Search results for: carbon dioxide as refrigerant
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3264

Search results for: carbon dioxide as refrigerant

2514 Molecular Dynamics Simulation for Vibration Analysis at Nanocomposite Plates

Authors: Babak Safaei, A. M. Fattahi

Abstract:

Polymer/carbon nanotube nanocomposites have a wide range of promising applications Due to their enhanced properties. In this work, free vibration analysis of single-walled carbon nanotube-reinforced composite plates is conducted in which carbon nanotubes are embedded in an amorphous polyethylene. The rule of mixture based on various types of plate model namely classical plate theory (CLPT), first-order shear deformation theory (FSDT), and higher-order shear deformation theory (HSDT) was employed to obtain fundamental frequencies of the nanocomposite plates. Generalized differential quadrature (GDQ) method was used to discretize the governing differential equations along with the simply supported and clamped boundary conditions. The material properties of the nanocomposite plates were evaluated using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long-(10,10) SWCNT composites. Then the results obtained directly from MD simulations were fitted with those calculated by the rule of mixture to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results are presented to address the influences of nanotube volume fraction and edge supports on the value of fundamental frequency of carbon nanotube-reinforced composite plates corresponding to both long- and short-nanotube composites.

Keywords: nanocomposites, molecular dynamics simulation, free vibration, generalized, differential quadrature (GDQ) method

Procedia PDF Downloads 311
2513 Comparison of Traditional and Green Building Designs in Egypt: Energy Saving

Authors: Hala M. Abdel Mageed, Ahmed I. Omar, Shady H. E. Abdel Aleem

Abstract:

This paper describes in details a commercial green building that has been designed and constructed in Marsa Matrouh, Egypt. The balance between homebuilding and the sustainable environment has been taken into consideration in the design and construction of this building. The building consists of one floor with 3 m height and 2810 m2 area while the envelope area is 1400 m2. The building construction fulfills the natural ventilation requirements. The glass curtain walls are about 50% of the building and the windows area is 300 m2. 6 mm greenish gray tinted temper glass as outer board lite, 6 mm safety glass as inner board lite and 16 mm thick dehydrated air spaces are used in the building. Visible light with 50% transmission, 0.26 solar factor, 0.67 shading coefficient and 1.3 W/m2.K thermal insulation U-value are implemented to realize the performance requirements. Optimum electrical distribution for lighting system, air conditions and other electrical loads has been carried out. Power and quantity of each type of the lighting system lamps and the energy consumption of the lighting system are investigated. The design of the air conditions system is based on summer and winter outdoor conditions. Ventilated, air conditioned spaces and fresh air rates are determined. Variable Refrigerant Flow (VRF) is the air conditioning system used in this building. The VRF outdoor units are located on the roof of the building and connected to indoor units through refrigerant piping. Indoor units are distributed in all building zones through ducts and air outlets to ensure efficient air distribution. The green building energy consumption is evaluated monthly all over one year and compared with the consumed energy in the non-green conditions using the Hourly Analysis Program (HAP) model. The comparison results show that the total energy consumed per year in the green building is about 1,103,221 kWh while the non-green energy consumption is about 1,692,057 kWh. In other words, the green building total annual energy cost is reduced from 136,581 $ to 89,051 $. This means that, the energy saving and consequently the money-saving of this green construction is about 35%. In addition, 13 points are awarded by applying one of the most popular worldwide green energy certification programs (Leadership in Energy and Environmental Design “LEED”) as a rating system for the green construction. It is concluded that this green building ensures sustainability, saves energy and offers an optimum energy performance with minimum cost.

Keywords: energy consumption, energy saving, green building, leadership in energy and environmental design, sustainability

Procedia PDF Downloads 285
2512 The Carbon Footprint Model as a Plea for Cities towards Energy Transition: The Case of Algiers Algeria

Authors: Hachaichi Mohamed Nour El-Islem, Baouni Tahar

Abstract:

Environmental sustainability rather than a trans-disciplinary and a scientific issue, is the main problem that characterizes all modern cities nowadays. In developing countries, this concern is expressed in a plethora of critical urban ills: traffic congestion, air pollution, noise, urban decay, increase in energy consumption and CO2 emissions which blemish cities’ landscape and might threaten citizens’ health and welfare. As in the same manner as developing world cities, the rapid growth of Algiers’ human population and increasing in city scale phenomena lead eventually to increase in daily trips, energy consumption and CO2 emissions. In addition, the lack of proper and sustainable planning of the city’s infrastructure is one of the most relevant issues from which Algiers suffers. The aim of this contribution is to estimate the carbon deficit of the City of Algiers, Algeria, using the Ecological Footprint Model (carbon footprint). In order to achieve this goal, the amount of CO2 from fuel combustion has been calculated and aggregated into five sectors (agriculture, industry, residential, tertiary and transportation); as well, Algiers’ biocapacity (CO2 uptake land) has been calculated to determine the ecological overshoot. This study shows that Algiers’ transport system is not sustainable and is generating more than 50% of Algiers total carbon footprint which cannot be sequestered by the local forest land. The aim of this research is to show that the Carbon Footprint Assessment might be a relevant indicator to design sustainable strategies/policies striving to reduce CO2 by setting in motion the energy consumption in the transportation sector and reducing the use of fossil fuels as the main energy input.

Keywords: biocapacity, carbon footprint, ecological footprint assessment, energy consumption

Procedia PDF Downloads 133
2511 Adhesion Problematic for Novel Non-Crimp Fabric and Surface Modification of Carbon-Fibres Using Oxy-Fluorination

Authors: Iris Käppler, Paul Matthäi, Chokri Cherif

Abstract:

In the scope of application of technical textiles, Non-Crimp Fabrics are increasingly used. In general, NCF exhibit excellent load bearing properties, but caused by the manufacturing process, there are some remaining disadvantages which have to be reduced. Regarding to this, a novel technique of processing NCF was developed substituting the binding-thread by an adhesive. This stitch-free method requires new manufacturing concept as well as new basic methods to prove adhesion of glue at fibres and textiles. To improve adhesion properties and the wettability of carbon-fibres by the adhesive, oxyfluorination was used. The modification of carbon-fibres by oxyfluorination was investigated via scanning electron microscope, X-ray photo electron spectroscopy and single fibre tensiometry. Special tensile tests were developed to determine the maximum force required for detachment.

Keywords: non-crimp fabric, adhesive, stitch-free, high-performance fibre

Procedia PDF Downloads 337
2510 Mathematical Modelling of Human Cardiovascular-Respiratory System Response to Exercise in Rwanda

Authors: Jean Marie Ntaganda, Froduald Minani, Wellars Banzi, Lydie Mpinganzima, Japhet Niyobuhungiro, Jean Bosco Gahutu, Vincent Dusabejambo, Immaculate Kambutse

Abstract:

In this paper, we present a nonlinear dynamic model for the interactive mechanism of the cardiovascular and respiratory system. The model is designed and analyzed for human during physical exercises. In order to verify the adequacy of the designed model, data collected in Rwanda are used for validation. We have simulated the impact of heart rate and alveolar ventilation as controls of cardiovascular and respiratory system respectively to steady state response of the main cardiovascular hemodynamic quantities i.e., systemic arterial and venous blood pressures, arterial oxygen partial pressure and arterial carbon dioxide partial pressure, to the stabilised values of controls. We used data collected in Rwanda for both male and female during physical activities. We obtained a good agreement with physiological data in the literature. The model may represent an important tool to improve the understanding of exercise physiology.

Keywords: exercise, cardiovascular/respiratory, hemodynamic quantities, numerical simulation, physical activity, sportsmen in Rwanda, system

Procedia PDF Downloads 227
2509 Floristic Diversity, Carbon Stocks and Degradation Factors in Two Sacred Forests in the West Cameroon Region

Authors: Maffo Maffo Nicole Liliane, Mounmeni Kpoumie Hubert, Mbaire Matindje Karl Marx, Zapfack Louis

Abstract:

Sacred forests play a valuable role in conserving local biodiversity and provide numerous ecosystem services in Cameroon. The study was carried out in the sacred forests of Bandrefam and Batoufam (western Cameroon). The aim was to estimate the diversity of woody species, carbon stocks and degradation factors in these sacred forests. The floristic inventory was carried out in plots measuring 25m × 25m for trees with diameters greater than 10 cm and 5m × 5m for trees with diameters less than 10 cm. Carbon stocks were estimated using the non-destructive method and the allometric equations. Data on degradation factors were collected using semi-structured surveys in the Bandrefam and Batoufam neighborhoods. The floristic inventory identified 65 species divided into 57 genera and 30 families in the Bandrefam Sacred Forest and 45 species divided into 42 genera and 27 families in the Batoufam Sacres Forest. The families common to both sacred forests are as follows: Phyllanthaceae, Fabaceae, Moraceae, Lamiaceae, Malvaceae, Rubiaceae, Meliaceae, Anacardiaceae, and Sapindaceae. Three genera are present in both sites. These are: Albizia, Macaranga, Trichillia. In addition, there are 27 species in common between the two sites. The total carbon stock is 469.26 tC/ha at Batoufam and 291.41 tC/ha at Bandrefam. The economic value varies between 15 823 877.05 fcfa at Batoufam and 9 825 530.528 fcfa at Bandrefam. The study shows that despite the sacred nature of these forests, they are subject to degradation factors such as bushfires (35.42 %), the creation of plantations (23.96 %), illegal timber exploitation (21.88 %), young people's lack of interest in the notion of conservation (9.38 %), climate change (7.29 %) and growing urbanization (2.08 %). These factors threaten biodiversity and reduce carbon storage in these forests.

Keywords: sacred forests, degradation factors, carbon stocks, semi-structured surveys

Procedia PDF Downloads 34
2508 The Combined Effect of Methane and Methanol on Growth and PHB Production in the Alphaproteobacterial Methanotroph Methylocystis Sp. Rockwell

Authors: Lazic Marina, Sugden Scott, Sharma Kanta Hem, Sauvageau Dominic, Stein Lisa

Abstract:

Methane is a highly potent greenhouse gas mostly released through anthropogenic activities. Methane represents a low-cost and sustainable feedstock used for the biological production of value-added compounds by bacteria known as methanotrophs. In addition to methane, these organisms can utilize methanol, another cheap carbon source that is a common industrial by-product. Alphaproteobacteria methanotrophs can utilize both methane and methanol to produce the biopolymer polyhydroxybutyrate. The goal of this study was to examine the effect of methanol on polyhydroxybutyrate production in Methylocystis sp. Rockwell and to identify the optimal methane: methanol ratio that will improve PHB without reducing biomass production. Three methane: methanol ratios (4, 2.5., and 0.5) and three nitrogen source (ammonium or nitrate) concentrations (10 mM, 1 mM, and 0.1 mM) were combined to generate 18 growing conditions (9 per carbon source). The production of polyhydroxybutyrate and biomass was analyzed at the end of growth. Overall, the methane: methanol ratios that promoted polyhydroxybutyrate synthesis without reducing biomass were 4 and 2.5 and the optimal nitrogen concentration was 1 mM for both ammonium and nitrate. The physiological mechanism behind the beneficial effect of combining methane and methanol as carbon sources remain to be discovered. One possibility is that methanol has a dual role as a carbon source at lower concentrations and as a stringent response trigger at higher concentrations. Nevertheless, the beneficial effect of methanol and optimal nitrogen concentration for PHB production was confirmed, providing a basis for future physiological analysis and conditions for process scale-up.

Keywords: methane, methanol, methanotrophs, polyhydroxybutyrate, methylocystis sp. rockwell, single carbon bioconversions

Procedia PDF Downloads 146
2507 Solid-Liquid-Polymer Mixed Matrix Membrane Using Liquid Additive Adsorbed on Activated Carbon Dispersed in Polymeric Membrane for CO2/CH4 Separation

Authors: P. Chultheera, T. Rirksomboon, S. Kulprathipanja, C. Liu, W. Chinsirikul, N. Kerddonfag

Abstract:

Gas separation by selective transport through polymeric membranes is one of the rapid growing branches of membrane technology. However, the tradeoff between the permeability and selectivity is one of the critical challenges encountered by pure polymer membranes, which in turn limits their large-scale application. To enhance gas separation performances, mixed matrix membranes (MMMs) have been developed. In this study, MMMs were prepared by a solution-coating method and tested for CO2/CH4 separation through permeability and selectivity using a membrane testing unit at room temperature and a pressure of 100 psig. The fabricated MMMs were composed of silicone rubber dispersed with the activated carbon individually absorbed with polyethylene glycol (PEG) as a liquid additive. PEG emulsified silicone rubber MMMs showed superior gas separation on cellulose acetate membrane with both high permeability and selectivity compared with silicone rubber membrane and alone support membrane. However, the MMMs performed limited stability resulting from the undesirable PEG leakage. To stabilize the MMMs, PEG was then incorporated into activated carbon by adsorption. It was found that the incorporation of solid and liquid was effective to improve the separation performance of MMMs.

Keywords: mixed matrix membrane, membrane, CO₂/CH₄ separation, activated carbon

Procedia PDF Downloads 321
2506 Si3N4-SiC Composites Produced by Using C Black and Sic Powder

Authors: Nilgun Kuskonmaz, Zeynep Taslıcukur Ozturk, Cem Sahin

Abstract:

In this study, Si3N4-SiC composites were synthesized by using different raw materials. In the first method, Si3N4 and C black powder mixtures were used to fabricate Si3N4-SiC composites by in-situ carbothermal reduction process. The percentage of C black was only changed. The effects of carbon black percentage in the mixtures were analysed by characterization of SiC particles which were obtained in the Si3N4 matrix. In the second method, SiC particles were added to the matrix in different weight ratios. The composites were pressed by cold isostatic method under 150 MPa pressure and pressureless sintered at 1700-1850 °C during 1 hour in the argon atmosphere. AlN and Y2O3 were used as sintering additives. Sintering temperature, time and all the effects on in-situ reaction were studied. The densification and microstructure properties of the produced ceramics were analysed. Density was one of the main subjects in these reactions. It is very important during porous SiC sintering. Green density and relative density were measured higher for CIP samples. Samples which were added carbon black were more porous than SiC added samples. The increase in the carbon black, makes increase in porosity. The outcome of the experiments was SiC powders which were obtained at the grain boundries of β-Si3N4 particles.

Keywords: silicon nitride, silicon carbide, carbon black, cold isostatic press, sintering

Procedia PDF Downloads 295
2505 Evaluation of Automated Analyzers of Polycyclic Aromatic Hydrocarbons and Black Carbon in a Coke Oven Plant by Comparison with Analytical Methods

Authors: L. Angiuli, L. Trizio, R. Giua, A. Digilio, M. Tutino, P. Dambruoso, F. Mazzone, C. M. Placentino

Abstract:

In the winter of 2014 a series of measurements were performed to evaluate the behavior of real-time PAHs and black carbon analyzers in a coke oven plant located in Taranto, a city of Southern Italy. Data were collected both insides than outside the plant, at air quality monitoring sites. Contemporary measures of PM2.5 and PM1 were performed. Particle-bound PAHs were measured by two methods: (1) aerosol photoionization using an Ecochem PAS 2000 analyzer, (2) PM2.5 and PM1 quartz filter collection and analysis by gas chromatography/mass spectrometry (GC/MS). Black carbon was determined both in real-time by Magee Aethalometer AE22 analyzer than by semi-continuous Sunset Lab EC/OC instrument. Detected PM2.5 and PM1 levels were higher inside than outside the plant while PAHs real-time values were higher outside than inside. As regards PAHs, inside the plant Ecochem PAS 2000 revealed concentrations not significantly different from those determined on the filter during low polluted days, but at increasing concentrations the automated instrument underestimated PAHs levels. At the external site, Ecochem PAS 2000 real-time concentrations were steadily higher than those on the filter. In the same way, real-time black carbon values were constantly lower than EC concentrations obtained by Sunset EC/OC in the inner site, while outside the plant real-time values were comparable to Sunset EC values. Results showed that in a coke plant real-time analyzers of PAHs and black carbon in the factory configuration provide qualitative information, with no accuracy and leading to the underestimation of the concentration. A site specific calibration is needed for these instruments before their installation in high polluted sites.

Keywords: black carbon, coke oven plant, PAH, PAS, aethalometer

Procedia PDF Downloads 332
2504 Sustainable Design of Coastal Bridge Networks in the Presence of Multiple Flood and Earthquake Risks

Authors: Riyadh Alsultani, Ali Majdi

Abstract:

It is necessary to develop a design methodology that includes the possibility of seismic events occurring in a region, the vulnerability of the civil hydraulic structure, and the effects of the occurrence hazard on society, environment, and economy in order to evaluate the flood and earthquake risks of coastal bridge networks. This paper presents a design approach for the assessment of the risk and sustainability of coastal bridge networks under time-variant flood-earthquake conditions. The social, environmental, and economic indicators of the network are used to measure its sustainability. These consist of anticipated loss, downtime, energy waste, and carbon dioxide emissions. The design process takes into account the possibility of happening in a set of flood and earthquake scenarios that represent the local seismic activity. Based on the performance of each bridge as determined by fragility assessments, network linkages are measured. The network's connections and bridges' damage statuses after an earthquake scenario determine the network's sustainability and danger. The sustainability measures' temporal volatility and the danger of structural degradation are both highlighted. The method is shown using a transportation network in Baghdad, Iraq.

Keywords: sustainability, Coastal bridge networks, flood-earthquake risk, structural design

Procedia PDF Downloads 75
2503 Prediction of the Crustal Deformation of Volcán - Nevado Del RUíz in the Year 2020 Using Tropomi Tropospheric Information, Dinsar Technique, and Neural Networks

Authors: Juan Sebastián Hernández

Abstract:

The Nevado del Ruíz volcano, located between the limits of the Departments of Caldas and Tolima in Colombia, presented an unstable behaviour in the course of the year 2020, this volcanic activity led to secondary effects on the crust, which is why the prediction of deformations becomes the task of geoscientists. In the course of this article, the use of tropospheric variables such as evapotranspiration, UV aerosol index, carbon monoxide, nitrogen dioxide, methane, surface temperature, among others, is used to train a set of neural networks that can predict the behaviour of the resulting phase of an unrolled interferogram with the DInSAR technique, whose main objective is to identify and characterise the behaviour of the crust based on the environmental conditions. For this purpose, variables were collected, a generalised linear model was created, and a set of neural networks was created. After the training of the network, validation was carried out with the test data, giving an MSE of 0.17598 and an associated r-squared of approximately 0.88454. The resulting model provided a dataset with good thematic accuracy, reflecting the behaviour of the volcano in 2020, given a set of environmental characteristics.

Keywords: crustal deformation, Tropomi, neural networks (ANN), volcanic activity, DInSAR

Procedia PDF Downloads 82
2502 Implication of the Exchange-Correlation on Electromagnetic Wave Propagation in Single-Wall Carbon Nanotubes

Authors: A. Abdikian

Abstract:

Using the linearized quantum hydrodynamic model (QHD) and by considering the role of quantum parameter (Bohm’s potential) and electron exchange-correlation potential in conjunction with Maxwell’s equations, electromagnetic wave propagation in a single-walled carbon nanotubes was studied. The electronic excitations are described. By solving the mentioned equations with appropriate boundary conditions and by assuming the low-frequency electromagnetic waves, two general expressions of dispersion relations are derived for the transverse magnetic (TM) and transverse electric (TE) modes, respectively. The dispersion relations are analyzed numerically and it was found that the dependency of dispersion curves with the exchange-correlation effects (which have been ignored in previous works) in the low frequency would be limited. Moreover, it has been realized that asymptotic behaviors of the TE and TM modes are similar in single wall carbon nanotubes (SWCNTs). The results show that by adding the function of electron exchange-correlation potential lead to the phenomena and make to extend the validity range of QHD model. The results can be important in the study of collective phenomena in nanostructures.

Keywords: transverse magnetic, transverse electric, quantum hydrodynamic model, electron exchange-correlation potential, single-wall carbon nanotubes

Procedia PDF Downloads 437
2501 Tokenization of Blue Bonds as an Emerging Green Finance Tool

Authors: Rodrigo Buaiz Boabaid

Abstract:

Tokenization of Blue Bonds is an emerging Green Finance tool that has the potential to scale Blue Carbon Projects to fight climate change. This innovative solution has a huge potential to democratize the green finance market and catalyze innovations in the climate change finance sector. Switzerland has emerged as a leader in the Green Finance space and is well-positioned to drive the adoption of Tokenization of Blue & Green Bonds. This unique approach has the potential to unlock new sources of capital and enable global investors to participate in the financing of sustainable blue carbon projects. By leveraging the power of blockchain technology, Tokenization of Blue Bonds can provide greater transparency, efficiency, and security in the investment process, while also reducing transaction costs. Investments are in line with the highest regulations and designed according to the stringent legal framework and compliance standards set by Switzerland. The potential benefits of Tokenization of Blue Bonds are significant and could transform the way that sustainable projects are financed. By unlocking new sources of capital, this approach has the potential to accelerate the deployment of Blue Carbon projects and create new opportunities for investors to participate in the fight against climate change.

Keywords: blue carbon, blue bonds, green finance, Tokenization, blockchain solutions

Procedia PDF Downloads 57
2500 Colour and Curcuminoids Removal from Turmeric Wastewater Using Activated Carbon Adsorption

Authors: Nattawat Thongpraphai, Anusorn Boonpoke

Abstract:

This study aimed to determine the removal of colour and curcuminoids from turmeric wastewater using granular activated carbon (GAC) adsorption. The adsorption isotherm and kinetic behavior of colour and curcuminoids was invested using batch and fixed bed columns tests. The results indicated that the removal efficiency of colour and curcuminoids were 80.13 and 78.64%, respectively at 8 hr of equilibrium time. The adsorption isotherm of colour and curcuminoids were well fitted with the Freundlich adsorption model. The maximum adsorption capacity of colour and curcuminoids were 130 Pt-Co/g and 17 mg/g, respectively. The continuous experiment data showed that the exhaustion concentration of colour and curcuminoids occurred at 39 hr of operation time. The adsorption characteristic of colour and curcuminoids from turmeric wastewater by GAC can be described by the Thomas model. The maximum adsorption capacity obtained from kinetic approach were 39954 Pt-Co/g and 0.0516 mg/kg for colour and curcuminoids, respectively. Moreover, the decrease of colour and curcuminoids concentration during the service time showed a similar trend.

Keywords: adsorption, turmeric, colour, curcuminoids, activated carbon

Procedia PDF Downloads 407
2499 Investigation of Chlorophylls a and b Interaction with Inner and Outer Surfaces of Single-Walled Carbon Nanotube Using Molecular Dynamics Simulation

Authors: M. Dehestani, M. Ghasemi-Kooch

Abstract:

In this work, adsorption of chlorophylls a and b pigments in aqueous solution on the inner and outer surfaces of single-walled carbon nanotube (SWCNT) has been studied using molecular dynamics simulation. The linear interaction energy algorithm has been used to calculate the binding free energy. The results show that the adsorption of two pigments is fine on the both positions. Although there is the close similarity between these two pigments, their interaction with the nanotube is different. This result is useful to separate these pigments from one another. According to interaction energy between the pigments and carbon nanotube, interaction between these pigments-SWCNT on the inner surface is stronger than the outer surface. The interaction of SWCNT with chlorophylls phytol tail is stronger than the interaction of SWCNT with porphyrin ring of chlorophylls.

Keywords: adsorption, chlorophyll, interaction, molecular dynamics simulation, nanotube

Procedia PDF Downloads 217
2498 Advancement in Carbon Based Battery System

Authors: Mohini M. Sain, Vijay Kumar, Tasmia Tabassem, Jimi Tjong

Abstract:

In the recent times, the Lithium-sulfur batteries (LiSBs) have emerged as a highly promising next generation of secondary batteries for their high theoretical specific capacity (1675 mAh/g) and low cost, and they have shown immense possibilities in utilizing in battery operated electric vehicles (BEVs). However, the commercialization of LiSBs is restricted due to the slow redox kinetics of sulfur cathode and shuttling effect of polysulfides during battery operation. Thus, the development of novel host materials is crucial for suppressing the dissolution of polysulfides into electrolyte, and this eventually helps in resolving the long-term cycling problem in LiSBs. This work provides a simple and straightforward method to design carbon materials with optimized nitrogen content with high surface area and thus simultaneously reveals new methods and strategies for realizing high performance host material design for practical LiSBs.

Keywords: Li ion battery, graphtitic carbon, electrode fabrication, BeV

Procedia PDF Downloads 512
2497 Evaluating the Prominence of Chemical Phenomena in Chemistry Courses

Authors: Vanessa R. Ralph, Leah J. Scharlott, Megan Y. Deshaye, Ryan L. Stowe

Abstract:

Given the traditions of chemistry teaching, one may not question whether chemical phenomena play a prominent role. Yet, the role of chemical phenomena in an introductory chemistry course may define the extent to which the course is introductory, chemistry, and equitable. Picture, for example, the classic Ideal Gas Law problem. If one envisions a prompt wherein students are tasked with calculating a missing variable, then one envisions a prompt that relies on chemical phenomena as a context rather than as a model to understand the natural world. Consider a prompt wherein students are tasked with applying molecular models of gases to explain why the vapor pressure of a gaseous solution of water differs from that of carbon dioxide. Here, the chemical phenomenon is not only the context but also the subject of the prompt. Deliveries of general and organic chemistry were identified as ranging wildly in the integration of chemical phenomena. The more incorporated the phenomena, the more equitable the assessment task was for students of varying access to pre-college math and science preparation. How chemical phenomena are integrated may very well define whether courses are chemistry, are introductory, and are equitable. Educators of chemistry are invited colleagues to discuss the role of chemical phenomena in their courses and consider the long-lasting impacts of replicating tradition for tradition’s sake.

Keywords: equitable educational practices, chemistry curriculum, content organization, assessment design

Procedia PDF Downloads 180
2496 The Influence of C Element on the Phase Transformation in Weldment of Complex Stainless Steels 2507/316/316L

Authors: Lin Dong-Yih, Yang S. M., Huang B. W., Lian J. A.

Abstract:

Super duplex stainless steel has excellent mechanical properties and corrosion resistance. It becomes important structural material as its application has been extended to the fields such as renewable energy and the chemical industry because of its excellent properties. As examples are offshore wind power, solar cell machinery, and pipes in the chemical industry. The mechanical properties and corrosion resistance of super duplex stainless steel can be eliminated by welding due to the precipitation of the hard and brittle σ phase, which is rich of chromium, and molybdenum elements. This paper studies the influence of carbon element on the phase transformation of -ferrite and σ phase in 2507 super duplex stainless steel. The 2507 will be under argon gas protection welded with 316 and 316L extra low carbon stainless steel separately. The microstructural phases of stainless steels before and after welding, in fusion, heat affected zones, and base material will be studied via X-ray, OM, SEM, EPMA i.e. their quantity, size, distribution, and morphology. The influences of diffusion by carbon element will be compared according to the microstructures, hardness, and corrosion tests.

Keywords: complex stainless steel, welding, phase formation, carbon element, sigma phase, delta ferrite

Procedia PDF Downloads 88
2495 Multiscale Computational Approach to Enhance the Understanding, Design and Development of CO₂ Catalytic Conversion Technologies

Authors: Agnieszka S. Dzielendziak, Lindsay-Marie Armstrong, Matthew E. Potter, Robert Raja, Pier J. A. Sazio

Abstract:

Reducing carbon dioxide, CO₂, is one of the greatest global challenges. Conversion of CO₂ for utilisation across synthetic fuel, pharmaceutical, and agrochemical industries offers a promising option, yet requires significant research to understanding the complex multiscale processes involved. To experimentally understand and optimize such processes at that catalytic sites and exploring the impact of the process at reactor scale, is too expensive. Computational methods offer significant insight and flexibility but require a more detailed multi-scale approach which is a significant challenge in itself. This work introduces a computational approach which incorporates detailed catalytic models, taken from experimental investigations, into a larger-scale computational flow dynamics framework. The reactor-scale species transport approach is modified near the catalytic walls to determine the influence of catalytic clustering regions. This coupling approach enables more accurate modelling of velocity, pressures, temperatures, species concentrations and near-wall surface characteristics which will ultimately enable the impact of overall reactor design on chemical conversion performance.

Keywords: catalysis, CCU, CO₂, multi-scale model

Procedia PDF Downloads 236
2494 Integrating Reactive Chlorine Species Generation with H2 Evolution in a Multifunctional Photoelectrochemical System for Low Operational Carbon Emissions Saline Sewage Treatment

Authors: Zexiao Zheng, Irene M. C. Lo

Abstract:

Organic pollutants, ammonia, and bacteria are major contaminants in sewage, which may adversely impact ecosystems without proper treatment. Conventional wastewater treatment plants (WWTPs) are operated to remove these contaminants from sewage but suffer from high carbon emissions and are powerless to remove emerging organic pollutants (EOPs). Herein, we have developed a low operational carbon emissions multifunctional photoelectrochemical (PEC) system for saline sewage treatment to simultaneously remove organic compounds, ammonia, and bacteria, coupled with H2 evolution. A reduced BiVO4 (r-BiVO4) with improved PEC properties due to the construction of oxygen vacancies and V4+ species was developed for the multifunctional PEC system. The PEC/r-BiVO4 process could treat saline sewage to meet local WWTPs’ discharge standard in 40 minutes at 2.0 V vs. Ag/AgCl and completely degrade carbamazepine (one of the EOPs), coupled with significant evolution of H2. A remarkable reduction in operational carbon emissions was achieved by the PEC/r-BiVO4 process compared with large-scale WWTPs, attributed to the restrained direct carbon emissions from the generation of greenhouse gases. Mechanistic investigation revealed that the PEC system could activate chloride ions in sewage to generate reactive chlorine species and facilitate •OH production, promoting contaminants removal. The PEC system exhibited operational feasibility at different pH and total suspended solids concentrations and has outstanding reusability and stability, confirming its promising practical potential. The study combined the simultaneous removal of three major contaminants from saline sewage and H2 evolution in a single PEC process, demonstrating a viable approach to supplementing and extending the existing wastewater treatment technologies. The study generated profound insights into the in-situ activation of existing chloride ions in sewage for contaminants removal and offered fundamental theories for applying the PEC system in sewage remediation with low operational carbon emissions. The developed PEC system can fit well with the future needs of wastewater treatment because of the following features: (i) low operational carbon emissions, benefiting the carbon neutrality process; (ii) higher quality of the effluent due to the elimination of EOPs; (iii) chemical-free in the operation of sewage treatment; (iv) easy reuse and recycling without secondary pollution.

Keywords: contaminants removal, H2 evolution, multifunctional PEC system, operational carbon emissions, saline sewage treatment, r-BiVO4 photoanodes

Procedia PDF Downloads 137
2493 Development of a Myocardial Patch with 3D Hydrogel Electrical Stimulation System

Authors: Yung-Gi Chen, Pei-Leun Kang, Yu-Hsin Lin, Shwu-Jen Chang

Abstract:

Myocardial tissue has limited self-repair ability due to its loss of differentiation characteristic for most mature cardiomyocytes. Therefore, the effective use of stem cell technology in regenerative medicine is an important development to alleviate the current difficulties in cardiac disease treatment. The main purpose of this project was to develop a 3-D hydrogel electrical stimulating system for promoting the differentiation of stem cells into myocardial cells, and the patch will be used to repair damaged myocardial tissue. This project was focused on the preparation of the electrical stimulation system with carbon/CaCl₂ electrodes covered with carbon nanotube-hydrogel. In this study, we utilized screen imprinting techniques and used Poly(lactic-co-glycolic acid)(PLGA) membranes as printing substrates to fabricate a carbon/CaCl₂ interdigitated electrode that covered with alginate/carbon nanotube hydrogels. The single-walled carbon nanotube was added in the hydrogel to enhance the mechanical strength and conductivity of hydrogel. In this study, we used PLGA (85:15) as electrode preparing substrate. The CaCl₂/ EtOH solution (80% w/v) was mixed into carbon paste to prepare various concentration calcium-containing carbon paste (2.5%, 5%, 7.5%, 10% v/v). Different concentrations of alginate (1%, 1.5%, 2% v/v) and SWCNT(Diameter < 2nm, length between 5-15μm) (1, 1.5, 3 mg/ml) are gently immobilized on the electrode by cross-linking with calcium chloride. The three-dimensional hydrogel electrode was tested for its redox efficiency by cyclic voltammetry to determine the optimal parameters for the hydrogel electrode preparation. From the result of the final electrodes, it indicated that the electrode was not easy to maintain the pattern of the interdigitated electrode when the concentration of calcium of chloride was more than 10%. According to the gel rate test and cyclic voltammetry experiment results showed the SWCNT could increase the electron conduction of hydrogel electrodes significantly. So far the 3D electrode system has been completed, 2% alginate mixed with 3mg SWCNT is the optimal condition to construct the most complete structure for the hydrogel preparation.

Keywords: myocardial tissue engineering, screen printing technology, poly (lactic-co-glycolic acid), alginate, single walled carbon nanotube

Procedia PDF Downloads 95
2492 Modular Probe for Basic Monitoring of Water and Air Quality

Authors: Andrés Calvillo Téllez, Marianne Martínez Zanzarric, José Cruz Núñez Pérez

Abstract:

A modular system that performs basic monitoring of both water and air quality is presented. Monitoring is essential for environmental, aquaculture, and agricultural disciplines, where this type of instrumentation is necessary for data collection. The system uses low-cost components, which allows readings close to those with high-cost probes. The probe collects readings such as the coordinates of the geographical position, as well as the time it records the target parameters of the monitored. The modules or subsystems that make up the probe are the global positioning (GPS), which shows the altitude, latitude, and longitude data of the point where the reading will be recorded, a real-time clock stage, the date marking the time, the module SD memory continuously stores data, data acquisition system, central processing unit, and energy. The system acquires parameters to measure water quality, conductivity, pressure, and temperature, and for air, three types of ammonia, dioxide, and carbon monoxide gases were censored. The information obtained allowed us to identify the schedule of modification of the parameters and the identification of the ideal conditions for the growth of microorganisms in the water.

Keywords: calibration, conductivity, datalogger, monitoring, real time clock, water quality

Procedia PDF Downloads 84
2491 Developing Allometric Equations for More Accurate Aboveground Biomass and Carbon Estimation in Secondary Evergreen Forests, Thailand

Authors: Titinan Pothong, Prasit Wangpakapattanawong, Stephen Elliott

Abstract:

Shifting cultivation is an indigenous agricultural practice among upland people and has long been one of the major land-use systems in Southeast Asia. As a result, fallows and secondary forests have come to cover a large part of the region. However, they are increasingly being replaced by monocultures, such as corn cultivation. This is believed to be a main driver of deforestation and forest degradation, and one of the reasons behind the recurring winter smog crisis in Thailand and around Southeast Asia. Accurate biomass estimation of trees is important to quantify valuable carbon stocks and changes to these stocks in case of land use change. However, presently, Thailand lacks proper tools and optimal equations to quantify its carbon stocks, especially for secondary evergreen forests, including fallow areas after shifting cultivation and smaller trees with a diameter at breast height (DBH) of less than 5 cm. Developing new allometric equations to estimate biomass is urgently needed to accurately estimate and manage carbon storage in tropical secondary forests. This study established new equations using a destructive method at three study sites: approximately 50-year-old secondary forest, 4-year-old fallow, and 7-year-old fallow. Tree biomass was collected by harvesting 136 individual trees (including coppiced trees) from 23 species, with a DBH ranging from 1 to 31 cm. Oven-dried samples were sent for carbon analysis. Wood density was calculated from disk samples and samples collected with an increment borer from 79 species, including 35 species currently missing from the Global Wood Densities database. Several models were developed, showing that aboveground biomass (AGB) was strongly related to DBH, height (H), and wood density (WD). Including WD in the model was found to improve the accuracy of the AGB estimation. This study provides insights for reforestation management, and can be used to prepare baseline data for Thailand’s carbon stocks for the REDD+ and other carbon trading schemes. These may provide monetary incentives to stop illegal logging and deforestation for monoculture.

Keywords: aboveground biomass, allometric equation, carbon stock, secondary forest

Procedia PDF Downloads 270
2490 Effect of N2-cold Plasma Treatment of Carbon Supports on the Activity of Pt3Pd3Sn2/C Towards the Dimethyl Ether Oxidation

Authors: Medhanie Gebremedhin Gebru, Alex Schechter

Abstract:

Dimethyl ether (DME) possesses several advantages over other small organic molecules such as methanol, ethanol, and ammonia in terms of providing higher energy density, being less toxic, and having lower Nafion membrane crossover. However, the absence of an active and stable catalyst has been the bottleneck that hindered the commercialization of direct DME fuel cells. A Vulcan XC72 carbon-supported ternary metal catalyst, Pt₃Pd₃Sn₂/C is reported to have yielded the highest specific power density (90 mW mg-¹PGM) as compared to other catalysts tested fordirect DME fuel cell (DDMEFC). However, the micropores and sulfur groups present in Vulcan XC72 hinder the fuel utilization by causing Pt agglomeration and sulfur poisoning. Vulcan XC72 having a high carbon sp³ hybridization content, is also prone to corrosion. Therefore, carbon supports such as multi-walled carbon nanotube (MWCNT), black pearl 2000 (BP2000), and their cold N2 plasma-treated counterpartswere tested to further enhance the activity of the catalyst, and the outputs with these carbons were compared with the originally used support. Detailed characterization of the pristine and carbon supports was conducted. Electrochemical measurements in three-electrode cells and laboratory prototype fuel cells were conducted.Pt₃Pd₃Sn₂/BP2000 exhibited excellent performance in terms of electrochemical active surface area (ECSA), peak current density (jp), and DME oxidation charge (Qoxi). The effect of the plasma activation on the activity improvement was observed only in the case of MWCNT while having little or no effect on the other carbons. A Pt₃Pd₃Sn₂ supported on the optimized mixture of carbons containing 75% plasma-activated MWCNT and 25% BP2000 (Pt₃Pd₃Sn₂/75M25B) provided the highest reported power density of 117 mW mg-1PGM using an anode loading of1.55 mgPGMcm⁻².

Keywords: DME, DDMEFC, ternary metal catalyst, carbon support, plasma activation

Procedia PDF Downloads 126
2489 Energy Efficiency and Sustainability Analytics for Reducing Carbon Emissions in Oil Refineries

Authors: Gaurav Kumar Sinha

Abstract:

The oil refining industry, significant in its energy consumption and carbon emissions, faces increasing pressure to reduce its environmental footprint. This article explores the application of energy efficiency and sustainability analytics as crucial tools for reducing carbon emissions in oil refineries. Through a comprehensive review of current practices and technologies, this study highlights innovative analytical approaches that can significantly enhance energy efficiency. We focus on the integration of advanced data analytics, including machine learning and predictive modeling, to optimize process controls and energy use. These technologies are examined for their potential to not only lower energy consumption but also reduce greenhouse gas emissions. Additionally, the article discusses the implementation of sustainability analytics to monitor and improve environmental performance across various operational facets of oil refineries. We explore case studies where predictive analytics have successfully identified opportunities for reducing energy use and emissions, providing a template for industry-wide application. The challenges associated with deploying these analytics, such as data integration and the need for skilled personnel, are also addressed. The paper concludes with strategic recommendations for oil refineries aiming to enhance their sustainability practices through the adoption of targeted analytics. By implementing these measures, refineries can achieve significant reductions in carbon emissions, aligning with global environmental goals and regulatory requirements.

Keywords: energy efficiency, sustainability analytics, carbon emissions, oil refineries, data analytics, machine learning, predictive modeling, process optimization, greenhouse gas reduction, environmental performance

Procedia PDF Downloads 13
2488 Marine Fishing and Climate Change: A China’s Perspective on Fisheries Economic Development and Greenhouse Gas Emissions

Authors: Yidan Xu, Pim Martens, Thomas Krafft

Abstract:

Marine fishing, an energy-intensive activity, directly emits greenhouse gases through fuel combustion, making it a significant contributor to oceanic greenhouse gas (GHG) emissions and worsening climate change. China is the world’s second-largest economy and the top emitter of GHG emissions, and it carries a significant energy conservation and emission reduction burden. However, the increasing GHG emissions from marine fishing is an easily overlooked but essential issue in China. This study offers a diverse perspective by integrating the concepts of total carbon emissions, carbon intensity, and per capita carbon emissions as indicators into calculation and discussion. To better understand the GHG emissions-Gross marine fishery product (GFP) relationship and influencing factors in Chinese marine fishing, the relationship between GHG emissions and economic development in marine fishing, a comprehensive framework is developed by combining the environmental Kuznets curve, the Tapio elasticity index, and the decomposition model. Results indicated that (1) The GHG emissions increased from 16.479 to 18.601 million tons in 2001-2020, in which trawlers and gillnetter are the main source in fishing operation. (2) Total carbon emissions (TC) and CI presented the same decline as GHG emissions, while per capita carbon emissions (PC) displayed an uptrend. (32) GHG emissions and gross marine fishery product (GFP) presented an inverted U-shaped relationship in China; the turning point came in the 13th Five-year Plan period (2016-2020). (43) Most provinces strongly decoupled GFP and CI. Still, PC and TC need more effort to decouple. (54) GHG emissions promoted by an industry structure driven, though carbon intensity and industry scale aid in GHG emissions reduced. (5) Compare with TC and PC, CI has been relatively affected by COVID-19 in 2020. The rise in fish and seafood prices during COVID-19 has boosted the GFP.

Keywords: marine fishing economy, greenhouse gas emission, fishery management, green development

Procedia PDF Downloads 48
2487 Cultivation And Production of Insects, Especially Mealworms (Mealworms) and Investigating Its Potential as Food for Animals and Even Humans

Authors: Marzieh Eshaghi Koupaei

Abstract:

By cultivating mealworm, we reduce greenhouse gases and avoid the use of transgenic products such as soybeans, and we provide food resources rich in protein, amino acids, minerals, etc. for humans and animals, and it has created employment and entrepreneurship. We serve the environment by producing oil from mealworm in the cosmetic industry, using its waste as organic fertilizer and its powder in bodybuilding, and by breaking down plastic by mealworm. The production and breeding of mealworm requires very little infrastructure and does not require much trouble, and requires very little food, and reproduces easily and quickly, and a mealworm production workshop is noiseless, odorless, and pollution-free And the costs are very low. It is possible to use third grade fruits and unsalable fruits of farmers to feed the mealworms, which is completely economical and cost-effective. Mealworms can break down plastic in their intestines and turn it into carbon dioxide. . This process was done in only 16 days, which is a very short time compared to several centuries for plastic to decompose. By producing mealworm, we have helped to preserve the environment and provided the source of protein needed by humans and animals. This industrial insect has the ability and value of commercialization and creates employment and helps the economy of the society.

Keywords: breeding, production of insects, mealworms, research, animal feed, human feed

Procedia PDF Downloads 38
2486 Spark Plasma Sintering of Aluminum-Based Composites Reinforced by Nanocrystalline Carbon-Coated Intermetallic Particles

Authors: B. Z. Manuel, H. D. Esmeralda, H. S. Felipe, D. R. Héctor, D. de la Torre Sebastián, R. L. Diego

Abstract:

Aluminum Matrix Composites reinforced with nanocrystalline Ni3Al carbon-coated intermetallic particles, were synthesized by powder metallurgy. Powder mixture of aluminum with 0.5-volume fraction of reinforcement particles was compacted by spark plasma sintering (SPS) technique and the compared with conventional sintering process. The better results for SPS technique were obtained in 520ºC-5kN-3min.The hardness (70.5±8 HV) and the elastic modulus (95 GPa) were evaluated in function of sintering conditions for SPS technique; it was found that the incorporation of these kind of reinforcement particles in aluminum matrix improve its mechanical properties. The densities were about 94% and 97% of the theoretical density. The carbon coating avoided the interfacial reaction between matrix-particle at high temperature (520°C) without show composition change either intermetallic dissolution.

Keywords: aluminum matrix composites, intermetallics, spark plasma sintering, nanocrystalline

Procedia PDF Downloads 438
2485 The Effect of Acrylic Gel Grouting on Groundwater in Porous Media

Authors: S. Wagner, C. Boley, Y. Forouzandeh

Abstract:

When digging excavations, groundwater bearing layers are often encountered. In order to allow anhydrous excavation, soil groutings are carried out, which form a water-impermeable layer. As it is injected into groundwater areas, the effects of the materials used on the environment must be known. Developing an eco-friendly, economical and low viscous acrylic gel which has a sealing effect on groundwater is therefore a significant task. At this point the study begins. Basic investigations with the rheometer and a reverse column experiment have been performed with different mixing ratios of an acrylic gel. A dynamic rheology study was conducted to determine the time at which the gel still can be processed and the maximum gel strength is reached. To examine the effect of acrylic gel grouting on determine the parameters pH value, turbidity, electric conductivity, and total organic carbon on groundwater, an acrylic gel was injected in saturated sand filled the column. The structure was rinsed with a constant flow and the eluate was subsequently examined. The results show small changes in pH values and turbidity but there is a dependency between electric conductivity and total organic carbon. The curves of the two parameters react at the same time, which means that the electrical conductivity in the eluate can be measured constantly until the maximum is reached and only then must total organic carbon (TOC) samples be taken.

Keywords: acrylic gel grouting, dynamic rheology study, electric conductivity, total organic carbon

Procedia PDF Downloads 127