Search results for: bio-chemical parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9372

Search results for: bio-chemical parameters

1632 Environmental and Toxicological Impacts of Glyphosate with Its Formulating Adjuvant

Authors: I. Székács, Á. Fejes, S. Klátyik, E. Takács, D. Patkó, J. Pomóthy, M. Mörtl, R. Horváth, E. Madarász, B. Darvas, A. Székács

Abstract:

Environmental and toxicological characteristics of formulated pesticides may substantially differ from those of their active ingredients or other components alone. This phenomenon is demonstrated in the case of the herbicide active ingredient glyphosate. Due to its extensive application, this active ingredient was found in surface and ground water samples collected in Békés County, Hungary, in the concentration range of 0.54–0.98 ng/ml. The occurrence of glyphosate appeared to be somewhat higher at areas under intensive agriculture, industrial activities and public road services, but the compound was detected at areas under organic (ecological) farming or natural grasslands, indicating environmental mobility. Increased toxicity of the formulated herbicide product Roundup, compared to that of glyphosate was observed on the indicator aquatic organism Daphnia magna Straus. Acute LC50 values of Roundup and its formulating adjuvant Polyethoxylated Tallowamine (POEA) exceeded 20 and 3.1 mg/ml, respectively, while that of glyphosate (as isopropyl salt) was found to be substantially lower (690-900 mg/ml) showing good agreement with literature data. Cytotoxicity of Roundup, POEA and glyphosate has been determined on the neuroectodermal cell line, NE-4C measured both by cell viability test and holographic microscopy. Acute toxicity (LC50) of Roundup, POEA and glyphosate on NE-4C cells was found to be 0.013±0.002%, 0.017±0.009% and 6.46±2.25%, respectively (in equivalents of diluted Roundup solution), corresponding to 0.022±0.003 and 53.1±18.5 mg/ml for POEA and glyphosate, respectively, indicating no statistical difference between Roundup and POEA and 2.5 orders of magnitude difference between these and glyphosate. The same order of cellular toxicity seen in average cell area has been indicated under quantitative cell visualization. The results indicate that toxicity of the formulated herbicide is caused by the formulating agent, but in some parameters toxicological synergy occurs between POEA and glyphosate.

Keywords: glyphosate, polyethoxylated tallowamine, Roundup, combined aquatic and cellular toxicity, synergy

Procedia PDF Downloads 320
1631 Plasma Pretreatment for Improving the Durability of Antibacterial Activity of Cotton Using ZnO Nanoparticles

Authors: Sheila Shahidi, Hootan Rezaee, Abosaeed Rashidi, Mahmood Ghoranneviss

Abstract:

Plasma treatment has an explosive increase in interest and use in industrial applications as for example in medical, biomedical, automobile, electronics, semiconductor and textile industry. A lot of intensive basic research has been performed in the last decade in the field of textiles along with technical textiles. Textile manufacturers and end-users alike have been searching for ways to improve the surface properties of natural and man-made fibers. Specifically, there is a need to improve adhesion and wettability. Functional groups may be introduced onto the fiber surface by using gas plasma treatments, improving fiber surface properties without affecting the fiber’s bulk properties. In this research work, ZnO nanoparticles (ZnO-NPs) were insitue synthesized by sonochemical method at room temperature on both untreated and plasma pretreated cotton woven fabric. Oxygen and nitrogen plasmas were used for pre-functionalization of cotton fabric. And the effect of oxygen and nitrogen pre-functionalization on adhesion properties between ZnO nanoparticles and cotton surface were studied. The results show that nanoparticles with average sizes of 20-100 nm with different morphologies have been created on the surface of samples. Synthesis of ZnO-NPs was varied in the morphological transformation by changes in zinc acetate dehydrate concentration. Characterizations were carried out using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Inductive coupled plasma (ICP) and Spectrophotometery. The antibacterial activities of the fabrics were assessed semi-quantitatively by the colonies count method. The results show that the finished fabric demonstrated significant antibacterial activity against S. aureus in antibacterial test. The wash fastness of both untreated and plasma pretreated samples after 30 times of washing was investigated. The results showed that the parameters of plasma reactor plays very important role for improving the antibacterial durability.

Keywords: antibacterial activity, cotton, fabric, nanoparticles, plasma

Procedia PDF Downloads 538
1630 TNFRSF11B Gene Polymorphisms A163G and G11811C in Prediction of Osteoporosis Risk

Authors: I. Boroňová, J.Bernasovská, J. Kľoc, Z. Tomková, E. Petrejčíková, D. Gabriková, S. Mačeková

Abstract:

Osteoporosis is a complex health disease characterized by low bone mineral density, which is determined by an interaction of genetics with metabolic and environmental factors. Current research in genetics of osteoporosis is focused on identification of responsible genes and polymorphisms. TNFRSF11B gene plays a key role in bone remodeling. The aim of this study was to investigate the genotype and allele distribution of A163G (rs3102735) osteoprotegerin gene promoter and G1181C (rs2073618) osteoprotegerin first exon polymorphisms in the group of 180 unrelated postmenopausal women with diagnosed osteoporosis and 180 normal controls. Genomic DNA was isolated from peripheral blood leukocytes using standard methodology. Genotyping for presence of different polymorphisms was performed using the Custom Taqman®SNP Genotyping assays. Hardy-Weinberg equilibrium was tested for each SNP in the groups of participants using the chi-square (χ2) test. The distribution of investigated genotypes in the group of patients with osteoporosis were as follows: AA (66.7%), AG (32.2%), GG (1.1%) for A163G polymorphism; GG (19.4%), CG (44.4%), CC (36.1%) for G1181C polymorphism. The distribution of genotypes in normal controls were follows: AA (71.1%), AG (26.1%), GG (2.8%) for A163G polymorphism; GG (22.2%), CG (48.9%), CC (28.9%) for G1181C polymorphism. In A163G polymorphism the variant G allele was more common among patients with osteoporosis: 17.2% versus 15.8% in normal controls. Also, in G1181C polymorphism the phenomenon of more frequent occurrence of C allele in the group of patients with osteoporosis was observed (58.3% versus 53.3%). Genotype and allele distributions showed no significant differences (A163G: χ2=0.270, p=0.605; χ2=0.250, p=0.616; G1181C: χ2= 1.730, p=0.188; χ2=1.820, p=0.177). Our results represents an initial study, further studies of more numerous file and associations studies will be carried out. Knowing the distribution of genotypes is important for assessing the impact of these polymorphisms on various parameters associated with osteoporosis. Screening for identification of “at-risk” women likely to develop osteoporosis and initiating subsequent early intervention appears to be most effective strategy to substantially reduce the risks of osteoporosis.

Keywords: osteoporosis, real-time PCR method, SNP polymorphisms

Procedia PDF Downloads 334
1629 Microwave Assisted Rapid Synthesis of Nano-Binder from Renewable Resource and Their Application in Textile Printing

Authors: K. Haggag, N. S. Elshemy

Abstract:

Due to limited fossil resource and an increased need for environmentally friendly, sustainable technologies, the importance of using renewable feed stocks in textile industry area will increase in the decades to come. This research highlights some of the perspectives in this area. Alkyd resins for high characterization and reactive properties, completely based on commercially available renewable resources (sunflower and/or soybean oil) were prepared and characterized. In this work, we present results on the synthesis of various alkyd resins according to the alcoholysis – polyesterification process under different preparation conditions using a microwave synthesis as energy source to determine suitable reaction conditions. Effects of polymerization parameters, such as catalyst ratio, reaction temperature and microwave power level have been studied. The prepared binder was characterized via FT-IR, scanning electron microscope (SEM) and transmission electron microscope (TEM), in addition to acid value (AV), iodine value (IV), water absorbance, weight loss, and glass transition temperature. The prepared binder showed high performance physico-mechanical properties. TEM analysis showed that the polymer latex nanoparticle within range of 20–200 nm. The study involved the application of the prepared alkyd resins as binder for pigment printing process onto cotton fabric by using a flat screen technique and the prints were dried and thermal cured. The optimum curing conditions were determined, color strength and fastness properties of pigment printed areas to light, washing, perspiration and crocking were evaluated. The rheological properties and apparent viscosity of prepared binders were measured in addition roughness of the prints was also determined.

Keywords: nano-binder, microwave heating, renewable resource, alkyd resins, sunflower oil, soybean oil

Procedia PDF Downloads 374
1628 Thermodynamic Properties of Calcium-Containing DPPA and DPPC Liposomes

Authors: Tamaz Mdzinarashvili, Mariam Khvedelidze, Eka Shekiladze, Salome Chinchaladze, Mariam Mdzinarashvili

Abstract:

The work is about the preparation of calcium-containing 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-Dipalmitoyl-sn-glycero-3-phosphatidic acid (DPPA) and their calorimetric study. In order to prepare these complex liposomes, for the first stage it is necessary for ligands and lipids to directly interact, followed by the addition of pH-buffered water or solvent at temperatures slightly above the liposome phase transition temperature. The resulting mixture is briefly but vigorously shaken and then transformed into liposomes of the desired size using an extruder. Particle sizing and calorimetry were used to evaluate liposome formation. We determined the possible structure of calcium-containing liposomes made by our new technology and determined their thermostability. The paper provides calculations showing how many phospholipid molecules are required to make a 200 nm diameter liposome. Calculations showed that 33x10³ lipid molecules are needed to prepare one DPPA and DPPC liposome. Based on the calorimetric experiments, we determined that the structure of uncomplexed DPPA liposomes is unilaminar (one double layer), while DPPC liposome is a nanoparticle with a multilaminar (multilayer) structure. This was determined by the cooperativity of the heat absorption peak. Calorimetric studies of calcium liposomes made by our technology showed that calcium ions are placed in the multilaminar structure of the DPPC liposome. Calcium ions also formed a complex in the DPPA liposome structure, moreover, calcium made the DPPA liposome multilaminar, since the cooperative narrow heat absorption peak was transformed into a three-peak heat absorption peak. Since both types of liposomes in complex with calcium ions present a multilaminar structure, where the number of lipid heads in one particle is large, the number of calcium ions in one particle will also be increased. That makes it possible to use these nanoparticles as transporters of a large amount of calcium ions in a living organism.

Keywords: calcium, liposomes, thermodynamic parameters, calorimetry

Procedia PDF Downloads 49
1627 The Formation of Thin Copper Films on Graphite Surface Using Magnetron Sputtering Method

Authors: Zydrunas Kavaliauskas, Aleksandras Iljinas, Liutauras Marcinauskas, Mindaugas Milieska, Vitas Valincius

Abstract:

The magnetron sputtering deposition method is often used to obtain thin film coatings. The main advantage of magnetron vaporization compared to other deposition methods is the high rate erosion of the cathode material (e.g., copper, aluminum, etc.) and the ability to operate under low-pressure conditions. The structure of the formed coatings depends on the working parameters of the magnetron deposition system, which is why it is possible to influence the properties of the growing film, such as morphology, crystal orientation, and dimensions, stresses, adhesion, etc. The properties of these coatings depend on the distance between the substrate and the magnetron surface, the vacuum depth, the gas used, etc. Using this deposition technology, substrates are most often placed near the anode. The magnetic trap of the magnetrons for localization of electrons in the cathode region is formed using a permanent magnet system that is on the side of the cathode. The scientific literature suggests that, after insertion of a small amount of copper into graphite, the electronic conductivity of graphite increase. The aim of this work is to create thin (up to 300 nm) layers on a graphite surface using a magnetron evaporation method, to investigate the formation peculiarities and microstructure of thin films, as well as the mechanism of copper diffusion into graphite inner layers at different thermal treatment temperatures. The electron scanning microscope was used to investigate the microrelief of the coating surface. The chemical composition is determined using the EDS method, which shows that, with an increase of the thermal treatment of the copper-carbon layer from 200 °C to 400 °C, the copper content is reduced from 8 to 4 % in atomic mass units. This is because the EDS method captures only the amount of copper on the graphite surface, while the temperature of the heat treatment increases part of the copper because of the diffusion processes penetrates into the inner layers of the graphite. The XRD method shows that the crystalline copper structure is not affected by thermal treatment.

Keywords: carbon, coatings, copper, magnetron sputtering

Procedia PDF Downloads 294
1626 Formulation and Evaluation of Piroxicam Hydrotropic Starch Gel

Authors: Mohammed Ghazwani, Shyma Ali Alshahrani, Zahra Abdu Yousef, Taif Torki Asiri, Ghofran Abdur Rahman, Asma Ali Alshahrani, Umme Hani

Abstract:

Background and introduction: Piroxicam is a nonsteroidal anti-inflammatory drug characterized by low solubility-high permeability used to reduce pain, swelling, and joint stiffness from arthritis. Hydrotropes are a class of compounds that normally increase the aqueous solubility of insoluble solutes. Aim: The objective of the present research study was to formulate and optimize Piroxicam hydrotropic starch gel using sodium salicylate, sodium benzoate as hydrotropic salts, and potato starch for topical application. Materials and methods: The prepared Piroxicam hydrotropic starch gel was characterized for various physicochemical parameters like drug content estimation, pH, tube extrudability, and spreadability; all the prepared formulations were subjected to in-vitro diffusion studies for six hours in 100 ml phosphate buffer (pH 7.4) and determined gel strength. Results: All formulations were found to be white opaque in appearance and have good homogeneity. The pH of formulations was found to be between 6.9-7.9. Drug content ranged from 96.8%-99.4.5%. Spreadability plays an important role in patient compliance and helps in the uniform application of gel to the skin as gels should spread easily; F4 showed a spreadability of 2.4cm highest among all other formulations. In in vitro diffusion studies, extrudability and gel strength were good with F4 in comparison with other formulations; hence F4 was selected as the optimized formulation. Conclusion: Isolated potato starch was successfully employed to prepare the gel. Hydrotropic salt sodium salicylate increased the solubility of Piroxicam and resulted in a stable gel, whereas the gel prepared using sodium benzoate changed its color after one week of preparation from white to light yellowish. Hydrotropic potato starch gel proposed a suitable vehicle for the topical delivery of Piroxicam.

Keywords: Piroxicam, potato starch, hydrotropic salts, hydrotropic starch gel

Procedia PDF Downloads 145
1625 Consumer Health Risk Assessment from Some Heavy Metal Bioaccumulation in Common Carp (Cyprinus Carpio) from Lake Koka, Ethiopia

Authors: Mathewos Temesgen, Lemi Geleta

Abstract:

Lake Koka is one of the Ethiopian Central Rift Valleys lakes, where the absorbance of domestic, agricultural, and industrial waste from the nearby industrial and agro-industrial activities is very common. The aim of this research was to assess the heavy metal bioaccumulation in edible parts of common carp (Cyprinus carpio) in Lake Koka and the health risks associated with the dietary intake of the fish. Three sampling sites were selected randomly for primary data collection. Physicochemical parameters (pH, Total Dissolved Solids, Dissolved Oxygen and Electrical Conductivity) were measured in-situ. Four heavy metals (Cd, Cr, Pb, and Zn) in water and bio-accumulation in the edible parts of the fish were analyzed with flame atomic absorption spectrometry. The mean values of TDS, EC, DO and pH of the lake water were 458.1 mg/L, 905.7 µ s/cm, 7.36 mg/L, and 7.9, respectively. The mean concentrations of Zn, Cr, and Cd in the edible part of fish were also 0.18 mg/kg, ND-0.24 mg/kg, and ND-0.03 mg/kg, respectively. Pb was, however, not identified. The amount of Cr in the examined fish muscle was above the level set by FAO, and the accumulation of the metals showed marked differences between sampling sites (p<0.05). The concentrations of Cd, Pb and were below the maximum permissible limit. The results also indicated that Cr has a high transfer factor value and Zn has the lowest. The carcinogenic hazard ratio values were below the threshold value (<1) for the edible parts of fish. The estimated weekly intake of heavy metals from fish muscles ranked as Cr>Zn>Cd, but the values were lower than the Reference Dose limit for metals. The carcinogenic risk values indicated a low health risk due to the intake of individual metals from fish. Furthermore, the hazard index of the edible part of fish was less than unity. Generally, the water quality is not a risk for the survival and reproduction of fish, and the heavy metal contents in the edible parts of fish exhibited low carcinogenic risk through the food chain.

Keywords: bio-accumulation, cyprinus carpio, hazard index, heavy metals, Lake Koka

Procedia PDF Downloads 114
1624 Removal of Rhodamine B from Aqueous Solution Using Natural Clay by Fixed Bed Column Method

Authors: A. Ghribi, M. Bagane

Abstract:

The discharge of dye in industrial effluents is of great concern because their presence and accumulation have a toxic or carcinogenic effect on living species. The removal of such compounds at such low levels is a difficult problem. The adsorption process is an effective and attractive proposition for the treatment of dye contaminated wastewater. Activated carbon adsorption in fixed beds is a very common technology in the treatment of water and especially in processes of decolouration. However, it is expensive and the powdered one is difficult to be separated from aquatic system when it becomes exhausted or the effluent reaches the maximum allowable discharge level. The regeneration of exhausted activated carbon by chemical and thermal procedure is also expensive and results in loss of the sorbent. The focus of this research was to evaluate the adsorption potential of the raw clay in removing rhodamine B from aqueous solutions using a laboratory fixed-bed column. The continuous sorption process was conducted in this study in order to simulate industrial conditions. The effect of process parameters, such as inlet flow rate, adsorbent bed height, and initial adsorbate concentration on the shape of breakthrough curves was investigated. A glass column with an internal diameter of 1.5 cm and height of 30 cm was used as a fixed-bed column. The pH of feed solution was set at 8.5. Experiments were carried out at different bed heights (5 - 20 cm), influent flow rates (1.6- 8 mL/min) and influent rhodamine B concentrations (20 - 80 mg/L). The obtained results showed that the adsorption capacity increases with the bed depth and the initial concentration and it decreases at higher flow rate. The column regeneration was possible for four adsorption–desorption cycles. The clay column study states the value of the excellent adsorption capacity for the removal of rhodamine B from aqueous solution. Uptake of rhodamine B through a fixed-bed column was dependent on the bed depth, influent rhodamine B concentration, and flow rate.

Keywords: adsorption, breakthrough curve, clay, fixed bed column, rhodamine b, regeneration

Procedia PDF Downloads 276
1623 Influence of Magnetic Field on Microstructure and Properties of Copper-Silver Composites

Authors: Engang Wang

Abstract:

The Cu-alloy composites are a kind of high-strength and high-conductivity Cu-based alloys, which have excellent mechanical and electrical properties and is widely used in electronic, electrical, machinery industrial fields. However, the solidification microstructure of the composites, such as the primary or second dendrite arm spacing, have important rule to its tensile strength and conductivity, and that is affected by its fabricating method. In this paper, two kinds of directional solidification methods; the exothermic powder method (EP method) and liquid metal cooling method (LMC method), were used to fabricate the Cu-alloy composites with applied different magnetic fields to investigate their influence on the solidifying microstructure of Cu-alloy, and further the fabricated Cu-alloy composites was drawn to wires to investigate the influence of fabricating method and magnetic fields on the drawing microstructure of fiber-reinforced Cu-alloy composites and its properties. The experiment of Cu-Ag alloy under directional solidification and horizontal magnetic fields with different processing parameters show that: 1) For the Cu-Ag alloy with EP method, the dendrite is directionally developed in the cooling copper mould and the solidifying microstructure is effectively refined by applying horizontal magnetic fields. 2) For the Cu-Ag alloy with LMC method, the primary dendrite arm spacing is decreased and the content of Ag in the dendrite increases as increasing the drawing velocity of solidification. 3) The dendrite is refined and the content of Ag in the dendrite increases as increasing the magnetic flux intensity; meanwhile, the growth direction of dendrite is also affected by magnetic field. The research results of Cu-Ag alloy in situ composites by drawing deforming process show that the micro-hardness of alloy is higher by decreasing dendrite arm spacing. When the dendrite growth orientation is consistent with the axial of the samples. the conductivity of the composites increases with the second dendrite arm spacing increases. However, its conductivity reduces with the applied magnetic fields owing to disrupting the dendrite growth orientation.

Keywords: Cu-Ag composite, magnetic field, microstructure, solidification

Procedia PDF Downloads 214
1622 Retrofitting of Asymmetric Steel Structure Equipped with Tuned Liquid Column Dampers by Nonlinear Finite Element Modeling

Authors: A. Akbarpour, M. R. Adib Ramezani, M. Zhian, N. Ghorbani Amirabad

Abstract:

One way to improve the performance of structures against of earthquake is passive control which requires no external power source. In this research, tuned liquid column dampers which are among of systems with the capability to transfer energy between various modes of vibration, are used. For the first time, a liquid column damper for vibration control structure is presented. After modeling this structure in design building software and performing the static and dynamic analysis and obtaining the necessary parameters for the design of tuned liquid column damper, the whole structure will be analyzed in finite elements software. The tuned liquid column dampers are installed on the structure and nonlinear time-history analysis is done in two cases of structures; with and without dampers. Finally the seismic behavior of building in the two cases will be examined. In this study the nonlinear time-history analysis on a twelve-story steel structure equipped with damper subject to records of earthquake including Loma Prieta, Northridge, Imperiall Valley, Pertrolia and Landers was performed. The results of comparing between two cases show that these dampers have reduced lateral displacement and acceleration of levels on average of 10%. Roof displacement and acceleration also reduced respectively 5% and 12%. Due to structural asymmetric in the plan, the maximum displacements of surrounding structures as well as twisting were studied. The results show that the dampers lead to a 10% reduction in the maximum response of structure stories surrounding points. At the same time, placing the dampers, caused to reduce twisting on the floor plan of the structure, Base shear of structure in the different earthquakes also has been reduced on the average of 6%.

Keywords: retrofitting, passive control, tuned liquid column damper, finite element analysis

Procedia PDF Downloads 414
1621 Security of Database Using Chaotic Systems

Authors: Eman W. Boghdady, A. R. Shehata, M. A. Azem

Abstract:

Database (DB) security demands permitting authorized users and prohibiting non-authorized users and intruders actions on the DB and the objects inside it. Organizations that are running successfully demand the confidentiality of their DBs. They do not allow the unauthorized access to their data/information. They also demand the assurance that their data is protected against any malicious or accidental modification. DB protection and confidentiality are the security concerns. There are four types of controls to obtain the DB protection, those include: access control, information flow control, inference control, and cryptographic. The cryptographic control is considered as the backbone for DB security, it secures the DB by encryption during storage and communications. Current cryptographic techniques are classified into two types: traditional classical cryptography using standard algorithms (DES, AES, IDEA, etc.) and chaos cryptography using continuous (Chau, Rossler, Lorenz, etc.) or discreet (Logistics, Henon, etc.) algorithms. The important characteristics of chaos are its extreme sensitivity to initial conditions of the system. In this paper, DB-security systems based on chaotic algorithms are described. The Pseudo Random Numbers Generators (PRNGs) from the different chaotic algorithms are implemented using Matlab and their statistical properties are evaluated using NIST and other statistical test-suits. Then, these algorithms are used to secure conventional DB (plaintext), where the statistical properties of the ciphertext are also tested. To increase the complexity of the PRNGs and to let pass all the NIST statistical tests, we propose two hybrid PRNGs: one based on two chaotic Logistic maps and another based on two chaotic Henon maps, where each chaotic algorithm is running side-by-side and starting from random independent initial conditions and parameters (encryption keys). The resulted hybrid PRNGs passed the NIST statistical test suit.

Keywords: algorithms and data structure, DB security, encryption, chaotic algorithms, Matlab, NIST

Procedia PDF Downloads 265
1620 Optimized Cropping Calendar and Land Suitability for Maize through GIS and Crop Modelling

Authors: Marilyn S. Painagan, Willie Jones B. Saliling

Abstract:

This paper reports an optimized cropping calendar and land suitability for maize in North Cotabato derived from modeling crop productivity over time and space. Using Quantum GIS, eight representative soil types and 0.3o x 0.3o climate grids shapefiles were intersected to form thirty two pedoclimatic zones within the boundaries of the province. Surveys were done to ascertain crop performance and phenological properties on field. Based on these surveys, crop parameters were calibrated specific for a variety of maize. Soil properties and climatic data (daily precipitation, maximum and minimum temperatures) from pedoclimatic zones were loaded to the FAO Aquacrop Water Productivity Model along with the crop properties from field surveys to simulate yield from 1980 to 2010. The average yield per month was computed to come up with the month of planting having the highest and lowest probable yield in a year assuming that all lands were planted with maize. The yield attributes were visualized in the Quantum GIS environment. The study revealed that optimal cropping patterns varied across North Cotabato. Highest probable yield (8000 kg/ha) can be obtained when maize is planted on May and September (sandy clay-loam soils) in the northern part of the province while the lowest probable yield (1000 kg/ha) can be obtained when maize is planted on January, February and March (clay loam soils) at the northern part of the province. Yields are simulated on the basis of varieties currently planted by farmers of North Cotabato. The resulting maps suggest where and when maize is most suitable to achieve high yields. There is a need to ground truth and validate the cropping calendar on field.

Keywords: aquacrop, quantum GIS, maize, cropping calendar, water productivity

Procedia PDF Downloads 257
1619 Optimization of Sintering Process with Deteriorating Quality of Iron Ore Fines

Authors: Chandra Shekhar Verma, Umesh Chandra Mishra

Abstract:

Blast Furnace performance mainly depends on the quality of sinter as a major portion of iron-bearing material occupies by it hence its quality w.r.t. Tumbler Index (TI), Reducibility Index (RI) and Reduction Degradation Index (RDI) are the key performance indicators of sinter plant. Now it became very tough to maintain the desired quality with the increasing alumina (Al₂O₃) content in iron fines and study is focused on it. Alumina is a refractory material and required more heat input to fuse thereby affecting the desired sintering temperature, i.e. 1300°C. It goes in between the grain boundaries of the bond and makes it weaker. Sinter strength decreases with increasing alumina content, and weak sinter generates more fines thereby reduces the net sinter production as well as plant productivity. Presence of impurities beyond the acceptable norm: such as LOI, Al₂O₃, MnO, TiO₂, K₂O, Na₂O, Hydrates (Goethite & Limonite), SiO₂, phosphorous and zinc, has led to greater challenges in the thrust areas such as productivity, quality and cost. The ultimate aim of this study is maintaining the sinter strength even with high Al₂O without hampering the plant productivity. This study includes mineralogy test of iron fines to find out the fraction of different phases present in the ore and phase analysis of product sinter to know the distribution of different phases. Corrections were done focusing majorly on varying Al₂O₃/SiO₂ ratio, basicity: B2 (CaO/SiO₂), B3 (CaO+MgO/SiO₂) and B4 (CaO+MgO/SiO₂+Al₂O₃). The concept of Alumina / Silica ratio, B3 & B4 found to be useful. We used to vary MgO, Al₂O₃/SiO₂, B2, B3 and B4 to get the desired sinter strength even at high alumina (4.2 - 4.5%) in sinter. The study concludes with the establishment of B4, and Al₂O₃/SiO₂ ratio in between 1.53-1.60 and 0.63- 0.70 respectively and have achieved tumbler index (Drum Index) 76 plus with the plant productivity of 1.58-1.6 t/m2/hr. at JSPL, Raigarh. Study shows that despite of high alumina in sinter, its physical quality can be controlled by maintaining the above-mentioned parameters.

Keywords: Basicity-2, Basicity-3, Basicity-4, Sinter

Procedia PDF Downloads 173
1618 Experimental Investigation of Visual Comfort Requirement in Garment Factories and Identify the Cost Saving Opportunities

Authors: M. A. Wijewardane, S. A. N. C. Sudasinghe, H. K. G. Punchihewa, W. K. D. L. Wickramasinghe, S. A. Philip, M. R. S. U. Kumara

Abstract:

Visual comfort is one of the major parameters that can be taken to measure the human comfort in any environment. If the provided illuminance level in a working environment does not meet the workers visual comfort, it will lead to eye-strain, fatigue, headache, stress, accidents and finally, poor productivity. However, improvements in lighting do not necessarily mean that the workplace requires more light. Unnecessarily higher illuminance levels will also cause poor visual comfort and health risks. In addition, more power consumption on lighting will also result in higher energy costs. So, during this study, visual comfort and the illuminance requirement for the workers in textile/apparel industry were studied to perform different tasks (i.e. cutting, sewing and knitting) at their workplace. Experimental studies were designed to identify the optimum illuminance requirement depending upon the varied fabric colour and type and finally, energy saving potentials due to controlled illuminance level depending on the workforce requirement were analysed. Visual performance of workers during the sewing operation was studied using the ‘landolt ring experiment’. It was revealed that around 36.3% of the workers would like to work if the illuminance level varies from 601 lux to 850 lux illuminance level and 45.9% of the workers are not happy to work if the illuminance level reduces less than 600 lux and greater than 850 lux. Moreover, more than 65% of the workers who do not satisfy with the existing illuminance levels of the production floors suggested that they have headache, eye diseases, or both diseases due to poor visual comfort. In addition, findings of the energy analysis revealed that the energy-saving potential of 5%, 10%, 24%, 8% and 16% can be anticipated for fabric colours, red, blue, yellow, black and white respectively, when the 800 lux is the prevailing illuminance level for sewing operation.

Keywords: Landolt Ring experiment, lighting energy consumption, illuminance, textile and apparel industry, visual comfort

Procedia PDF Downloads 206
1617 Antibacterial Property of ZnO Nanoparticles: Effect of Intrinsic Defects

Authors: Suresh Kumar Verma, Jugal Kishore Das, Ealisha Jha, Mrutyunjay Suar, SKS Parashar

Abstract:

In recent years nanoforms of inorganic metallic oxides has attracted a lot of interest due to their small size and significantly improved physical, chemical and biological properties compared to their molecular precursor. Some of the inorganic materials such as TiO2, ZnO, MgO, CaO, Al2O3 have been extensively used in biological applications. Zinc Oxide is a Wurtzite-type semiconductor and piezo-electric material exhibiting excellent electrical, optical and chemical properties with a band energy gap of 3.1-3.4 eV. Nanoforms of Zinc Oxide (ZnO) are increasingly recognised for their utility in biological application. The significant physical parameters such as surface area, particle size, surface charge and Zeta potential of Zinc Oxide (ZnO) nanoparticles makes it suitable for the uptake, persistance, biological, and chemical activities inside the living cells. The present study shows the effect of intrinsic defects of ZnO nanocrystals synthesized by high energy ball milling (HEBM) technique in their antibacterial activities. Bulk Zinc oxide purchased from market were ball milled for 7 h, 10 h, and 15 h respectively to produce nanosized Zinc Oxide. The structural and optical modification of such synthesized particles were determined by X-ray diffraction (XRD), Scanning Electron Microscopy and Electron Paramagnetic Resonance (EPR). The antibacterial property of synthesized Zinc Oxide nanoparticles was tested using well diffusion, minimum inhibitory Concentration, minimum bacteriocidal concentration, reactive oxygen species (ROS) estimation and membrane potential determination methods. In this study we observed that antibacterial activity of ZnO nanoparticles is because of the intrinsic defects that exist as a function of difference in size and milling time.

Keywords: high energy ball milling, ZnO nanoparticles, EPR, Antibacterial properties

Procedia PDF Downloads 429
1616 Experimental Investigation on Performance of Beam Column Frames with Column Kickers

Authors: Saiada Fuadi Fancy, Fahim Ahmed, Shofiq Ahmed, Raquib Ahsan

Abstract:

The worldwide use of reinforced concrete construction stems from the wide availability of reinforcing steel as well as concrete ingredients. However, concrete construction requires a certain level of technology, expertise, and workmanship, particularly, in the field during construction. As a supporting technology for a concrete column or wall construction, kicker is cast as part of the slab or foundation to provide a convenient starting point for a wall or column ensuring integrity at this important junction. For that reason, a comprehensive study was carried out here to investigate the behavior of reinforced concrete frame with different kicker parameters. To achieve this objective, six half-scale specimens of portal reinforced concrete frame with kickers and one portal frame without kicker were constructed according to common practice in the industry and subjected to cyclic incremental horizontal loading with sustained gravity load. In this study, the experimental data, obtained in four deflections controlled cycle, were used to evaluate the behavior of kickers. Load-displacement characteristics were obtained; maximum loads and deflections were measured and assessed. Finally, the test results of frames constructed with three different types of kicker thickness were compared with the kickerless frame. Similar crack patterns were observed for all the specimens. From this investigation, specimens with kicker thickness 3″ were shown better results than specimens with kicker thickness 1.5″, which was specified by maximum load, stiffness, initiation of first crack and residual displacement. Despite of better performance, it could not be firmly concluded that 4.5″ kicker thickness is the most appropriate one. Because, during the test of that specimen, separation of dial gauge was needed. Finally, comparing with kickerless specimen, it was observed that performance of kickerless specimen was relatively better than kicker specimens.

Keywords: crack, cyclic, kicker, load-displacement

Procedia PDF Downloads 321
1615 Study of Synergetic Effect by Combining Dielectric Barrier Discharge (DBD) Plasma and Photocatalysis for Abatement of Pollutants in Air Mixture System: Influence of Some Operating Conditions and Identification of Byproducts

Authors: Wala Abou Saoud, Aymen Amine Assadi, Monia Guiza, Abdelkrim Bouzaza, Wael Aboussaoud, Abdelmottaleb Ouederni, Dominique Wolbert

Abstract:

Volatile organic compounds (VOCs) constitute one of the most important families of chemicals involved in atmospheric pollution, causing damage to the environment and human health, and need, consequently, to be eliminated. Among the promising technologies, dielectric barrier discharge (DBD) plasma - photocatalysis coupling reveals very interesting prospects in terms of process synergy of compounds mineralization’s, with low energy consumption. In this study, the removal of organic compounds such butyraldehyde (BUTY) and dimethyl disulfide (DMDS) (exhaust gasses from animal quartering centers.) in air mixture using DBD plasma coupled with photocatalysis was tested, in order to determine whether or not synergy effect was present. The removal efficiency of these pollutants, a selectivity of CO₂ and CO, and byproducts formation such as ozone formation were investigated in order to evaluate the performance of the combined process. For this purpose, a series of experiments were carried out in a continuous reactor. Many operating parameters were also investigated such as the specific energy of discharge, the inlet concentration of pollutant and the flowrate. It appears from this study that, the performance of the process has enhanced and a synergetic effect is observed. In fact, we note an enhancement of 10 % on removal efficiency. It is interesting to note that the combined system leads to better CO₂ selectivity than for plasma. Consequently, intermediates by-products have been reduced due to various other species (O•, N, OH•, O₂•-, O₃, NO₂, NOx, etc.). Additionally, the behavior of combining DBD plasma and photocatalysis has shown that the ozone can be easily also decomposed in presence of photocatalyst.

Keywords: combined process, DBD plasma, photocatalysis, pilot scale, synergetic effect, VOCs

Procedia PDF Downloads 331
1614 Comparison between the Performances of Different Boring Bars in the Internal Turning of Long Overhangs

Authors: Wallyson Thomas, Zsombor Fulop, Attila Szilagyi

Abstract:

Impact dampers are mainly used in the metal-mechanical industry in operations that generate too much vibration in the machining system. Internal turning processes become unstable during the machining of deep holes, in which the tool holder is used with long overhangs (high length-to-diameter ratios). The devices coupled with active dampers, are expensive and require the use of advanced electronics. On the other hand, passive impact dampers (PID – Particle Impact Dampers) are cheaper alternatives that are easier to adapt to the machine’s fixation system, once that, in this last case, a cavity filled with particles is simply added to the structure of the tool holder. The cavity dimensions and the diameter of the spheres are pre-determined. Thus, when passive dampers are employed during the machining process, the vibration is transferred from the tip of the tool to the structure of the boring bar, where it is absorbed by the fixation system. This work proposes to compare the behaviors of a conventional solid boring bar and a boring bar with a passive impact damper in turning while using the highest possible L/D (length-to-diameter ratio) of the tool and an Easy Fix fixation system (also called: Split Bushing Holding System). It is also intended to optimize the impact absorption parameters, as the filling percentage of the cavity and the diameter of the spheres. The test specimens were made of hardened material and machined in a Computer Numerical Control (CNC) lathe. The laboratory tests showed that when the cavity of the boring bar is totally filled with minimally spaced spheres of the largest diameter, the gain in absorption allowed of obtaining, with an L/D equal to 6, the same surface roughness obtained when using the solid boring bar with an L/D equal to 3.4. The use of the passive particle impact damper resulted in, therefore, increased static stiffness and reduced deflexion of the tool.

Keywords: active damper, fixation system, hardened material, passive damper

Procedia PDF Downloads 222
1613 Deorbiting Performance of Electrodynamic Tethers to Mitigate Space Debris

Authors: Giulia Sarego, Lorenzo Olivieri, Andrea Valmorbida, Carlo Bettanini, Giacomo Colombatti, Marco Pertile, Enrico C. Lorenzini

Abstract:

International guidelines recommend removing any artificial body in Low Earth Orbit (LEO) within 25 years from mission completion. Among disposal strategies, electrodynamic tethers appear to be a promising option for LEO, thanks to the limited storage mass and the minimum interface requirements to the host spacecraft. In particular, recent technological advances make it feasible to deorbit large objects with tether lengths of a few kilometers or less. To further investigate such an innovative passive system, the European Union is currently funding the project E.T.PACK – Electrodynamic Tether Technology for Passive Consumable-less Deorbit Kit in the framework of the H2020 Future Emerging Technologies (FET) Open program. The project focuses on the design of an end of life disposal kit for LEO satellites. This kit aims to deploy a taped tether that can be activated at the spacecraft end of life to perform autonomous deorbit within the international guidelines. In this paper, the orbital performance of the E.T.PACK deorbiting kit is compared to other disposal methods. Besides, the orbital decay prediction is parametrized as a function of spacecraft mass and tether system performance. Different values of length, width, and thickness of the tether will be evaluated for various scenarios (i.e., different initial orbital parameters). The results will be compared to other end-of-life disposal methods with similar allocated resources. The analysis of the more innovative system’s performance with the tape coated with a thermionic material, which has a low work-function (LWT), for which no active component for the cathode is required, will also be briefly discussed. The results show that the electrodynamic tether option can be a competitive and performant solution for satellite disposal compared to other deorbit technologies.

Keywords: deorbiting performance, H2020, spacecraft disposal, space electrodynamic tethers

Procedia PDF Downloads 178
1612 Effect of Environmental Changes in Working Heart Rate among Industrial Workers: An Ergonomic Interpretation

Authors: P. Mukhopadhyay, N. C. Dey

Abstract:

Occupational health hazard is a very common term in every emerging country. Along with the unorganized sector, most organized sectors including government industries are suffering from this affliction. In addition to workload, the seasonal changes also have some impacts on working environment. With this focus in mind, one hundred male industrial workers, who are directly involved to the task of Periodic Overhauling (POH) in a fabricating workshop in the public domain are selected for this research work. They have been studied during work periods throughout different seasons in a year. For each and every season, the participants working heart rate (WHR) is measured and compared with the standards given by different national and internationally recognized agencies i.e., World Health Organization (WHO) and American Conference of Governmental Industrial Hygienists (ACGIH) etc. The different environmental parameters i.e. dry bulb temperature (DBT), wet bulb temperature (WBT), globe temperature (GT), natural wet bulb temperature (NWB), relative humidity (RH), wet bulb globe temperature (WBGT), air velocity (AV), effective temperature (ET) are recorded throughout the seasons to critically observe the effect of seasonal changes on the WHR of the workers. The effect of changes in environment to the WHR of the workers is very much surprising. It is found that the percentages of workers who belong to the ‘very heavy’ workload category are 83.33%, 66.66% and 16.66% in the summer, rainy and winter seasons, respectively. Ongoing undertaking of this type of job profile forces the worker towards occupational disorders causing absenteeism. This occurrence results in lower production rates, and on the other hand, costs due to medical claims also weaken the industry’s economic condition. In this circumstance, the authors are trying to focus on some remedial measures from the ergonomic angle by proposing a new work/ rest regimen and introducing engineering controls along with management controls which may help the worker, and consequently, the management also.

Keywords: workload, working heart rate, occupational health hazard, industrial worker

Procedia PDF Downloads 135
1611 Installing Beehives in Solar Parks to Enhance Local Biodiversity

Authors: Nuria Rubio, María Campo, Joana Ruiz, Paola Vecino

Abstract:

Renewable energies have been proposed for some years as a solution to the ecological crisis caused by traditional fuels. The installation of solar parks for electricity production is therefore necessary for a transition to cleaner energy. Additionally, spaces occupied by solar parks can be ideal places for biodiversity promotion consisting in controlled areas allowing free transit of numerous animal species in absence of phytosanitary products or other substances commonly used in rural areas. The main objective of this project is increasing local biodiversity. Secondary objectives include the installation of beehives with Apis mellifera iberiensis swarms (native honeybee species), the monitoring and periodic evaluation of the state of health and demographic progression of these swarms and study of biodiversity increase in these areas, mainly due to the presence of Apis mellifera iberiensis. Prior to bee-hives installation, a preliminary study of the area is carried out to quantify floral load, biocenosis and geo-climatological characteristics of the area of study for determining the optimal number of hives for the benefit of the local ecosystem. Once beehives set up, the bee-swarms health status is monitored and evaluated quarterly using monitoring systems. Parameters studies are weight, humidity inside the hive, external and internal temperature, and sound inside the hive. Furthermore, a biodiversity study of the area was conducted by direct observation and quantification of species (S) in the area of bee-foraging (1 km around the beehives). A great diversity of species has been detected in the area of study. Therefore, the population of Apis mellifera iberiensis is not displacing other pollinators in the area, on the contrary, results show that it is contributing to the pollination of the different plant species enhancing wild bees’ biodiversity.

Keywords: biodiversity, honeybee, pollination, solar park

Procedia PDF Downloads 55
1610 Changes in Serum Hepcidin Levels in Children with Inflammatory Bowel Disease during Anti-Inflammatory Treatment

Authors: Eva Karaskova, Jana Volejnikova, Dusan Holub, Maria Velganova-Veghova, Michaela Spenerova, Dagmar Pospisilova

Abstract:

Background: Hepcidin is the central regulator of iron metabolism. Its production is mainly affected by an iron deficiency and the presence of inflammatory activity in the body. The aim of this study was to compare serum hepcidin levels in paediatric patients with newly diagnosed inflammatory bowel disease and hepcidin levels during maintenance therapy, correlate changes of serum hepcidin levels with selected markers of iron metabolism and inflammation and type of provided treatment. Methods: Children with newly diagnosed Crohn's disease (CD) and ulcerative colitis (UC) were included in this prospective study. Blood and stool samples were collected before treatment (baseline). Serum hepcidin, hemoglobin levels, platelet counts, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), interleukin-6 (IL 6), ferritin, iron, soluble transferrin receptors, and fecal calprotectin were assessed. The same parameters were measured and compared with the baseline levels in the follow-up period, during maintenance therapy (average of 39 months after diagnosis). Results: Patients with CD (n=30) had higher serum hepcidin levels (expressed as a median and interquartile range) at diagnosis than subjects with UC (n=13). These levels significantly decreased during the follow-up (from 36.5 (11.5-79.6) ng/ml to 2.1 (0.9-6.7) ng/ml). Contrarily, no significant serum hepcidin level changes were observed in UC (from 5.4 (3.4-16.6) ng/ml to 4.8 (0.9-8.1) ng/ml). While in children with CD hepcidin level dynamics correlated with disease activity and inflammatory markers (ESR, CRP), an only correlation with serum iron levels was observed in patients with UC. Conclusion: Children with CD had higher serum hepcidin levels at diagnosis compared to subjects with UC. Decrease of serum hepcidin in the CD group during anti-inflammatory therapy has been observed, whereas low hepcidin levels in children with UC have remained unchanged. Acknowledgment: This study was supported by grant MH CZ–DRO (FNOl, 00098892).

Keywords: children, Crohn's disease, ulcerative colitis, anaemia, hepcidin

Procedia PDF Downloads 125
1609 Comparison Methyl Orange and Malachite Green Dyes Removal by GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH as Adsorbents

Authors: Omid Moradi, Mostafa Rajabi

Abstract:

Graphene oxide (GO), reduced graphene oxide (rGO), multi-walled carbon nanotubes MWCNT), multi-walled carbon nanotube functionalized carboxyl (MWCNT-COOH), and multi-walled carbon nanotube functionalized thiol (MWCNT-SH) were used as efficient adsorbents for the rapid removal two dyes methyl orange (MO) and malachite green (MG) from the aqueous phase. The impact of several influential parameters such as initial dye concentrations, contact time, temperature, and initial solution pH was well studied and optimized. The optimize time for adsorption process of methyl orange dye on GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were determined at 100, 100, 60, 25, and 60 min, respectively and The optimize time for adsorption process of malachite green dye on GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were determined at 100, 100, 60, 15, and 60 min, respectively. The maximum removal efficiency for methyl orange dye by GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were occurred at optimized pH 3, 3, 6, 2, and 6 of aqueous solutions, respectively and for malachite green dye were occurred at optimized pH 3, 3, 6, 9, and 6 of aqueous solutions, respectively. The effect of temperature showed that adsorption process of malachite green dye on GO, rGO, MWCNT, and MWCNT-SH surfaces were endothermic and for adsorption process of methyl orange dye on GO, rGO, MWCNT, and MWCNT-SH surfaces were endothermic but while adsorption of methyl orange and malachite green dyes on MWCNT-COOH surface were exothermic.On increasing the initial concentration of methyl orange dye adsorption capacity on GO surface was decreased and on rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were increased and with increasing the initial concentration of malachite green dye on GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were increased.

Keywords: adsorption, graphene oxide, reduced graphene oxide, multi-walled carbon nanotubes, methyl orange, malachite green, removal

Procedia PDF Downloads 382
1608 Numerical Study of a Ventilation Principle Based on Flow Pulsations

Authors: Amir Sattari, Mac Panah, Naeim Rashidfarokhi

Abstract:

To enhance the mixing of fluid in a rectangular enclosure with a circular inlet and outlet, an energy-efficient approach is further investigated through computational fluid dynamics (CFD). Particle image velocimetry (PIV) measurements help confirm that the pulsation of the inflow velocity improves the mixing performance inside the enclosure considerably without increasing energy consumption. In this study, multiple CFD simulations with different turbulent models were performed. The results obtained were compared with experimental PIV results. This study investigates small-scale representations of flow patterns in a ventilated rectangular room. The objective is to validate the concept of an energy-efficient ventilation strategy with improved thermal comfort and reduction of stagnant air inside the room. Experimental and simulated results confirm that through pulsation of the inflow velocity, strong secondary vortices are generated downstream of the entrance wall-jet. The pulsatile inflow profile promotes a periodic generation of vortices with stronger eddies despite a relatively low inlet velocity, which leads to a larger boundary layer with increased kinetic energy in the occupied zone. A real-scale study was not conducted; however, it can be concluded that a constant velocity inflow profile can be replaced with a lower pulsated flow rate profile while preserving the mixing efficiency. Among the turbulent CFD models demonstrated in this study, SST-kω is most advantageous, exhibiting a similar global airflow pattern as in the experiments. The detailed near-wall velocity profile is utilized to identify the wall-jet instabilities that consist of mixing and boundary layers. The SAS method was later applied to predict the turbulent parameters in the center of the domain. In both cases, the predictions are in good agreement with the measured results.

Keywords: CFD, PIV, pulsatile inflow, ventilation, wall-jet

Procedia PDF Downloads 174
1607 Using Hyperspectral Sensor and Machine Learning to Predict Water Potentials of Wild Blueberries during Drought Treatment

Authors: Yongjiang Zhang, Kallol Barai, Umesh R. Hodeghatta, Trang Tran, Vikas Dhiman

Abstract:

Detecting water stress on crops early and accurately is crucial to minimize its impact. This study aims to measure water stress in wild blueberry crops non-destructively by analyzing proximal hyperspectral data. The data collection took place in the summer growing season of 2022. A drought experiment was conducted on wild blueberries in the randomized block design in the greenhouse, incorporating various genotypes and irrigation treatments. Hyperspectral data ( spectral range: 400-1000 nm) using a handheld spectroradiometer and leaf water potential data using a pressure chamber were collected from wild blueberry plants. Machine learning techniques, including multiple regression analysis and random forest models, were employed to predict leaf water potential (MPa). We explored the optimal wavelength bands for simple differences (RY1-R Y2), simple ratios (RY1/RY2), and normalized differences (|RY1-R Y2|/ (RY1-R Y2)). NDWI ((R857 - R1241)/(R857 + R1241)), SD (R2188 – R2245), and SR (R1752 / R1756) emerged as top predictors for predicting leaf water potential, significantly contributing to the highest model performance. The base learner models achieved an R-squared value of approximately 0.81, indicating their capacity to explain 81% of the variance. Research is underway to develop a neural vegetation index (NVI) that automates the process of index development by searching for specific wavelengths in the space ratio of linear functions of reflectance. The NVI framework could work across species and predict different physiological parameters.

Keywords: hyperspectral reflectance, water potential, spectral indices, machine learning, wild blueberries, optimal bands

Procedia PDF Downloads 67
1606 Engineered Bio-Coal from Pressed Seed Cake for Removal of 2, 4, 6-Trichlorophenol with Parametric Optimization Using Box–Behnken Method

Authors: Harsha Nagar, Vineet Aniya, Alka Kumari, Satyavathi B.

Abstract:

In the present study, engineered bio-coal was produced from pressed seed cake, which otherwise is non-edible in origin. The production process involves a slow pyrolysis wherein, based on the optimization of process parameters; a substantial reduction in H/C and O/C of 77% was achieved with respect to the original ratio of 1.67 and 0.8, respectively. The bio-coal, so the product was found to have a higher heating value of 29899 kJ/kg with surface area 17 m²/g and pore volume of 0.002 cc/g. The functional characterization of bio-coal and its subsequent modification was carried out to enhance its active sites, which were further used as an adsorbent material for removal of 2,4,6-Trichlorophenol (2,4,6-TCP) herbicide from the aqueous stream. The point of zero charge for the bio-coal was found to be pH < 3 where its surface is positively charged and attracts anions resulting in the maximum 2, 4, 6-TCP adsorption at pH 2.0. The parametric optimization of the adsorption process was studied based on the Box-Behken design with the desirability approach. The results showed optimum values of adsorption efficiency of 74.04% and uptake capacity of 118.336 mg/g for an initial metal concentration of 250 mg/l and particle size of 0.12 mm at pH 2.0 and 1 g/L of bio-coal loading. Negative Gibbs free energy change values indicated the feasibility of 2,4,6-TCP adsorption on biochar. Decreasing the ΔG values with the rise in temperature indicated high favourability at low temperatures. The equilibrium modeling results showed that both isotherms (Langmuir and Freundlich) accurately predicted the equilibrium data, which may be attributed to the different affinity of the functional groups of bio-coal for 2,4,6-TCP removal. The possible mechanism for 2,4,6-TCP adsorption is found to be physisorption (pore diffusion, p*_p electron donor-acceptor interaction, H-bonding, and van der Waals dispersion forces) and chemisorption (phenolic and amine groups chemical bonding) based on the kinetics data modeling.

Keywords: engineered biocoal, 2, 4, 6-trichlorophenol, box behnken design, biosorption

Procedia PDF Downloads 117
1605 Study of the Anaerobic Degradation Potential of High Strength Molasses Wastewater

Authors: M. Mischopoulou, P. Naidis, S. Kalamaras, T. Kotsopoulos, P. Samaras

Abstract:

The treatment of high strength wastewater by an Upflow Anaerobic Sludge Blanket (UASB) reactor has several benefits, such as high organic removal efficiency, short hydraulic retention time along with low operating costs. In addition, high volumes of biogas are released in these reactors, which can be utilized in several industrial facilities for energy production. This study aims at the examination of the application potential of anaerobic treatment of wastewater, with high molasses content derived from yeast manufacturing, by a lab-scale UASB reactor. The molasses wastewater and the sludge used in the experiments were collected from the wastewater treatment plant of a baker’s yeast manufacturing company. The experimental set-up consisted of a 15 L thermostated UASB reactor at 37 ◦C. Before the reactor start-up, the reactor was filled with sludge and molasses wastewater at a ratio 1:1 v/v. Influent was fed to the reactor at a flowrate of 12 L/d, corresponding to a hydraulic residence time of about 30 h. Effluents were collected from the system outlet and were analyzed for the determination of the following parameters: COD, pH, total solids, volatile solids, ammonium, phosphates and total nitrogen according to the standard methods of analysis. In addition, volatile fatty acid (VFA) composition of the effluent was determined by a gas chromatograph equipped with a flame ionization detector (FID), as an indicator to evaluate the process efficiency. The volume of biogas generated in the reactor was daily measured by the water displacement method, while gas composition was analyzed by a gas chromatograph equipped with a thermal conductivity detector (TCD). The effluent quality was greatly enhanced due to the use of the UASB reactor and high rate of biogas production was observed. The anaerobic treatment of the molasses wastewater by the UASB reactor improved the biodegradation potential of the influent, resulting at high methane yields and an effluent with better quality than the raw wastewater.

Keywords: anaerobic digestion, biogas production, molasses wastewater, UASB reactor

Procedia PDF Downloads 272
1604 Motivation in Online Instruction

Authors: David Whitehouse

Abstract:

Some of the strengths of online teaching include flexibility, creativity, and comprehensiveness. A challenge can be motivation. How can an instructor repeating the same lessons over and over, day in and day out, year after year, maintain motivation? Enthusiasm? Does motivating the student and creating enthusiasm in class build the same things inside the instructor? The answers lie in the adoption of what I label EUQ—The Empathy and Understanding Quotient. In the online environment, students who are adults have many demands on their time: civilian careers, families (spouse, children, older parents), and sometimes even military service. Empathetic responses on the part of the instructor will lead to open and honest communication on the part of the student, which will lead to understanding on the part of the instructor and a rise in motivation in both parties. Understanding the demands can inform an instructor’s relationship with the student throughout the temporal parameters of classwork. In practicing EUQ, instructors can build motivation in their students and find internal motivation in an enhanced classroom dynamic. The presentation will look at what motivates a student to accomplish more than the minimum required and how that can lead to excellent results for an instructor’s own motivation. Through direct experience of having students give high marks on post-class surveys and via direct messaging, the presentation will focus on how applying EUQ in granting extra time, searching for intent while grading, communicating with students via Quick Notes, responses in Forums, comments in Assignments, and comments in grading areas - - - how applying these things infuses enthusiasm and energy in the instructor which drive creativity in teaching. Three primary ways of communicating with students will be given as examples. The positive response and negative response each for a Forum, an Assignment, and a Message will be explored. If there is time, participants will be invited to craft their own EUQ responses in a role playing exercise involving two common classroom scenarios—late work and plagiarism.

Keywords: education, instruction, motivation, online, teaching

Procedia PDF Downloads 171
1603 Sea Surface Temperature and Climatic Variables as Drivers of North Pacific Albacore Tuna Thunnus Alalunga Time Series

Authors: Ashneel Ajay Singh, Naoki Suzuki, Kazumi Sakuramoto, Swastika Roshni, Paras Nath, Alok Kalla

Abstract:

Albacore tuna (Thunnus alalunga) is one of the commercially important species of tuna in the North Pacific region. Despite the long history of albacore fisheries in the Pacific, its ecological characteristics are not sufficiently understood. The effects of changing climate on numerous commercially and ecologically important fish species including albacore tuna have been documented over the past decades. The objective of this study was to explore and elucidate the relationship of environmental variables with the stock parameters of albacore tuna. The relationship of the North Pacific albacore tuna recruitment (R), spawning stock biomass (SSB) and recruits per spawning biomass (RPS) from 1970 to 2012 with the environmental factors of sea surface temperature (SST), Pacific decadal oscillation (PDO), El Niño southern oscillation (ENSO) and Pacific warm pool index (PWI) was construed. SST and PDO were used as independent variables with SSB to construct stock reproduction models for R and RPS as they showed most significant relationship with the dependent variables. ENSO and PWI were excluded due to collinearity effects with SST and PDO. Model selections were based on R2 values, Akaike Information Criterion (AIC) and significant parameter estimates at p<0.05. Models with single independent variables of SST, PDO, ENSO and PWI were also constructed to illuminate their individual effect on albacore R and RPS. From the results it can be said that SST and PDO resulted in the most significant models for reproducing North Pacific albacore tuna R and RPS time series. SST has the highest impact on albacore R and RPS when comparing models with single environmental variables. It is important for fishery managers and decision makers to incorporate the findings into their albacore tuna management plans for the North Pacific Oceanic region.

Keywords: Albacore tuna, El Niño southern oscillation, Pacific decadal oscillation, sea surface temperature

Procedia PDF Downloads 231