Search results for: vector error correction model (VECM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18856

Search results for: vector error correction model (VECM)

11146 A Preliminary Study of Urban Resident Space Redundancy in the Context of Rapid Urbanization: Based on Urban Research of Hongkou District of Shanghai

Authors: Ziwei Chen, Yujiang Gao

Abstract:

The rapid urbanization has caused the massive physical space in Chinese cities to be in a state of duplication and dislocation through the rapid development, forming many daily spaces that cannot be standardized, typed, and identified, such as illegal construction. This phenomenon is known as urban spatial redundancy and is often excluded from mainstream architectural discussions because of its 'remaining' and 'excessive' derogatory label. In recent years, some practice architects have begun to pay attention to this phenomenon and tried to tap the value behind it. In this context, the author takes the redundancy phenomenon of resident space as the research object and explores the inspiration to the urban architectural renewal and the innovative residential area model, based on the urban survey of redundant living space in Hongkou District of Shanghai. On this basis, it shows that the changes accumulated in the long-term use of the building can be re-applied to the goals before the design, which is an important link and significance of the existence of an architecture.

Keywords: rapid urbanization, living space redundancy, architectural renewal, residential area model

Procedia PDF Downloads 135
11145 Improve Divers Tracking and Classification in Sonar Images Using Robust Diver Wake Detection Algorithm

Authors: Mohammad Tarek Al Muallim, Ozhan Duzenli, Ceyhun Ilguy

Abstract:

Harbor protection systems are so important. The need for automatic protection systems has increased over the last years. Diver detection active sonar has great significance. It used to detect underwater threats such as divers and autonomous underwater vehicle. To automatically detect such threats the sonar image is processed by algorithms. These algorithms used to detect, track and classify of underwater objects. In this work, divers tracking and classification algorithm is improved be proposing a robust wake detection method. To detect objects the sonar images is normalized then segmented based on fixed threshold. Next, the centroids of the segments are found and clustered based on distance metric. Then to track the objects linear Kalman filter is applied. To reduce effect of noise and creation of false tracks, the Kalman tracker is fine tuned. The tuning is done based on our active sonar specifications. After the tracks are initialed and updated they are subjected to a filtering stage to eliminate the noisy and unstable tracks. Also to eliminate object with a speed out of the diver speed range such as buoys and fast boats. Afterwards the result tracks are subjected to a classification stage to deiced the type of the object been tracked. Here the classification stage is to deice wither if the tracked object is an open circuit diver or a close circuit diver. At the classification stage, a small area around the object is extracted and a novel wake detection method is applied. The morphological features of the object with his wake is extracted. We used support vector machine to find the best classifier. The sonar training images and the test images are collected by ARMELSAN Defense Technologies Company using the portable diver detection sonar ARAS-2023. After applying the algorithm to the test sonar data, we get fine and stable tracks of the divers. The total classification accuracy achieved with the diver type is 97%.

Keywords: harbor protection, diver detection, active sonar, wake detection, diver classification

Procedia PDF Downloads 238
11144 Cybersecurity Protective Behavior in Industrial Revolution 4.0 Era: A Conceptual Framework

Authors: Saif Hussein Abdallah Alghazo, Norshima Humaidi

Abstract:

Adopting cybersecurity protective behaviour among the employees is seriously considered in the organization, especially when the Internet of Things (IoT) is widely used in Industrial Revolution 4.0 (IR 4.0) era. Cybersecurity issues arise due to weaknesses of employees’ behaviour such as carelessness and failure to adopt good practices of information security behaviour. Therefore, this study aims to explore the dimensions that might influence employees’ behaviour to adopt good cybersecurity practices and to develop a new holistic model related to this concept. The study proposed this by reviewing the existing works of literature related to this field extensively, especially by focusing on the existing theory such as Protection Motivation Theory (PMT). Moreover, this study has also explored the role of cybersecurity competency among the security manager in the organization since this construct is essential to enhance the protective behaviour towards cybersecurity among the employees in the organization. The proposed research model is important to be quantitatively tested in the future as the findings will serve as the input to the act that will enhance employee’s cybersecurity protective behaviour in the IR 4.0 environment.

Keywords: cybersecurity protective behaviour, protection motivation theory, IR 4.0, cybersecurity competency

Procedia PDF Downloads 153
11143 Adaptive Motion Compensated Spatial Temporal Filter of Colonoscopy Video

Authors: Nidhal Azawi

Abstract:

Colonoscopy procedure is widely used in the world to detect an abnormality. Early diagnosis can help to heal many patients. Because of the unavoidable artifacts that exist in colon images, doctors cannot detect a colon surface precisely. The purpose of this work is to improve the visual quality of colonoscopy videos to provide better information for physicians by removing some artifacts. This work complements a series of work consisting of three previously published papers. In this paper, Optic flow is used for motion compensation, and then consecutive images are aligned/registered to integrate some information to create a new image that has or reveals more information than the original one. Colon images have been classified into informative and noninformative images by using a deep neural network. Then, two different strategies were used to treat informative and noninformative images. Informative images were treated by using Lucas Kanade (LK) with an adaptive temporal mean/median filter, whereas noninformative images are treated by using Lucas Kanade with a derivative of Gaussian (LKDOG) with adaptive temporal median images. A comparison result showed that this work achieved better results than that results in the state- of- the- art strategies for the same degraded colon images data set, which consists of 1000 images. The new proposed algorithm reduced the error alignment by about a factor of 0.3 with a 100% successfully image alignment ratio. In conclusion, this algorithm achieved better results than the state-of-the-art approaches in case of enhancing the informative images as shown in the results section; also, it succeeded to convert the non-informative images that have very few details/no details because of the blurriness/out of focus or because of the specular highlight dominate significant amount of an image to informative images.

Keywords: optic flow, colonoscopy, artifacts, spatial temporal filter

Procedia PDF Downloads 114
11142 Keypoint Detection Method Based on Multi-Scale Feature Fusion of Attention Mechanism

Authors: Xiaoxiao Li, Shuangcheng Jia, Qian Li

Abstract:

Keypoint detection has always been a challenge in the field of image recognition. This paper proposes a novelty keypoint detection method which is called Multi-Scale Feature Fusion Convolutional Network with Attention (MFFCNA). We verified that the multi-scale features with the attention mechanism module have better feature expression capability. The feature fusion between different scales makes the information that the network model can express more abundant, and the network is easier to converge. On our self-made street sign corner dataset, we validate the MFFCNA model with an accuracy of 97.8% and a recall of 81%, which are 5 and 8 percentage points higher than the HRNet network, respectively. On the COCO dataset, the AP is 71.9%, and the AR is 75.3%, which are 3 points and 2 points higher than HRNet, respectively. Extensive experiments show that our method has a remarkable improvement in the keypoint recognition tasks, and the recognition effect is better than the existing methods. Moreover, our method can be applied not only to keypoint detection but also to image classification and semantic segmentation with good generality.

Keywords: keypoint detection, feature fusion, attention, semantic segmentation

Procedia PDF Downloads 120
11141 Optimization of the Measure of Compromise as a Version of Sorites Paradox

Authors: Aleksandar Hatzivelkos

Abstract:

The term ”compromise” is mostly used casually within the social choice theory. It is usually used as a mere result of the social choice function, and this omits its deeper meaning and ramifications. This paper is based on a mathematical model for the description of a compromise as a version of the Sorites paradox. It introduces a formal definition of d-measure of divergence from a compromise and models a notion of compromise that is often used only colloquially. Such a model for vagueness phenomenon, which lies at the core of the notion of compromise enables the introduction of new mathematical structures. In order to maximize compromise, different methods can be used. In this paper, we explore properties of a social welfare function TdM (from Total d-Measure), which is defined as a function which minimizes the total sum of d-measures of divergence over all possible linear orderings. We prove that TdM satisfy strict Pareto principle and behaves well asymptotically. Furthermore, we show that for certain domain restrictions, TdM satisfy positive responsiveness and IIIA (intense independence of irrelevant alternatives) thus being equivalent to Borda count on such domain restriction. This result gives new opportunities in social choice, especially when there is an emphasis on compromise in the decision-making process.

Keywords: borda count, compromise, measure of divergence, minimization

Procedia PDF Downloads 135
11140 Cognitive Behaviour Drama: A Research-Based Intervention Model to Improve Social Thinking in High-Functioning Children with Autism

Authors: Haris Karnezi, Kevin Tierney

Abstract:

Cognitive Behaviour Drama is a research-based intervention model that brought together the science of psychology with the art form of drama to create an unobtrusive and exciting approach that would provide children on the higher end of the autism spectrum the motivation to explore the rules of social interaction and develop competencies associated with communicative success. The method involves engaging the participants in exciting fictional scenarios and encouraging them to seek various solutions on a number of problems that will lead them to an understanding of causal relationships and how a different course of action may lead to a different outcome. The sessions are structured to offer opportunities to the participants to practice target behaviours and understand the functions they serve. The study involved six separate interventions and employed both single case and group designs. Overall 8 children aged between 6 to 13 years, diagnosed with ASD participated in the study. Outcomes were measured using theory of mind tests, executive functioning tests, behavioural observations, pre and post intervention standardised social competence questionnaires for parents and teachers. Collectively, the results indicated positive changes in the self esteem and behaviour of all eight participants. In particular, improvements in the ability to solve theory of mind tasks were noted in the younger group; and qualitative improvements in social communication, in terms of verbal (content) and non verbal expression (body posture, vocal expression, fluency, eye contact, reduction of ritualistic mannerisms) were noted in the older group. The need for reliable impact measures to assess the effectiveness of the model in generating global changes in the participants’ behaviour outside the therapeutic context was identified.

Keywords: autism, drama, intervention, social skills

Procedia PDF Downloads 165
11139 Wetting-Drying Cycles Effect on Piles Embedded in a Very High Expansive Soil

Authors: Bushra Suhail, Laith Kadim

Abstract:

The behavior of model piles embedded in a very high expansive soil was investigated, a specially manufactured saturation-drying tank was used to apply three cycles of wetting and drying to the expansive soil surrounding the model straight shaft and under reamed piles, the relative movement of the piles with respect to the soil surface was recorded with time, also the exerted uplift pressure of the piles due to soil swelling was recorded. The behavior of unloaded straight shaft and under reamed piles was investigated. Two design charts were presented for straight shaft and under reamed piles one for the required pile depth for zero upward movement due to soil swelling, the other for the required pile depth to exert zero uplift pressure when the soil swells. Under reamed piles showed a decrease in upward movement of 20% to 40%, and an uplift pressure decrease of 10% to 30%.

Keywords: expansive soil, piles, under reamed, structural and geotechnical engineering

Procedia PDF Downloads 321
11138 Finite Element Simulation of Four Point Bending of Laminated Veneer Lumber (LVL) Arch

Authors: Eliska Smidova, Petr Kabele

Abstract:

This paper describes non-linear finite element simulation of laminated veneer lumber (LVL) under tensile and shear loads that induce cracking along fibers. For this purpose, we use 2D homogeneous orthotropic constitutive model of tensile and shear fracture in timber that has been recently developed and implemented into ATENA® finite element software by the authors. The model captures (i) material orthotropy for small deformations in both linear and non-linear range, (ii) elastic behavior until anisotropic failure criterion is fulfilled, (iii) inelastic behavior after failure criterion is satisfied, (iv) different post-failure response for cracks along and across the grain, (v) unloading/reloading behavior. The post-cracking response is treated by fixed smeared crack model where Reinhardt-Hordijk function is used. The model requires in total 14 input parameters that can be obtained from standard tests, off-axis test results and iterative numerical simulation of compact tension (CT) or compact tension-shear (CTS) test. New engineered timber composites, such as laminated veneer lumber (LVL), offer improved structural parameters compared to sawn timber. LVL is manufactured by laminating 3 mm thick wood veneers aligned in one direction using water-resistant adhesives (e.g. polyurethane). Thus, 3 main grain directions, namely longitudinal (L), tangential (T), and radial (R), are observed within the layered LVL product. The core of this work consists in 3 numerical simulations of experiments where Radiata Pine LVL and Yellow Poplar LVL were involved. The first analysis deals with calibration and validation of the proposed model through off-axis tensile test (at a load-grain angle of 0°, 10°, 45°, and 90°) and CTS test (at a load-grain angle of 30°, 60°, and 90°), both of which were conducted for Radiata Pine LVL. The second finite element simulation reproduces load-CMOD curve of compact tension (CT) test of Yellow Poplar with the aim of obtaining cohesive law parameters to be used as an input in the third finite element analysis. That is four point bending test of small-size arch of 780 mm span that is made of Yellow Poplar LVL. The arch is designed with a through crack between two middle layers in the crown. Curved laminated beams are exposed to high radial tensile stress compared to timber strength in radial tension in the crown area. Let us note that in this case the latter parameter stands for tensile strength in perpendicular direction with respect to the grain. Standard tests deliver most of the relevant input data whereas traction-separation law for crack along the grain can be obtained partly by inverse analysis of compact tension (CT) test or compact tension-shear test (CTS). The initial crack was modeled as a narrow gap separating two layers in the middle the arch crown. Calculated load-deflection curve is in good agreement with the experimental ones. Furthermore, crack pattern given by numerical simulation coincides with the most important observed crack paths.

Keywords: compact tension (CT) test, compact tension shear (CTS) test, fixed smeared crack model, four point bending test, laminated arch, laminated veneer lumber LVL, off-axis test, orthotropic elasticity, orthotropic fracture criterion, Radiata Pine LVL, traction-separation law, yellow poplar LVL, 2D constitutive model

Procedia PDF Downloads 290
11137 Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification

Authors: Oumaima Khlifati, Khadija Baba

Abstract:

Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score.

Keywords: distress pavement, hyperparameters, automatic classification, deep learning

Procedia PDF Downloads 94
11136 Predicting Aggregation Propensity from Low-Temperature Conformational Fluctuations

Authors: Hamza Javar Magnier, Robin Curtis

Abstract:

There have been rapid advances in the upstream processing of protein therapeutics, which has shifted the bottleneck to downstream purification and formulation. Finding liquid formulations with shelf lives of up to two years is increasingly difficult for some of the newer therapeutics, which have been engineered for activity, but their formulations are often viscous, can phase separate, and have a high propensity for irreversible aggregation1. We explore means to develop improved predictive ability from a better understanding of how protein-protein interactions on formulation conditions (pH, ionic strength, buffer type, presence of excipients) and how these impact upon the initial steps in protein self-association and aggregation. In this work, we study the initial steps in the aggregation pathways using a minimal protein model based on square-well potentials and discontinuous molecular dynamics. The effect of model parameters, including range of interaction, stiffness, chain length, and chain sequence, implies that protein models fold according to various pathways. By reducing the range of interactions, the folding- and collapse- transition come together, and follow a single-step folding pathway from the denatured to the native state2. After parameterizing the model interaction-parameters, we developed an understanding of low-temperature conformational properties and fluctuations, and the correlation to the folding transition of proteins in isolation. The model fluctuations increase with temperature. We observe a low-temperature point, below which large fluctuations are frozen out. This implies that fluctuations at low-temperature can be correlated to the folding transition at the melting temperature. Because proteins “breath” at low temperatures, defining a native-state as a single structure with conserved contacts and a fixed three-dimensional structure is misleading. Rather, we introduce a new definition of a native-state ensemble based on our understanding of the core conservation, which takes into account the native fluctuations at low temperatures. This approach permits the study of a large range of length and time scales needed to link the molecular interactions to the macroscopically observed behaviour. In addition, these models studied are parameterized by fitting to experimentally observed protein-protein interactions characterized in terms of osmotic second virial coefficients.

Keywords: protein folding, native-ensemble, conformational fluctuation, aggregation

Procedia PDF Downloads 363
11135 Determination of Gold in Microelectronics Waste Pieces

Authors: S. I. Usenko, V. N. Golubeva, I. A. Konopkina, I. V. Astakhova, O. V. Vakhnina, A. A. Korableva, A. A. Kalinina, K. B. Zhogova

Abstract:

Gold can be determined in natural objects and manufactured articles of different origin. The up-to-date status of research and problems of high gold level determination in alloys and manufactured articles are described in detail in the literature. No less important is the task of this metal determination in minerals, process products and waste pieces. The latters, as objects of gold content chemical analysis, are most hard-to-study for two reasons: Because of high requirements to accuracy of analysis results and because of difference in chemical and phase composition. As a rule, such objects are characterized by compound, variable and very often unknown matrix composition that leads to unpredictable and uncontrolled effect on accuracy and other analytical characteristics of analysis technique. In this paper, the methods for the determination of gold are described, using flame atomic-absorption spectrophotometry and gravimetric analysis technique. The techniques are aimed at gold determination in a solution for gold etching (KJ+J2), in the technological mixture formed after cleaning stainless steel members of vacuum-deposit installation with concentrated nitric and hydrochloric acids as well as in gold-containing powder resulted from liquid wastes reprocessing. Optimal conditions for sample preparation and analysis of liquid and solid waste specimens of compound and variable matrix composition were chosen. The boundaries of relative resultant error were determined for the methods within the range of gold mass concentration from 0.1 to 30g/dm3 in the specimens of liquid wastes and mass fractions from 3 to 80% in the specimens of solid wastes.

Keywords: microelectronics waste pieces, gold, sample preparation, atomic-absorption spectrophotometry, gravimetric analysis technique

Procedia PDF Downloads 206
11134 Model Tests on Geogrid-Reinforced Sand-Filled Embankments with a Cover Layer under Cyclic Loading

Authors: Ma Yuan, Zhang Mengxi, Akbar Javadi, Chen Longqing

Abstract:

The structure of sand-filled embankment with cover layer is treated with tipping clay modified with lime on the outside of the packing, and the geotextile is placed between the stuffing and the clay. The packing is usually river sand, and the improved clay protects the sand core against rainwater erosion. The sand-filled embankment with cover layer has practical problems such as high filling embankment, construction restriction, and steep slope. The reinforcement can be applied to the sand-filled embankment with cover layer to solve the complicated problems such as irregular settlement caused by poor stability of the embankment. At present, the research on the sand-filled embankment with cover layer mainly focuses on the sand properties, construction technology, and slope stability, and there are few studies in the experimental field, the deformation characteristics and stability of reinforced sand-filled embankment need further study. In addition, experimental research is relatively rare when the cyclic load is considered in tests. A subgrade structure of geogrid-reinforced sand-filled embankment with cover layer was proposed. The mechanical characteristics, the deformation properties, reinforced behavior and the ultimate bearing capacity of the embankment structure under cyclic loading were studied. For this structure, the geogrids in the sand and the tipping soil are through the geotextile which is arranged in sections continuously so that the geogrids can cross horizontally. Then, the Unsaturated/saturated Soil Triaxial Test System of Geotechnical Consulting and Testing Systems (GCTS), USA was modified to form the loading device of this test, and strain collector was used to measuring deformation and earth pressure of the embankment. A series of cyclic loading model tests were conducted on the geogrid-reinforced sand-filled embankment with a cover layer under a different number of reinforcement layers, the length of reinforcement and thickness of the cover layer. The settlement of the embankment, the normal cumulative deformation of the slope and the earth pressure were studied under different conditions. Besides cyclic loading model tests, model experiments of embankment subjected cyclic-static loading was carried out to analyze ultimate bearing capacity with different loading. The experiment results showed that the vertical cumulative settlement under long-term cyclic loading increases with the decrease of the number of reinforcement layers, length of the reinforcement arrangement and thickness of the tipping soil. Meanwhile, these three factors also have an influence on the decrease of the normal deformation of the embankment slope. The earth pressure around the loading point is significantly affected by putting geogrid in a model embankment. After cyclic loading, the decline of ultimate bearing capacity of the reinforced embankment can be effectively reduced, which is contrary to the unreinforced embankment.

Keywords: cyclic load; geogrid; reinforcement behavior; cumulative deformation; earth pressure

Procedia PDF Downloads 122
11133 Software Engineering Inspired Cost Estimation for Process Modelling

Authors: Felix Baumann, Aleksandar Milutinovic, Dieter Roller

Abstract:

Up to this point business process management projects in general and business process modelling projects in particular could not rely on a practical and scientifically validated method to estimate cost and effort. Especially the model development phase is not covered by a cost estimation method or model. Further phases of business process modelling starting with implementation are covered by initial solutions which are discussed in the literature. This article proposes a method of filling this gap by deriving a cost estimation method from available methods in similar domains namely software development or software engineering. Software development is regarded as closely similar to process modelling as we show. After the proposition of this method different ideas for further analysis and validation of the method are proposed. We derive this method from COCOMO II and Function Point which are established methods of effort estimation in the domain of software development. For this we lay out similarities of the software development rocess and the process of process modelling which is a phase of the Business Process Management life-cycle.

Keywords: COCOMO II, busines process modeling, cost estimation method, BPM COCOMO

Procedia PDF Downloads 441
11132 The Impact of Climate Change on Typical Material Degradation Criteria over Timurid Historical Heritage

Authors: Hamed Hedayatnia, Nathan Van Den Bossche

Abstract:

Understanding the ways in which climate change accelerates or slows down the process of material deterioration is the first step towards assessing adaptive approaches for the conservation of historical heritage. Analysis of the climate change effects on the degradation risk assessment parameters like freeze-thaw cycles and wind erosion is also a key parameter when considering mitigating actions. Due to the vulnerability of cultural heritage to climate change, the impact of this phenomenon on material degradation criteria with the focus on brick masonry walls in Timurid heritage, located in Iran, was studied. The Timurids were the final great dynasty to emerge from the Central Asian steppe. Through their patronage, the eastern Islamic world in northwestern of Iran, especially in Mashhad and Herat, became a prominent cultural center. Goharshad Mosque is a mosque in Mashhad of the Razavi Khorasan Province, Iran. It was built by order of Empress Goharshad, the wife of Shah Rukh of the Timurid dynasty in 1418 CE. Choosing an appropriate regional climate model was the first step. The outputs of two different climate model: the 'ALARO-0' and 'REMO,' were analyzed to find out which model is more adopted to the area. For validating the quality of the models, a comparison between model data and observations was done in 4 different climate zones in Iran for a period of 30 years. The impacts of the projected climate change were evaluated until 2100. To determine the material specification of Timurid bricks, standard brick samples from a Timurid mosque were studied. Determination of water absorption coefficient, defining the diffusion properties and determination of real density, and total porosity tests were performed to characterize the specifications of brick masonry walls, which is needed for running HAM-simulations. Results from the analysis showed that the threatening factors in each climate zone are almost different, but the most effective factor around Iran is the extreme temperature increase and erosion. In the north-western region of Iran, one of the key factors is wind erosion. In the north, rainfall erosion and mold growth risk are the key factors. In the north-eastern part, in which our case study is located, the important parameter is wind erosion.

Keywords: brick, climate change, degradation criteria, heritage, Timurid period

Procedia PDF Downloads 119
11131 Implementing Delivery Drones in Logistics Business Process: Case of Pharmaceutical Industry

Authors: Nikola Vlahovic, Blazenka Knezevic, Petra Batalic

Abstract:

In this paper, we will present a research about feasibility of implementing unmanned aerial vehicles, also known as 'drones', in logistics. Research is based on available information about current incentives and experiments in application of delivery drones in commercial use. Overview of current pilot projects and literature, as well as an overview of detected challenges, will be compiled and presented. Based on these findings, we will present a conceptual model of business process that implements delivery drones in business to business logistic operations. Business scenario is based on a pharmaceutical supply chain. Simulation modeling will be used to create models for running experiments and collecting performance data. Comparative study of the presented conceptual model will be given. The work will outline the main advantages and disadvantages of implementing unmanned aerial vehicles in delivery services as a supplementary distribution channel along the supply chain.

Keywords: business process, delivery drones, logistics, simulation modelling, unmanned aerial vehicles

Procedia PDF Downloads 394
11130 Leisure Time Physical Activity during Pregnancy and the Associated Factors Based on Health Belief Model: A Cross Sectional Study

Authors: Xin Chen, Xiao Yang, Rongrong Han, Lu Chen, Lingling Gao

Abstract:

Background: Leisure time physical activity (LTPA) benefits both pregnant women and their fetuses. The guidelines recommended that pregnant women should do at least 150 minutes of moderate-intensity aerobic physical activity throughout the week. The aim of this study was to investigate the rate of LTPA participation among Chinese pregnant women and to identify its predictors based on the health belief model. Methods: A cross-sectional study was conducted from June 2019 to September 2019 in Changchun, China. A total of 225 pregnant women aged 18 years or older with no severe physical or mental disease were recruited in the obstetric clinic. Self-administered questionnaires were used to collect data. LTPA was assessed by a pregnant physical activity questionnaire (PPAQ). A revised pregnancy physical activity health belief scale and social-demographic and perinatal characteristics factors were collected and used to predict LTPA participation. Data were analyzed using descriptive statistics and multivariate logistic regression. Results: The participants had a high level of perceived susceptibility, perceived severity, perceived benefits, and action clues, with mean item scores above 3.5. The predictors of LTPA in Chinese pregnant women were pre-pregnancy exercise habits [OR 3.236 (95% CI:1.632, 6.416)], perceived susceptibility score [OR 2.083 (95% CI:1.002, 4.331)], and perceived barriers score [OR 3.113 (95%CI:1.462, 6.626)]. Conclusions: The results of this study will lead to better identification of pregnant women who may not participate in LTPA. Healthcare professionals should be cognizant of issues that may affect LTPA participation among pregnant women, including pre-pregnancy exercise habits, perceived susceptibility, and perceived barriers.

Keywords: pregnancy, health belief model., leisure time physical activity, factors

Procedia PDF Downloads 80
11129 Gis Based Flash Flood Runoff Simulation Model of Upper Teesta River Besin - Using Aster Dem and Meteorological Data

Authors: Abhisek Chakrabarty, Subhraprakash Mandal

Abstract:

Flash flood is one of the catastrophic natural hazards in the mountainous region of India. The recent flood in the Mandakini River in Kedarnath (14-17th June, 2013) is a classic example of flash floods that devastated Uttarakhand by killing thousands of people.The disaster was an integrated effect of high intensityrainfall, sudden breach of Chorabari Lake and very steep topography. Every year in Himalayan Region flash flood occur due to intense rainfall over a short period of time, cloud burst, glacial lake outburst and collapse of artificial check dam that cause high flow of river water. In Sikkim-Derjeeling Himalaya one of the probable flash flood occurrence zone is Teesta Watershed. The Teesta River is a right tributary of the Brahmaputra with draining mountain area of approximately 8600 Sq. km. It originates in the Pauhunri massif (7127 m). The total length of the mountain section of the river amounts to 182 km. The Teesta is characterized by a complex hydrological regime. The river is fed not only by precipitation, but also by melting glaciers and snow as well as groundwater. The present study describes an attempt to model surface runoff in upper Teesta basin, which is directly related to catastrophic flood events, by creating a system based on GIS technology. The main object was to construct a direct unit hydrograph for an excess rainfall by estimating the stream flow response at the outlet of a watershed. Specifically, the methodology was based on the creation of a spatial database in GIS environment and on data editing. Moreover, rainfall time-series data collected from Indian Meteorological Department and they were processed in order to calculate flow time and the runoff volume. Apart from the meteorological data, background data such as topography, drainage network, land cover and geological data were also collected. Clipping the watershed from the entire area and the streamline generation for Teesta watershed were done and cross-sectional profiles plotted across the river at various locations from Aster DEM data using the ERDAS IMAGINE 9.0 and Arc GIS 10.0 software. The analysis of different hydraulic model to detect flash flood probability ware done using HEC-RAS, Flow-2D, HEC-HMS Software, which were of great importance in order to achieve the final result. With an input rainfall intensity above 400 mm per day for three days the flood runoff simulation models shows outbursts of lakes and check dam individually or in combination with run-off causing severe damage to the downstream settlements. Model output shows that 313 Sq. km area were found to be most vulnerable to flash flood includes Melli, Jourthang, Chungthang, and Lachung and 655sq. km. as moderately vulnerable includes Rangpo,Yathang, Dambung,Bardang, Singtam, Teesta Bazarand Thangu Valley. The model was validated by inserting the rain fall data of a flood event took place in August 1968, and 78% of the actual area flooded reflected in the output of the model. Lastly preventive and curative measures were suggested to reduce the losses by probable flash flood event.

Keywords: flash flood, GIS, runoff, simulation model, Teesta river basin

Procedia PDF Downloads 318
11128 Real-Time Automated Detection of Violent Content in Animated Cartoons Using YOLOv9

Authors: Omaima Jbara, Mohame Amine Omrani, Mounir Zrigui

Abstract:

The detection of violent content in animated cartoons is anessential step toward safeguarding young audiences and promoting responsible media consumption. This study introduces an automated approach to identify violent scenes in cartoons using advanced object detection models. A custom dataset comprising 1,200 frames was curated from various animated sources, focusing on four key classes: Explosion, Blood, Fight, and Gunshot. Data augmentation techniques, including rotation, scaling, and color adjustments, expanded the dataset to 2,000 frames, enhancing diversity and model generalization. YOLO versions 8, 9, and 10 were trained and evaluated on this dataset. Among these, YOLOv9 achieved the highest performance with a mean Average Precision (mAP) of 94%, demonstrating superior accuracy and robustness. These findings highlight YOLOv9’s potential as a reliable tool for detecting violent content in animated media, contributing to the development of effective content moderation systems.

Keywords: cartoon violence detection, YOLO model, computer Vi sion, Real-time content analysis

Procedia PDF Downloads 9
11127 Geometric Imperfections in Lattice Structures: A Simulation Strategy to Predict Strength Variability

Authors: Xavier Lorang, Ahmadali Tahmasebimoradi, Chetra Mang, Sylvain Girard

Abstract:

The additive manufacturing processes (e.g. selective laser melting) allow us to produce lattice structures which have less weight, higher impact absorption capacity, and better thermal exchange property compared to the classical structures. Unfortunately, geometric imperfections (defects) in the lattice structures are by-products results of the manufacturing process. These imperfections decrease the lifetime and the strength of the lattice structures and alternate their mechanical responses. The objective of the paper is to present a simulation strategy which allows us to take into account the effect of the geometric imperfections on the mechanical response of the lattice structure. In the first part, an identification method of geometric imperfection parameters of the lattice structure based on point clouds is presented. These point clouds are based on tomography measurements. The point clouds are fed into the platform LATANA (LATtice ANAlysis) developed by IRT-SystemX to characterize the geometric imperfections. This is done by projecting the point clouds of each microbeam along the beam axis onto a 2D surface. Then, by fitting an ellipse to the 2D projections of the points, the geometric imperfections are characterized by introducing three parameters of an ellipse; semi-major/minor axes and angle of rotation. With regard to the calculated parameters of the microbeam geometric imperfections, a statistical analysis is carried out to determine a probability density law based on a statistical hypothesis. The microbeam samples are randomly drawn from the density law and are used to generate lattice structures. In the second part, a finite element model for the lattice structure with the simplified geometric imperfections (ellipse parameters) is presented. This numerical model is used to simulate the generated lattice structures. The propagation of the uncertainties of geometric imperfections is shown through the distribution of the computed mechanical responses of the lattice structures.

Keywords: additive manufacturing, finite element model, geometric imperfections, lattice structures, propagation of uncertainty

Procedia PDF Downloads 187
11126 Quantum Graph Approach for Energy and Information Transfer through Networks of Cables

Authors: Mubarack Ahmed, Gabriele Gradoni, Stephen C. Creagh, Gregor Tanner

Abstract:

High-frequency cables commonly connect modern devices and sensors. Interestingly, the proportion of electric components is rising fast in an attempt to achieve lighter and greener devices. Modelling the propagation of signals through these cable networks in the presence of parameter uncertainty is a daunting task. In this work, we study the response of high-frequency cable networks using both Transmission Line and Quantum Graph (QG) theories. We have successfully compared the two theories in terms of reflection spectra using measurements on real, lossy cables. We have derived a generalisation of the vertex scattering matrix to include non-uniform networks – networks of cables with different characteristic impedances and propagation constants. The QG model implicitly takes into account the pseudo-chaotic behavior, at the vertices, of the propagating electric signal. We have successfully compared the asymptotic growth of eigenvalues of the Laplacian with the predictions of Weyl law. We investigate the nearest-neighbour level-spacing distribution of the resonances and compare our results with the predictions of Random Matrix Theory (RMT). To achieve this, we will compare our graphs with the generalisation of Wigner distribution for open systems. The problem of scattering from networks of cables can also provide an analogue model for wireless communication in highly reverberant environments. In this context, we provide a preliminary analysis of the statistics of communication capacity for communication across cable networks, whose eventual aim is to enable detailed laboratory testing of information transfer rates using software defined radio. We specialise this analysis in particular for the case of MIMO (Multiple-Input Multiple-Output) protocols. We have successfully validated our QG model with both TL model and laboratory measurements. The growth of Eigenvalues compares well with Weyl’s law and the level-spacing distribution agrees so well RMT predictions. The results we achieved in the MIMO application compares favourably with the prediction of a parallel on-going research (sponsored by NEMF21.)

Keywords: eigenvalues, multiple-input multiple-output, quantum graph, random matrix theory, transmission line

Procedia PDF Downloads 174
11125 Effects of Magnetic Field on 4H-SiC P-N Junctions

Authors: Khimmatali Nomozovich Juraev

Abstract:

Silicon carbide is one of the promising materials with potential applications in electronic devices using high power, high frequency and high electric field. Currently, silicon carbide is used to manufacture high power and frequency diodes, transistors, radiation detectors, light emitting diodes (LEDs) and other functional devices. In this work, the effects of magnetic field on p-n junctions based on 4H-SiC were experimentally studied. As a research material, monocrystalline silicon carbide wafers (Cree Research, Inc., USA) with relatively few growth defects grown by physical vapor transport (PVT) method were used: Nd dislocations 104 cm², Nm micropipes ~ 10–10² cm-², thickness ~ 300-600 μm, surface ~ 0.25 cm², resistivity ~ 3.6–20 Ωcm, the concentration of background impurities Nd − Na ~ (0.5–1.0)×1017cm-³. The initial parameters of the samples were determined on a Hall Effect Measurement System HMS-7000 (Ecopia) measuring device. Diffusing Ni nickel atoms were covered to the silicon surface of silicon carbide in a Universal Vacuum Post device at a vacuum of 10-⁵ -10-⁶ Torr by thermal sputtering and kept at a temperature of 600-650°C for 30 minutes. Then Ni atoms were diffused into the silicon carbide 4H-SiC sample at a temperature of 1150-1300°C by low temperature diffusion method in an air atmosphere, and the effects of the magnetic field on the I-V characteristics of the samples were studied. I-V characteristics of silicon carbide 4H-SiC p-n junction sample were measured in the magnetic field and in the absence of a magnetic field. The measurements were carried out under conditions where the magnitude of the magnetic field induction vector was 0.5 T. In the state, the direction of the current flowing through the diode is perpendicular to the direction of the magnetic field. From the obtained results, it can be seen that the magnetic field significantly affects the I-V characteristics of the p-n junction in the magnetic field when it is measured in the forward direction. Under the influence of the magnetic field, the change of the magnetic resistance of the sample of silicon carbide 4H-SiC p-n junction was determined. It was found that changing the magnetic field poles increases the direct forward current of the p-n junction or decreases it when the field direction changes. These unique electrical properties of the 4H-SiC p-n junction sample of silicon carbide, that is, the change of the sample's electrical properties in a magnetic field, makes it possible to fabricate magnetic field sensing devices based on silicon carbide to use at harsh environments in future. So far, the productions of silicon carbide magnetic detectors are not available in the industry.

Keywords: 4H-SiC, diffusion Ni, effects of magnetic field, I-V characteristics

Procedia PDF Downloads 96
11124 Host-Assisted Delivery of a Model Drug to Genomic DNA: Key Information From Ultrafast Spectroscopy and in Silico Study

Authors: Ria Ghosh, Soumendra Singh, Dipanjan Mukherjee, Susmita Mondal, Monojit Das, Uttam Pal, Aniruddha Adhikari, Aman Bhushan, Surajit Bose, Siddharth Sankar Bhattacharyya, Debasish Pal, Tanusri Saha-Dasgupta, Maitree Bhattacharyya, Debasis Bhattacharyya, Asim Kumar Mallick, Ranjan Das, Samir Kumar Pal

Abstract:

Drug delivery to a target without adverse effects is one of the major criteria for clinical use. Herein, we have made an attempt to explore the delivery efficacy of SDS surfactant in a monomer and micellar stage during the delivery of the model drug, Toluidine Blue (TB) from the micellar cavity to DNA. Molecular recognition of pre-micellar SDS encapsulated TB with DNA occurs at a rate constant of k1 ~652 s 1. However, no significant release of encapsulated TB at micellar concentration was observed within the experimental time frame. This originated from the higher binding affinity of TB towards the nano-cavity of SDS at micellar concentration which does not allow the delivery of TB from the nano-cavity of SDS micelles to DNA. Thus, molecular recognition controls the extent of DNA recognition by TB which in turn modulates the rate of delivery of TB from SDS in a concentration-dependent manner.

Keywords: DNA, drug delivery, micelle, pre-micelle, SDS, toluidine blue

Procedia PDF Downloads 113
11123 Motivating EFL Students to Speak English through Flipped Classroom Implantation

Authors: Mohamad Abdullah

Abstract:

Recent Advancements in technology have stimulated deep change in the language learning classroom. Flipped classroom as a new pedagogical method is at the center of this change. It turns the classroom into a student-centered environment and promotes interactive and autonomous learning. The present study is an attempt to examine the effectiveness of the Flipped Classroom Model (FCM) on students’ motivation level in English speaking performance. This study was carried out with 27 undergraduate female English majors who enrolled in the course of Advanced Communication Skills (ENGL 154) at Buraimi University College (BUC). Data was collected through Motivation in English Speaking Performance Questionnaire (MESPQ) which has been distributed among the participants of this study pre and post the implementation of FCM. SPSS was used for analyzing data. The Paired T-Test which was carried out on the pre-post of (MESPQ) showed a significant difference between them (p < .009) that revealed participants’ tendency to increase their motivation level in English speaking performance after the application of FCM. In addition, respondents of the current study reported positive views about the implementation of FCM.

Keywords: english speaking performance, motivation, flipped classroom model, learner-contentedness

Procedia PDF Downloads 132
11122 Delivery Service and Online-and-Offline Purchasing for Collaborative Recommendations on Retail Cross-Channels

Authors: S. H. Liao, J. M. Huang

Abstract:

The delivery service business model is the final link in logistics for both online-and-offline businesses. The online-and-offline business model focuses on the entire customer purchasing process online and offline, placing greater emphasis on the importance of data to optimize overall retail operations. For the retail industry, it is an important task of information and management to strengthen the collection and investigation of consumers' online and offline purchasing data to better understand customers and then recommend products. This study implements two-stage data mining analytics for clustering and association rules analysis to investigate Taiwanese consumers' (n=2,209) preferences for delivery service. This process clarifies online-and-offline purchasing behaviors and preferences to find knowledge profiles/patterns/rules for cross-channel collaborative recommendations. Finally, theoretical and practical implications for methodology and enterprise are presented.

Keywords: delivery service, online-and-offline purchasing, retail cross-channel, collaborative recommendations, data mining analytics

Procedia PDF Downloads 33
11121 Supply Chain Decarbonisation – A Cost-Based Decision Support Model in Slow Steaming Maritime Operations

Authors: Eugene Y. C. Wong, Henry Y. K. Lau, Mardjuki Raman

Abstract:

CO2 emissions from maritime transport operations represent a substantial part of the total greenhouse gas emission. Vessels are designed with better energy efficiency. Minimizing CO2 emission in maritime operations plays an important role in supply chain decarbonisation. This paper reviews the initiatives on slow steaming operations towards the reduction of carbon emission. It investigates the relationship and impact among slow steaming cost reduction, carbon emission reduction, and shipment delay. A scenario-based cost-driven decision support model is developed to facilitate the selection of the optimal slow steaming options, considering the cost on bunker fuel consumption, available speed, carbon emission, and shipment delay. The incorporation of the social cost of cargo is reviewed and suggested. Additional measures on the effect of vessels sizes, routing, and type of fuels towards decarbonisation are discussed.

Keywords: slow steaming, carbon emission, maritime logistics, sustainability, green supply chain

Procedia PDF Downloads 458
11120 Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting

Authors: Ying Su, Morgan C. Wang

Abstract:

Long-term time series forecasting is an important research area for automated machine learning (AutoML). Currently, forecasting based on either machine learning or statistical learning is usually built by experts, and it requires significant manual effort, from model construction, feature engineering, and hyper-parameter tuning to the construction of the time series model. Automation is not possible since there are too many human interventions. To overcome these limitations, this article proposed to use recurrent neural networks (RNN) through the memory state of RNN to perform long-term time series prediction. We have shown that this proposed approach is better than the traditional Autoregressive Integrated Moving Average (ARIMA). In addition, we also found it is better than other network systems, including Fully Connected Neural Networks (FNN), Convolutional Neural Networks (CNN), and Nonpooling Convolutional Neural Networks (NPCNN).

Keywords: automated machines learning, autoregressive integrated moving average, neural networks, time series analysis

Procedia PDF Downloads 107
11119 3D Geological Modeling and Engineering Geological Characterization of Shallow Subsurface Soil and Rock of Addis Ababa, Ethiopia

Authors: Biruk Wolde, Atalay Ayele, Yonatan Garkabo, Trufat Hailmariam, Zemenu Germewu

Abstract:

A comprehensive three-dimensional (3D) geological modeling and engineering geological characterization of shallow subsurface soils and rocks are essential for a wide range of geotechnical and seismological engineering applications, particularly in urban environments. The spatial distribution and geological variation of the shallow subsurface of Addis Ababa city have not been studied so far in terms of geological and geotechnical modeling. This study aims at the construction of a 3D geological model, as well as provides awareness into the engineering geological characteristics of shallow subsurface soil and rock of Addis Ababa city. The 3D geological model was constructed by using more than 1500 geotechnical boreholes, well-drilling data, and geological maps. A well-known geostatistical kriging 3D interpolation algorithm was applied to visualize the spatial distribution and geological variation of the shallow subsurface. Due to the complex nature of geological formations, vertical and lateral variation of the geological profiles horizons-solid command has been selected via the Groundwater Modelling System (GMS) graphical user interface software. For the engineering geological characterization of typical soils and rocks, both index and engineering laboratory tests have been used. The geotechnical properties of soil and rocks vary from place to place due to the uneven nature of subsurface formations observed in the study areas. The constructed model ascertains the thickness, extent, and 3D distribution of the important geological units of the city. This study is the first comprehensive research work on 3D geological modeling and subsurface characterization of soils and rocks in Addis Ababa city, and the outcomes will be important for further future research on subsurface conditions in the city. Furthermore, these findings provide a reference for developing a geo-database for the city.

Keywords: 3d geological modeling, addis ababa, engineering geology, geostatistics, horizons-solid

Procedia PDF Downloads 101
11118 Application of WebGIS-Based Water Environment Capacity Inquiry and Planning System in Water Resources Management

Authors: Tao Ding, Danjia Yan, Jinye Li, Chao Ren, Xinhua Hu

Abstract:

The paper based on the research background of the current situation of water shortage in China and intelligent management of water resources in the information era. And the paper adopts WebGIS technology, combining the mathematical model of water resources management to develop a WebGIS-based water environment capacity inquiry and polluted water emission planning. The research significance of the paper is that it can inquiry the water environment capacity of Jinhua City in real time and plan how to drain polluted water into the river, so as to realize the effective management of water resources. This system makes sewage planning more convenient and faster. For the planning of the discharge enterprise, the decision on the optimal location of the sewage outlet can be achieved through calculation of the Sewage discharge planning model in the river, without the need for site visits. The system can achieve effective management of water resources and has great application value.

Keywords: sewerage planning, water environment capacity, water resources management, WebGIS

Procedia PDF Downloads 184
11117 Assessment of Agricultural Damage under Different Simulated Flood Conditions

Authors: M. N. Kadir, M. M. H. Oliver, T. Naher

Abstract:

The study assesses the areal extent of riverine flood in the flood-prone area of Faridpur District of Bangladesh using hydrological model and Geographic Information System (GIS). In the context of preparing the inundation map, flood frequency analysis was carried out to assess flooding for different flood magnitudes. Flood inundation maps were prepared based on DEM, and discharge at the river using Delft-3D model. LANDSAT satellite images have been used to develop a land cover map in the study area. The land cover map was used for mapping of cropland area. By incorporating the inundation maps on the land cover map, agricultural damage was assessed. Present monetary values of crop damage were collected through field survey from actual flood of the study area. Two different inundation maps were produced from the model for the year 2000 and 2016. In the year 2000, the floods began in the month of July, whereas in the case of the year 2016 is started in August. Under both cases, most of the areas were found to have been flooded in the month of September followed by flood recession. In order to prepare the land cover maps, four categories of LCs were considered viz., cropland, water body, trees, and rivers. Among the 755791 acres area of Faridpur District, the croplands were categorized to be 334,589 acres, followed by water bodies (279900 acres), trees (101930 acres) and rivers 39372 (acres). Damage assessment data revealed that 40% of the total cropland area had been affected by the flood in the year 2000, whereas only 19% area was affected by the 2016 flood. The study concluded that September is the critical month for cropland protection since the highest flood is expected at this time of the year in Faridpur. The northwestern and the southwestern part of the district was categorized as most vulnerable to flooding.

Keywords: agricultural damage, Delft-3d, flood management, land cover map

Procedia PDF Downloads 104