Search results for: Manning's equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1996

Search results for: Manning's equation

1246 Non Linear Dynamic Analysis of Cantilever Beam with Breathing Crack Using XFEM

Authors: K. Vigneshwaran, Manoj Pandey

Abstract:

In this paper, breathing crack is considered for the non linear dynamic analysis. The stiffness of the cracked beam is found out by using influence coefficients. The influence coefficients are calculated by using Castigliano’s theorem and strain energy release rate (SERR). The equation of motion of the beam was derived by using Hamilton’s principle. The stiffness and natural frequencies for the cracked beam has been calculated using XFEM and Eigen approach. It is seen that due to presence of cracks, the stiffness and natural frequency changes. The mode shapes and the FRF for the uncracked and breathing cracked cantilever beam also obtained and compared.

Keywords: breathing crack, XFEM, mode shape, FRF, non linear analysis

Procedia PDF Downloads 344
1245 The Effect of Soil Surface Slope on Splash Distribution under Water Drop Impact

Authors: H. Aissa, L. Mouzai, M. Bouhadef

Abstract:

The effects of down slope steepness on soil splash distribution under a water drop impact have been investigated in this study. The equipment used are the burette to simulate a water drop, a splash cup filled with sandy soil which forms the source area and a splash board to collect the ejected particles. The results found in this study have shown that the apparent mass increased with increasing downslope angle following a linear regression equation with high coefficient of determination. In the same way, the radial soil splash distribution over the distance has been analyzed statistically, and an exponential function was the best fit of the relationship for the different slope angles. The curves and the regressions equations validate the well known FSDF and extend the theory of Van Dijk.

Keywords: splash distribution, water drop, slope steepness, soil detachment

Procedia PDF Downloads 338
1244 Energy and Exergy Performance Optimization on a Real Gas Turbine Power Plant

Authors: Farhat Hajer, Khir Tahar, Cherni Rafik, Dakhli Radhouen, Ammar Ben Brahim

Abstract:

This paper presents the energy and exergy optimization of a real gas turbine power plant performance of 100 MW of power, installed in the South East of Tunisia. A simulation code is established using the EES (Engineering Equation Solver) software. The parameters considered are those of the actual operating conditions of the gas turbine thermal power station under study. The results show that thermal and exergetic efficiency decreases with the increase of the ambient temperature. Air excess has an important effect on the thermal efficiency. The emission of NOx rises in the summer and decreases in the winter. The obtained rates of NOx are compared with measurements results.

Keywords: efficiency, exergy, gas turbine, temperature

Procedia PDF Downloads 284
1243 Isothermal Vapour-Liquid Equilibria of Binary Mixtures of 1, 2-Dichloroethane with Some Cyclic Ethers: Experimental Results and Modelling

Authors: Fouzia Amireche-Ziar, Ilham Mokbel, Jacques Jose

Abstract:

The vapour pressures of the three binary mixtures: 1, 2- dichloroethane + 1,3-dioxolane, + 1,4-dioxane or + tetrahydropyrane, are carried out at ten temperatures ranging from 273 to 353.15 K. An accurate static device was employed for these measurements. The VLE data were reduced using the Redlich-Kister equation by taking into consideration the vapour pressure non-ideality in terms of the second molar virial coefficient. The experimental data were compared to the results predicted with the DISQUAC and Dortmund UNIFAC group contribution models for the total pressures P and the excess molar Gibbs energies GE.

Keywords: disquac model, dortmund UNIFAC model, excess molar Gibbs energies GE, VLE

Procedia PDF Downloads 228
1242 Demonstrating a Relationship of Frequency and Weight with Arduino UNO and Visual Basic Program

Authors: Woraprat Chaomuang, Sirikorn Sringern, Pawanrat Chamnanwongsritorn, Kridsada Luangthongkham

Abstract:

In this study, we have applied a digital scale to demonstrate the electricity concept of changing the capacity (C), due to the weight of an object, as a function of the distance between the conductor plates and the pressing down. By calibrating on standard scales with the Visual Basic program and the Arduino Uno microcontroller board, we can obtain the weight of the object from the frequency (ƒ) that is measured from the electronic circuit (Astable Multivibrator). Our results support the concept, showing a linear correlation between the frequency and weight with an equation y = –0.0112x + 379.78 and the R2 value of 0.95. In addition, the effects of silicone rods shrinkage, permittivity and temperature were also examined and have found to affect various graph patterns observed.

Keywords: Arduino Uno board, frequency, microcontroller board, parallel plate conductor

Procedia PDF Downloads 207
1241 Analyzing the Technology Affecting on the Social Integration of Students at University

Authors: Sujit K. Basak, Simon Collin

Abstract:

The aim of this paper is to examine the technology access and use on the affecting social integration of local students at university. This aim is achieved by designing a structural equation modeling (SEM) in terms of integration with peers, integration with faculty, faculty support and on the other hand, examining the socio demographic impact on the technology access and use. The collected data were analyzed using the WarpPLS 5.0 software. This study was survey based and it was conducted at a public university in Canada. The results of the study indicated that technology has a strong impact on integration with faculty, faculty support, but technology does not have an impact on integration with peers. However, the social demographic has also an impact on the technology access and use.

Keywords: faculty, integration, peer, technology access and use

Procedia PDF Downloads 513
1240 Quantum Dynamics for General Time-Dependent Three Coupled Oscillators

Authors: Salah Menouar, Sara Hassoul

Abstract:

The dynamic of time-dependent three coupled oscillators is studied through an approach based on decoupling of them using the unitary transformation method. From a first unitary transformation, the Hamiltonian of the complicated original system is transformed to an equal but a simple one associated with the three coupled oscillators of which masses are unity. Finally, we diagonalize the matrix representation of the transformed hamiltonian by using a unitary matrix. The diagonalized Hamiltonian is just the same as the Hamiltonian of three simple oscillators. Through these procedures, the coupled oscillatory subsystems are completely decoupled. From this uncouplement, we can develop complete dynamics of the whole system in an easy way by just examining each oscillator independently. Such a development of the mechanical theory can be done regardless of the complication of the parameters' variations.

Keywords: schrödinger equation, hamiltonian, time-dependent three coupled oscillators, unitary transformation

Procedia PDF Downloads 98
1239 The Effect of Self-Efficacy on Emotional Intelligence and Well-Being among Tour Guides

Authors: Jennifer Chen-Hua Min

Abstract:

The concept of self-efficacy refers to people’s beliefs in their ability to perform certain behaviors and cope with environmental demands. As such, self-efficacy plays a key role in linking ability to performance. Therefore, this study examines the relationships of self-efficacy, emotional intelligence (EI), and well-being among tour guides, who act as intermediaries between tourists and an unfamiliar environment and significantly influence tourists’ impressions of a destination. Structural equation modeling (SEM) is used to identify the relationships between these factors. The results found that self-efficacy is positively associated with EI and well-being, and a positive link was seen between EI and well-being. This study has practical implications, as the results can facilitate the development of interventions for enhancing tour guides’ EI and self-efficacy competencies, which will benefit them in terms of both enhanced achievements and improved psychological happiness and well-being.

Keywords: self-efficacy, tour guides, tourism, emotional intelligence (EI)

Procedia PDF Downloads 464
1238 Modulational Instability of Ion-Acoustic Wave in Electron-Positron-Ion Plasmas with Two-Electron Temperature Distributions

Authors: Jitendra Kumar Chawla, Mukesh Kumar Mishra

Abstract:

The nonlinear amplitude modulation of ion-acoustic wave is studied in the presence of two-electron temperature distribution in unmagnetized electron-positron-ion plasmas. The Krylov-Bogoliubov-Mitropolosky (KBM) perturbation method is used to derive the nonlinear Schrödinger equation. The dispersive and nonlinear coefficients are obtained which depend on the temperature and concentration of the hot and cold electron species as well as the positron density and temperature. The modulationally unstable regions are studied numerically for a wide range of wave number. The effects of the temperature and concentration of the hot and cold electron on the modulational stability are investigated in detail.

Keywords: modulational instability, ion acoustic wave, KBM method

Procedia PDF Downloads 665
1237 Microwave Dielectric Relaxation Study of Diethanolamine with Triethanolamine from 10 MHz-20 GHz

Authors: A. V. Patil

Abstract:

The microwave dielectric relaxation study of diethanolamine with triethanolamine binary mixture have been determined over the frequency range of 10 MHz to 20 GHz, at various temperatures using time domain reflectometry (TDR) method for 11 concentrations of the system. The present work reveals molecular interaction between same multi-functional groups [−OH and –NH2] of the alkanolamines (diethanolamine and triethanolamine) using different models such as Debye model, Excess model, and Kirkwood model. The dielectric parameters viz. static dielectric constant (ε0) and relaxation time (τ) have been obtained with Debye equation characterized by a single relaxation time without relaxation time distribution by the least squares fit method.

Keywords: diethanolamine, excess properties, kirkwood properties, time domain reflectometry, triethanolamine

Procedia PDF Downloads 304
1236 Effects of Polydispersity on the Glass Transition Dynamics of Aqueous Suspensions of Soft Spherical Colloidal Particles

Authors: Sanjay K. Behera, Debasish Saha, Paramesh Gadige, Ranjini Bandyopadhyay

Abstract:

The zero shear viscosity (η₀) of a suspension of hard sphere colloids characterized by a significant polydispersity (≈10%) increases with increase in volume fraction (ϕ) and shows a dramatic increase at ϕ=ϕg with the system entering a colloidal glassy state. Fragility which is the measure of the rapidity of approach of these suspensions towards the glassy state is sensitive to its size polydispersity and stiffness of the particles. Soft poly(N-isopropylacrylamide) (PNIPAM) particles deform in the presence of neighboring particles at volume fraction above the random close packing volume fraction of undeformed monodisperse spheres. Softness, therefore, enhances the packing efficiency of these particles. In this study PNIPAM particles of a nearly constant swelling ratio and with polydispersities varying over a wide range (7.4%-48.9%) are synthesized to study the effects of polydispersity on the dynamics of suspensions of soft PNIPAM colloidal particles. The size and polydispersity of these particles are characterized using dynamic light scattering (DLS) and scanning electron microscopy (SEM). As these particles are deformable, their packing in aqueous suspensions is quantified in terms of effective volume fraction (ϕeff). The zero shear viscosity (η₀) data of these colloidal suspensions, estimated from rheometric experiments as a function of the effective volume fraction ϕeff of the suspensions, increases with increase in ϕeff and shows a dramatic increase at ϕeff = ϕ₀. The data for η₀ as a function of ϕeff fits well to the Vogel-Fulcher-Tammann equation. It is observed that increasing polydispersity results in increasingly fragile supercooled liquid-like behavior, with the parameter ϕ₀, extracted from the fits to the VFT equation shifting towards higher ϕeff. The observed increase in fragility is attributed to the prevalence of dynamical heterogeneities (DHs) in these polydisperse suspensions, while the simultaneous shift in ϕ₀ is ascribed to the decoupling of the dynamics of the smallest and largest particles. Finally, it is observed that the intrinsic nonlinearity of these suspensions, estimated at the third harmonic near ϕ₀ in Fourier transform oscillatory rheological experiments, increases with increase in polydispersity. These results are in agreement with theoretical predictions and simulation results for polydisperse hard sphere colloidal glasses and clearly demonstrate that jammed suspensions of polydisperse colloidal particles can be effectively fluidized with increasing polydispersity. Suspensions of these particles are therefore excellent candidates for detailed experimental studies of the effects of polydispersity on the dynamics of glass formation.

Keywords: dynamical heterogeneity, effective volume fraction, fragility, intrinsic nonlinearity

Procedia PDF Downloads 165
1235 Stability Analysis for an Extended Model of the Hypothalamus-Pituitary-Thyroid Axis

Authors: Beata Jackowska-Zduniak

Abstract:

We formulate and analyze a mathematical model describing dynamics of the hypothalamus-pituitary-thyroid homoeostatic mechanism in endocrine system. We introduce to this system two types of couplings and delay. In our model, feedback controls the secretion of thyroid hormones and delay reflects time lags required for transportation of the hormones. The influence of delayed feedback on the stability behaviour of the system is discussed. Analytical results are illustrated by numerical examples of the model dynamics. This system of equations describes normal activity of the thyroid and also a couple of types of malfunctions (e.g. hyperthyroidism).

Keywords: mathematical modeling, ordinary differential equations, endocrine system, delay differential equation

Procedia PDF Downloads 336
1234 Impact of Tourists on HIV (Human Immunodeficiency Virus) Incidence

Authors: Ofosuhene O. Apenteng, Noor Azina Ismail

Abstract:

Recently tourism is a major foreign exchange earner in the World. In this paper, we propose the mathematical model to study the impact of tourists on the spread of HIV incidences using compartmental differential equation models. Simulation studies of reproduction number are used to demonstrate new insights on the spread of HIV disease. The periodogram analysis of a time series was used to determine the speed at which the disease is spread. The results indicate that with the persistent flow of tourism into a country, the disease status has increased the epidemic rate. The result suggests that the government must put more control on illegal prostitution, unprotected sexual activity as well as to emphasis on prevention policies that include the safe sexual activity through the campaign by the tourism board.

Keywords: HIV/AIDS, mathematical transmission modeling, tourists, stability, simulation

Procedia PDF Downloads 391
1233 Searching for an Effective Marketing in the Food Supplement Industry in Japan

Authors: Michiko Miyamoto

Abstract:

The market for "functional foods" and "foods with functional claims" that are effective in maintaining and improving health, has expanded year by year due to the entry of major food and beverage manufacturers following the introduction of the specified health food system in 1991 in Japan. To bring health claims related products or services to the market, it is necessary to let consumers to learn about these products or services; an effective marketing through advertising are important. This research proposes a framework for an effective advertisement medium for the food supplement industry by using survey data of 2,500 people.

Keywords: functional foods, dietary supplements, marketing strategy, structural equation modeling

Procedia PDF Downloads 144
1232 Residual Analysis and Ground Motion Prediction Equation Ranking Metrics for Western Balkan Strong Motion Database

Authors: Manuela Villani, Anila Xhahysa, Christopher Brooks, Marco Pagani

Abstract:

The geological structure of Western Balkans is strongly affected by the collision between Adria microplate and the southwestern Euroasia margin, resulting in a considerably active seismic region. The Harmonization of Seismic Hazard Maps in the Western Balkan Countries Project (BSHAP) (2007-2011, 2012-2015) by NATO supported the preparation of new seismic hazard maps of the Western Balkan, but when inspecting the seismic hazard models produced later by these countries on a national scale, significant differences in design PGA values are observed in the border, for instance, North Albania-Montenegro, South Albania- Greece, etc. Considering the fact that the catalogues were unified and seismic sources were defined within BSHAP framework, obviously, the differences arise from the Ground Motion Prediction Equations selection, which are generally the component with highest impact on the seismic hazard assessment. At the time of the project, a modest database was present, namely 672 three-component records, whereas nowadays, this strong motion database has increased considerably up to 20,939 records with Mw ranging in the interval 3.7-7 and epicentral distance distribution from 0.47km to 490km. Statistical analysis of the strong motion database showed the lack of recordings in the moderate-to-large magnitude and short distance ranges; therefore, there is need to re-evaluate the Ground Motion Prediction Equation in light of the recently updated database and the new generations of GMMs. In some cases, it was observed that some events were more extensively documented in one database than the other, like the 1979 Montenegro earthquake, with a considerably larger number of records in the BSHAP Analogue SM database when compared to ESM23. Therefore, the strong motion flat-file provided from the Harmonization of Seismic Hazard Maps in the Western Balkan Countries Project was merged with the ESM23 database for the polygon studied in this project. After performing the preliminary residual analysis, the candidate GMPE-s were identified. This process was done using the GMPE performance metrics available within the SMT in the OpenQuake Platform. The Likelihood Model and Euclidean Distance Based Ranking (EDR) were used. Finally, for this study, a GMPE logic tree was selected and following the selection of candidate GMPEs, model weights were assigned using the average sample log-likelihood approach of Scherbaum.

Keywords: residual analysis, GMPE, western balkan, strong motion, openquake

Procedia PDF Downloads 88
1231 An Improved Model of Estimation Global Solar Irradiation from in situ Data: Case of Oran Algeria Region

Authors: Houcine Naim, Abdelatif Hassini, Noureddine Benabadji, Alex Van Den Bossche

Abstract:

In this paper, two models to estimate the overall monthly average daily radiation on a horizontal surface were applied to the site of Oran (35.38 ° N, 0.37 °W). We present a comparison between the first one is a regression equation of the Angstrom type and the second model is developed by the present authors some modifications were suggested using as input parameters: the astronomical parameters as (latitude, longitude, and altitude) and meteorological parameters as (relative humidity). The comparisons are made using the mean bias error (MBE), root mean square error (RMSE), mean percentage error (MPE), and mean absolute bias error (MABE). This comparison shows that the second model is closer to the experimental values that the model of Angstrom.

Keywords: meteorology, global radiation, Angstrom model, Oran

Procedia PDF Downloads 233
1230 Connecting MRI Physics to Glioma Microenvironment: Comparing Simulated T2-Weighted MRI Models of Fixed and Expanding Extracellular Space

Authors: Pamela R. Jackson, Andrea Hawkins-Daarud, Cassandra R. Rickertsen, Kamala Clark-Swanson, Scott A. Whitmire, Kristin R. Swanson

Abstract:

Glioblastoma Multiforme (GBM), the most common primary brain tumor, often presents with hyperintensity on T2-weighted or T2-weighted fluid attenuated inversion recovery (T2/FLAIR) magnetic resonance imaging (MRI). This hyperintensity corresponds with vasogenic edema, however there are likely many infiltrating tumor cells within the hyperintensity as well. While MRIs do not directly indicate tumor cells, MRIs do reflect the microenvironmental water abnormalities caused by the presence of tumor cells and edema. The inherent heterogeneity and resulting MRI features of GBMs complicate assessing disease response. To understand how hyperintensity on T2/FLAIR MRI may correlate with edema in the extracellular space (ECS), a multi-compartmental MRI signal equation which takes into account tissue compartments and their associated volumes with input coming from a mathematical model of glioma growth that incorporates edema formation was explored. The reasonableness of two possible extracellular space schema was evaluated by varying the T2 of the edema compartment and calculating the possible resulting T2s in tumor and peripheral edema. In the mathematical model, gliomas were comprised of vasculature and three tumor cellular phenotypes: normoxic, hypoxic, and necrotic. Edema was characterized as fluid leaking from abnormal tumor vessels. Spatial maps of tumor cell density and edema for virtual tumors were simulated with different rates of proliferation and invasion and various ECS expansion schemes. These spatial maps were then passed into a multi-compartmental MRI signal model for generating simulated T2/FLAIR MR images. Individual compartments’ T2 values in the signal equation were either from literature or estimated and the T2 for edema specifically was varied over a wide range (200 ms – 9200 ms). T2 maps were calculated from simulated images. T2 values based on simulated images were evaluated for regions of interest (ROIs) in normal appearing white matter, tumor, and peripheral edema. The ROI T2 values were compared to T2 values reported in literature. The expanding scheme of extracellular space is had T2 values similar to the literature calculated values. The static scheme of extracellular space had a much lower T2 values and no matter what T2 was associated with edema, the intensities did not come close to literature values. Expanding the extracellular space is necessary to achieve simulated edema intensities commiserate with acquired MRIs.

Keywords: extracellular space, glioblastoma multiforme, magnetic resonance imaging, mathematical modeling

Procedia PDF Downloads 235
1229 Application of Method of Symmetries at a Calculation and Planning of Circular Plate with Variable Thickness

Authors: Kirill Trapezon, Alexandr Trapezon

Abstract:

A problem is formulated for the natural oscillations of a circular plate of linearly variable thickness on the basis of the symmetry method. The equations of natural frequencies and forms for a plate are obtained, providing that it is rigidly fixed along the inner contour. The first three eigenfrequencies are calculated, and the eigenmodes of the oscillations of the acoustic element are constructed. An algorithm for applying the symmetry method and the factorization method for solving problems in the theory of oscillations for plates of variable thickness is shown. The effectiveness of the approach is demonstrated on the basis of comparison of known results and those obtained in the article. It is shown that the results are more accurate and reliable.

Keywords: vibrations, plate, method of symmetries, differential equation, factorization, approximation

Procedia PDF Downloads 262
1228 A New Measurement for Assessing Constructivist Learning Features in Higher Education: Lifelong Learning in Applied Fields (LLAF) Tempus Project

Authors: Dorit Alt, Nirit Raichel

Abstract:

Although university teaching is claimed to have a special task to support students in adopting ways of thinking and producing new knowledge anchored in scientific inquiry practices, it is argued that students' habits of learning are still overwhelmingly skewed toward passive acquisition of knowledge from authority sources rather than from collaborative inquiry activities.This form of instruction is criticized for encouraging students to acquire inert knowledge that can be used in instructional settings at best, however cannot be transferred into real-life complex problem settings. In order to overcome this critical inadequacy between current educational goals and instructional methods, the LLAF consortium (including 16 members from 8 countries) is aimed at developing updated instructional practices that put a premium on adaptability to the emerging requirements of present society. LLAF has created a practical guide for teachers containing updated pedagogical strategies and assessment tools, based on the constructivist approach for learning that put a premium on adaptability to the emerging requirements of present society. This presentation will be limited to teachers' education only and to the contribution of the project in providing a scale designed to measure the extent to which the constructivist activities are efficiently applied in the learning environment. A mix-method approach was implemented in two phases to construct the scale: The first phase included a qualitative content analysis involving both deductive and inductive category applications of students' observations. The results foregrounded eight categories: knowledge construction, authenticity, multiple perspectives, prior knowledge, in-depth learning, teacher- student interaction, social interaction and cooperative dialogue. The students' descriptions of their classes were formulated as 36 items. The second phase employed structural equation modeling (SEM). The scale was submitted to 597 undergraduate students. The goodness of fit of the data to the structural model yielded sufficient fit results. This research elaborates the body of literature by adding a category of in-depth learning which emerged from the content analysis. Moreover, the theoretical category of social activity has been extended to include two distinctive factors: cooperative dialogue and social interaction. Implications of these findings for the LLAF project are discussed.

Keywords: constructivist learning, higher education, mix-methodology, structural equation modeling

Procedia PDF Downloads 315
1227 Spline Solution of Singularly Perturbed Boundary Value Problems

Authors: Reza Mohammadi

Abstract:

Using quartic spline, we develop a method for numerical solution of singularly perturbed two-point boundary-value problems. The purposed method is fourth-order accurate and applicable to problems both in singular and non-singular cases. The convergence analysis of the method is given. The resulting linear system of equations has been solved by using a tri-diagonal solver. We applied the presented method to test problems which have been solved by other existing methods in references, for comparison of presented method with the existing methods. Numerical results are given to illustrate the efficiency of our methods.

Keywords: second-order ordinary differential equation, singularly-perturbed, quartic spline, convergence analysis

Procedia PDF Downloads 295
1226 Effect of Control Lasers Polarization on Absorption Coefficient and Refractive Index of a W-Type 4- Level Cylindrical Quantum Dot in the Presence Of Electromagnetically Induced Transparency (ETI)

Authors: Marziehossadat Moezzi

Abstract:

In this paper, electromagnetically induced transparency (EIT) is investigated in a cylindrical quantum dot (QD) with a parabolic confinement potential. We study the effect of control lasers polarization on absorption coefficient, refractive index and also on the generation of the double transparency windows in this system. Considering an effective mass method, the time-independent Schrödinger equation is solved to obtain the energy structure of the QD. Also, we study the effect of structural characteristics of the QD on refraction and absorption of the QD in the presence of EIT.

Keywords: electromagnetically induced transparency, cylindrical quantum dot, absorption coefficient, refractive index

Procedia PDF Downloads 198
1225 Computational Analysis of Thermal Degradation in Wind Turbine Spars' Equipotential Bonding Subjected to Lightning Strikes

Authors: Antonio A. M. Laudani, Igor O. Golosnoy, Ole T. Thomsen

Abstract:

Rotor blades of large, modern wind turbines are highly susceptible to downward lightning strikes, as well as to triggering upward lightning; consequently, it is necessary to equip them with an effective lightning protection system (LPS) in order to avoid any damage. The performance of existing LPSs is affected by carbon fibre reinforced polymer (CFRP) structures, which lead to lightning-induced damage in the blades, e.g. via electrical sparks. A solution to prevent internal arcing would be to electrically bond the LPS and the composite structures such that to obtain the same electric potential. Nevertheless, elevated temperatures are achieved at the joint interfaces because of high contact resistance, which melts and vaporises some of the epoxy resin matrix around the bonding. The produced high-pressure gasses open up the bonding and can ignite thermal sparks. The objective of this paper is to predict the current density distribution and the temperature field in the adhesive joint cross-section, in order to check whether the resin pyrolysis temperature is achieved and any damage is expected. The finite element method has been employed to solve both the current and heat transfer problems, which are considered weakly coupled. The mathematical model for electric current includes Maxwell-Ampere equation for induced electric field solved together with current conservation, while the thermal field is found from heat diffusion equation. In this way, the current sub-model calculates Joule heat release for a chosen bonding configuration, whereas the thermal analysis allows to determining threshold values of voltage and current density not to be exceeded in order to maintain the temperature across the joint below the pyrolysis temperature, therefore preventing the occurrence of outgassing. In addition, it provides an indication of the minimal number of bonding points. It is worth to mention that the numerical procedures presented in this study can be tailored and applied to any type of joints other than adhesive ones for wind turbine blades. For instance, they can be applied for lightning protection of aerospace bolted joints. Furthermore, they can even be customized to predict the electromagnetic response under lightning strikes of other wind turbine systems, such as nacelle and hub components.

Keywords: carbon fibre reinforced polymer, equipotential bonding, finite element method, FEM, lightning protection system, LPS, wind turbine blades

Procedia PDF Downloads 164
1224 Investigation of the Turbulent Cavitating Flows from the Viewpoint of the Lift Coefficient

Authors: Ping-Ben Liu, Chien-Chou Tseng

Abstract:

The objective of this study is to investigate the relationship between the lift coefficient and dynamic behaviors of cavitating flow around a two-dimensional Clark Y hydrofoil at 8° angle of attack, cavitation number of 0.8, and Reynolds number of 7.10⁵. The flow field is investigated numerically by using a vapor transfer equation and a modified turbulence model which applies the filter and local density correction. The results including time-averaged lift/drag coefficient and shedding frequency agree well with experimental observations, which confirmed the reliability of this simulation. According to the variation of lift coefficient, the cycle which consists of growth and shedding of cavitation can be divided into three stages, and the lift coefficient at each stage behaves similarly due to the formation and shedding of the cavity around the trailing edge.

Keywords: Computational Fluid Dynamics, cavitation, turbulence, lift coefficient

Procedia PDF Downloads 350
1223 Overcoming Obstacles in UHTHigh-protein Whey Beverages by Microparticulation Process: Scientific and Technological Aspects

Authors: Shahram Naghizadeh Raeisi, Ali Alghooneh, Seyed Jalal Razavi Zahedkolaei

Abstract:

Herein, a shelf stable (no refrigeration required) UHT processed, aseptically packaged whey protein drink was formulated by using a new strategy in microparticulate process. Applying thermal and two-dimensional mechanical treatments simultaneously, a modified protein (MWPC-80) was produced. Then the physical, thermal and thermodynamic properties of MWPC-80 were assessed using particle size analysis, dynamic temperature sweep (DTS), and differential scanning calorimetric (DSC) tests. Finally, using MWPC-80, a new RTD beverage was formulated, and shelf stability was assessed for three months at ambient temperature (25 °C). Non-isothermal dynamic temperature sweep was performed, and the results were analyzed by a combination of classic rate equation, Arrhenius equation, and time-temperature relationship. Generally, results showed that temperature dependency of the modified sample was significantly (Pvalue<0.05) less than the control one contained WPC-80. The changes in elastic modulus of the MWPC did not show any critical point at all the processed stages, whereas, the control sample showed two critical points during heating (82.5 °C) and cooling (71.10 °C) stages. Thermal properties of samples (WPC-80 & MWPC-80) were assessed using DSC with 4 °C /min heating speed at 20-90 °C heating range. Results did not show any thermal peak in MWPC DSC curve, which suggested high thermal resistance. On the other hands, WPC-80 sample showed a significant thermal peak with thermodynamic properties of ∆G:942.52 Kj/mol ∆H:857.04 Kj/mole and ∆S:-1.22Kj/mole°K. Dynamic light scattering was performed and results showed 0.7 µm and 15 nm average particle size for MWPC-80 and WPC-80 samples, respectively. Moreover, particle size distribution of MWPC-80 and WPC-80 were Gaussian-Lutresian and normal, respectively. After verification of microparticulation process by DTS, PSD and DSC analyses, a 10% why protein beverage (10% w/w/ MWPC-80, 0.6% w/w vanilla flavoring agent, 0.1% masking flavor, 0.05% stevia natural sweetener and 0.25% citrate buffer) was formulated and UHT treatment was performed at 137 °C and 4 s. Shelf life study did not show any jellification or precipitation of MWPC-80 contained beverage during three months storage at ambient temperature, whereas, WPC-80 contained beverage showed significant precipitation and jellification after thermal processing, even at 3% w/w concentration. Consumer knowledge on nutritional advantages of whey protein increased the request for using this protein in different food systems especially RTD beverages. These results could make a huge difference in this industry.

Keywords: high protein whey beverage, micropartiqulation, two-dimentional mechanical treatments, thermodynamic properties

Procedia PDF Downloads 74
1222 The Use of Empirical Models to Estimate Soil Erosion in Arid Ecosystems and the Importance of Native Vegetation

Authors: Meshal M. Abdullah, Rusty A. Feagin, Layla Musawi

Abstract:

When humans mismanage arid landscapes, soil erosion can become a primary mechanism that leads to desertification. This study focuses on applying soil erosion models to a disturbed landscape in Umm Nigga, Kuwait, and identifying its predicted change under restoration plans, The northern portion of Umm Nigga, containing both coastal and desert ecosystems, falls within the boundaries of the Demilitarized Zone (DMZ) adjacent to Iraq, and has been fenced off to restrict public access since 1994. The central objective of this project was to utilize GIS and remote sensing to compare the MPSIAC (Modified Pacific South West Inter Agency Committee), EMP (Erosion Potential Method), and USLE (Universal Soil Loss Equation) soil erosion models and determine their applicability for arid regions such as Kuwait. Spatial analysis was used to develop the necessary datasets for factors such as soil characteristics, vegetation cover, runoff, climate, and topography. Results showed that the MPSIAC and EMP models produced a similar spatial distribution of erosion, though the MPSIAC had more variability. For the MPSIAC model, approximately 45% of the land surface ranged from moderate to high soil loss, while 35% ranged from moderate to high for the EMP model. The USLE model had contrasting results and a different spatial distribution of the soil loss, with 25% of area ranging from moderate to high erosion, and 75% ranging from low to very low. We concluded that MPSIAC and EMP were the most suitable models for arid regions in general, with the MPSIAC model best. We then applied the MPSIAC model to identify the amount of soil loss between coastal and desert areas, and fenced and unfenced sites. In the desert area, soil loss was different between fenced and unfenced sites. In these desert fenced sites, 88% of the surface was covered with vegetation and soil loss was very low, while at the desert unfenced sites it was 3% and correspondingly higher. In the coastal areas, the amount of soil loss was nearly similar between fenced and unfenced sites. These results implied that vegetation cover played an important role in reducing soil erosion, and that fencing is much more important in the desert ecosystems to protect against overgrazing. When applying the MPSIAC model predictively, we found that vegetation cover could be increased from 3% to 37% in unfenced areas, and soil erosion could then decrease by 39%. We conclude that the MPSIAC model is best to predict soil erosion for arid regions such as Kuwait.

Keywords: soil erosion, GIS, modified pacific South west inter agency committee model (MPSIAC), erosion potential method (EMP), Universal soil loss equation (USLE)

Procedia PDF Downloads 297
1221 Numerical Solution of 1-D Shallow Water Equations at Junction for Sub-Critical and Super-Critical Flow

Authors: Mohamed Elshobaki, Alessandro Valiani, Valerio Caleffi

Abstract:

In this paper, we solve 1-D shallow water equation for sub-critical and super-critical water flow at junction. The water flow at junction has been studied for the last 50 years from the physical-hydraulic point of views and for numerical computations need more attention. For numerical simulation, we need to establish an inner boundary condition at the junction to avoid an oscillation which rise from the waves interactions at the junction. Indeed, we introduce a new boundary condition at the junction based on the mass conservation, total head, and the admissible wave relations between the flow parameters in the three branches to predict the water depths and discharges at the junction. These boundary conditions are valid for sub-critical flow and super-critical flow.

Keywords: numerical simulation, junction flow, sub-critical flow, super-critical flow

Procedia PDF Downloads 511
1220 A Quadratic Approach for Generating Pythagorean Triples

Authors: P. K. Rahul Krishna, S. Sandeep Kumar, Jayanthi Sunder Raj

Abstract:

The article explores one of the important relations between numbers-the Pythagorean triples (triplets) which finds its application in distance measurement, construction of roads, towers, buildings and wherever Pythagoras theorem finds its application. The Pythagorean triples are numbers, that satisfy the condition “In a given set of three natural numbers, the sum of squares of two natural numbers is equal to the square of the other natural number”. There are numerous methods and equations to obtain the triplets, which have their own merits and demerits. Here, quadratic approach for generating triples uses the hypotenuse leg difference method. The advantage is that variables are few and finally only three independent variables are present.

Keywords: arithmetic progression, hypotenuse leg difference method, natural numbers, Pythagorean triplets, quadratic equation

Procedia PDF Downloads 206
1219 Application of the Discrete Rationalized Haar Transform to Distributed Parameter System

Authors: Joon-Hoon Park

Abstract:

In this paper the rationalized Haar transform is applied for distributed parameter system identification and estimation. A distributed parameter system is a dynamical and mathematical model described by a partial differential equation. And system identification concerns the problem of determining mathematical models from observed data. The Haar function has some disadvantages of calculation because it contains irrational numbers, for these reasons the rationalized Haar function that has only rational numbers. The algorithm adopted in this paper is based on the transform and operational matrix of the rationalized Haar function. This approach provides more convenient and efficient computational results.

Keywords: distributed parameter system, rationalized Haar transform, operational matrix, system identification

Procedia PDF Downloads 509
1218 Anomaly: A Case of Babri Masjid Dispute

Authors: Karitikeya Sonker

Abstract:

Religion as a discrete system through its lawful internal working produces an output in the form of realised spatial order with its social logic and a social order with its spatial logic. Thus, it appears to exhibit its duality of spatial and trans-spatial. The components of this system share a relevance forming a collective. This shared relevance creates meaning forming a group where all collectives share one identity. This group with its new social order and its spatial logic revive the already existing spatial order. These religious groups do so having a tendency to expand resulting in the production of space in a situation of encounter where they have found relevance. But an encounter without a lawful internal working of a discrete system results in anomaly because groups do not find relevance due to the absence of collective identity. Events happen all around. One of the main reasons we could say that something became an event is because of conflict. Conflict not in its definitive sense but any occurrence that happens because of an intervention that creates an event worth remembering. The unfolding of such events creates Cities and Urban spaces which exhibit their duality of spatial and trans-spatial by behaving as a discrete system. This system through its lawful internal working produces an output in the form of realized spatial order with its social logic and a social order with spatial logic. The components of this system form a collective through a shared a relevance. This shared relevance creates meaning forming a group where all collectives share one identity. This group with its new social order and its spatial logic revives the already existing spatial order. These groups do so having a tendency to expand resulting in the production of space in a situation of encounter where they have found relevance. But an encounter without a lawful internal working of the discrete system results in anomaly because groups do not find relevance due to the absence of collective identity. This paper makes an effort to explore one such even in the case of Babri Mosque and Ramjanmabhumi, Ayodhya to explain the anomaly as transposition of social and spatial. The paper through the case studies makes an attempt to generate an equation explaining the two different situations of religious encounters, former reviving the social and spatial order and the other resulting in anomaly. Through the case study, it makes an attempt to generate an equation explaining the two different situations of religious encounters, former reviving the social and spatial order and the other resulting in anomaly.

Keywords: Babri Masjid, Ayodhya, conflict, religion

Procedia PDF Downloads 275
1217 Effect of Transition Metal (Fe, Mn) Ion Doping on TiO2 Nano Particles

Authors: Kirit Siddhapara, Dimple Shah

Abstract:

In this research, we have studied the doping behaviors of two transition metal ion dopants on the crystal phase, particle sizes, XRD patterns, EDAX spectra, and photoreactivity of TiO2 nanoparticles. The crystalline size of TiO2 is close to 4 nm Calculated from (1 0 1) peak by using FWHM method in Scherrer’s equation. Test metal ion concentrations ranged from 1% to 4 at.%, we report the growth of [Fe, Mn]xTiO2 nanocrystals prepared by Sol-Gel technique, followed by freeze-drying treatment at -30°C temperature for 12hrs. The obtained Gel was thermally treated at different temperature like 200°C, 400°C, 600°C, 800°C. Thermal gravimetric analysis (TGA) shows that dopant concentration affects thermal decomposition. The photoreactivities of transition metal ion-doped TiO2 nanoparticles under UV irradiation were quantified by the degradation of formaldehyde.

Keywords: growth from solution, sol-gel method, nanomaterials, oxides, magnetic materials, titanium compounds

Procedia PDF Downloads 432