Search results for: feature matching
1271 Inequalities in Higher Education and Students’ Perceptions of Factors Influencing Academic Performance
Authors: Violetta Parutis
Abstract:
This qualitative study aims to answer the following research questions: i) What are the factors that students perceive as relevant to a) promoting and b) preventing good grades? ii) How does socio-economic status (SES) feature in those beliefs? We conducted in-depth interviews with 19 first- and second-year undergraduates of varying SES at a research-intensive university in the UK. The interviews yielded eight factors that students perceived as promoting and six perceived as preventing good grades. The findings suggested one significant difference between the beliefs of low and high SES students in that low SES students perceive themselves to be at a greater disadvantage to their peers while high SES students do not have such beliefs. This could have knock-on effects on their performance.Keywords: social class, education, academic performance, students’ beliefs
Procedia PDF Downloads 1771270 A Drawing Software for Designers: AutoCAD
Authors: Mayar Almasri, Rosa Helmi, Rayana Enany
Abstract:
This report describes the features of AutoCAD software released by Adobe. It explains how the program makes it easier for engineers and designers and reduces their time and effort spent using AutoCAD. Moreover, it highlights how AutoCAD works, how some of the commands used in it, such as Shortcut, make it easy to use, and features that make it accurate in measurements. The results of the report show that most users of this program are designers and engineers, but few people know about it and find it easy to use. They prefer to use it because it is easy to use, and the shortcut commands shorten a lot of time for them. The feature got a high rate and some suggestions for improving AutoCAD in Aperture, but it was a small percentage, and the highest percentage was that they didn't need to improve the program, and it was good.Keywords: artificial intelligence, design, planning, commands, autodesk, dimensions
Procedia PDF Downloads 1281269 Hybrid Model: An Integration of Machine Learning with Traditional Scorecards
Authors: Golnush Masghati-Amoli, Paul Chin
Abstract:
Over the past recent years, with the rapid increases in data availability and computing power, Machine Learning (ML) techniques have been called on in a range of different industries for their strong predictive capability. However, the use of Machine Learning in commercial banking has been limited due to a special challenge imposed by numerous regulations that require lenders to be able to explain their analytic models, not only to regulators but often to consumers. In other words, although Machine Leaning techniques enable better prediction with a higher level of accuracy, in comparison with other industries, they are adopted less frequently in commercial banking especially for scoring purposes. This is due to the fact that Machine Learning techniques are often considered as a black box and fail to provide information on why a certain risk score is given to a customer. In order to bridge this gap between the explain-ability and performance of Machine Learning techniques, a Hybrid Model is developed at Dun and Bradstreet that is focused on blending Machine Learning algorithms with traditional approaches such as scorecards. The Hybrid Model maximizes efficiency of traditional scorecards by merging its practical benefits, such as explain-ability and the ability to input domain knowledge, with the deep insights of Machine Learning techniques which can uncover patterns scorecard approaches cannot. First, through development of Machine Learning models, engineered features and latent variables and feature interactions that demonstrate high information value in the prediction of customer risk are identified. Then, these features are employed to introduce observed non-linear relationships between the explanatory and dependent variables into traditional scorecards. Moreover, instead of directly computing the Weight of Evidence (WoE) from good and bad data points, the Hybrid Model tries to match the score distribution generated by a Machine Learning algorithm, which ends up providing an estimate of the WoE for each bin. This capability helps to build powerful scorecards with sparse cases that cannot be achieved with traditional approaches. The proposed Hybrid Model is tested on different portfolios where a significant gap is observed between the performance of traditional scorecards and Machine Learning models. The result of analysis shows that Hybrid Model can improve the performance of traditional scorecards by introducing non-linear relationships between explanatory and target variables from Machine Learning models into traditional scorecards. Also, it is observed that in some scenarios the Hybrid Model can be almost as predictive as the Machine Learning techniques while being as transparent as traditional scorecards. Therefore, it is concluded that, with the use of Hybrid Model, Machine Learning algorithms can be used in the commercial banking industry without being concerned with difficulties in explaining the models for regulatory purposes.Keywords: machine learning algorithms, scorecard, commercial banking, consumer risk, feature engineering
Procedia PDF Downloads 1321268 Optimality of Shapley Value Mechanism under Sybil Strategies
Authors: Bruno Mazorra Roig
Abstract:
In the realm of cost-sharing mechanisms, the vulnerability to Sybil strategies, where agents can create fake identities to manipulate outcomes, has not yet been studied. In this paper, we delve into the intricacies of different cost-sharing mechanisms proposed in the literature, highlighting its non-Sybil-resistance nature. Furthermore, we prove that under mild conditions, a Sybil-proof cost-sharing mechanism for public excludable goods is at least (n/2 + 1)−approximate. This finding reveals an exponential increase in the worst-case social cost in environments where agents are restricted from using Sybil strategies. We introduce the concept of Sybil Welfare Invariant mechanisms, where a mechanism maintains its worst-case welfare under Sybil strategies for every set of prior beliefs with full support even when the mechanism is not Sybil-proof. Finally, we prove that the Shapley value mechanism for public excludable goods holds this property and so deduce that the worst-case social cost of this mechanism is the nth harmonic number Hn under the equilibrium of the game with Sybil strategies, matching the worst-case social cost bound for cost-sharing mechanisms. This finding carries important implications for decentralized autonomous organizations (DAOs), indicating that they are capable of funding public excludable goods efficiently, even when the total number of agents is unknown.Keywords: game theory, mechanism design, cost sharing, false-name proofness
Procedia PDF Downloads 631267 Numerical Solution of Space Fractional Order Solute Transport System
Authors: Shubham Jaiswal
Abstract:
In the present article, a drive is taken to compute the solution of spatial fractional order advection-dispersion equation having source/sink term with given initial and boundary conditions. The equation is converted to a system of ordinary differential equations using second-kind shifted Chebyshev polynomials, which have finally been solved using finite difference method. The striking feature of the article is the fast transportation of solute concentration as and when the system approaches fractional order from standard order for specified values of the parameters of the system.Keywords: spatial fractional order advection-dispersion equation, second-kind shifted Chebyshev polynomial, collocation method, conservative system, non-conservative system
Procedia PDF Downloads 2601266 Anatomical Survey for Text Pattern Detection
Abstract:
The ultimate aim of machine intelligence is to explore and materialize the human capabilities, one of which is the ability to detect various text objects within one or more images displayed on any canvas including prints, videos or electronic displays. Multimedia data has increased rapidly in past years. Textual information present in multimedia contains important information about the image/video content. However, it needs to technologically testify the commonly used human intelligence of detecting and differentiating the text within an image, for computers. Hence in this paper feature set based on anatomical study of human text detection system is proposed. Subsequent examination bears testimony to the fact that the features extracted proved instrumental to text detection.Keywords: biologically inspired vision, content based retrieval, document analysis, text extraction
Procedia PDF Downloads 4421265 Evaluation and Compression of Different Language Transformer Models for Semantic Textual Similarity Binary Task Using Minority Language Resources
Authors: Ma. Gracia Corazon Cayanan, Kai Yuen Cheong, Li Sha
Abstract:
Training a language model for a minority language has been a challenging task. The lack of available corpora to train and fine-tune state-of-the-art language models is still a challenge in the area of Natural Language Processing (NLP). Moreover, the need for high computational resources and bulk data limit the attainment of this task. In this paper, we presented the following contributions: (1) we introduce and used a translation pair set of Tagalog and English (TL-EN) in pre-training a language model to a minority language resource; (2) we fine-tuned and evaluated top-ranking and pre-trained semantic textual similarity binary task (STSB) models, to both TL-EN and STS dataset pairs. (3) then, we reduced the size of the model to offset the need for high computational resources. Based on our results, the models that were pre-trained to translation pairs and STS pairs can perform well for STSB task. Also, having it reduced to a smaller dimension has no negative effect on the performance but rather has a notable increase on the similarity scores. Moreover, models that were pre-trained to a similar dataset have a tremendous effect on the model’s performance scores.Keywords: semantic matching, semantic textual similarity binary task, low resource minority language, fine-tuning, dimension reduction, transformer models
Procedia PDF Downloads 2091264 A Simple Device for Characterizing High Power Electron Beams for Welding
Authors: Aman Kaur, Colin Ribton, Wamadeva Balachandaran
Abstract:
Electron beam welding due to its inherent advantages is being extensively used for material processing where high precision is required. Especially in aerospace or nuclear industries, there are high quality requirements and the cost of materials and processes is very high which makes it very important to ensure the beam quality is maintained and checked prior to carrying out the welds. Although the processes in these industries are highly controlled, however, even the minor changes in the operating parameters of the electron gun can make large enough variations in the beam quality that can result in poor welding. To measure the beam quality a simple device has been designed that can be used at high powers. The device consists of two slits in x and y axis which collects a small portion of the beam current when the beam is deflected over the slits. The signals received from the device are processed in data acquisition hardware and the dedicated software developed for the device. The device has been used in controlled laboratory environments to analyse the signals and the weld quality relationships by varying the focus current. The results showed matching trends in the weld dimensions and the beam characteristics. Further experimental work is being carried out to determine the ability of the device and signal processing software to detect subtle changes in the beam quality and to relate these to the physical weld quality indicators.Keywords: electron beam welding, beam quality, high power, weld quality indicators
Procedia PDF Downloads 3231263 Gear Fault Diagnosis Based on Optimal Morlet Wavelet Filter and Autocorrelation Enhancement
Authors: Mohamed El Morsy, Gabriela Achtenová
Abstract:
Condition monitoring is used to increase machinery availability and machinery performance, whilst reducing consequential damage, increasing machine life, reducing spare parts inventories, and reducing breakdown maintenance. An efficient condition monitoring system provides early warning of faults by predicting them at an early stage. When a localized fault occurs in gears, the vibration signals always exhibit non-stationary behavior. The periodic impulsive feature of the vibration signal appears in the time domain and the corresponding gear mesh frequency (GMF) emerges in the frequency domain. However, one limitation of frequency-domain analysis is its inability to handle non-stationary waveform signals, which are very common when machinery faults occur. Particularly at the early stage of gear failure, the GMF contains very little energy and is often overwhelmed by noise and higher-level macro-structural vibrations. An effective signal processing method would be necessary to remove such corrupting noise and interference. In this paper, a new hybrid method based on optimal Morlet wavelet filter and autocorrelation enhancement is presented. First, to eliminate the frequency associated with interferential vibrations, the vibration signal is filtered with a band-pass filter determined by a Morlet wavelet whose parameters are selected or optimized based on maximum Kurtosis. Then, to further reduce the residual in-band noise and highlight the periodic impulsive feature, an autocorrelation enhancement algorithm is applied to the filtered signal. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers induce a load on the output joint shaft flanges. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. The gearbox used for experimental measurements is of the type most commonly used in modern small to mid-sized passenger cars with transversely mounted powertrain and front wheel drive: a five-speed gearbox with final drive gear and front wheel differential. The results obtained from practical experiments prove that the proposed method is very effective for gear fault diagnosis.Keywords: wavelet analysis, pitted gear, autocorrelation, gear fault diagnosis
Procedia PDF Downloads 3871262 The Evaluation of Current Pile Driving Prediction Methods for Driven Monopile Foundations in London Clay
Authors: John Davidson, Matteo Castelletti, Ismael Torres, Victor Terente, Jamie Irvine, Sylvie Raymackers
Abstract:
The current industry approach to pile driving predictions consists of developing a model of the hammer-pile-soil system which simulates the relationship between soil resistance to driving (SRD) and blow counts (or pile penetration per blow). The SRD methods traditionally used are broadly based on static pile capacity calculations. The SRD is used in combination with the one-dimensional wave equation model to indicate the anticipated blowcounts with depth for specific hammer energy settings. This approach has predominantly been calibrated on relatively long slender piles used in the oil and gas industry but is now being extended to allow calculations to be undertaken for relatively short rigid large diameter monopile foundations. This paper evaluates the accuracy of current industry practice when applied to a site where large diameter monopiles were installed in predominantly stiff fissured clay. Actual geotechnical and pile installation data, including pile driving records and signal matching analysis (based upon pile driving monitoring techniques), were used for the assessment on the case study site.Keywords: driven piles, fissured clay, London clay, monopiles, offshore foundations
Procedia PDF Downloads 2221261 Implementation of a Low-Cost Driver Drowsiness Evaluation System Using a Thermal Camera
Authors: Isa Moazen, Ali Nahvi
Abstract:
Driver drowsiness is a major cause of vehicle accidents, and facial images are highly valuable to detect drowsiness. In this paper, we perform our research via a thermal camera to record drivers' facial images on a driving simulator. A robust real-time algorithm extracts the features using horizontal and vertical integration projection, contours, contour orientations, and cropping tools. The features are included four target areas on the cheeks and forehead. Qt compiler and OpenCV are used with two cameras with different resolutions. A high-resolution thermal camera is used for fifteen subjects, and a low-resolution one is used for a person. The results are investigated by four temperature plots and evaluated by observer rating of drowsiness.Keywords: advanced driver assistance systems, thermal imaging, driver drowsiness detection, feature extraction
Procedia PDF Downloads 1361260 Modeling of Microelectromechanical Systems Diaphragm Based Acoustic Sensor
Authors: Vasudha Hegde, Narendra Chaulagain, H. M. Ravikumar, Sonu Mishra, Siva Yellampalli
Abstract:
Acoustic sensors are extensively used in recent days not only for sensing and condition monitoring applications but also for small scale energy harvesting applications to power wireless sensor networks (WSN) due to their inherent advantages. The natural frequency of the structure plays a major role in energy harvesting applications since the sensor key element has to operate at resonant frequency. In this paper, circular diaphragm based MEMS acoustic sensor is modelled by Lumped Element Model (LEM) and the natural frequency is compared with the simulated model using Finite Element Method (FEM) tool COMSOL Multiphysics. The sensor has the circular diaphragm of 3000 µm radius and thickness of 30 µm to withstand the high SPL (Sound Pressure Level) and also to withstand the various fabrication steps. A Piezoelectric ZnO layer of thickness of 1 µm sandwiched between two aluminium electrodes of thickness 0.5 µm and is coated on the diaphragm. Further, a channel with radius 3000 µm radius and length 270 µm is connected at the bottom of the diaphragm. The natural frequency of the structure by LEM method is approximately 16.6 kHz which is closely matching with that of simulated structure with suitable approximations.Keywords: acoustic sensor, diaphragm based, lumped element modeling (LEM), natural frequency, piezoelectric
Procedia PDF Downloads 4391259 Heroin and Opiates Metabolites Tracing by Gas-Chromatography Isotope Ratio Mass Spectrometry
Authors: Yao-Te Yen, Chao-Hsin Cheng, Meng-Shun Huang, Shan-Zong Cyue
Abstract:
'Poppy-seed defense' has been a serious problem all over the world, that is because the opiates metabolites in urine are difficult to distinguish where they come from precisely. In this research, a powerful analytic method has been developed to trace the opiates metabolites in urine by Gas-Chromatography Isotope Ratio Mass Spectrometry (GC-IRMS). In order to eliminate the interference of synthesis to heroin or metabolism through human body, opiates metabolites in urine and sized heroin were hydrolyzed to morphine. Morphine is the key compound for tracing between opiates metabolites and seized heroin in this research. By matching δ13C and δ15N values through morphine, it is successful to distinguish the opiates metabolites coming from heroin or medicine. We tested seven heroin abuser’s metabolites and seized heroin in crime sites, the result showed that opiates metabolites coming from seized heroin, the variation of δ13C and δ15N for morphine are within 0.2 and 2.5‰, respectively. The variation of δ13C and δ15N for morphine are reasonable with the result of matrix match experiments. Above all, the uncertainty of 'Poppy-seed defense' can be solved easily by this analytic method, it provides the direct evidence for judge to make accurate conviction without hesitation.Keywords: poppy-seed defense, heroin, opiates metabolites, isotope ratio mass spectrometry
Procedia PDF Downloads 2371258 Cellular Traffic Prediction through Multi-Layer Hybrid Network
Authors: Supriya H. S., Chandrakala B. M.
Abstract:
Deep learning based models have been recently successful adoption for network traffic prediction. However, training a deep learning model for various prediction tasks is considered one of the critical tasks due to various reasons. This research work develops Multi-Layer Hybrid Network (MLHN) for network traffic prediction and analysis; MLHN comprises the three distinctive networks for handling the different inputs for custom feature extraction. Furthermore, an optimized and efficient parameter-tuning algorithm is introduced to enhance parameter learning. MLHN is evaluated considering the “Big Data Challenge” dataset considering the Mean Absolute Error, Root Mean Square Error and R^2as metrics; furthermore, MLHN efficiency is proved through comparison with a state-of-art approach.Keywords: MLHN, network traffic prediction
Procedia PDF Downloads 871257 The Overload Behaviour of Reinforced Concrete Flexural Members
Authors: Angelo Thurairajah
Abstract:
Sufficient ultimate deformation is necessary to demonstrate the member ductility, which is dependent on the section and the material ductility. The concrete cracking phase of softening prior to the plastic hinge formation is an essential feature as well. The nature of the overload behaviour is studied using the order of the ultimate deflection. The ultimate deflection is primarily dependent on the slenderness (span to depth ratio), the ductility of the reinforcing steel, the degree of moment redistribution, the type of loading, and the support conditions. The ultimate deflection and the degree of moment redistribution from the analytical study are in good agreement with the experimental results and the moment redistribution provisions of the Australian Standards AS3600 Concrete Structures Code.Keywords: ductility, softening, ultimate deflection, overload behaviour, moment redistribution
Procedia PDF Downloads 741256 Aerodynamics and Aeroelastics Studies of Hanger Bridge with H-Beam Profile Using Wind Tunnel
Authors: Matza Gusto Andika, Malinda Sabrina, Syarie Fatunnisa
Abstract:
Aerodynamic and aeroelastics studies on the hanger bridge profile are important to analyze the aerodynamic phenomenon and Aeroelastics stability of hanger. Wind tunnel tests were conducted on a model of H-beam profile from hanger bridge. The purpose of this study is to investigate steady aerodynamic characteristics such as lift coefficient (Cl), drag coefficient (Cd), and moment coefficient (Cm) under the different angle of attack for preliminary prediction of aeroelastics stability problems. After investigation the steady aerodynamics characteristics from the model, dynamic testing is also conducted in wind tunnel to know the aeroelastics phenomenon which occurs at the H-beam hanger bridge profile. The studies show that the torsional vortex induced vibration occur when the wind speed is 7.32 m/s until 9.19 m/s with maximum amplitude occur when the wind speed is 8.41 m/s. The result of wind tunnel testing is matching to hanger vibration where occur in the field, so wind tunnel studies has successful to model the problem. In order that the H-beam profile is not good enough for the hanger bridge and need to be modified to minimize the Aeroelastics problem. The modification can be done with structure dynamics modification or aerodynamics modification.Keywords: aerodynamics, aeroelastic, hanger bridge, h-beam profile, vortex induced vibration, wind tunnel
Procedia PDF Downloads 3481255 Short Answer Grading Using Multi-Context Features
Authors: S. Sharan Sundar, Nithish B. Moudhgalya, Nidhi Bhandari, Vineeth Vijayaraghavan
Abstract:
Automatic Short Answer Grading is one of the prime applications of artificial intelligence in education. Several approaches involving the utilization of selective handcrafted features, graphical matching techniques, concept identification and mapping, complex deep frameworks, sentence embeddings, etc. have been explored over the years. However, keeping in mind the real-world application of the task, these solutions present a slight overhead in terms of computations and resources in achieving high performances. In this work, a simple and effective solution making use of elemental features based on statistical, linguistic properties, and word-based similarity measures in conjunction with tree-based classifiers and regressors is proposed. The results for classification tasks show improvements ranging from 1%-30%, while the regression task shows a stark improvement of 35%. The authors attribute these improvements to the addition of multiple similarity scores to provide ensemble of scoring criteria to the models. The authors also believe the work could reinstate that classical natural language processing techniques and simple machine learning models can be used to achieve high results for short answer grading.Keywords: artificial intelligence, intelligent systems, natural language processing, text mining
Procedia PDF Downloads 1311254 A Study on FWD Deflection Bowl Parameters for Condition Assessment of Flexible Pavement
Authors: Ujjval J. Solanki, Prof.(Dr.) P.J. Gundaliya, Prof.M.D. Barasara
Abstract:
The application of Falling Weight Deflectometer is to evaluate structural performance of the flexible pavement. The exercise of back calculation is required to know the modulus of elasticity of existing in-service pavement. The process of back calculation needs in-depth field experience for the input of range of modulus of elasticity of bituminous, granular and subgrade layer, and its required number of trial to find such matching moduli with the observed FWD deflection on the field. The study carried out at Barnala-Mansa State Highway Punjab-India using FWD before and after overlay; the deflections obtained at 0 on the load cell, 300, 600, 900,1200, 1500 and 1800 mm interval from the load cell these seven deflection results used to calculate Surface Curvature Index (SCI), Base damage Index (BDI), Base curvature index (BCI). This SCI, BCI and BDI indices are useful to predict the structural performance of in-service pavement and also useful to identify homogeneous section for condition assessment. The SCI, BCI and BDI range are determined for before and after overlay the range of SCI 520 to 51 BDI 294 to 63 BCI 83 to 0.27 for old pavement and SCI 272 to 23 BDI 228 to 28, BCI 25.85 to 4.60 for new pavement. It also shows good correlation with back calculated modulus of elasticity of all the three layer.Keywords: back calculation, base damage index, base curvature index, FWD (Falling Weight Deflectometer), surface curvature index
Procedia PDF Downloads 3311253 Automatic Detection of Defects in Ornamental Limestone Using Wavelets
Authors: Maria C. Proença, Marco Aniceto, Pedro N. Santos, José C. Freitas
Abstract:
A methodology based on wavelets is proposed for the automatic location and delimitation of defects in limestone plates. Natural defects include dark colored spots, crystal zones trapped in the stone, areas of abnormal contrast colors, cracks or fracture lines, and fossil patterns. Although some of these may or may not be considered as defects according to the intended use of the plate, the goal is to pair each stone with a map of defects that can be overlaid on a computer display. These layers of defects constitute a database that will allow the preliminary selection of matching tiles of a particular variety, with specific dimensions, for a requirement of N square meters, to be done on a desktop computer rather than by a two-hour search in the storage park, with human operators manipulating stone plates as large as 3 m x 2 m, weighing about one ton. Accident risks and work times are reduced, with a consequent increase in productivity. The base for the algorithm is wavelet decomposition executed in two instances of the original image, to detect both hypotheses – dark and clear defects. The existence and/or size of these defects are the gauge to classify the quality grade of the stone products. The tuning of parameters that are possible in the framework of the wavelets corresponds to different levels of accuracy in the drawing of the contours and selection of the defects size, which allows for the use of the map of defects to cut a selected stone into tiles with minimum waste, according the dimension of defects allowed.Keywords: automatic detection, defects, fracture lines, wavelets
Procedia PDF Downloads 2461252 Application of the Hit or Miss Transform to Detect Dams Monitored for Water Quality Using Remote Sensing in South Africa
Authors: Brighton Chamunorwa
Abstract:
The current remote sensing of water quality procedures does not provide a step representing physical visualisation of the monitored dam. The application of the remote sensing of water quality techniques may benefit from use of mathematical morphology operators for shape identification. Given an input of dam outline, morphological operators such as the hit or miss transform identifies if the water body is present on input remotely sensed images. This study seeks to determine the accuracy of the hit or miss transform to identify dams monitored by the water resources authorities in South Africa on satellite images. To achieve this objective the study download a Landsat image acquired in winter and tested the capability of the hit or miss transform using shapefile boundaries of dams in the crocodile marico catchment. The results of the experiment show that it is possible to detect most dams on the Landsat image after the adjusting the erosion operator to detect pixel matching a percentage similarity of 80% and above. Successfully implementation of the current study contributes towards optimisation of mathematical morphology image operators. Additionally, the effort helps develop remote sensing of water quality monitoring with improved simulation of the conventional procedures.Keywords: hit or miss transform, mathematical morphology, remote sensing, water quality monitoring
Procedia PDF Downloads 1491251 Impact of Reclamation on the Water Exchange in Bohai Bay
Authors: Luyao Liu, Dekui Yuan, Xu Li
Abstract:
As one of the most important bays of China, the water exchange capacity of Bohai Bay can influence the economic development and urbanization of surrounding cities. However, the rapid reclamation has influenced the weak water exchange capacity of this semi-enclosed bay in recent years. This paper sets two hydrodynamic models of Bohai Bay with two shorelines before and after reclamation. The mean value and distribution of Turn-over Time, the distribution of residual current, and the feature of the tracer path are compared. After comparison, it is found that Bohai Bay keeps these characteristics; the spending time of water exchange in the northern is longer than southern, and inshore is longer than offshore. However, the mean water exchange time becomes longer after reclamation. In addition, the material spreading is blocked because of the inwardly extending shorelines, and the direction changed from along the shoreline to towards the center after reclamation.Keywords: Bohai Bay, water exchange, reclamation, turn-over time
Procedia PDF Downloads 1421250 A New Spell-Out Mechanism
Authors: Yusra Yahya
Abstract:
In this paper, a new spell-out mechanism is developed and defended. This mechanism builds on the role of phase heads as both the loci of spell-out features and the transfer triggers via either Phase Impenetrability Condition 1 (PIC1) and/or Phase Impenetrability Condition 2 (PIC2). The assumption here is that phase heads, mainly v*, can regulate the spell-out process by deciding both the type of spell-out applying and the timing of spell-out relevant. This paper also proposes a new form of the constraint Wrap call it Wrap-XP’ and it is assumed to apply to IP as a functional maximal projection. This extension is shown to fall as a natural result once we assume the new theory of phases and multiple spell-out. Moreover, it is proposed in this work that some forms of XP movement are not motivated by an EPP feature of a strong phase head mainly v*, but they are rather motivated by a last resort strategy to accomplish the spell-out instruction of this phase head.Keywords: linguistics, syntax, phonology, phase theory, optimality theory
Procedia PDF Downloads 5121249 Application of Fuzzy Approach to the Vibration Fault Diagnosis
Authors: Jalel Khelil
Abstract:
In order to improve reliability of Gas Turbine machine especially its generator equipment, a fault diagnosis system based on fuzzy approach is proposed. Three various methods namely K-NN (K-nearest neighbors), F-KNN (Fuzzy K-nearest neighbors) and FNM (Fuzzy nearest mean) are adopted to provide the measurement of relative strength of vibration defaults. Both applications consist of two major steps: Feature extraction and default classification. 09 statistical features are extracted from vibration signals. 03 different classes are used in this study which describes vibrations condition: Normal, unbalance defect, and misalignment defect. The use of the fuzzy approaches and the classification results are discussed. Results show that these approaches yield high successful rates of vibration default classification.Keywords: fault diagnosis, fuzzy classification k-nearest neighbor, vibration
Procedia PDF Downloads 4651248 Effect of Improved Potato Varieties Adoption on Farmers' Income in Ethiopia: An Endogenous Switching Approach
Authors: Tsion Tekalegn
Abstract:
In Ethiopia, improved potato varieties are essential for food security, but smallholders' adoption of improved technologies limits their productivity. For this study, data was collected based on a structured questionnaire randomly collected from the 329 sample farmers (158 adopters and 171 non-adopters). We estimate the adoption of improved variety and causal impact using Endogenous Switching Regression (ESR), and a propensity Score Matching (PSM) was used to test the treatment effect. This helps us estimate the effect of improved potato variety on smallholder farmer income by controlling for the role of the selection bias problem stemming from both observed and unobserved heterogeneity. According to the result, key determinants influencing adoption include livestock ownership, access to extension services, and farming experience, which positively affect the likelihood of adopting improved varieties. In contrast, access to irrigation negatively correlates with adoption, suggesting that farmers with reliable water sources perceive less need for improved varieties. The ESR model result confirmed that improved potato variety adoption increases the smallholder farmer income with an estimated gain of 8.77%. Thus, to improve the potato variety of the farming households, the government should give due emphasis to potato production, and the extension services need to be strengthened.Keywords: adoption, improved potato varieties, endogenous switching regression, Ethiopia
Procedia PDF Downloads 321247 The Research of the Game Interface Improvement Due to the Game Operation Dilemma of Player in the Side-Scrolling Shooting Game
Authors: Shih-Chieh Liao, Cheng-Yan Shuai
Abstract:
The feature of a side-scrolling shooting game is facing the surrounding enemy and barraging in entire screen. The player will be in trouble when they are trying to do complicated operations because of the physical and system limitations of the joystick in the games. This study designed the prototype of a new type of arcade stick by focus group and assessed by the expert. By filtering the most representative, and build up the control system for the arcade stick, and testing time and bullets consumed in two experiments, try to prove it works in the game. Finally, the prototype of L-1 solves the dilemma of scroll shooting games when the player uses the arcade stick and improves the function of the arcade stick.Keywords: arcade stick, joystick, user interface, 2D STG
Procedia PDF Downloads 791246 Effect of Signal Acquisition Procedure on Imagined Speech Classification Accuracy
Authors: M.R Asghari Bejestani, Gh. R. Mohammad Khani, V.R. Nafisi
Abstract:
Imagined speech recognition is one of the most interesting approaches to BCI development and a lot of works have been done in this area. Many different experiments have been designed and hundreds of combinations of feature extraction methods and classifiers have been examined. Reported classification accuracies range from the chance level to more than 90%. Based on non-stationary nature of brain signals, we have introduced 3 classification modes according to time difference in inter and intra-class samples. The modes can explain the diversity of reported results and predict the range of expected classification accuracies from the brain signal accusation procedure. In this paper, a few samples are illustrated by inspecting results of some previous works.Keywords: brain computer interface, silent talk, imagined speech, classification, signal processing
Procedia PDF Downloads 1521245 Machine Learning Prediction of Diabetes Prevalence in the U.S. Using Demographic, Physical, and Lifestyle Indicators: A Study Based on NHANES 2009-2018
Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei
Abstract:
To develop a machine learning model to predict diabetes (DM) prevalence in the U.S. population using demographic characteristics, physical indicators, and lifestyle habits, and to analyze how these factors contribute to the likelihood of diabetes. We analyzed data from 23,546 participants aged 20 and older, who were non-pregnant, from the 2009-2018 National Health and Nutrition Examination Survey (NHANES). The dataset included key demographic (age, sex, ethnicity), physical (BMI, leg length, total cholesterol [TCHOL], fasting plasma glucose), and lifestyle indicators (smoking habits). A weighted sample was used to account for NHANES survey design features such as stratification and clustering. A classification machine learning model was trained to predict diabetes status. The target variable was binary (diabetes or non-diabetes) based on fasting plasma glucose measurements. The following models were evaluated: Logistic Regression (baseline), Random Forest Classifier, Gradient Boosting Machine (GBM), Support Vector Machine (SVM). Model performance was assessed using accuracy, F1-score, AUC-ROC, and precision-recall metrics. Feature importance was analyzed using SHAP values to interpret the contributions of variables such as age, BMI, ethnicity, and smoking status. The Gradient Boosting Machine (GBM) model outperformed other classifiers with an AUC-ROC score of 0.85. Feature importance analysis revealed the following key predictors: Age: The most significant predictor, with diabetes prevalence increasing with age, peaking around the 60s for males and 70s for females. BMI: Higher BMI was strongly associated with a higher risk of diabetes. Ethnicity: Black participants had the highest predicted prevalence of diabetes (14.6%), followed by Mexican-Americans (13.5%) and Whites (10.6%). TCHOL: Diabetics had lower total cholesterol levels, particularly among White participants (mean decline of 23.6 mg/dL). Smoking: Smoking showed a slight increase in diabetes risk among Whites (0.2%) but had a limited effect in other ethnic groups. Using machine learning models, we identified key demographic, physical, and lifestyle predictors of diabetes in the U.S. population. The results confirm that diabetes prevalence varies significantly across age, BMI, and ethnic groups, with lifestyle factors such as smoking contributing differently by ethnicity. These findings provide a basis for more targeted public health interventions and resource allocation for diabetes management.Keywords: diabetes, NHANES, random forest, gradient boosting machine, support vector machine
Procedia PDF Downloads 51244 Learning Compression Techniques on Smart Phone
Authors: Farouk Lawan Gambo, Hamada Mohammad
Abstract:
Data compression shrinks files into fewer bits than their original presentation. It has more advantage on the internet because the smaller a file, the faster it can be transferred but learning most of the concepts in data compression are abstract in nature, therefore, making them difficult to digest by some students (engineers in particular). This paper studies the learning preference of engineering students who tend to have strong, active, sensing, visual and sequential learning preferences, the paper also studies the three shift of technology-aided that learning has experienced, which mobile learning has been considered to be the feature of learning that will integrate other form of the education process. Lastly, we propose a design and implementation of mobile learning application using software engineering methodology that will enhance the traditional teaching and learning of data compression techniques.Keywords: data compression, learning preference, mobile learning, multimedia
Procedia PDF Downloads 4451243 QoS-CBMG: A Model for e-Commerce Customer Behavior
Authors: Hoda Ghavamipoor, S. Alireza Hashemi Golpayegani
Abstract:
An approach to model the customer interaction with e-commerce websites is presented. Considering the service quality level as a predictive feature, we offer an improved method based on the Customer Behavior Model Graph (CBMG), a state-transition graph model. To derive the Quality of Service sensitive-CBMG (QoS-CBMG) model, process-mining techniques is applied to pre-processed website server logs which are categorized as ‘buy’ or ‘visit’. Experimental results on an e-commerce website data confirmed that the proposed method outperforms CBMG based method.Keywords: customer behavior model, electronic commerce, quality of service, customer behavior model graph, process mining
Procedia PDF Downloads 4141242 Optimised Path Recommendation for a Real Time Process
Authors: Likewin Thomas, M. V. Manoj Kumar, B. Annappa
Abstract:
Traditional execution process follows the path of execution drawn by the process analyst without observing the behaviour of resource and other real-time constraints. Identifying process model, predicting the behaviour of resource and recommending the optimal path of execution for a real time process is challenging. The proposed AlfyMiner: αyM iner gives a new dimension in process execution with the novel techniques Process Model Analyser: PMAMiner and Resource behaviour Analyser: RBAMiner for recommending the probable path of execution. PMAMiner discovers next probable activity for currently executing activity in an online process using variant matching technique to identify the set of next probable activity, among which the next probable activity is discovered using decision tree model. RBAMiner identifies the resource suitable for performing the discovered next probable activity and observe the behaviour based on; load and performance using polynomial regression model, and waiting time using queueing theory. Based on the observed behaviour αyM iner recommend the probable path of execution with; next probable activity and the best suitable resource for performing it. Experiments were conducted on process logs of CoSeLoG Project1 and 72% of accuracy is obtained in identifying and recommending next probable activity and the efficiency of resource performance was optimised by 59% by decreasing their load.Keywords: cross-organization process mining, process behaviour, path of execution, polynomial regression model
Procedia PDF Downloads 333