Search results for: ground response analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31779

Search results for: ground response analysis

31029 Analysis of Surface Hardness, Surface Roughness and near Surface Microstructure of AISI 4140 Steel Worked with Turn-Assisted Deep Cold Rolling Process

Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma, K. Jagannath, Achutha Kini U.

Abstract:

In the present study, response surface methodology has been used to optimize turn-assisted deep cold rolling process of AISI 4140 steel. A regression model is developed to predict surface hardness and surface roughness using response surface methodology and central composite design. In the development of predictive model, deep cold rolling force, ball diameter, initial roughness of the workpiece, and number of tool passes are considered as model variables. The rolling force and the ball diameter are the significant factors on the surface hardness and ball diameter and numbers of tool passes are found to be significant for surface roughness. The predicted surface hardness and surface roughness values and the subsequent verification experiments under the optimal operating conditions confirmed the validity of the predicted model. The absolute average error between the experimental and predicted values at the optimal combination of parameter settings for surface hardness and surface roughness is calculated as 0.16% and 1.58% respectively. Using the optimal processing parameters, the hardness is improved from 225 to 306 HV, which resulted in an increase in the near surface hardness by about 36% and the surface roughness is improved from 4.84µm to 0.252 µm, which resulted in decrease in the surface roughness by about 95%. The depth of compression is found to be more than 300µm from the microstructure analysis and this is in correlation with the results obtained from the microhardness measurements. Taylor Hobson Talysurf tester, micro Vickers hardness tester, optical microscopy and X-ray diffractometer are used to characterize the modified surface layer.

Keywords: hardness, response surface methodology, microstructure, central composite design, deep cold rolling, surface roughness

Procedia PDF Downloads 414
31028 Impact of Pandemics on Cities and Societies

Authors: Deepak Jugran

Abstract:

Purpose: The purpose of this study is to identify how past Pandemics shaped social evolution and cities. Methodology: A historical and comparative analysis of major historical pandemics in human history their origin, transmission route, biological response and the aftereffects. A Comprehensive pre & post pandemic scenario and focuses selectively on major issues and pandemics that have deepest & lasting impact on society with available secondary data. Results: Past pandemics shaped the behavior of human societies and their cities and made them more resilient biologically, intellectually & socially endorsing the theory of “Survival of the fittest” by Sir Charles Darwin. Pandemics & Infectious diseases are here to stay and as a human society, we need to strengthen our collective response & preparedness besides evolving mechanisms for strict controls on inter-continental movements of people, & especially animals who become carriers for these viruses. Conclusion: Pandemics always resulted in great mortality, but they also improved the overall individual human immunology & collective social response; at the same time, they also improved the public health system of cities, health delivery systems, water, sewage distribution system, institutionalized various welfare reforms and overall collective social response by the societies. It made human beings more resilient biologically, intellectually, and socially hence endorsing the theory of “AGIL” by Prof Talcott Parsons. Pandemics & infectious diseases are here to stay and as humans, we need to strengthen our city response & preparedness besides evolving mechanisms for strict controls on inter-continental movements of people, especially animals who always acted as carriers for these novel viruses. Pandemics over the years acted like natural storms, mitigated the prevailing social imbalances and laid the foundation for scientific discoveries. We understand that post-Covid-19, institutionalized city, state and national mechanisms will get strengthened and the recommendations issued by the various expert groups which were ignored earlier will now be implemented for reliable anticipation, better preparedness & help to minimize the impact of Pandemics. Our analysis does not intend to present chronological findings of pandemics but rather focuses selectively on major pandemics in history, their causes and how they wiped out an entire city’s population and influenced the societies, their behavior and facilitated social evolution.

Keywords: pandemics, Covid-19, social evolution, cities

Procedia PDF Downloads 104
31027 Monitoring Land Productivity Dynamics of Gombe State, Nigeria

Authors: Ishiyaku Abdulkadir, Satish Kumar J

Abstract:

Land Productivity is a measure of the greenness of above-ground biomass in health and potential gain and is not related to agricultural productivity. Monitoring land productivity dynamics is essential to identify, especially when and where the trend is characterized degraded for mitigation measures. This research aims to monitor the land productivity trend of Gombe State between 2001 and 2015. QGIS was used to compute NDVI from AVHRR/MODIS datasets in a cloud-based method. The result appears that land area with improving productivity account for 773sq.km with 4.31%, stable productivity traced to 4,195.6 sq.km with 23.40%, stable but stressed productivity represent 18.7sq.km account for 0.10%, early sign of decline productivity occupied 5203.1sq.km with 29%, declining productivity account for 7019.7sq.km, represent 39.2%, water bodies occupied 718.7sq.km traced to 4% of the state’s area.

Keywords: above-ground biomass, dynamics, land productivity, man-environment relationship

Procedia PDF Downloads 141
31026 Thanking as a Compliment Response at Higher Education Institution: A Comparative Study of Omani and Australian Speakers

Authors: Arfat Bait Jamil

Abstract:

This study investigates how the compliment response of thanking is performed by Omani and Australian, lecturers and students, in higher educational settings. Semi-structured interviews and observation records were used to collect data. Thanking responses were aggregated from interviews with Omani lecturers and students in Oman, and from Australian lecturers and students in Australia, wherein they were asked to imagine themselves being complimented on five different compliment topics. After the interviews, they used observation record to note down real-life examples of compliment exchanges, along with their opinions. The findings show that thanking is not a simple compliment response. Depending on the context in which the compliment is delivered, thanking does not always suggest positive thoughts or feelings and compliment approval.

Keywords: Australia, compliment responses, Oman, thanking

Procedia PDF Downloads 244
31025 The Influence of Neural Synchrony on Auditory Middle Latency and Late Latency Responses and Its Correlation with Audiological Profile in Individuals with Auditory Neuropathy

Authors: P. Renjitha, P. Hari Prakash

Abstract:

Auditory neuropathy spectrum disorder (ANSD) is an auditory disorder with normal cochlear outer hair cell function and disrupted auditory nerve function. It results in unique clinical characteristic with absent auditory brainstem response (ABR), absent acoustic reflex and the presence of otoacoustic emissions (OAE) and cochlear microphonics. The lesion site could be at cochlear inner hair cells, the synapse between the inner hair cells and type I auditory nerve fibers, and/or the auditory nerve itself. But the literatures on synchrony at higher auditory system are sporadic and are less understood. It might be interesting to see if there is a recovery of neural synchrony at higher auditory centers. Also, does the level at which the auditory system recovers with adequate synchrony to the extent of observable evoke response potentials (ERPs) can predict speech perception? In the current study, eight ANSD participants and healthy controls underwent detailed audiological assessment including ABR, auditory middle latency response (AMLR), and auditory late latency response (ALLR). AMLR was recorded for clicks and ALLR was evoked using 500Hz and 2 kHz tone bursts. Analysis revealed that the participant could be categorized into three groups. Group I (2/8) where ALLR was present only for 2kHz tone burst. Group II (4/8), where AMLR was absent and ALLR was seen for both the stimuli. Group III (2/8) consisted individuals with identifiable AMLR and ALLR for all the stimuli. The highest speech identification sore observed in ANSD group was 30% and hence considered having poor speech perception. Overall test result indicates that the site of neural synchrony recovery could be varying across individuals with ANSD. Some individuals show recovery of neural synchrony at the thalamocortical level while others show the same only at the cortical level. Within ALLR itself there could be variation across stimuli again could be related to neural synchrony. Nevertheless, none of these patterns could possible explain the speech perception ability of the individuals. Hence, it could be concluded that neural synchrony as measured by evoked potentials could not be a good clinical predictor speech perception.

Keywords: auditory late latency response, auditory middle latency response, auditory neuropathy spectrum disorder, correlation with speech identification score

Procedia PDF Downloads 143
31024 Artificial Neural Network in Predicting the Soil Response in the Discrete Element Method Simulation

Authors: Zhaofeng Li, Jun Kang Chow, Yu-Hsing Wang

Abstract:

This paper attempts to bridge the soil properties and the mechanical response of soil in the discrete element method (DEM) simulation. The artificial neural network (ANN) was therefore adopted, aiming to reproduce the stress-strain-volumetric response when soil properties are given. 31 biaxial shearing tests with varying soil parameters (e.g., initial void ratio and interparticle friction coefficient) were generated using the DEM simulations. Based on these 45 sets of training data, a three-layer neural network was established which can output the entire stress-strain-volumetric curve during the shearing process from the input soil parameters. Beyond the training data, 2 additional sets of data were generated to examine the validity of the network, and the stress-strain-volumetric curves for both cases were well reproduced using this network. Overall, the ANN was found promising in predicting the soil behavior and reducing repetitive simulation work.

Keywords: artificial neural network, discrete element method, soil properties, stress-strain-volumetric response

Procedia PDF Downloads 393
31023 Evaluation of Response Modification Factors in Moment Resisting Frame Buildings Considering Soil Structure Interaction

Authors: K. Farheen, A. Munir

Abstract:

Seismic response of the multi-storey buildings is created by the interaction of both the structure and underlying soil medium. The seismic design philosophy is incorporated using response modification factor 'R'. Current code based values of 'R' factor does not reflect the SSI problem as it is based on fixed base condition. In this study, the modified values of 'R' factor for moment resisting frame (MRF) considering SSI are evaluated. The response of structure with and without SSI has been compared using equivalent linear static and nonlinear static pushover analyses for 10-storied moment resisting frame building. The building is located in seismic zone 2B situated on different soils with shear wave velocity (Vₛ) of 300m/sec (SD) and 1200m/s (SB). Code based 'R' factor value for building frame system has been taken as 5.5. Soil medium is modelled using identical but mutually independent horizontal and vertical springs. It was found that the modified 'R' factor values have been decreased by 47% and 43% for soil SD and SB respectively as compared to that of code based 'R' factor.

Keywords: buildings, SSI, shear wave velocity, R factor

Procedia PDF Downloads 206
31022 Comparison of Selected Behavioural Patterns of German Shepherd Puppies in Open-Field Test by Practical Assessment Report

Authors: Igor Miňo, Lenka Lešková

Abstract:

Over the past 80 years, open-field method has evolved as a commonly used tool for the analysis of animal behaviour. The study was carried out using 50 kennel-reared purebred puppies of the German Shepherd dog breed. All dogs were tested in 5th, 7th, and 9th week of age. For the purpose of behavioural analysis, an open-field evaluation report was designed prior to testing to ensure the most convenient, rapid, and suitable way to assess selected behavioural patterns in field conditions. Onset of vocalisation, intensity of vocalisation, level of physical activity, response to sound, and overall behaviour was monitored in the study. Correlations between measures of height, weight and chest circumference, and behavioural characteristics in the 5th, 7th, and 9th week of age were not statistically significant. Onset of vocalisation, intensity of vocalisation, level of physical activity and response to sound differed on statistically significant level between 5th, 7th, and 9th week of age. Results suggest that our practical assessment report may be used as an applicable method to evaluate the suitability of service dog puppies for future working roles.

Keywords: dog, behaviour, open-field, testing

Procedia PDF Downloads 214
31021 BART Matching Method: Using Bayesian Additive Regression Tree for Data Matching

Authors: Gianna Zou

Abstract:

Propensity score matching (PSM), introduced by Paul R. Rosenbaum and Donald Rubin in 1983, is a popular statistical matching technique which tries to estimate the treatment effects by taking into account covariates that could impact the efficacy of study medication in clinical trials. PSM can be used to reduce the bias due to confounding variables. However, PSM assumes that the response values are normally distributed. In some cases, this assumption may not be held. In this paper, a machine learning method - Bayesian Additive Regression Tree (BART), is used as a more robust method of matching. BART can work well when models are misspecified since it can be used to model heterogeneous treatment effects. Moreover, it has the capability to handle non-linear main effects and multiway interactions. In this research, a BART Matching Method (BMM) is proposed to provide a more reliable matching method over PSM. By comparing the analysis results from PSM and BMM, BMM can perform well and has better prediction capability when the response values are not normally distributed.

Keywords: BART, Bayesian, matching, regression

Procedia PDF Downloads 139
31020 A Human Centered Design of an Exoskeleton Using Multibody Simulation

Authors: Sebastian Kölbl, Thomas Reitmaier, Mathias Hartmann

Abstract:

Trial and error approaches to adapt wearable support structures to human physiology are time consuming and elaborate. However, during preliminary design, the focus lies on understanding the interaction between exoskeleton and the human body in terms of forces and moments, namely body mechanics. For the study at hand, a multi-body simulation approach has been enhanced to evaluate actual forces and moments in a human dummy model with and without a digital mock-up of an active exoskeleton. Therefore, different motion data have been gathered and processed to perform a musculosceletal analysis. The motion data are ground reaction forces, electromyography data (EMG) and human motion data recorded with a marker-based motion capture system. Based on the experimental data, the response of the human dummy model has been calibrated. Subsequently, the scalable human dummy model, in conjunction with the motion data, is connected with the exoskeleton structure. The results of the human-machine interaction (HMI) simulation platform are in particular resulting contact forces and human joint forces to compare with admissible values with regard to the human physiology. Furthermore, it provides feedback for the sizing of the exoskeleton structure in terms of resulting interface forces (stress justification) and the effect of its compliance. A stepwise approach for the setup and validation of the modeling strategy is presented and the potential for a more time and cost-effective development of wearable support structures is outlined.

Keywords: assistive devices, ergonomic design, inverse dynamics, inverse kinematics, multibody simulation

Procedia PDF Downloads 155
31019 Role of mHealth in Effective Response to Disaster

Authors: Mohammad H. Yarmohamadian, Reza Safdari, Nahid Tavakoli

Abstract:

In recent years, many countries have suffered various natural disasters. Disaster response continues to face the challenges in health care sector in all countries. Information and communication management is a significant challenge in disaster scene. During the last decades, rapid advances in information technology have led to manage information effectively and improve communication in health care setting. Information technology is a vital solution for effective response to disasters and emergencies so that if an efficient ICT-based health information system is available, it will be highly valuable in such situation. Of that, mobile technology represents a nearly computing technology infrastructure that is accessible, convenient, inexpensive and easy to use. Most projects have not yet reached the deployment stage, but evaluation exercises show that mHealth should allow faster processing and transport of patients, improved accuracy of triage and better monitoring of unattended patients at a disaster scene. Since there is a high prevalence of cell phones among world population, it is expected the health care providers and managers to take measures for applying this technology for improvement patient safety and public health in disasters. At present there are challenges in the utilization of mhealth in disasters such as lack of structural and financial issues in our country. In this paper we will discuss about benefits and challenges of mhealth technology in disaster setting considering connectivity, usability, intelligibility, communication and teaching for implementing this technology for disaster response.

Keywords: information technology, mhealth, disaster, effective response

Procedia PDF Downloads 433
31018 The Study of Hydro Physical Complex Characteristic of Clay Soil-Ground of Colchis Lowland

Authors: Paata Sitchinava

Abstract:

It has been studied phenomena subjected on the water physical (hydrophysical, mineralogy containing, specific hydrophysical) class of heavy clay soils of the Colchis lowland, according to various categories and forms of the porous water, which will be the base of the distributed used methods of the engineering practice and reclamation effectiveness evaluation. According to of clay grounds data, it has been chosen three research bases section in the central part of lowland, where has implemented investigation works by using a special program. It has been established, that three of cuts are somewhat identical, and by morphological grounds separated layers are the difference by Gallic quality. It has been implemented suitable laboratory experimental research at the samples taken from the cuts, at the base of these created classification mark of physical-technical characteristic, which is the base of suitable calculation of hydrophysical researches.

Keywords: Colchis lowland, drainage, water, soil-ground

Procedia PDF Downloads 176
31017 Modeling the Road Pavement Dynamic Response Due to Heavy Vehicles Loadings and Kinematic Excitations General Asymmetries

Authors: Josua K. Junias, Fillemon N. Nangolo, Petrina T. Johaness

Abstract:

The deterioration of pavement can lead to the formation of potholes, which cause the wheels of a vehicle to experience unusual and uneven movement. In addition, improper loading practices of heavy vehicles can result in dynamic loading of the pavement due to the vehicle's response to the irregular movement caused by the potholes. Previous studies have only focused on the effects of either the road's uneven surface or the asymmetrical loading of the vehicle, but not both. This study aimed to model the pavement's dynamic response to heavy vehicles under different loading configurations and wheel movements. A sample of 225 cases with symmetrical and asymmetrical loading and kinematic movements was used, and 27 validated 3D pavement-vehicle interactive models were developed using SIMWISE 4D. The study found that the type of kinematic movement experienced by the heavy vehicle affects the pavement's dynamic loading, with eccentrically loaded, asymmetrically kinematic heavy vehicles having a statistically significant impact. The study also suggests that the mass of the vehicle's suspension system plays a role in the pavement's dynamic loading.

Keywords: eccentricities, pavement dynamic loading, vertical displacement dynamic response, heavy vehicles

Procedia PDF Downloads 65
31016 Study the Influence of Zn in Zn-MgFe₂O₄ Nanoparticles for CO₂ Gas Sensors

Authors: Maryam Kiani, Xiaoqin Tian, Yu Du, Abdul Basit Kiani

Abstract:

Zn-doped MgFe₂O₄ nanoparticles (ZMFO) (Zn=0.0, 0.2, 0.35, 0.5,) were prepared by Co-precipitation synthesis route. Structural and morphological analysis confirmed the formation of spinel cubic nanostructure by X-Ray diffraction (XRD) data shows high reactive surface area owing to a small average particle size of about 14 nm, which greatly influences the gas sensing mechanism. The gas sensing property of ZMFO for several gases was obtained by measuring the resistance as a function of different factors, like composition and response time in air and in the presence of gas. The sensitivity of spinel ferrite to gases CO₂, O₂, and O₂ at room temperature has been compared. The nanostructured ZMFO exhibited high sensitivity in the order of CO₂>O₂ and showed a good response time of (~1min) to CO₂, demonstrating that this expanse of research can be used in the field of gas sensors devising high sensitivity and good selectivity at 25°C.

Keywords: MgFe₂O₄ nanoparticles, hydrothermal synthesis, gas sensing properties, XRD

Procedia PDF Downloads 109
31015 Further Development in Predicting Post-Earthquake Fire Ignition Hazard

Authors: Pegah Farshadmanesh, Jamshid Mohammadi, Mehdi Modares

Abstract:

In nearly all earthquakes of the past century that resulted in moderate to significant damage, the occurrence of postearthquake fire ignition (PEFI) has imposed a serious hazard and caused severe damage, especially in urban areas. In order to reduce the loss of life and property caused by post-earthquake fires, there is a crucial need for predictive models to estimate the PEFI risk. The parameters affecting PEFI risk can be categorized as: 1) factors influencing fire ignition in normal (non-earthquake) condition, including floor area, building category, ignitability, type of appliance, and prevention devices, and 2) earthquake related factors contributing to the PEFI risk, including building vulnerability and earthquake characteristics such as intensity, peak ground acceleration, and peak ground velocity. State-of-the-art statistical PEFI risk models are solely based on limited available earthquake data, and therefore they cannot predict the PEFI risk for areas with insufficient earthquake records since such records are needed in estimating the PEFI model parameters. In this paper, the correlation between normal condition ignition risk, peak ground acceleration, and PEFI risk is examined in an effort to offer a means for predicting post-earthquake ignition events. An illustrative example is presented to demonstrate how such correlation can be employed in a seismic area to predict PEFI hazard.

Keywords: fire risk, post-earthquake fire ignition (PEFI), risk management, seismicity

Procedia PDF Downloads 375
31014 Enhanced Cell Adhesion on PMMA by Radio Frequency Oxygen Plasma Treatment

Authors: Fatemeh Rezaei, Babak Shokri

Abstract:

In this study, PMMA films are modified by oxygen plasma treatment for biomedical applications. The plasma generator is capacitively coupled radio frequency (13.56 MHz) power source. The oxygen pressure and gas flow rate are kept constant at 40 mTorr and 30 sccm, respectively and samples are treated for 2 minutes. Hydrophilicity and biocompatibility of PMMA films are studied before and after treatments in different applied powers (10-80 W). In order to monitor the plasma process, the optical emission spectroscopy is used. The wettability and cellular response of samples are investigated by water contact angle (WCA) analysis and MTT assay, respectively. Also, surface free energy (SFE) variations are studied based on the contact angle measurements of three liquids. It is found that RF oxygen plasma treatment enhances the biocompatibility and also hydrophilicity of PMMA films.

Keywords: cellular response, hydrophilicity, MTT assay, PMMA, RF plasma

Procedia PDF Downloads 663
31013 Complex Dynamics of a Four Species Food-Web Model: An Analysis through Beddington-Deangelis Functional Response in the Presence of Additional Food

Authors: Surbhi Rani, Sunita Gakkhar

Abstract:

The four-dimensional food web system consisting of two prey species for a generalist middle predator and a top predator is proposed and investigated. The middle predator is predating both the prey species with a modified Holling type-II functional response. The food web model is found to be well-posed, bounded, and dissipative. The proposed model's essential dynamical features are studied in terms of local stability. The four species' survival is explored, and persistence conditions are established. The numerical simulations reveal the persistence in the form of a chaotic attractor or stable focus. The conclusion is that providing additional food to the middle predator may help to control the food chain's chaos.

Keywords: predator-prey model, existence of equilibrium points, local stability, chaos, numerical simulations

Procedia PDF Downloads 103
31012 Early-Age Mechanical and Thermal Performance of GGBS Concrete

Authors: Kangkang Tang

Abstract:

A large amount of blast furnace slag is generated in China. Most ground granulated blast furnace slag (GGBS) however ends up in low-grade applications. Blast furnace slag, ground to an appropriate fineness, can be used as a partial replacement of cementitious material in concrete. The potential for using GGBS in structural concrete, e.g. concrete beams and columns, is investigated at Xi’an Jiaotong-Liverpool University (XJTLU). With 50% of CEM I replaced with GGBS, peak hydration temperatures determined in a suspended concrete slab reduced by 20%. This beneficiary effect has not been further improved with 70% of CEM I replaced with GGBS. Partial replacement of CEM I with GGBS also has a retardation effect on the early-age strength of concrete. More GGBS concrete mixes will be conducted to identify an ‘optimum’ replacement level which will lead to a reduced thermal loading, without significantly compromising the early-age strength of concrete.

Keywords: thermal effect, GGBS, concrete strength and testing, sustainability

Procedia PDF Downloads 402
31011 Statistical Tools for SFRA Diagnosis in Power Transformers

Authors: Rahul Srivastava, Priti Pundir, Y. R. Sood, Rajnish Shrivastava

Abstract:

For the interpretation of the signatures of sweep frequency response analysis(SFRA) of transformer different types of statistical techniques serves as an effective tool for doing either phase to phase comparison or sister unit comparison. In this paper with the discussion on SFRA several statistics techniques like cross correlation coefficient (CCF), root square error (RSQ), comparative standard deviation (CSD), Absolute difference, mean square error(MSE),Min-Max ratio(MM) are presented through several case studies. These methods require sample data size and spot frequencies of SFRA signatures that are being compared. The techniques used are based on power signal processing tools that can simplify result and limits can be created for the severity of the fault occurring in the transformer due to several short circuit forces or due to ageing. The advantages of using statistics techniques for analyzing of SFRA result are being indicated through several case studies and hence the results are obtained which determines the state of the transformer.

Keywords: absolute difference (DABS), cross correlation coefficient (CCF), mean square error (MSE), min-max ratio (MM-ratio), root square error (RSQ), standard deviation (CSD), sweep frequency response analysis (SFRA)

Procedia PDF Downloads 691
31010 Autonomous Ground Vehicle Navigation Based on a Single Camera and Image Processing Methods

Authors: Auday Al-Mayyahi, Phil Birch, William Wang

Abstract:

A vision system-based navigation for autonomous ground vehicle (AGV) equipped with a single camera in an indoor environment is presented. A proposed navigation algorithm has been utilized to detect obstacles represented by coloured mini- cones placed in different positions inside a corridor. For the recognition of the relative position and orientation of the AGV to the coloured mini cones, the features of the corridor structure are extracted using a single camera vision system. The relative position, the offset distance and steering angle of the AGV from the coloured mini-cones are derived from the simple corridor geometry to obtain a mapped environment in real world coordinates. The corridor is first captured as an image using the single camera. Hence, image processing functions are then performed to identify the existence of the cones within the environment. Using a bounding box surrounding each cone allows to identify the locations of cones in a pixel coordinate system. Thus, by matching the mapped and pixel coordinates using a projection transformation matrix, the real offset distances between the camera and obstacles are obtained. Real time experiments in an indoor environment are carried out with a wheeled AGV in order to demonstrate the validity and the effectiveness of the proposed algorithm.

Keywords: autonomous ground vehicle, navigation, obstacle avoidance, vision system, single camera, image processing, ultrasonic sensor

Procedia PDF Downloads 298
31009 Design Charts for Strip Footing on Untreated and Cement Treated Sand Mat over Underlying Natural Soft Clay

Authors: Sharifullah Ahmed, Sarwar Jahan Md. Yasin

Abstract:

Shallow foundations on unimproved soft natural soils can undergo a high consolidation and secondary settlement. For low and medium rise building projects on such soil condition, pile foundation may not be cost effective. In such cases an alternative to pile foundations may be shallow strip footings placed on a double layered improved soil system soil. The upper layer of this system is untreated or cement treated compacted sand and underlying layer is natural soft clay. This system will reduce the settlement to an allowable limit. The current research has been conducted with the settlement of a rigid plane-strain strip footing of 2.5 m width placed on the surface of a soil consisting of an untreated or cement treated sand layer overlying a bed of homogeneous soft clay. The settlement of the mentioned shallow foundation has been studied considering both cases with the thicknesses of the sand layer are 0.3 to 0.9 times the width of footing. The response of the clay layer is assumed as undrained for plastic loading stages and drained during consolidation stages. The response of the sand layer is drained during all loading stages. FEM analysis was done using PLAXIS 2D Version 8.0. A natural clay deposit of 15 m thickness and 18 m width has been modeled using Hardening Soil Model, Soft Soil Model, Soft Soil Creep Model, and upper improvement layer has been modeled using only Hardening Soil Model. The groundwater level is at the top level of the clay deposit that made the system fully saturated. Parametric study has been conducted to determine the effect of thickness, density, cementation of the sand mat and density, shear strength of the soft clay layer on the settlement of strip foundation under the uniformly distributed vertical load of varying value. A set of the chart has been established for designing shallow strip footing on the sand mat over thick, soft clay deposit through obtaining the particular thickness of sand mat for particular subsoil parameter to ensure no punching shear failure and no settlement beyond allowable level. Design guideline in the form of non-dimensional charts has been developed for footing pressure equivalent to medium-rise residential or commercial building foundation with strip footing on soft inorganic Normally Consolidated (NC) soil of Bangladesh having void ratio from 1.0 to 1.45.

Keywords: design charts, ground improvement, PLAXIS 2D, primary and secondary settlement, sand mat, soft clay

Procedia PDF Downloads 115
31008 Efficiency Validation of Hybrid Geothermal and Radiant Cooling System Implementation in Hot and Humid Climate Houses of Saudi Arabia

Authors: Jamil Hijazi, Stirling Howieson

Abstract:

Over one-quarter of the Kingdom of Saudi Arabia’s total oil production (2.8 million barrels a day) is used for electricity generation. The built environment is estimated to consume 77% of the total energy production. Of this amount, air conditioning systems consume about 80%. Apart from considerations surrounding global warming and CO2 production it has to be recognised that oil is a finite resource and the KSA like many other oil rich countries will have to start to consider a horizon where hydro-carbons are not the dominant energy resource. The employment of hybrid ground cooling pipes in combination with black body solar collection and radiant night cooling systems may have the potential to displace a significant proportion of oil currently used to run conventional air conditioning plant. This paper presents an investigation into the viability of such hybrid systems with the specific aim of reducing carbon emissions while providing all year round thermal comfort in a typical Saudi Arabian urban housing block. At the outset air and soil temperatures were measured in the city of Jeddah. A parametric study then was carried out by computational simulation software (Design Builder) that utilised the field measurements and predicted the cooling energy consumption of both a base case and an ideal scenario (typical block retro-fitted with insulation, solar shading, ground pipes integrated with hypocaust floor slabs/ stack ventilation and radiant cooling pipes embed in floor).Initial simulation results suggest that careful ‘ecological design’ combined with hybrid radiant and ground pipe cooling techniques can displace air conditioning systems, producing significant cost and carbon savings (both capital and running) without appreciable deprivation of amenity.

Keywords: energy efficiency, ground pipe, hybrid cooling, radiative cooling, thermal comfort

Procedia PDF Downloads 254
31007 Study of Icons in Enterprise Application Software Context

Authors: Shiva Subhedar, Abhishek Jain, Shivin Mittal

Abstract:

Icons are not merely decorative elements in enterprise applications but very often used because of their many advantages such as compactness, visual appeal, etc. Despite these potential advantages, icons often cause usability problems when they are designed without consideration for their many potential downsides. The aim of the current study was to examine the effect of articulatory distance – the distance between the physical appearance of an interface element and what it actually means. In other words, will the subject find the association of the function and its appearance on the interface natural or is the icon difficult for them to associate with its function. We have calculated response time and quality of identification by varying icon concreteness, the context of usage and subject experience in the enterprise context. The subjects were asked to associate icons (prepared for study purpose) with given function options in context and out of context mode. Response time and their selection were recorded for analysis.

Keywords: HCI, icons, icon concreteness, icon recognition

Procedia PDF Downloads 252
31006 Aggregate Supply Response of Some Livestock Commodities in Algeria: Cointegration- Vector Error Correction Model Approach

Authors: Amine M. Benmehaia, Amine Oulmane

Abstract:

The supply response of agricultural commodities to changes in price incentives is an important issue for the success of any policy reform in the agricultural sector. This study aims to quantify the responsiveness of producers of some livestock commodities to price incentives in Algerian context. Time series analysis is used on annual data for a period of 52 years (1966-2018). Both co-integration and vector error correction model (VECM) are used through the Nerlove model of partial adjustment. The study attempts to determine the long-run and short-run relationships along with the magnitudes of disequilibria in the selected commodities. Results show that the short-run price elasticities are low in cow and sheep meat sectors (8.7 and 8% respectively), while their respective long-run elasticities are 16.5 and 10.5, whereas eggs and milk have very high short-run price elasticities (82 and 90% respectively) with long-run elasticities of 40 and 46 respectively. The error correction coefficient, reflecting the speed of adjustment towards the long-run equilibrium, is statistically significant and have the expected negative sign. Its estimates are 12.7 for cow meat, 33.5 for sheep meat, 46.7 for eggs and 8.4 for milk. It seems that cow meat and milk producers have a weak feedback of about 12.7% and 8.4% respectively of the previous year's disequilibrium from the long-run price elasticity, whereas sheep meat and eggs producers adjust to correct long run disequilibrium with a high speed of adjustment (33.5% and 46.7 % respectively). The implication of this is that much more in-depth research is needed to identify those factors that affect agricultural supply and to describe the effect of factors that shift supply in response to price incentives. This could provide valuable information for government in the use of appropriate policy measures.

Keywords: Algeria, cointegration, livestock, supply response, vector error correction model

Procedia PDF Downloads 133
31005 Collapse Performance of Steel Frame with Hysteric Energy Dissipating Devices

Authors: Hyung-Joon Kim, Jin-Young Park

Abstract:

Energy dissipating devices (EDDs) have become more popular as seismic-force-resisting systems for building structures. However, there is little information on the collapse capacities of frames employing EDDs which are an important criterion for their seismic design. This study investigates the collapse capacities of steel frames with TADAS hysteric energy dissipative devices (HEDDs) that become an alternative to steel braced frames. To do this, 5-story steel ordinary concentrically braced frame and steel frame with HEDDs are designed and modeled. Nonlinear dynamic analyses and incremental dynamic analysis with 40 ground motions scaled to maximum considered earthquake are carried out. It is shown from analysis results that the significant enhancement in terms of the collapse capacities is found due to the introduction HEDDs.

Keywords: collapse capacity, incremental dynamic analysis, steel braced frame, TADAS hysteric energy dissipative device

Procedia PDF Downloads 479
31004 Using Analytical Hierarchy Process and TOPSIS Approaches in Designing a Finite Element Analysis Automation Program

Authors: Ming Wen, Nasim Nezamoddini

Abstract:

Sophisticated numerical simulations like finite element analysis (FEA) involve a complicated process from model setup to post-processing tasks that require replication of time-consuming steps. Utilizing FEA automation program simplifies the complexity of the involved steps while minimizing human errors in analysis set up, calculations, and results processing. One of the main challenges in designing FEA automation programs is to identify user requirements and link them to possible design alternatives. This paper presents a decision-making framework to design a Python based FEA automation program for modal analysis, frequency response analysis, and random vibration fatigue (RVF) analysis procedures. Analytical hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS) are applied to evaluate design alternatives considering the feedback received from experts and program users.

Keywords: finite element analysis, FEA, random vibration fatigue, process automation, analytical hierarchy process, AHP, TOPSIS, multiple-criteria decision-making, MCDM

Procedia PDF Downloads 104
31003 Seismic Response of Structure Using a Three Degree of Freedom Shake Table

Authors: Ketan N. Bajad, Manisha V. Waghmare

Abstract:

Earthquakes are the biggest threat to the civil engineering structures as every year it cost billions of dollars and thousands of deaths, around the world. There are various experimental techniques such as pseudo-dynamic tests – nonlinear structural dynamic technique, real time pseudo dynamic test and shaking table test method that can be employed to verify the seismic performance of structures. Shake table is a device that is used for shaking structural models or building components which are mounted on it. It is a device that simulates a seismic event using existing seismic data and nearly truly reproducing earthquake inputs. This paper deals with the use of shaking table test method to check the response of structure subjected to earthquake. The various types of shake table are vertical shake table, horizontal shake table, servo hydraulic shake table and servo electric shake table. The goal of this experiment is to perform seismic analysis of a civil engineering structure with the help of 3 degree of freedom (i.e. in X Y Z direction) shake table. Three (3) DOF shaking table is a useful experimental apparatus as it imitates a real time desired acceleration vibration signal for evaluating and assessing the seismic performance of structure. This study proceeds with the proper designing and erection of 3 DOF shake table by trial and error method. The table is designed to have a capacity up to 981 Newton. Further, to study the seismic response of a steel industrial building, a proportionately scaled down model is fabricated and tested on the shake table. The accelerometer is mounted on the model, which is used for recording the data. The experimental results obtained are further validated with the results obtained from software. It is found that model can be used to determine how the structure behaves in response to an applied earthquake motion, but the model cannot be used for direct numerical conclusions (such as of stiffness, deflection, etc.) as many uncertainties involved while scaling a small-scale model. The model shows modal forms and gives the rough deflection values. The experimental results demonstrate shake table as the most effective and the best of all methods available for seismic assessment of structure.

Keywords: accelerometer, three degree of freedom shake table, seismic analysis, steel industrial shed

Procedia PDF Downloads 130
31002 Ground State Properties of Neutron Magic Isotones

Authors: G. Saxena, M. Kaushik

Abstract:

In the present investigation, we have employed RMF+BCS (relativistic mean-field plus BCS) approach to carry out a systematic study for the ground state properties of the entire chains of even-even neutron magic nuclei represented by isotones of traditional neutron magic numbers N = 8, 20, 40, 50, 82, and 126. The main body of the results of our calculations includes the binding energy, deformation, two proton separation energies, rms radii of the proton and neutron distributions as well as the proton and neutron density profiles etc. Several of these results have been given in the form of a series of graphs for a ready reference. In addition, the possible locations of the proton and neutron drip-lines as well as the (Z,N) values for the shell closures as suggested by the detailed analyzes of the single particle spectra, and the two proton and two-neutron separation energies for the different isotonic chains are also discussed in detail.

Keywords: relativistic mean field theory, neutron magic nuclei, shell closure, separation energy, deformation

Procedia PDF Downloads 397
31001 Seismic Response Mitigation of Structures Using Base Isolation System Considering Uncertain Parameters

Authors: Rama Debbarma

Abstract:

The present study deals with the performance of Linear base isolation system to mitigate seismic response of structures characterized by random system parameters. This involves optimization of the tuning ratio and damping properties of the base isolation system considering uncertain system parameters. However, the efficiency of base isolator may reduce if it is not tuned to the vibrating mode it is designed to suppress due to unavoidable presence of system parameters uncertainty. With the aid of matrix perturbation theory and first order Taylor series expansion, the total probability concept is used to evaluate the unconditional response of the primary structures considering random system parameters. For this, the conditional second order information of the response quantities are obtained in random vibration framework using state space formulation. Subsequently, the maximum unconditional root mean square displacement of the primary structures is used as the objective function to obtain optimum damping parameters Numerical study is performed to elucidate the effect of parameters uncertainties on the optimization of parameters of linear base isolator and system performance.

Keywords: linear base isolator, earthquake, optimization, uncertain parameters

Procedia PDF Downloads 422
31000 Geospatial Analysis of Hydrological Response to Forest Fires in Small Mediterranean Catchments

Authors: Bojana Horvat, Barbara Karleusa, Goran Volf, Nevenka Ozanic, Ivica Kisic

Abstract:

Forest fire is a major threat in many regions in Croatia, especially in coastal areas. Although they are often caused by natural processes, the most common cause is the human factor, intentional or unintentional. Forest fires drastically transform landscapes and influence natural processes. The main goal of the presented research is to analyse and quantify the impact of the forest fire on hydrological processes and propose the model that best describes changes in hydrological patterns in the analysed catchments. Keeping in mind the spatial component of the processes, geospatial analysis is performed to gain better insight into the spatial variability of the hydrological response to disastrous events. In that respect, two catchments that experienced severe forest fire were delineated, and various hydrological and meteorological data were collected both attribute and spatial. The major drawback is certainly the lack of hydrological data, common in small torrential karstic streams; hence modelling results should be validated with the data collected in the catchment that has similar characteristics and established hydrological monitoring. The event chosen for the modelling is the forest fire that occurred in July 2019 and burned nearly 10% of the analysed area. Surface (land use/land cover) conditions before and after the event were derived from the two Sentinel-2 images. The mapping of the burnt area is based on a comparison of the Normalized Burn Index (NBR) computed from both images. To estimate and compare hydrological behaviour before and after the event, curve number (CN) values are assigned to the land use/land cover classes derived from the satellite images. Hydrological modelling resulted in surface runoff generation and hence prediction of hydrological responses in the catchments to a forest fire event. The research was supported by the Croatian Science Foundation through the project 'Influence of Open Fires on Water and Soil Quality' (IP-2018-01-1645).

Keywords: Croatia, forest fire, geospatial analysis, hydrological response

Procedia PDF Downloads 129