Search results for: combustion instability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1247

Search results for: combustion instability

497 Solar Energy Management: A Case Study of Bhubaneswar City

Authors: Rachita Lal

Abstract:

Solar energy is a clean energy source. Because it is readily available in India and has many potential decentralized uses, urban local authorities may use it in various ways to manage the energy needs in the territory under their control. Apart from these and other services for which people pay a substantial number of money, urban local councils play a crucial role in administering essential services like water supply, street lighting, and health care. ULBs may contribute considerably to the transition to solar energy, both for their benefit and simultaneously for several additional direct and indirect advantages at multiple levels. The research primarily focuses on using clean energy management to reduce urban areas' reliance on traditional (electricity) energy. A technique for estimating the rooftop solar power potential using GIS (Geographical Information System) is described. Given that the combustion of fossil fuels produces 75% of India's power, meeting the country's energy needs through renewable energy sources is a step toward sustainable development and combating climate change. The study will further help in categorization, phasing, and understanding the demand and supply and thus calculating the cumulative benefits. The main objectives are to study the consumption of conventional energy in the study area and to identify the potential areas where solar photovoltaic intervention can be installed.

Keywords: solar energy, GIS, clean energy management, sustainable development

Procedia PDF Downloads 73
496 Correlation and Prediction of Biodiesel Density

Authors: Nieves M. C. Talavera-Prieto, Abel G. M. Ferreira, António T. G. Portugal, Rui J. Moreira, Jaime B. Santos

Abstract:

The knowledge of biodiesel density over large ranges of temperature and pressure is important for predicting the behavior of fuel injection and combustion systems in diesel engines, and for the optimization of such systems. In this study, cottonseed oil was transesterified into biodiesel and its density was measured at temperatures between 288 K and 358 K and pressures between 0.1 MPa and 30 MPa, with expanded uncertainty estimated as ±1.6 kg.m^-3. Experimental pressure-volume-temperature (pVT) cottonseed data was used along with literature data relative to other 18 biodiesels, in order to build a database used to test the correlation of density with temperarure and pressure using the Goharshadi–Morsali–Abbaspour equation of state (GMA EoS). To our knowledge, this is the first that density measurements are presented for cottonseed biodiesel under such high pressures, and the GMA EoS used to model biodiesel density. The new tested EoS allowed correlations within 0.2 kg•m-3 corresponding to average relative deviations within 0.02%. The built database was used to develop and test a new full predictive model derived from the observed linear relation between density and degree of unsaturation (DU), which depended from biodiesel FAMEs profile. The average density deviation of this method was only about 3 kg.m-3 within the temperature and pressure limits of application. These results represent appreciable improvements in the context of density prediction at high pressure when compared with other equations of state.

Keywords: biodiesel density, correlation, equation of state, prediction

Procedia PDF Downloads 594
495 Thermal and Caloric Imperfections Effect on the Supersonic Flow Parameters with Application for Air in Nozzles

Authors: Merouane Salhi, Toufik Zebbiche, Omar Abada

Abstract:

When the stagnation pressure of perfect gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with this pressure. The gas does not remain perfect. Its state equation change and it becomes a real gas. In this case, the effects of molecular size and inter molecular attraction forces intervene to correct the state equation. The aim of this work is to show and discuss the effect of stagnation pressure on supersonic thermo dynamical, physical and geometrical flow parameters, to find a general case for real gas. With the assumptions that Berthelot’s state equation accounts for molecular size and inter molecular force effects, expressions are developed for analyzing supersonic flow for thermally and calorically imperfect gas lower than the dissociation molecules threshold. The designs parameters for supersonic nozzle like thrust coefficient depend directly on stagnation parameters of the combustion chamber. The application is for air. A computation of error is made in this case to give a limit of perfect gas model compared to real gas model.

Keywords: supersonic flow, real gas model, Berthelot’s state equation, Simpson’s method, condensation function, stagnation pressure

Procedia PDF Downloads 497
494 A Research of the Prototype Fuel Injector for the Aircraft Two-Stroke Opposed-Piston Diesel Engine

Authors: Ksenia Siadkowska, Zbigniew Czyz, Lukasz Grabowski

Abstract:

The paper presents the research results of the construction of an injector with a modified injection nozzle. The injector is designed for a prototype aircraft opposed-piston diesel engine with an assumed starting power of 100 kW. The injector has been subjected to optical tests carried out in a constant volume chamber with the use of a camera allowing to record images at the frequency of 5400 fps and at the resolution of 1024x1024. The measurements were based on a Mie scattering technique with global lighting. Seven repetitions were made for a specific measurement point. The measuring point was selected on the basis of the analysis of engine operating conditions. The analysis focused on the average range of the spray and its distribution. As a result of the conducted research, the range of the fuel spray was defined for the determined parameters of injection. The obtained results were used to verify and optimize the combustion process in the designed opposed-piston two-stroke diesel engine. Acknowledgment: This work has been realized in the cooperation with The Construction Office of WSK 'PZL-KALISZ' S.A.' and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: diesel engine, opposed-piston, aircraft, fuel injector

Procedia PDF Downloads 112
493 Impact of Flexibility on Patient Satisfaction and Behavioral Intention: A Critical Reassessment and Model Development

Authors: Pradeep Kumar, Shibashish Chakraborty, Sasadhar Bera

Abstract:

In the anticipation of demand fluctuations, services cannot be inventoried and hence it creates a difficult problem in marketing of services. The inability to meet customers (patients) requirements in healthcare context has more serious consequences than other service sectors. In order to meet patient requirements in the current uncertain environment, healthcare organizations are seeking ways for improved service delivery. Flexibility provides a mechanism for reducing variability in service encounters and improved performance. Flexibility is defined as the ability of the organization to cope with changing circumstances or instability caused by the environment. Patient satisfaction is an important performance outcome of healthcare organizations. However, the paucity of information exists in healthcare delivery context to examine the impact of flexibility on patient satisfaction and behavioral intention. The present study is an attempt to develop a conceptual foundation for investigating overall impact of flexibility on patient satisfaction and behavioral intention. Several dimensions of flexibility in healthcare context are examined and proposed to have a significant impact on patient satisfaction and intention. Furthermore, the study involves a critical examination of determinants of patient satisfaction and development of a comprehensive view the relationship between flexibility, patient satisfaction and behavioral intention. Finally, theoretical contributions and implications for healthcare professionals are suggested from flexibility perspective.

Keywords: healthcare, flexibility, patient satisfaction, behavioral intention

Procedia PDF Downloads 350
492 Electrospinning Preparation of Superhydrophobic Polydimethylsiloxane/Polystyrene Nanofibrous Membranes for Carbon Dioxide Capture

Authors: Chia-Yu Chang, Yi-Feng Lin

Abstract:

CO2 capture has attracted significant research attention due to global warming. Among the various CO2 capture methods, membrane technology has proven to be highly efficient in capturing CO2 due to the ease at which this technology can be scaled up, its low energy consumptions, small area requirements and overall environmental friendliness for use by industrial plants. Capturing CO2 is to use a membrane contactor with a combination of water-repellent porous membranes and chemical absorption processes. In a CO2 membrane contactor system, CO2 passes through a hydrophobic porous membrane in the gas phase to contact the amine absorbent in the liquid phase. Consequently, additional CO2 gas is absorbed by amine absorbents. This study examines highly porous Polydimethylsiloxane (PDMS)/Polystyrene (PS) Nanofibrous Membranes and successfully coated onto a macroporous Al2O3 membrane. The performance of these materials in a membrane contactor system for CO2 absorption is also investigated. Compared with pristine PS nanofibrous membranes, the PDMS/PS nanofibrous membranes exhibit greater solvent resistance and mechanical strength, making them more suitable for use in CO2 capture by the membrane contactor. The resulting hydrophobic membrane contactor also demonstrates the potential for large-scale CO2 absorption during post-combustion processes in power plants.

Keywords: CO2 capture, polystyrene, polydimethylsiloxane, superhydrophobic

Procedia PDF Downloads 370
491 The Circularity of Re-Refined Used Motor Oils: Measuring Impacts and Ensuring Responsible Procurement

Authors: Farah Kanani

Abstract:

Blue Tide Environmental is a company focused on developing a network of used motor oil recycling facilities across the U.S. They initiated the redesign of its recycling plant in Texas, and aimed to establish an updated carbon footprint of re-refined used motor oils compared to an equivalent product derived from virgin stock that is not re-refined. The aim was to quantify emissions savings of a circular alternative to conventional end-of-life combustion of used motor oil (UMO). To do so, they mandated an ISO-compliant carbon footprint, utilizing complex models requiring geographical and temporal accuracy to accommodate the U.S. refinery market. The quantification of linear and circular flows, proxies for fuel substitution and system expansion for multi-product outputs were all critical methodological choices and were tested through sensitivity analyses. The re-refined system consisted of continuous recycling of UMO and thus, end-of-life is considered non-existent. The unique perspective to this topic will be from a life cycle i.e. holistic one and essentially demonstrate using this example of how a cradle-to-cradle model can be used to quantify a comparative carbon footprint. The intended audience is lubricant manufacturers as the consumers, motor oil industry professionals and other industry members interested in performing a cradle-to-cradle modeling.

Keywords: circularity, used motor oil, re-refining, systems expansion

Procedia PDF Downloads 21
490 Control of Pipeline Gas Quality to Extend Gas Turbine Life

Authors: Peter J. H. Carnell, Panayiotis Theophanous

Abstract:

Natural gas due to its cleaner combustion characteristics is expected to be the most widely used fuel in the move towards less polluting and renewable energy sources. Thus, the developed world is supplied by a complex network of gas pipelines and natural gas is becoming a major source of fuel. Natural gas delivered directly from the well will differ in composition from gas derived from LNG or produced by anaerobic digestion processes. Each will also have specific contaminants and properties although gas from all sources is likely to enter the distribution system and be blended to provide the desired characteristics such as Higher Heating Value and Wobbe No. The absence of a standard gas composition poses problems when the gas is used as a chemical feedstock, in specialised furnaces or on gas turbines. The chemical industry has suffered in the past as a result of variable gas composition. Transition metal catalysts used in ammonia, methanol and hydrogen plants were easily poisoned by sulphur, chlorides and mercury reducing both activity and catalyst expected lives from years to months. These plants now concentrate on purification and conditioning of the natural gas feed using fixed bed technologies, allowing them to run for several years and having transformed their operations. Similar technologies can be applied to the power industry reducing maintenance requirements and extending the operating life of gas turbines.

Keywords: gas composition, gas conditioning, gas turbines, power generation, purification

Procedia PDF Downloads 269
489 Modeling of Carbon Monoxide Distribution under the Sky-Train Stations

Authors: Suranath Chomcheon, Nathnarong Khajohnsaksumeth, Benchawan Wiwatanapataphee

Abstract:

Carbon monoxide is one of the harmful gases which have colorless, odorless, and tasteless. Too much carbon monoxide taken into the human body causes the reduction of oxygen transportation within human body cells leading to many symptoms including headache, nausea, vomiting, loss of consciousness, and death. Carbon monoxide is considered as one of the air pollution indicators. It is mainly released as soot from the exhaust pipe of the incomplete combustion of the vehicle engine. Nowadays, the increase in vehicle usage and the slowly moving of the vehicle struck by the traffic jam has created a large amount of carbon monoxide, which accumulated in the street canyon area. In this research, we study the effect of parameters such as wind speed and aspect ratio of the height building affecting the ventilation. We consider the model of the pollutant under the Bangkok Transit System (BTS) stations in a two-dimensional geometrical domain. The convention-diffusion equation and Reynolds-averaged Navier-stokes equation is used to describe the concentration and the turbulent flow of carbon monoxide. The finite element method is applied to obtain the numerical result. The result shows that our model can describe the dispersion patterns of carbon monoxide for different wind speeds.

Keywords: air pollution, carbon monoxide, finite element, street canyon

Procedia PDF Downloads 110
488 Indoor Emissions Produced by Kerosene Heating, Determining Its Formation Potential of Secondary Particulate Matter and Transport

Authors: J. M. Muñoz, Y. Vasquez, P. Oyola, M. Rubio

Abstract:

All emissions of contaminants inside of homes, offices, school and another enclosure closer that affect the health of those who inhabit or use them are cataloged how indoor pollution. The importance of this study is because individuals spend most of their time in indoors ambient. The main indoor pollutants are oxides of nitrogen (NOₓ), sulfur dioxide (SO₂), carbon monoxide (CO) and particulate matter (PM). Combustion heaters are an important source of pollution indoors. It will be measured: NOₓ, SO₂, CO, PM₂,₅ y PM₁₀ continuous and discreet form at indoor and outdoor of two households with different heating energy; kerosene and electricity (control home) respectively, in addition to environmental parameters such as temperature. With the values obtained in the 'control home' it will be possible estimate the contaminants transport from outside to inside of the household and later the contribution generated by kerosene heating. Transporting the emissions from burning kerosene to a photochemical chamber coupled to a continuous and discreet measuring system of contaminants it will be evaluated the oxidation of the emissions and formation of secondary particulate matter. It will be expected watch a contaminants transport from outside to inside of the household and the kerosene emissions present a high potential of formation secondary particulate matter.

Keywords: heating, indoor pollution, kerosene, secondary particulate matter

Procedia PDF Downloads 202
487 Experimental Investigation of Hybrid Rocket Motor: Ignition, Throttling and Re-Ignition Phenomena

Authors: A. El-S. Makled, M. K. Al-Tamimi

Abstract:

Ignition phenomena are of great interest area over the past many years, and it has a direct impact on many propulsion and combustion applications. The direct goal of the paper is to realize and evaluate a functioning ignition method, shut-off, throttling and re-start operations for the hybrid rocket motor. A small-scale hybrid rocket motor (SSHRM) is designed, manufactured, demonstrated at various operating conditions and finally equipped for laboratory firing tests with high level of safety. Various solid fuel grains as Polymethyle-methacrylate (PMMA) and Polyethylene (PE) are selected, and it is decided to use the commercial gaseous oxygen (GO2) for its availability and low cost. Examine different types of ignition methods, pyrotechnic charge, fuse wire, heat wire and finally hot oxidizer method by using the heat exchanger, which are proposed as very safe ignition methods. Finally; recognize phenomena of throttling and re-start operations. Ignition by hot GO2 impingement is proved to be a very attractive ignition method for laboratory SSHRM, for its high safety, reliability and acceptable delay time. Finally; the throttling and re-start operations are demonstrated several times and can be carried out more easily with hot air ignition method.

Keywords: hybrid rocket motor, ignition system, re-start phenomena, throttling

Procedia PDF Downloads 286
486 Application of Innovative Implementations in the SME Sector

Authors: Mateusz Janas

Abstract:

Innovative implementations in the micro, small, and medium-sized enterprises (MSME) sector are among the essential activities considering the current market realities, technological advancements, and digitization trends. MSMEs play a crucial role and significantly influence the economic conditions of countries, as their competitiveness directly impacts the global economy. Business development and investment in innovation and technology are integral parts of every modern enterprise's strategy, seeking to maintain and achieve a desired competitive position. The instability of the socio-economic environment, along with contemporary changes in artificial intelligence implementation and digitization, requires businesses to adopt increasingly newer solutions and actions. Enterprises must strive to survive in the global market and build competitive positions, especially in uncertain conditions. Being aware of the significance of innovative actions is crucial for MSMEs as it enables them to enhance their operations and expand their scope. It is essential for managers and executives of MSMEs to be focused on development and innovation, as their approach will also impact their employees, emphasizing results and maximizing the company's value. Managers of MSMEs must be aware of various threats, costs, opportunities, and gains that can arise from implementing new technical and organizational solutions. Businesses must view development as an integral part of their strategy and continuously strive for improvement.

Keywords: innovation, SME, develop, management

Procedia PDF Downloads 48
485 Efficacy of Hemi-Facetectomy in Treatment of Lumbar Foraminal Stenosis

Authors: Manoj Deepak, N. Mathivanan, K. Venkatachalam

Abstract:

Nerve root stenosis is one of the main cause for back pain. There are many methods both conservative and surgical to treat this disease. It is pertinent to decompress the spine to a proper extent so as to avoid the recurrence of symptoms. But too much of an aggressive approach also has its disadvantages. We present one of the methods to effectively decompress the nerve with better results. Our study was carried out in 52 patients with foramina stenosis between 2008 to 2011.We carried out the surgical procedure of shaving off the medial part of the facet joint so as to decompress the root. We selected those patients who had symptoms of claudication for more than 2 years. They had no signs of instability and they underwent conservative treatment for a period of 2 months before the procedure. Oswersty scoring was used to record the functional level of the patient before and after the procedure. All patients were followed up for a period of minimum 2.5 years. After evaluation for a minimum of 2.5 years, 34 patients had no evidence of recurrence of symptoms with improvement in the functional level.7 patients complained of minimal pain but their functional quality had improved postop. Six patients had symptoms of lumbar canal disease which reduced with conservative treatment. 5 patients required spinal fusion surgeries in the later period. Conclusion: Thus, we can effectively conclude that our procedure is safe and effective in reducing the symptoms in those patients with neurogenic claudication.

Keywords: facetectoemy, stenosis, decompression, Lumbar Foraminal Stenosis, hemi-facetectomy

Procedia PDF Downloads 334
484 Efficiency of Pre-Treatment Methods for Biodiesel Production from Mixed Culture of Microalgae

Authors: Malith Premarathne, Shehan Bandara, Kaushalya G. Batawala, Thilini U. Ariyadasa

Abstract:

The rapid depletion of fossil fuel supplies and the emission of carbon dioxide by their continued combustion have paved the way for increased production of carbon-neutral biodiesel from naturally occurring oil sources. The high biomass growth rate and lipid production of microalgae make it a viable source for biodiesel production compared to conventional feedstock. In Sri Lanka, the production of biodiesel by employing indigenous microalgae species is at its emerging stage. This work was an attempt to compare the various pre-treatment methods before extracting lipids such as autoclaving, microwaving and sonication. A mixed culture of microalgae predominantly consisting of Chlorella sp. was obtained from Beire Lake which is an algae rich, organically polluted water body located in Colombo, Sri Lanka. After each pre-treatment method, a standard solvent extraction using Bligh and Dyer’s method was used to compare the total lipid content in percentage dry weight (% dwt). The fatty acid profiles of the oils extracted with each pretreatment method were analyzed using gas chromatography-mass spectrometry (GC-MS). The properties of the biodiesels were predicted by Biodiesel Analyzer© Version 1.1, in order to compare with ASTM 6751-08 biodiesel standard.

Keywords: biodiesel, lipid extraction, microalgae, pre-treatment

Procedia PDF Downloads 158
483 Experimental Investigation of Compressed Natural Gas Injector for Direct Injection System

Authors: Rafal Sochaczewski, Grzegorz Baranski, Adam Majczak

Abstract:

This paper presents the bench research results on a CNG injector at steady state. The quantities measured included voltage and current in a solenoid, pressure of gas behind an injector and injector’s flow rate. Accordingly, injector’s operation parameters were determined according to needle’s lift and injection pressure. The discrepancies between the theoretical (electric) and actual time of injection were defined to specify injector’s opening and closing lag times and the uniqueness of these values in successive cycles of gas injection. It has been demonstrated that needle’s lift has got a stronger impact on injector’s operating parameters than injection pressure. With increasing injection pressure, the force increases and closes an injection valve, which adversely affects uniqueness of injector’s operation. The paper also describes the concept of an injector dedicated to direct CNG injection into a combustion chamber in a dual-fuel engine. The injector’s design enables us to replace 80% of diesel fuel in a dual-fuel engine with a maximum power of 85 kW. Minimum injection pressure is 1,4 MPa then. Simultaneously, injector’s characteristics for varied needle’s lifts and injector’s nonlinear operating points were developed. Acknowledgement: This work has been financed by the Polish National Centre for Research and Development, under Grant Agreement No. PBS1/A6/4/2012.

Keywords: CNG injector, diesel engine, direct injection, dual fuel

Procedia PDF Downloads 261
482 Numerical Study of Flow Characteristics and Performance of 14-X B Inlet with Blunted Cowl-Lip

Authors: Sergio N. P. Laitón, Paulo G. P. Toro, João F. Martos

Abstract:

A numerical study has been carried out to investigate the flow characteristics and performance of the 14-X B inlet with blunted cowl-lip. The Brazilian aerospace hypersonic vehicle 14-X B is a technology demonstrator of a hypersonic air-breathing propulsion system, based on supersonic combustion ramjet (scramjet). It is designed for Earth's atmospheric flight at Mach number of 6 and an altitude of 30 km. Currently, it is under development in the aerothermodynamics and hypersonic Professor Henry T. Nagamatsu laboratory at Advanced Studies Institute (IEAv). Numerical simulations were conducted at nominal freestream Mach number and altitude for two cowl-lip blunting radius and several angles of attack close to horizontal flight. The results show that the shock interference behavior on the blunted cowl-lip change with the angle of attack and blunted radius. The type VI or V together with III shock interferences are more likely to occur simultaneously at small negative angles of attack. When the inlet operates in positive angles of attack higher to 1, no shock interference occurs, only the bow shock conditions. The results indicate a high air pressure at beginning of the combustor and higher pressure recovery with 2 mm radius and positives angles of attack.

Keywords: blunted cowl-lip, hypersonic inlet, inlet unstart, shock interference

Procedia PDF Downloads 305
481 Physico-Chemical Basis of Thermal Destruction of Benzo(a)Pyrene and Reducing Their Concentration in the Gas Phase

Authors: K. A. Kemelov, Z. K. Maymekov, D. A. Sambaeva, W. Frenzel

Abstract:

Benzo(a)pyrene is widespread carcinogenic and mutagenic environmental pollutant, which is formed in combustion processes of carbonaceous materials at high temperature and still health safety problem related benz(a)pyrene continues to remain actual. At the moment the mechanisms of formation of benzo(a)pyrene are not studied in detail, there is not concrete certain full scheme of synthesis of benzo(a)pyrene. Studies in this area are mainly dedicated to development of measuring tools and chemical reactions analyzes, or to obtain specific evidence of a large group of polycyclic aromatic hydrocarbons (PAHs). Consequently in this study we try to create physical and chemical model of oxidation and thermo destruction processes of benzo(a)pyrene, using critical thermodynamical parameters in order to estimate theoretical derivatives of benzo(a)pyrene and which conditions benzo(a)pyrene degraded into more harmful substances. According to this physical and chemical modeling of thermal destruction process of benzo(a)pyrene in wide ranges of change of temperature value were calculated. C20H12 - H2O-O2 system was taken for modeling of thermal destruction process of benzo(a)pyrene in order to establish distribution range of equilibrium structures and concentrations of molecules in a gas phase. Also technological ways of reduction of concentration of benzo(a)pyrene in a gas phase were supposed.

Keywords: benzo(a)pyrene, emission, PAH, thermodynamic parameters

Procedia PDF Downloads 280
480 Concept Mapping of Teachers Regarding Conflict Management

Authors: Tahir Mehmood, Mumtaz Akhter

Abstract:

The global need for conflict management is greater now in the early 21st century than ever before. According to UNESCO, half of the world’s 195 countries will have to expand their stock of educationist significantly, some by tens of thousands, if the goal development targets are desired to achieve. Socioeconomic inequities, political instability, demographic changes and crises such as the HIV/AIDs epidemic have engendered huge shortfalls in teacher supply and low teacher quality in many developing countries. Education serves as back bone in development process. Open learning and distance education programs are serving as pivotal part of development process. It is now clear that ‘bricks and mortar’ approaches to expanding teacher education may not be adequate if the current and projected shortfalls in teacher supply and low teacher quality are to be properly addressed. The study is designed to measure the perceptions of teaching learning community about conflict management with special reference to open and distance learning. It was descriptive study which targeted teachers, students, community members and experts. Data analysis was carried out by using statistical techniques served by SPSS. Findings reflected that audience perceives open and distance learning as change agent and as development tool. It is noticed that target audience has driven prominent performance by using facility of open and distance learning.

Keywords: conflict management, open and distance learning, teachers, students

Procedia PDF Downloads 400
479 Experimental Study of LPG Diffusion Flame at Elevated Preheated Air Temperatures

Authors: Ahmed A. El-Kafy Amer, H. M. Gad, A. I. Ibrahim, S. I. Abdel-Mageed, T. M. Farag

Abstract:

This paper represents an experimental study of LPG diffusion flame at elevated air preheated temperatures. The flame is stabilized in a vertical water-cooled combustor by using air swirler. An experimental test rig was designed to investigate the different operating conditions. The burner head is designed so that the LPG fuel issued centrally and surrounded by the swirling air issues from an air swirler. There are three air swirlers having the same dimensions but having different blade angles to give different swirl numbers of 0.5, 0.87 and 1.5. The combustion air was heated electrically before entering the combustor up to a temperature about 500 K. Three air to fuel mass ratios of 30, 40 and 50 were also studied. The effect of air preheated temperature, swirl number and air to fuel mass ratios on the temperature maps, visible flame length, high temperature region (size) and exhaust species concentrations are studied. Some results show that as the air preheated temperature increases, the volume of high temperature region also increased but the flame length decreased. Increasing the air preheated temperature, EINOx, EICO2 and EIO2 increased, while EICO decreased. Increasing the air preheated temperature from 300 to 500 K, for all air swirl numbers used, the highest increase in EINOx, EICO2 and EIO2 are 141, 4 and 65%, respectively.

Keywords: air preheated temperature, air swirler, flame length, emission index

Procedia PDF Downloads 469
478 Future Applications of 4D Printing in Dentistry

Authors: Hosamuddin Hamza

Abstract:

The major concept of 4D printing is self-folding under thermal and humidity changes. This concept relies on understanding how the microstructures of 3D-printed models can undergo spontaneous shape transformation under thermal and moisture changes. The transformation mechanism could be achieved by mixing, in a controllable pattern, a number of materials within the printed model, each with known strain/shrinkage properties. 4D printing has a strong potential to be applied in dentistry as the technology could produce dynamic and adaptable materials to be used as functional objects in the oral environment under the continuously changing thermal and humidity conditions. The motion criteria could override the undesired dimensional changes, thermal instability, polymerization shrinkage and microleakage. 4D printing could produce restorative materials being self-adjusted spontaneously without further intervention from the dentist or patient; that is, the materials could be capable of fixing its failed portions, compensating for some lost tooth structure, while avoiding microleakage or overhangs at the margins. In prosthetic dentistry, 4D printing could provide an option to manage the influence of bone and soft tissue imbalance during mastication (and at rest) with high predictability of the type/direction of forces. It can also produce materials with better fitting and retention characteristics than conventional or 3D-printed materials. Nevertheless, it is important to highlight that 4D-printed objects, having dynamic properties, could provide some cushion as they undergo self-folding compensating for any thermal changes or mechanical forces such as traumatic forces.

Keywords: functional material, self-folding material, 3D printing, 4D printing

Procedia PDF Downloads 457
477 Assessing Justice, Security and Human Rights Violations in Crisis Situations: The Case of Cameroon

Authors: Forbah Julius Ajamah

Abstract:

The protection of human rights and respect of the rule of law in Sub-Saharan African is a constant challenge due to ongoing and protracted conflict situations, political instability, shrinking democratic space and allegations of large-scale corruption in some countries. Conflict and/or crisis is most often resulting from constant violations of individual rights, with the risk increasing when many human rights are violated in a systematic or widespread fashion. Violations related to economic, social and cultural rights at times are as significant as violations of civil and political rights. Cameroon a country in Sub-Saharan African, for many years now has been confronted by numerous crises across different regions. Despite measures carried out, it has been reported that lesser and lesser attention has been placed on various conflict/crisis across Cameroon. To reach a common understanding of how both the economic, social and cultural rights has been violated and related impact on the quality of life, this paper evaluates justice, security and human rights violations in the present crisis situations. Without the prevention of human rights violations, wider conflict and/or crisis, will continue to have a negative impact in the lives of the inhabitants. This paper aims at providing evidence to support the fact that effective prevention requires early identification of risks that could allow for preventive and/or mitigatory measures to be designed and implemented.

Keywords: justice, security, human rights abuses, conflicts, crisis

Procedia PDF Downloads 70
476 Studies on the Mechanical Behavior of Bottom Ash for a Sustainable Environment

Authors: B. A. Mir, Asim Malik

Abstract:

Bottom ash is a by-product of the combustion process of coal in furnaces in the production of electricity in thermal power plants. In India, about 75% of total power is produced by using pulverized coal. The coal of India has a high ash content which leads to the generation of a huge quantity of bottom ash per year posing the dual problem of environmental pollution and difficulty in disposal. This calls for establishing strategies to use this industry by-product effectively and efficiently. However, its large-scale utilization is possible only in geotechnical applications, either alone or with soil. In the present investigation, bottom ash was collected from National Capital Power Station Dadri, Uttar Pradesh, India. Test samples of bottom ash admixed with 20% clayey soil were prepared and treated with different cement content by weight and subjected to various laboratory tests for assessing its suitability as an engineered construction material. This study has shown that use of 10% cement content is a viable chemical additive to enhance the mechanical properties of bottom ash, which can be used effectively as an engineered construction material in various geotechnical applications. More importantly, it offers an interesting potential for making use of an industrial waste to overcome challenges posed by bottom ash for a sustainable environment.

Keywords: bottom ash, environmental pollution, solid waste, sustainable environment, waste utilization

Procedia PDF Downloads 241
475 Impact of Aquaculture on Sustainable Development in Nigeria

Authors: Titilayo Shodeinde, Bukola Dawodu

Abstract:

Aquaculture practice in Nigeria is an industry that includes fish development in a controlled situation. It has developed through various stages and stages with its latent capacity yet to be completely tapped. To avow this potential in adding to human advancement, nourishment security and improved way of life, the aquaculture business requires new approaches. Subsequently, this seminar paper reviews the impact of aquaculture on sustainable development in Nigeria. The examination received on subjective research strategy. The segments and the frameworks of business fish cultivating were completely talked about. Additionally, imperatives to business fish cultivating in the area were explained. The systems for advancing business aquaculture, for example, increment in consciousness of aquaculture items, financing of aquaculture data sources, preparing and labor improvement, government support, arrangement of fish ranchers agreeable social orders, access to advances and credit offices, advancement of research exercises, viable fisheries approaches, great institutional structure, and decreasing the degrees of defilement and instability in the district, were plainly brought up as a veritable devices, for changing the current situation with aquaculture in Niger Delta, through arranged, engaged and composed compelling administration procedures, by singular ranchers, government organizations and applicable foundations for economical advancement of the locale specifically and the nation by and large.

Keywords: aquaculture, sustainability, Nigeria, research

Procedia PDF Downloads 200
474 Synthesis and Electromagnetic Wave Absorbing Property of Amorphous Carbon Nanotube Networks on a 3D Graphene Aerogel/BaFe₁₂O₁₉ Nanorod Composite

Authors: Tingkai Zhao, Jingtian Hu, Xiarong Peng, Wenbo Yang, Tiehu Li

Abstract:

Homogeneous amorphous carbon nanotube (ACNT) networks have been synthesized using floating catalyst chemical vapor deposition method on a three-dimensional (3D) graphene aerogel (GA)/BaFe₁₂O₁₉ nanorod (BNR) composite which prepared by a self-propagating combustion process. The as-synthesized ACNT/GA/BNR composite which has 3D network structures could be directly used as a good absorber in the electromagnetic wave absorbent materials. The experimental results indicated that the maximum absorbing peak of ACNT/GA/BNR composite with a thickness of 2 mm was -18.35 dB at 10.64 GHz in the frequency range of 2-18 GHz. The bandwidth of the reflectivity below -10 dB is 3.32 GHz. The 3D graphene aerogel structures which composed of dense interlined tubes and amorphous structure of ACNTs bearing quantities of dihedral angles could consume the incident waves through multiple reflection and scattering inside the 3D web structures. The interlinked ACNTs have both the virtues of amorphous CNTs (multiple reflections inside the wall) and crystalline CNTs (high conductivity), consuming the electromagnetic wave as resistance heat. ACNT/GA/BNR composite has a good electromagnetic wave absorbing performance.

Keywords: amorphous carbon nanotubes, graphene aerogel, barium ferrite nanorod, electromagnetic wave absorption

Procedia PDF Downloads 266
473 Assessment of the Economic Factors and Motivations towards De-Dollarization since the Early 2000s and Their Implications

Authors: Laila Algalal, Chen Xi

Abstract:

The US dollar has long served as the world's primary reserve currency. However, this dominance faces growing challenges from internal US economic pressures and the rise of alternative currencies. Internally, issues like high debt, inflation, reduced competitiveness, and economic instability due to inequality in economic policies threaten the dollar's position. Externally, more countries are establishing alternative currencies, payment systems, and regional financial institutions to reduce dollar dependence. These drivers have contributed to a decline in the dollar's share of global foreign exchange reserves from 71% in 2001 to an estimated 58% in 2022. While this 13-percentage point drop took two decades, recent initiatives suggest de-dollarization could accelerate in the coming few decades. Efforts to establish non-dollar trade deals and alternative financial systems show more substantial progress compared to initiatives in the early 2000s. As the nature of the world system is anarchic, states make either individual or group efforts to guarantee their economic security and achieve their interests. Based on neoclassical realism, this paper analyzes both internal and external US economic factors driving current and future de-dollarization and the implications on the international monetary system, in addition to examining the motivation for such moves.

Keywords: de-dollarization, US dollar, monetary system, economic security, economic policies.

Procedia PDF Downloads 67
472 Female Entrepreneurship in Egypt: Barriers and Challenges in the Aftermath of the Arab Spring

Authors: Kate Ebere Maduforo

Abstract:

Examining the constraints faced by female entrepreneurs is an important subject which most literature on female entrepreneurship is centered on. However, the majority of the existing literature has focused on studying female entrepreneurs in developed societies. Recently, a sense of urgency that has emerged in trying to understand the challenges and motivations of female entrepreneurs in developing countries. The arousal of such interest has been attributed to women entrepreneurs in developing countries being identified as catalysts of economic development at a national level and champions of poverty eradication at the domestic level. This paper, therefore, examines the peculiar constraints faced by women-owned businesses in the mist of political chaos and instability. In this case, the issues experienced by female entrepreneurs in Egypt during the aftermath of the Arab Spring is the focus. Using the logit and probit regression models, data from the World Bank Middle East North Africa Enterprise Survey (MENA ES) are analyzed. The results identified that female entrepreneurs still lack business funding through financial institutions, but get significant funding assistance from family, friends, and money lenders. In addition, women-owned businesses promote and hire mostly women. Female entrepreneurs showed a preference for an impartial judicial system as a contributor to business growth.

Keywords: female entrepreneurship, development, Middle East, developing countries

Procedia PDF Downloads 107
471 Development of a Complete Single Jet Common Rail Injection System Gas Dynamic Model for Hydrogen Fueled Engine with Port Injection Feeding System

Authors: Mohammed Kamil, M. M. Rahman, Rosli A. Bakar

Abstract:

Modeling of hydrogen fueled engine (H2ICE) injection system is a very important tool that can be used for explaining or predicting the effect of advanced injection strategies on combustion and emissions. In this paper, a common rail injection system (CRIS) is proposed for 4-strokes 4-cylinders hydrogen fueled engine with port injection feeding system (PIH2ICE). For this system, a numerical one-dimensional gas dynamic model is developed considering single injection event for each injector per a cycle. One-dimensional flow equations in conservation form are used to simulate wave propagation phenomenon throughout the CR (accumulator). Using this model, the effect of common rail on the injection system characteristics is clarified. These characteristics include: rail pressure, sound velocity, rail mass flow rate, injected mass flow rate and pressure drop across injectors. The interaction effects of operational conditions (engine speed and rail pressure) and geometrical features (injector hole diameter) are illustrated; and the required compromised solutions are highlighted. The CRIS is shown to be a promising enhancement for PIH2ICE.

Keywords: common rail, hydrogen engine, port injection, wave propagation

Procedia PDF Downloads 409
470 Fabrication of Powdery Composites Based Alumina and Its Consolidation by Hot Pressing Method in OXY-GON Furnace

Authors: T. Kuchukhidze, N. Jalagonia, T. Korkia, V. Gabunia, N. Jalabadze, R. Chedia

Abstract:

In this work, obtaining methods of ultrafine alumina powdery composites and high temperature pressing technology of matrix ceramic composites with different compositions have been discussed. Alumina was obtained by solution combustion synthesis and sol-gel methods. Metal carbides containing powdery composites were obtained by homogenization of finishing powders in nanomills, as well as by their single-step high temperature synthesis .Different types of matrix ceramics composites (α-Al2O3-ZrO2-Y2O3, α-Al2O3- Y2O3-MgO, α-Al2O3-SiC-Y2O3, α-Al2O3-WC-Co-Y2O3, α-Al2O3- B4C-Y2O3, α-Al2O3- B4C-TiB2 etc.) were obtained by using OXYGON furnace. Consolidation of powders were carried out at 1550- 1750°C (hold time - 1 h, pressure - 50 MPa). Corundum ceramics samples have been obtained and characterized by high hardness and fracture toughness, absence of open porosity, high corrosion resistance. Their density reaches 99.5-99.6% TD. During the work, the following devices have been used: High temperature vacuum furnace OXY-GON Industries Inc (USA), Electronic Scanning Microscopes Nikon Eclipse LV 150, Optical Microscope NMM- 800TRF, Planetary mill Pulverisette 7 premium line, Shimadzu Dynamic Ultra Micro Hardness Tester DUH-211S, Analysette 12 Dynasizer.

Keywords: α-alumina, consolidation, phase transformation, powdery composites

Procedia PDF Downloads 334
469 The Influence of Structural Disorder and Phonon on Metal-To-Insulator Transition of VO₂

Authors: Sang-Wook Han, In-Hui Hwang, Zhenlan Jin, Chang-In Park

Abstract:

We used temperature-dependent X-Ray absorption fine structure (XAFS) measurements to examine the local structural properties around vanadium atoms at the V K edge from VO₂ films. A direct comparison of simultaneously-measured resistance and XAFS from the VO₂ films showed that the thermally-driven structural phase transition (SPT) occurred prior to the metal-insulator transition (MIT) during heating, whereas these changed simultaneously during cooling. XAFS revealed a significant increase in the Debye-Waller factors of the V-O and V-V pairs in the {111} direction of the R-phase VO₂ due to the phonons of the V-V arrays along the direction in a metallic phase. A substantial amount of structural disorder existing on the V-V pairs along the c-axis in both M₁ and R phases indicates the structural instability of V-V arrays in the axis. The anomalous structural disorder observed on all atomic sites at the SPT prevents the migration of the V 3d¹ electrons, resulting in a Mott insulator in the M₂-phase VO₂. The anomalous structural disorder, particularly, at vanadium sites, effectively affects the migration of metallic electrons, resulting in the Mott insulating properties in M₂ phase and a non-congruence of the SPT, MIT, and local density of state. The thermally-induced phonons in the {111} direction assist the delocalization of the V 3d¹ electrons in the R phase VO₂ and the electrons likely migrate via the V-V array in the {111} direction as well as the V-V dimerization along the c-axis. This study clarifies that the tetragonal symmetry is essentially important for the metallic phase in VO₂.

Keywords: metal-insulator transition, XAFS, VO₂, structural-phase transition

Procedia PDF Downloads 258
468 Increasing Efficiency, Performance and Safety of Aircraft during Takeoff and Landing by Interpreting Electromagnetism

Authors: Sambit Supriya Dash

Abstract:

Aerospace Industry has evolved over the last century and is growing by approaching towards, more fuel efficient, cheaper, simpler, convenient and safer ways of flight stages. In this paper, the accident records of aircrafts are studied and found about 71% of accidents caused on runways during Takeoff and Landing. By introducing the concept of interpreting electromagnetism, the cause of bounced touchdown and flare failure such as landing impact loads and instability could be eliminated. During Takeoff, the rate of fuel consumption is observed to be maximum. By applying concept of interpreting electromagnetism, a remarkable rate of fuel consumption is reduced, which can be used in case of emergency due to lack of fuel or in case of extended flight. A complete setup of the concept, its effects and characteristics are studied and provided with references of few popular aircrafts. By embedding series of strong and controlled electromagnets below the runway along and aside the centre line and fixed in the line of acting force through wing-fuselage aerodynamic centre. By the essence of its strength controllable nature, it can contribute to performance and fuel efficiency for aircraft. This ensures a perfect Takeoff with less fuel consumption followed by safe cruise stage, which in turn ensures a short and safe landing, eliminating the till known failures, due to bounced touchdowns and flare failure.

Keywords: efficiency, elctromagnetism, performance, reduced fuel consumption, safety

Procedia PDF Downloads 214