Search results for: online and adaptive learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9909

Search results for: online and adaptive learning

2199 Body of Dialectics: Exploring a Dynamic-Adaptational Model of Physical Self-Integrity and the Pursuit of Happiness in a Hostile World

Authors: Noam Markovitz

Abstract:

People with physical disabilities constitute a very large and simultaneously a diverse group of general population, as the term physical disabilities is extensive and covers a wide range of disabilities. Therefore, individuals with physical disabilities are often faced with a new, threatening and stressful reality leading possibly to a multi-crisis in their lives due to the great changes they experience in somatic, socio-economic, occupational and psychological level. The current study seeks to advance understanding of the complex adaptation to physical disabilities by expanding the dynamic-adaptational model of the pursuit of happiness in a hostile world with a new conception of physical self-integrity. Physical self-integrity incorporates an objective dimension, namely physical self-functioning (PSF), and a subjective dimension, namely physical self-concept (PSC). Both of these dimensions constitute an experience of wholeness in the individual’s identification with her or his physical body. The model guiding this work is dialectical in nature and depicts two systems in the individual’s sense of happiness: subjective well-being (SWB) and meaning in life (MIL). Both systems serve as self-adaptive agents that moderate the complementary system of the hostile-world scenario (HWS), which integrates one’s perceived threats to one’s integrity. Thus, in situations of increased HWS, the moderation may take a form of joint activity in which SWB and MIL are amplified or a form of compensation in which one system produces a stronger effect while the other system produces a weaker effect. The current study investigated PSC in relations to SWB and MIL through pleasantness and meanings that are physically or metaphorically grounded in one’s body. In parallel, PSC also relates to HWS by activating representations of inappropriateness, deformation and vulnerability. In view of possibly dialectical positions of opposing and complementary forces within the current model, the current field study that aims to explore PSC as appearing in an independent, cross-sectional, design addressing the model’s variables in a focal group of people with physical disabilities. This study delineated the participation of the PSC in the adaptational functions of SWB and MIL vis-à-vis HWS-related life adversities. The findings showed that PSC could fully complement the main variables of the pursuit of happiness in a hostile world model. The assumed dialectics in the form of a stronger relationship between SWB and MIL in the face of physical disabilities was not supported. However, it was found that when HWS increased, PSC and MIL were strongly linked, whereas PSC and SWB were weakly linked. This highlights the compensatory role of MIL. From a conceptual viewpoint, the current investigation may clarify the role of PSC as an adaptational agent of the individual’s positive health in complementary senses of bodily wholeness. Methodologically, the advantage of the current investigation is the application of an integrative, model-based approach within a specially focused design with a particular relevance to PSC. Moreover, from an applicative viewpoint, the current investigation may suggest how an innovative model may be translated to therapeutic interventions used by clinicians, counselors and practitioners in improving wellness and psychological well-being, particularly among people with physical disabilities.

Keywords: older adults, physical disabilities, physical self-concept, pursuit of happiness in a hostile-world

Procedia PDF Downloads 149
2198 The Risk and Prevention of Peer-To-Peer Network Lending in China

Authors: Zhizhong Yuan, Lili Wang, Chenya Zheng, Wuqi Yang

Abstract:

How to encourage and support peer-to-peer (P2P) network lending, and effectively monitor the risk of P2P network lending, has become the focus of the Chinese government departments, industrialists, experts and scholars in recent years. The reason is that this convenient online micro-credit service brings a series of credit risks and other issues. Avoiding the risks brought by the P2P network lending model, it can better play a benign role and help China's small and medium-sized private enterprises with vigorous development to solve the capital needs; otherwise, it will bring confusion to the normal financial order. As a form of financial services, P2P network lending has injected new blood into China's non-government finance in the past ten years, and has found a way out for idle funds and made up for the shortage of traditional financial services in China. However, it lacks feasible measures in credit evaluation and government supervision. This paper collects a large amount of data about P2P network lending of China. The data collection comes from the official media of the Chinese government, the public achievements of existing researchers and the analysis and collation of correlation data by the authors. The research content of this paper includes literature review; the current situation of China's P2P network lending development; the risk analysis of P2P network lending in China; the risk prevention strategy of P2P network lending in China. The focus of this paper is to try to find a specific program to strengthen supervision and avoid risks from the perspective of government regulators, operators of P2P network lending platform, investors and users of funds. These main measures include: China needs to develop self-discipline organization of P2P network lending industry and formulate self-discipline norms as soon as possible; establish a regular information disclosure system of P2P network lending platform; establish censorship of credit rating of borrowers; rectify the P2P network lending platform in compliance through the implementation of bank deposition. The results and solutions will benefit all the P2P network lending platforms, creditors, debtors, bankers, independent auditors and government agencies of China and other countries.

Keywords: peer-to-peer(P2P), regulation, risk prevention, supervision

Procedia PDF Downloads 166
2197 Usability Assessment of a Bluetooth-Enabled Resistance Exercise Band among Young Adults

Authors: Lillian M. Seo, Curtis L. Petersen, Ryan J. Halter, David Kotz, John A. Batsis

Abstract:

Background: Resistance-based exercises effectively enhance muscle strength, which is especially important in older populations as it reduces the risk of disability. Our group developed a Bluetooth-enabled handle for resistance exercise bands that wirelessly transmits relative force data through low-energy Bluetooth to a local smartphone or similar device. The system has the potential to measure home-based exercise interventions, allowing health professionals to monitor compliance. Its feasibility has already been demonstrated in both clinical and field-based settings, but it remained unclear whether the system’s usability persisted upon repeated use. The current study sought to assess the usability of this system and its users’ satisfaction with repeated use by deploying the device among younger adults to gather formative information that can ultimately improve the device’s design for older adults. Methods: A usability study was conducted in which 32 participants used the above system. Participants executed 10 repetitions of four commonly performed exercises: bicep flexion, shoulder abduction, elbow extension, and triceps extension. Each completed three exercise sessions, separated by at least 24 hours to minimize muscle fatigue. At its conclusion, subjects completed an adapted version of the usefulness, satisfaction, and ease (USE) questionnaire – assessing the system across four domains: usability, satisfaction, ease of use, and ease of learning. The 20-item questionnaire examined how strongly a participant agrees with positive statements about the device on a seven-point Likert scale, with one representing ‘strongly disagree’ and seven representing ‘strongly agree.’ Participants’ data were aggregated to calculate mean response values for each question and domain, effectively assessing the device’s performance across different facets of the user experience. Summary force data were visualized using a custom web application. Finally, an optional prompt at the end of the questionnaire allowed for written comments and feedback from participants to elicit qualitative indicators of usability. Results: Of the n=32 participants, 13 (41%) were female; their mean age was 32.4 ± 11.8 years, and no participants had a physical impairment. No usability questions received a mean score < 5 of seven. The four domains’ mean scores were: usefulness 5.66 ± 0.35; satisfaction 6.23 ± 0.06; ease of use 6.25 ± 0.43; and ease of learning 6.50 ± 0.19. Representative quotes of the open-ended feedback include: ‘A non-rigid strap-style handle might be useful for some exercises,’ and, ‘Would need different bands for each exercise as they use different muscle groups with different strength levels.’ General impressions were favorable, supporting the expectation that the device would be a useful tool in exercise interventions. Conclusions: A simple usability assessment of a Bluetooth-enabled resistance exercise band supports a consistent and positive user experience among young adults. This study provides adequate formative data, assuring the next steps can be taken to continue testing and development for the target population of older adults.

Keywords: Bluetooth, exercise, mobile health, mHealth, usability

Procedia PDF Downloads 116
2196 Physical Activity, Mental Health, and Body Composition in College Students after COVID-19 Lockdown

Authors: Manuela Caciula, Luis Torres, Simion Tomoiaga

Abstract:

Introduction: The SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), more commonly referred to as COVID-19, has wreaked havoc on all facets of higher education since its inception in late 2019. College students, in particular, significantly reduced their daily energy expenditure and increased the time spent sitting to listen to online classes and complete their studies from home. This change, in combination with the associated COVID-19 lockdown, presumably decreased physical activity levels, increased mental health symptoms, and led to the promotion of unhealthy eating habits. Objectives: The main objective of this study was to determine the current self-reported physical activity levels, mental health symptoms, and body composition of college students after the COVID-19 lockdown in order to develop future interventions for the overall improvement of health. Methods: All participants completed pre-existing, well-validated surveys for both physical activity (International Physical Activity Questionnaire - long form) and mental health (Hospital Anxiety and Depression Scale). Body composition was assessed in person with the use of an Inbody 570 device. Results: Of the 90 American college students (M age = 22.52 ± 4.54, 50 females) who participated in this study, depressive and anxious symptom scores consistent with 58% (N = 52) heightened symptomatology, 17% (N = 15) moderate borderline symptomatology, and 25% (N = 23) asymptomatology were reported. In regard to physical activity, 79% (N = 71) of the students were highly physically active, 18% (N = 16) were moderately active, and 3% (N = 3) reported low levels of physical activity. Additionally, 46% (N = 41) of the students maintained an unhealthy body fat percentage based on World Health Organization recommendations. Strong, significant relationships were found between anxiety and depression symptomatology and body fat percentage (P = .003) and skeletal muscle mass (P = .015), with said symptomatology increasing with added body fat and decreasing with added skeletal muscle mass. Conclusions: Future health interventions for American college students should be focused on strategies to reduce stress, anxiety, and depressive characteristics, as well as nutritional information on healthy eating, regardless of self-reported physical activity levels.

Keywords: physical activity, mental health, body composition, COVID-19

Procedia PDF Downloads 97
2195 Detection of Cardiac Arrhythmia Using Principal Component Analysis and Xgboost Model

Authors: Sujay Kotwale, Ramasubba Reddy M.

Abstract:

Electrocardiogram (ECG) is a non-invasive technique used to study and analyze various heart diseases. Cardiac arrhythmia is a serious heart disease which leads to death of the patients, when left untreated. An early-time detection of cardiac arrhythmia would help the doctors to do proper treatment of the heart. In the past, various algorithms and machine learning (ML) models were used to early-time detection of cardiac arrhythmia, but few of them have achieved better results. In order to improve the performance, this paper implements principal component analysis (PCA) along with XGBoost model. The PCA was implemented to the raw ECG signals which suppress redundancy information and extracted significant features. The obtained significant ECG features were fed into XGBoost model and the performance of the model was evaluated. In order to valid the proposed technique, raw ECG signals obtained from standard MIT-BIH database were employed for the analysis. The result shows that the performance of proposed method is superior to the several state-of-the-arts techniques.

Keywords: cardiac arrhythmia, electrocardiogram, principal component analysis, XGBoost

Procedia PDF Downloads 117
2194 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing Electrocardiogram Based on ResNet and Bi-Long Short-Term Memory

Authors: Yang Zhang, Jian He

Abstract:

Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper introduces sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for coronary heart disease prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.

Keywords: Bi-LSTM, CHD, ECG, ResNet, sliding window

Procedia PDF Downloads 88
2193 Perceived Barriers and Benefits of Technology-Based Progress Monitoring for Non-Academic Individual Education Program Goals

Authors: A. Drelick, T. Sondergeld, M. Decarlo-Tecce, K. McGinley

Abstract:

In 1975, a free, appropriate public education (FAPE) was granted for all students in the United States regardless of their disabilities. As a result, the special education landscape has been reshaped through new policies and legislation. Progress monitoring, a specific component of an Individual Education Program (IEP) calls, for the use of data collection to determine the appropriateness of services provided to students with disabilities. The recent US Supreme Court ruling in Endrew F. v. Douglas County warrants giving increased attention to student progress, specifically pertaining to improving functional, or non-academic, skills that are addressed outside the general education curriculum. While using technology to enhance data collection has become a common practice for measuring academic growth, its application for non-academic IEP goals is uncertain. A mixed-methods study examined current practices and rationales for implementing technology-based progress monitoring focused on non-academic IEP goals. Fifty-seven participants responded to an online survey regarding their progress monitoring programs for non-academic goals. After isolated analysis and interpretation of quantitative and qualitative results, data were synthesized to produce meta-inferences that drew broader conclusions on the topic. For the purpose of this paper, specific focus will be placed on the perceived barriers and benefits of implementing technology-based progress monitoring protocols for non-academic IEP goals. The findings of this study highlight facts impacting the use of technology-based progress monitoring. Perceived barriers to implementation include: (1) lack of training, (2) access to technology, (3) outdated or inoperable technology, (4) reluctance to change, (5) cost, (6) lack of individualization within technology-based programs, and (7) legal issues in special education; while perceived benefits include: (1) overall ease of use, (2) accessibility, (3) organization, (4) potential for improved presentation of data, (5) streamlining the progress-monitoring process, and (6) legal issues in special education. Based on these conclusions, recommendations are made to IEP teams, school districts, and software developers to improve the progress-monitoring process for functional skills.

Keywords: special education, progress monitoring, functional skills, technology

Procedia PDF Downloads 246
2192 A Nutrient Formulation Affects Brain Myelination in Infants: An Investigative Randomized Controlled Trial

Authors: N. Schneider, M. Bruchhage, M. Hartweg, G. Mutungi, J. O Regan, S. Deoni

Abstract:

Observational neuroimaging studies suggest differences between breast-fed and formula-fed infants in developmental myelination, a key brain process for learning and cognitive development. However, the possible effects of a nutrient formulation on myelin development in healthy term infants in an intervention study have not been investigated. Objective was, therefore, to investigate the efficacy of a nutrient formulation with higher levels of myelin-relevant nutrients as compared to a control formulation with lower levels of the same nutrients on brain myelination and cognitive development in the first 6 months of life. The study is an ongoing randomized, controlled, double-blind, two-center, parallel-group clinical trial with a nonrandomized, non-blinded arm of exclusively breastfed infants. The current findings result from a staged statistical analysis at 6 months; the recruitment and intervention period has been completed for all participants. Follow-up visits at 12, 18 and 24 months are still ongoing. N= 81 enrolled full term, neurotypical infants of both sexes were randomized into either the investigational (N= 42) or the control group (N= 39), and N= 108 children in the breast-fed arm served as a natural reference group. The effect of a blend of docosahexaenoic acid, arachidonic acid, iron, vitamin B12, folic acid as well as sphingomyelin from a uniquely proceed whey protein concentrate enriched in alpha-lactalbumin and phospholipids in an infant nutrition product matrix was investigated. The main outcomes for the staged statistical analyses at 6 months included brain myelination measures derived from MRI. Additional outcomes were brain volume, cognitive development and safety. The full analyses set at 6 months comprised N= 66 infants. Higher levels of myelin-relevant nutrients compared to lower levels resulted in significant differences in myelin structure, volume, and rate of myelination as early as 3 and 6 months of life. The cross-sectional change of means between groups for whole-brain myelin volume was 8.4% for investigational versus control formulation (3.5% versus the breastfeeding reference) group at 3 months and increased to 36.4% for investigational versus control formulation (14.1% versus breastfeeding reference) at 6 months. No statistically significant differences were detected for early cognition scores. Safety findings were largely similar across groups. This is the first pediatric nutritional neuroimaging study demonstrating the efficacy of a myelin nutrient blend on developmental myelination in well-nourished term infants. Myelination is a critical process in learning and development. The effects were demonstrated across the brain, particularly in temporal and parietal regions, known to be functionally involved in sensory, motor and language skills. These first results add to the field of nutritional neuroscience by demonstrating early life nutrition benefits for brain architecture which may be foundational for later cognitive and behavioral outcomes. ClinicalTrials.gov Identifier: NCT03111927 (Infant Nutrition and Brain Development - Full-Text View - ClinicalTrials.gov).

Keywords: brain development, infant nutrition, MRI, myelination

Procedia PDF Downloads 193
2191 Cultural Background as Moderator of the Association Between Personal Bonding Social Capital and Well-Being: An Association Study in a Sample of Dutch and Turkish Older Adults in the Netherlands

Authors: Marianne Simons, Sinan Kurt, Marjolein Stefens, Kai Karos, Johan Lataster

Abstract:

As cultural diversity within older populations in European countries increases, the role of cultural background should be taken account of in aging studies. Bonding social capital (BSC), containing someone’s socio-emotional resources, is recognised as an important ingredient for wellbeing in old age and found to be associated with someone’s cultural background. The current study examined the association between BSC, loneliness and wellbeing in a sample including older Turkish migrants with a collectivistic cultural background and native Dutch older adults, both living in the Netherlands, characterised by an individualistic culture. A sample of 119 Turkish migrants (64.7% male; age 65-87, M(SD)=71.13(5.04) and 124 native Dutch adults (32.3% male, age 65-94, M(SD)= 71.9(5.32) filled out either an online or printed questionnaire measuring BSC, psychological, social and emotional well-being, loneliness and relevant demographic covariates. Regression analysis - including confounders age, gender, level of education, physical health and relationship - showed positive associations between BSC and respectively emotional, social and psychological well-being and a negative association with loneliness in both samples. Moderation analyses showed that these associations were significantly stronger for the Turkish older migrants than for their native peers. Measurement invariance analysis indicated partial metric invariance for the measurement of BSC and loneliness and non-invariance for wellbeing, calling for caution comparing means between samples. The results stress the importance of BSC for wellbeing of older migrants from collectivistic cultures living in individualistic countries. Previous research, shows a trend of older migrants displaying lower levels of BSC as well as associated variables, such as education, physical health, and financial income. This calls for more research of the interplay between demographic and psychosocial factors restraining mental wellbeing of older migrant populations. Measurement invariance analyses further emphasize the importance of taking cultural background into account in positive aging studies.

Keywords: positive aging, cultural background, wellbeing, social capital, loneliness

Procedia PDF Downloads 90
2190 Application Research of Stilbene Crystal for the Measurement of Accelerator Neutron Sources

Authors: Zhao Kuo, Chen Liang, Zhang Zhongbing, Ruan Jinlu. He Shiyi, Xu Mengxuan

Abstract:

Stilbene, C₁₄H₁₂, is well known as one of the most useful organic scintillators for pulse shape discrimination (PSD) technique for its good scintillation properties. An on-line acquisition system and an off-line acquisition system were developed with several CAMAC standard plug-ins, NIM plug-ins, neutron/γ discriminating plug-in named 2160A and a digital oscilloscope with high sampling rate respectively for which stilbene crystals and photomultiplier tube detectors (PMT) as detector for accelerator neutron sources measurement carried out in China Institute of Atomic Energy. Pulse amplitude spectrums and charge amplitude spectrums were real-time recorded after good neutron/γ discrimination whose best PSD figure-of-merits (FoMs) are 1.756 for D-D accelerator neutron source and 1.393 for D-T accelerator neutron source. The probability of neutron events in total events was 80%, and neutron detection efficiency was 5.21% for D-D accelerator neutron sources, which were 50% and 1.44% for D-T accelerator neutron sources after subtracting the background of scattering observed by the on-line acquisition system. Pulse waveform signals were acquired by the off-line acquisition system randomly while the on-line acquisition system working. The PSD FoMs obtained by the off-line acquisition system were 2.158 for D-D accelerator neutron sources and 1.802 for D-T accelerator neutron sources after waveform digitization off-line processing named charge integration method for just 1000 pulses. In addition, the probabilities of neutron events in total events obtained by the off-line acquisition system matched very well with the probabilities of the on-line acquisition system. The pulse information recorded by the off-line acquisition system could be repetitively used to adjust the parameters or methods of PSD research and obtain neutron charge amplitude spectrums or pulse amplitude spectrums after digital analysis with a limited number of pulses. The off-line acquisition system showed equivalent or better measurement effects compared with the online system with a limited number of pulses which indicated a feasible method based on stilbene crystals detectors for the measurement of prompt neutrons neutron sources like prompt accelerator neutron sources emit a number of neutrons in a short time.

Keywords: stilbene crystal, accelerator neutron source, neutron / γ discrimination, figure-of-merits, CAMAC, waveform digitization

Procedia PDF Downloads 186
2189 A NoSQL Based Approach for Real-Time Managing of Robotics's Data

Authors: Gueidi Afef, Gharsellaoui Hamza, Ben Ahmed Samir

Abstract:

This paper deals with the secret of the continual progression data that new data management solutions have been emerged: The NoSQL databases. They crossed several areas like personalization, profile management, big data in real-time, content management, catalog, view of customers, mobile applications, internet of things, digital communication and fraud detection. Nowadays, these database management systems are increasing. These systems store data very well and with the trend of big data, a new challenge’s store demands new structures and methods for managing enterprise data. The new intelligent machine in the e-learning sector, thrives on more data, so smart machines can learn more and faster. The robotics are our use case to focus on our test. The implementation of NoSQL for Robotics wrestle all the data they acquire into usable form because with the ordinary type of robotics; we are facing very big limits to manage and find the exact information in real-time. Our original proposed approach was demonstrated by experimental studies and running example used as a use case.

Keywords: NoSQL databases, database management systems, robotics, big data

Procedia PDF Downloads 352
2188 Augmented Reality Applications for Active Learning in Geometry: Enhancing Mathematical Intelligence at Phra Dabos School

Authors: Nattamon Srithammee, Ratchanikorn Chonchaiya

Abstract:

This study explores the impact of Augmented Reality (AR) technology on mathematics education, focusing on Area and Volume concepts at Phra Dabos School in Thailand. We developed a mobile augmented reality application to present these mathematical concepts innovatively. Using a mixed-methods approach, we assessed the knowledge of 79 students before and after using the application. The results showed a significant improvement in students' understanding of Area and Volume, with average test scores increasing from 3.70 to 9.04 (p < 0.001, Cohen's d = 2.05). Students also reported increased engagement and satisfaction. Our findings suggest that augmented reality technology can be a valuable tool in mathematics education, particularly for enhancing the understanding of abstract concepts like Area and Volume. This study contributes to research on educational technology in STEM education and provides insights for educators and educational technology developers.

Keywords: augmented reality, mathematics education, area and volume, educational technology, STEM education

Procedia PDF Downloads 22
2187 Artificial Intelligence for Safety Related Aviation Incident and Accident Investigation Scenarios

Authors: Bernabeo R. Alberto

Abstract:

With the tremendous improvements in the processing power of computers, the possibilities of artificial intelligence will increasingly be used in aviation and make autonomous flights, preventive maintenance, ATM (Air Traffic Management) optimization, pilots, cabin crew, ground staff, and airport staff training possible in a cost-saving, less time-consuming and less polluting way. Through the use of artificial intelligence, we foresee an interviewing scenario where the interviewee will interact with the artificial intelligence tool to contextualize the character and the necessary information in a way that aligns reasonably with the character and the scenario. We are creating simulated scenarios connected with either an aviation incident or accident to enhance also the training of future accident/incident investigators integrating artificial intelligence and augmented reality tools. The project's goal is to improve the learning and teaching scenario through academic and professional expertise in aviation and in the artificial intelligence field. Thus, we intend to contribute to the needed high innovation capacity, skills, and training development and management of artificial intelligence, supported by appropriate regulations and attention to ethical problems.

Keywords: artificial intelligence, aviation accident, aviation incident, risk, safety

Procedia PDF Downloads 19
2186 Sensor Network Structural Integration for Shape Reconstruction of Morphing Trailing Edge

Authors: M. Ciminello, I. Dimino, S. Ameduri, A. Concilio

Abstract:

Improving aircraft's efficiency is one of the key elements of Aeronautics. Modern aircraft possess many advanced functions, such as good transportation capability, high Mach number, high flight altitude, and increasing rate of climb. However, no aircraft has a possibility to reach all of this optimized performance in a single airframe configuration. The aircraft aerodynamic efficiency varies considerably depending on the specific mission and on environmental conditions within which the aircraft must operate. Structures that morph their shape in response to their surroundings may at first seem like the stuff of science fiction, but take a look at nature and lots of examples of plants and animals that adapt to their environment would arise. In order to ensure both the controllable and the static robustness of such complex structural systems, a monitoring network is aimed at verifying the effectiveness of the given control commands together with the elastic response. In order to achieve this kind of information, the use of FBG sensors network is, in this project, proposed. The sensor network is able to measure morphing structures shape which may show large, global displacements due to non-standard architectures and materials adopted. Chord -wise variations may allow setting and chasing the best layout as a function of the particular and transforming reference state, always targeting best aerodynamic performance. The reason why an optical sensor solution has been selected is that while keeping a few of the contraindication of the classical systems (like cabling, continuous deployment, and so on), fibre optic sensors may lead to a dramatic reduction of the wires mass and weight thanks to an extreme multiplexing capability. Furthermore, the use of the ‘light’ as ‘information carrier’, permits dealing with nimbler, non-shielded wires, and avoids any kind of interference with the on-board instrumentation. The FBG-based transducers, herein presented, aim at monitoring the actual shape of adaptive trailing edge. Compared to conventional systems, these transducers allow more fail-safe measurements, by taking advantage of a supporting structure, hosting FBG, whose properties may be tailored depending on the architectural requirements and structural constraints, acting as strain modulator. The direct strain may, in fact, be difficult because of the large deformations occurring in morphing elements. A modulation transducer is then necessary to keep the measured strain inside the allowed range. In this application, chord-wise transducer device is a cantilevered beam sliding trough the spars and copying the camber line of the ATE ribs. FBG sensors array position are dimensioned and integrated along the path. A theoretical model describing the system behavior is implemented. To validate the design, experiments are then carried out with the purpose of estimating the functions between rib rotation and measured strain.

Keywords: fiber optic sensor, morphing structures, strain sensor, shape reconstruction

Procedia PDF Downloads 328
2185 Instant Fire Risk Assessment Using Artifical Neural Networks

Authors: Tolga Barisik, Ali Fuat Guneri, K. Dastan

Abstract:

Major industrial facilities have a high potential for fire risk. In particular, the indices used for the detection of hidden fire are used very effectively in order to prevent the fire from becoming dangerous in the initial stage. These indices provide the opportunity to prevent or intervene early by determining the stage of the fire, the potential for hazard, and the type of the combustion agent with the percentage values of the ambient air components. In this system, artificial neural network will be modeled with the input data determined using the Levenberg-Marquardt algorithm, which is a multi-layer sensor (CAA) (teacher-learning) type, before modeling the modeling methods in the literature. The actual values produced by the indices will be compared with the outputs produced by the network. Using the neural network and the curves to be created from the resulting values, the feasibility of performance determination will be investigated.

Keywords: artifical neural networks, fire, Graham Index, levenberg-marquardt algoritm, oxygen decrease percentage index, risk assessment, Trickett Index

Procedia PDF Downloads 135
2184 Youths Economic Empowerment through Vocational Agricultural Enterprises (Entrepreneurship) for Sustainable Agriculture in Nigeria: Constraints and Initiatives for Improvement

Authors: Thomas Ogilegwu Orohu

Abstract:

This paper presents agricultural education as a vocational study, an impetus for youths, economic empowerment. The survival of Nigeria’s agriculture rests squarely on the youth who are the farmers and leaders of tomorrow. Hitherto, the teaching and learning of agriculture has proceeded in such a manner that graduates of such programs have failed to make the successful launch into the world of agricultural enterprises (entrepreneurship). Major constraints that predisposed this anomalous situation were identified to include poor policy framework, socio-economic pressures, undue parental and peer influences, improper value orientation and of course, the nature of curricula. In response to the situation, some programs and/or initiatives aimed at inculcating entrepreneurial skills were proposed by this paper with identified target beneficiaries. The initiatives bordered on curricular reorientation that integrate entrepreneurship/enterprise education, retraining of graduates, financial support system among others.

Keywords: Program initiatives. vocational agriculture, youths’ empowerment, introduction

Procedia PDF Downloads 309
2183 Phorbol 12-Myristate 13-Acetate (PMA)-Differentiated THP-1 Monocytes as a Validated Microglial-Like Model in Vitro

Authors: Amelia J. McFarland, Andrew K. Davey, Shailendra Anoopkumar-Dukie

Abstract:

Microglia are the resident macrophage population of the central nervous system (CNS), contributing to both innate and adaptive immune response, and brain homeostasis. Activation of microglia occurs in response to a multitude of pathogenic stimuli in their microenvironment; this induces morphological and functional changes, resulting in a state of acute neuroinflammation which facilitates injury resolution. Adequate microglial function is essential for the health of the neuroparenchyma, with microglial dysfunction implicated in numerous CNS pathologies. Given the critical role that these macrophage-derived cells play in CNS homeostasis, there is a high demand for microglial models suitable for use in neuroscience research. The isolation of primary human microglia, however, is both difficult and costly, with microglial activation an unwanted but inevitable result of the extraction process. Consequently, there is a need for the development of alternative experimental models which exhibit morphological, biochemical and functional characteristics of human microglia without the difficulties associated with primary cell lines. In this study, our aim was to evaluate whether THP-1 human peripheral blood monocytes would display microglial-like qualities following an induced differentiation, and, therefore, be suitable for use as surrogate microglia. To achieve this aim, THP-1 human peripheral blood monocytes from acute monocytic leukaemia were differentiated with a range of phorbol 12-myristate 13-acetate (PMA) concentrations (50-200 nM) using two different protocols: a 5-day continuous PMA exposure or a 3-day continuous PMA exposure followed by a 5-day rest in normal media. In each protocol and at each PMA concentration, microglial-like cell morphology was assessed through crystal violet staining and the presence of CD-14 microglial / macrophage cell surface marker. Lipopolysaccharide (LPS) from Escherichia coli (055: B5) was then added at a range of concentrations from 0-10 mcg/mL to activate the PMA-differentiated THP-1 cells. Functional microglial-like behavior was evaluated by quantifying the release of prostaglandin (PG)-E2 and pro-inflammatory cytokines interleukin (IL)-1β and tumour necrosis factor (TNF)-α using mediator-specific ELISAs. Furthermore, production of global reactive oxygen species (ROS) and nitric oxide (NO) were determined fluorometrically using dichlorodihydrofluorescein diacetate (DCFH-DA) and diaminofluorescein diacetate (DAF-2-DA) respectively. Following PMA-treatment, it was observed both differentiation protocols resulted in cells displaying distinct microglial morphology from 10 nM PMA. Activation of differentiated cells using LPS significantly augmented IL-1β, TNF-α and PGE2 release at all LPS concentrations under both differentiation protocols. Similarly, a significant increase in DCFH-DA and DAF-2-DA fluorescence was observed, indicative of increases in ROS and NO production. For all endpoints, the 5-day continuous PMA treatment protocol yielded significantly higher mediator levels than the 3-day treatment and 5-day rest protocol. Our data, therefore, suggests that the differentiation of THP-1 human monocyte cells with PMA yields a homogenous microglial-like population which, following stimulation with LPS, undergo activation to release a range of pro-inflammatory mediators associated with microglial activation. Thus, the use of PMA-differentiated THP-1 cells represents a suitable microglial model for in vitro research.

Keywords: differentiation, lipopolysaccharide, microglia, monocyte, neuroscience, THP-1

Procedia PDF Downloads 387
2182 Exploring Acceptance of Artificial Intelligence Software Solution Amongst Healthcare Personnel: A Case in a Private Medical Centre

Authors: Sandra So, Mohd Roslan Ismail, Safurah Jaafar

Abstract:

With the rapid proliferation of data in healthcare has provided an opportune platform creation of Artificial Intelligence (AI). AI has brought a paradigm shift for healthcare professionals, promising improvement in delivery and quality. This study aims to determine the perception of healthcare personnel on perceived ease of use, perceived usefulness, and subjective norm toward attitude for artificial intelligence acceptance. A cross-sectional single institutional study of employees’ perception of adopting AI in the hospital was conducted. The survey was conducted using a questionnaire adapted from Technology Acceptance Model and a four-point Likert scale was used. There were 96 or 75.5% of the total population responded. This study has shown the significant relationship and the importance of ease of use, perceived usefulness, and subjective norm to the acceptance of AI. In the study results, it concluded that the determining factor to the strong acceptance of AI in their practices is mostly those respondents with the most interaction with the patients and clinical management.

Keywords: artificial intelligence, machine learning, perceived ease of use, perceived usefulness, subjective norm

Procedia PDF Downloads 225
2181 The Facilitators and Barriers to the Implementation of Educational Neuroscience: Teachers’ Perspectives

Authors: S. Kawther, C. Marshall

Abstract:

Educational neuroscience has the intention of transforming research findings of the underpinning neural processes of learning to educational practices. A main criticism of the field, hitherto, is that less focus has been put on studying the in-progress practical application of these findings. Therefore, this study aims to gain a better understanding of teachers’ perceptions of the practical application and utilization of brain knowledge. This was approached by investigating the answer to 'What are the facilitators and barriers for bringing research from neuroscience to bear on education?'. Following a qualitative design, semi-structured interviews were conducted with 12 teachers who had a proficient course in educational neuroscience. Thematic analysis was performed on the transcribed data applying Braun & Clark’s steps. Findings emerged with four main themes: time, knowledge, teacher’s involvement, and system. These themes revealed that some effective brain-based practices are being engaged in by the teachers. However, the lack of guidance and challenges regarding this implementation were also found. This study discusses findings in light of the development of educational neuroscience implementation.

Keywords: brain-based, educational neuroscience, neuroeducation, neuroscience-informed

Procedia PDF Downloads 166
2180 Application of Harris Hawks Optimization Metaheuristic Algorithm and Random Forest Machine Learning Method for Long-Term Production Scheduling Problem under Uncertainty in Open-Pit Mines

Authors: Kamyar Tolouei, Ehsan Moosavi

Abstract:

In open-pit mines, the long-term production scheduling optimization problem (LTPSOP) is a complicated problem that contains constraints, large datasets, and uncertainties. Uncertainty in the output is caused by several geological, economic, or technical factors. Due to its dimensions and NP-hard nature, it is usually difficult to find an ideal solution to the LTPSOP. The optimal schedule generally restricts the ore, metal, and waste tonnages, average grades, and cash flows of each period. Past decades have witnessed important measurements of long-term production scheduling and optimal algorithms since researchers have become highly cognizant of the issue. In fact, it is not possible to consider LTPSOP as a well-solved problem. Traditional production scheduling methods in open-pit mines apply an estimated orebody model to produce optimal schedules. The smoothing result of some geostatistical estimation procedures causes most of the mine schedules and production predictions to be unrealistic and imperfect. With the expansion of simulation procedures, the risks from grade uncertainty in ore reserves can be evaluated and organized through a set of equally probable orebody realizations. In this paper, to synthesize grade uncertainty into the strategic mine schedule, a stochastic integer programming framework is presented to LTPSOP. The objective function of the model is to maximize the net present value and minimize the risk of deviation from the production targets considering grade uncertainty simultaneously while satisfying all technical constraints and operational requirements. Instead of applying one estimated orebody model as input to optimize the production schedule, a set of equally probable orebody realizations are applied to synthesize grade uncertainty in the strategic mine schedule and to produce a more profitable and risk-based production schedule. A mixture of metaheuristic procedures and mathematical methods paves the way to achieve an appropriate solution. This paper introduced a hybrid model between the augmented Lagrangian relaxation (ALR) method and the metaheuristic algorithm, the Harris Hawks optimization (HHO), to solve the LTPSOP under grade uncertainty conditions. In this study, the HHO is experienced to update Lagrange coefficients. Besides, a machine learning method called Random Forest is applied to estimate gold grade in a mineral deposit. The Monte Carlo method is used as the simulation method with 20 realizations. The results specify that the progressive versions have been considerably developed in comparison with the traditional methods. The outcomes were also compared with the ALR-genetic algorithm and ALR-sub-gradient. To indicate the applicability of the model, a case study on an open-pit gold mining operation is implemented. The framework displays the capability to minimize risk and improvement in the expected net present value and financial profitability for LTPSOP. The framework could control geological risk more effectively than the traditional procedure considering grade uncertainty in the hybrid model framework.

Keywords: grade uncertainty, metaheuristic algorithms, open-pit mine, production scheduling optimization

Procedia PDF Downloads 103
2179 An Interpretable Data-Driven Approach for the Stratification of the Cardiorespiratory Fitness

Authors: D.Mendes, J. Henriques, P. Carvalho, T. Rocha, S. Paredes, R. Cabiddu, R. Trimer, R. Mendes, A. Borghi-Silva, L. Kaminsky, E. Ashley, R. Arena, J. Myers

Abstract:

The continued exploration of clinically relevant predictive models continues to be an important pursuit. Cardiorespiratory fitness (CRF) portends clinical vital information and as such its accurate prediction is of high importance. Therefore, the aim of the current study was to develop a data-driven model, based on computational intelligence techniques and, in particular, clustering approaches, to predict CRF. Two prediction models were implemented and compared: 1) the traditional Wasserman/Hansen Equations; and 2) an interpretable clustering approach. Data used for this analysis were from the 'FRIEND - Fitness Registry and the Importance of Exercise: The National Data Base'; in the present study a subset of 10690 apparently healthy individuals were utilized. The accuracy of the models was performed through the computation of sensitivity, specificity, and geometric mean values. The results show the superiority of the clustering approach in the accurate estimation of CRF (i.e., maximal oxygen consumption).

Keywords: cardiorespiratory fitness, data-driven models, knowledge extraction, machine learning

Procedia PDF Downloads 285
2178 A Factor-Analytical Approach on Identities in Environmentally Significant Behavior

Authors: Alina M. Udall, Judith de Groot, Simon de Jong, Avi Shankar

Abstract:

There are many ways in which environmentally significant behavior can be explained. Dominant psychological theories, namely, the theory of planned behavior, the norm-activation theory, its extension, the value-belief-norm theory, and the theory of habit do not explain large parts of environmentally significant behaviors. A new and rapidly growing approach is to focus on how consumer’s identities predict environmentally significant behavior. Identity may be relevant because consumers have many identities that are assumed to guide their behavior. Therefore, we assume that many identities will guide environmentally significant behavior. Many identities can be relevant for environmentally significant behavior. In reviewing the literature, over 200 identities have been studied making it difficult to establish the key identities for explaining environmentally significant behavior. Therefore, this paper first aims to establish the key identities previously used for explaining environmentally significant behavior. Second, the aim is to test which key identities explain environmentally significant behavior. To address the aims, an online survey study (n = 578) is conducted. First, the exploratory factor analysis reveals 15 identity factors. The identity factors are namely, environmentally concerned identity, anti-environmental self-identity, environmental place identity, connectedness with nature identity, green space visitor identity, active ethical identity, carbon off-setter identity, thoughtful self-identity, close community identity, anti-carbon off-setter identity, environmental group member identity, national identity, identification with developed countries, cyclist identity, and thoughtful organisation identity. Furthermore, to help researchers understand and operationalize the identities, the article provides theoretical definitions for each of the identities, in line with identity theory, social identity theory, and place identity theory. Second, the hierarchical regression shows only 10 factors significantly uniquely explain the variance in environmentally significant behavior. In order of predictive power the identities are namely, environmentally concerned identity, anti-environmental self-identity, thoughtful self-identity, environmental group member identity, anti-carbon off-setter identity, carbon off-setter identity, connectedness with nature identity, national identity, and green space visitor identity. The identities explain over 60% of the variance in environmentally significant behavior, a large effect size. Based on this finding, the article reveals a new, theoretical framework showing the key identities explaining environmentally significant behavior, to help improve and align the field.

Keywords: environmentally significant behavior, factor analysis, place identity, social identity

Procedia PDF Downloads 450
2177 Prediction of Cardiovascular Markers Associated With Aromatase Inhibitors Side Effects Among Breast Cancer Women in Africa

Authors: Jean Paul M. Milambo

Abstract:

Purpose: Aromatase inhibitors (AIs) are indicated in the treatment of hormone-receptive breast cancer in postmenopausal women in various settings. Studies have shown cardiovascular events in some developed countries. To date the data is sparce for evidence-based recommendations in African clinical settings due to lack of cancer registries, capacity building and surveillance systems. Therefore, this study was conducted to assess the feasibility of HyBeacon® probe genotyping adjunctive to standard care for timely prediction and diagnosis of Aromatase inhibitors (AIs) associated adverse events in breast cancer survivors in Africa. Methods: Cross sectional study was conducted to assess the knowledge of POCT among six African countries using online survey and telephonically contacted. Incremental cost effectiveness ratio (ICER) was calculated, using diagnostic accuracy study. This was based on mathematical modeling. Results: One hundred twenty-six participants were considered for analysis (mean age = 61 years; SD = 7.11 years; 95%CI: 60-62 years). Comparison of genotyping from HyBeacon® probe technology to Sanger sequencing showed that sensitivity was reported at 99% (95% CI: 94.55% to 99.97%), specificity at 89.44% (95% CI: 87.25 to 91.38%), PPV at 51% (95%: 43.77 to 58.26%), and NPV at 99.88% (95% CI: 99.31 to 100.00%). Based on the mathematical model, the assumptions revealed that ICER was R7 044.55. Conclusion: POCT using HyBeacon® probe genotyping for AI-associated adverse events maybe cost effective in many African clinical settings. Integration of preventive measures for early detection and prevention guided by different subtype of breast cancer diagnosis with specific clinical, biomedical and genetic screenings may improve cancer survivorship. Feasibility of POCT was demonstrated but the implementation could be achieved by improving the integration of POCT within primary health cares, referral cancer hospitals with capacity building activities at different level of health systems. This finding is pertinent for a future envisioned implementation and global scale-up of POCT-based initiative as part of risk communication strategies with clear management pathways.

Keywords: breast cancer, diagnosis, point of care, South Africa, aromatase inhibitors

Procedia PDF Downloads 75
2176 Small Text Extraction from Documents and Chart Images

Authors: Rominkumar Busa, Shahira K. C., Lijiya A.

Abstract:

Text recognition is an important area in computer vision which deals with detecting and recognising text from an image. The Optical Character Recognition (OCR) is a saturated area these days and with very good text recognition accuracy. However the same OCR methods when applied on text with small font sizes like the text data of chart images, the recognition rate is less than 30%. In this work, aims to extract small text in images using the deep learning model, CRNN with CTC loss. The text recognition accuracy is found to improve by applying image enhancement by super resolution prior to CRNN model. We also observe the text recognition rate further increases by 18% by applying the proposed method, which involves super resolution and character segmentation followed by CRNN with CTC loss. The efficiency of the proposed method shows that further pre-processing on chart image text and other small text images will improve the accuracy further, thereby helping text extraction from chart images.

Keywords: small text extraction, OCR, scene text recognition, CRNN

Procedia PDF Downloads 122
2175 An Elaboration Likelihood Model to Evaluate Consumer Behavior on Facebook Marketplace: Trust on Seller as a Moderator

Authors: Sharmistha Chowdhury, Shuva Chowdhury

Abstract:

Buying-selling new as well as second-hand goods like tools, furniture, household, electronics, clothing, baby stuff, vehicles, and hobbies through the Facebook marketplace has become a new paradigm for c2c sellers. This phenomenon encourages and empowers decentralised home-oriented sellers. This study adopts Elaboration Likelihood Model (ELM) to explain consumer behaviour on Facebook Marketplace (FM). ELM suggests that consumers process information through the central and peripheral routes, which eventually shape their attitudes towards posts. The central route focuses on information quality, and the peripheral route focuses on cues. Sellers’ FM posts usually include product features, prices, conditions, pictures, and pick-up location. This study uses information relevance and accuracy as central route factors. The post’s attractiveness represents cues and creates positive or negative associations with the product. A post with remarkable pictures increases the attractiveness of the post. So, post aesthetics is used as a peripheral route factor. People influenced via the central or peripheral route forms an attitude that includes multiple processes – response and purchase intention. People respond to FM posts through save, share and chat. Purchase intention reflects a positive image of the product and higher purchase intention. This study proposes trust on sellers as a moderator to test the strength of its influence on consumer attitudes and behaviour. Trust on sellers is assessed whether sellers have badges or not. A sample questionnaire will be developed and distributed among a group of random FM sellers who are selling vehicles on this platform to conduct the study. The chosen product of this study is the vehicle, a high-value purchase item. High-value purchase requires consumers to consider forming their attitude without any sign of impulsiveness seriously. Hence, vehicles are the perfect choice to test the strength of consumers attitudes and behaviour. The findings of the study add to the elaboration likelihood model and online second-hand marketplace literature.

Keywords: consumer behaviour, elaboration likelihood model, facebook marketplace, c2c marketing

Procedia PDF Downloads 137
2174 A Web-Based Systems Immunology Toolkit Allowing the Visualization and Comparative Analysis of Publically Available Collective Data to Decipher Immune Regulation in Early Life

Authors: Mahbuba Rahman, Sabri Boughorbel, Scott Presnell, Charlie Quinn, Darawan Rinchai, Damien Chaussabel, Nico Marr

Abstract:

Collections of large-scale datasets made available in public repositories can be used to identify and fill gaps in biomedical knowledge. But first, these data need to be made readily accessible to researchers for analysis and interpretation. Here a collection of transcriptome datasets was made available to investigate the functional programming of human hematopoietic cells in early life. Thirty two datasets were retrieved from the NCBI Gene Expression Omnibus (GEO) and loaded in a custom, interactive web application called the Gene Expression browser (GXB), designed for visualization and query of integrated large-scale data. Multiple sample groupings and gene rank lists were created based on the study design and variables in each dataset. Web links to customized graphical views can be generated by users and subsequently be used to graphically present data in manuscripts for publication. The GXB tool also enables browsing of a single gene across datasets, which can provide information on the role of a given molecule across biological systems. The dataset collection is available online. As a proof-of-principle, one of the datasets (GSE25087) was re-analyzed to identify genes that are differentially expressed by regulatory T cells in early life. Re-analysis of this dataset and a cross-study comparison using multiple other datasets in the above mentioned collection revealed that PMCH, a gene encoding a precursor of melanin-concentrating hormone (MCH), a cyclic neuropeptide, is highly expressed in a variety of other hematopoietic cell types, including neonatal erythroid cells as well as plasmacytoid dendritic cells upon viral infection. Our findings suggest an as yet unrecognized role of MCH in immune regulation, thereby highlighting the unique potential of the curated dataset collection and systems biology approach to generate new hypotheses which can be tested in future mechanistic studies.

Keywords: early-life, GEO datasets, PMCH, interactive query, systems biology

Procedia PDF Downloads 296
2173 Spatial Organization of Cells over the Process of Pellicle Formation by Pseudomonas alkylphenolica KL28

Authors: Kyoung Lee

Abstract:

Numerous aerobic bacteria have the ability to form multicellular communities on the surface layer of the air-liquid (A-L) interface as a biofilm called a pellicle. Pellicles occupied at the A-L interface will benefit from the utilization of oxygen from air and nutrient from liquid. Buoyancy of cells can be obtained by high surface tension at the A-L interface. Thus, formation of pellicles is an adaptive advantage in utilization of excess nutrients in the standing culture where oxygen depletion is easily set up due to rapid cell growth. In natural environments, pellicles are commonly observed on the surface of lake or pond contaminated with pollutants. Previously, we have shown that when cultured in standing LB media an alkylphenol-degrading bacteria Pseudomonas alkylphenolia KL28 forms pellicles in a diameter of 0.3-0.5 mm with a thickness of ca 40 µm. The pellicles have unique features for possessing flatness and unusual rigidity. In this study, the biogenesis of the circular pellicles has been investigated by observing the cell organization at early stages of pellicle formation and cell arrangements in pellicle, providing a clue for highly organized cellular arrangement to be adapted to the air-liquid niche. Here, we first monitored developmental patterns of pellicle from monolayer to multicellular organization. Pellicles were shaped by controlled growth of constituent cells which accumulate extracellular polymeric substance. The initial two-dimensional growth was transited to multilayers by a constraint force of accumulated self-produced extracellular polymeric substance. Experiments showed that pellicles are formed by clonal growth and even with knock-out of genes for flagella and pilus formation. In contrast, the mutants in the epm gene cluster for alginate-like polymer biosynthesis were incompetent in cell alignment for initial two-dimensional growth of pellicles. Electron microscopic and confocal laser scanning microscopic studies showed that the fully matured structures are highly packed by matrix-encased cells which have special arrangements. The cells on the surface of the pellicle lie relatively flat and inside longitudinally cross packed. HPLC analysis of the extrapolysaccharide (EPS) hydrolysate from the colonies from LB agar showed a composition with L-fucose, L-rhamnose, D-galactosamine, D-glucosamine, D-galactose, D-glucose, D-mannose. However, that from pellicles showed similar neutral and amino sugar profile but missing galactose. Furthermore, uronic acid analysis of EPS hydrolysates by HPLC showed that mannuronic acid was detected from pellicles not from colonies, indicating the epm-derived polymer is critical for pellicle formation as proved by the epm mutants. This study verified that for the circular pellicle architecture P. alkylphenolica KL28 cells utilized EPS building blocks different from that used for colony construction. These results indicate that P. alkylphenolica KL28 is a clever architect that dictates unique cell arrangements with selected EPS matrix material to construct sophisticated building, circular biofilm pellicles.

Keywords: biofilm, matrix, pellicle, pseudomonas

Procedia PDF Downloads 152
2172 Plant Leaf Recognition Using Deep Learning

Authors: Aadhya Kaul, Gautam Manocha, Preeti Nagrath

Abstract:

Our environment comprises of a wide variety of plants that are similar to each other and sometimes the similarity between the plants makes the identification process tedious thus increasing the workload of the botanist all over the world. Now all the botanists cannot be accessible all the time for such laborious plant identification; therefore, there is an urge for a quick classification model. Also, along with the identification of the plants, it is also necessary to classify the plant as healthy or not as for a good lifestyle, humans require good food and this food comes from healthy plants. A large number of techniques have been applied to classify the plants as healthy or diseased in order to provide the solution. This paper proposes one such method known as anomaly detection using autoencoders using a set of collections of leaves. In this method, an autoencoder model is built using Keras and then the reconstruction of the original images of the leaves is done and the threshold loss is found in order to classify the plant leaves as healthy or diseased. A dataset of plant leaves is considered to judge the reconstructed performance by convolutional autoencoders and the average accuracy obtained is 71.55% for the purpose.

Keywords: convolutional autoencoder, anomaly detection, web application, FLASK

Procedia PDF Downloads 161
2171 Semantic Textual Similarity on Contracts: Exploring Multiple Negative Ranking Losses for Sentence Transformers

Authors: Yogendra Sisodia

Abstract:

Researchers are becoming more interested in extracting useful information from legal documents thanks to the development of large-scale language models in natural language processing (NLP), and deep learning has accelerated the creation of powerful text mining models. Legal fields like contracts benefit greatly from semantic text search since it makes it quick and easy to find related clauses. After collecting sentence embeddings, it is relatively simple to locate sentences with a comparable meaning throughout the entire legal corpus. The author of this research investigated two pre-trained language models for this task: MiniLM and Roberta, and further fine-tuned them on Legal Contracts. The author used Multiple Negative Ranking Loss for the creation of sentence transformers. The fine-tuned language models and sentence transformers showed promising results.

Keywords: legal contracts, multiple negative ranking loss, natural language inference, sentence transformers, semantic textual similarity

Procedia PDF Downloads 105
2170 Application of Causal Inference and Discovery in Curriculum Evaluation and Continuous Improvement

Authors: Lunliang Zhong, Bin Duan

Abstract:

The undergraduate graduation project is a vital part of the higher education curriculum, crucial for engineering accreditation. Current evaluations often summarize data without identifying underlying issues. This study applies the Peter-Clark algorithm to analyze causal relationships within the graduation project data of an Electronics and Information Engineering program, creating a causal model. Structural equation modeling confirmed the model's validity. The analysis reveals key teaching stages affecting project success, uncovering problems in the process. Introducing causal discovery and inference into project evaluation helps identify issues and propose targeted improvement measures. The effectiveness of these measures is validated by comparing the learning outcomes of two student cohorts, stratified by confounding factors, leading to improved teaching quality.

Keywords: causal discovery, causal inference, continuous improvement, Peter-Clark algorithm, structural equation modeling

Procedia PDF Downloads 16