eliminate any existing product in a product category based on requirements. We show how we can use the machine learning development environment on Amazon Web Services (AWS) to explore a set of forecasting models and create business intelligence dashboards that can be used with the existing demand planning tools in Nestlé. We explored recent deep learning networks (DNN), which show promising results for a variety of time series forecasting problems. Specifically, we used a DeepAR autoregressive model that can group similar time series together and provide robust predictions. To further enhance the accuracy of the predictions and include domain-specific knowledge, we designed an ensemble approach using DeepAR and XGBoost regression model. As part of the ensemble approach, we interlinked the sell-out and sell-in information to ensure that a future sell-out influences the current sell-in predictions. Our approach outperforms the benchmark statistical models by more than 50%. The machine learning (ML) pipeline implemented in the cloud is currently being extended for other product categories and is getting adopted by other geomarkets.

Keywords: sell-in and sell-out forecasting, demand planning, DeepAR, retail, ensemble machine learning, time-series

Procedia PDF Downloads 272