Search results for: human centered design
12534 Distinguishing between Bacterial and Viral Infections Based on Peripheral Human Blood Tests Using Infrared Microscopy and Multivariate Analysis
Authors: H. Agbaria, A. Salman, M. Huleihel, G. Beck, D. H. Rich, S. Mordechai, J. Kapelushnik
Abstract:
Viral and bacterial infections are responsible for variety of diseases. These infections have similar symptoms like fever, sneezing, inflammation, vomiting, diarrhea and fatigue. Thus, physicians may encounter difficulties in distinguishing between viral and bacterial infections based on these symptoms. Bacterial infections differ from viral infections in many other important respects regarding the response to various medications and the structure of the organisms. In many cases, it is difficult to know the origin of the infection. The physician orders a blood, urine test, or 'culture test' of tissue to diagnose the infection type when it is necessary. Using these methods, the time that elapses between the receipt of patient material and the presentation of the test results to the clinician is typically too long ( > 24 hours). This time is crucial in many cases for saving the life of the patient and for planning the right medical treatment. Thus, rapid identification of bacterial and viral infections in the lab is of great importance for effective treatment especially in cases of emergency. Blood was collected from 50 patients with confirmed viral infection and 50 with confirmed bacterial infection. White blood cells (WBCs) and plasma were isolated and deposited on a zinc selenide slide, dried and measured under a Fourier transform infrared (FTIR) microscope to obtain their infrared absorption spectra. The acquired spectra of WBCs and plasma were analyzed in order to differentiate between the two types of infections. In this study, the potential of FTIR microscopy in tandem with multivariate analysis was evaluated for the identification of the agent that causes the human infection. The method was used to identify the infectious agent type as either bacterial or viral, based on an analysis of the blood components [i.e., white blood cells (WBC) and plasma] using their infrared vibrational spectra. The time required for the analysis and evaluation after obtaining the blood sample was less than one hour. In the analysis, minute spectral differences in several bands of the FTIR spectra of WBCs were observed between groups of samples with viral and bacterial infections. By employing the techniques of feature extraction with linear discriminant analysis (LDA), a sensitivity of ~92 % and a specificity of ~86 % for an infection type diagnosis was achieved. The present preliminary study suggests that FTIR spectroscopy of WBCs is a potentially feasible and efficient tool for the diagnosis of the infection type.Keywords: viral infection, bacterial infection, linear discriminant analysis, plasma, white blood cells, infrared spectroscopy
Procedia PDF Downloads 22412533 Sensitivity Enhancement of Photonic Crystal Fiber Biosensor
Authors: Mohamed Farhat O. Hameed, Yasamin K. A. Alrayk, A. A Shaalan, S. S. A. Obayya
Abstract:
The surface plasmon resonance (SPR) sensors are widely used due to its high sensitivity with molecular labels free. The commercial SPR sensors depend on the conventional prism-coupled configuration. However, this type of configuration suffers from miniaturization and integration. Therefore, the search for compact, portable and highly sensitive SPR sensors becomes mandatory.In this paper, sensitivity enhancement of a novel photonic crystal fiber biosensoris introduced and studied. The suggested design has microstructure of air holes in the core region surrounded by two large semicircular metallized channels filled with the analyte. The inner surfaces of the two channels are coated by a silver layer followed by a gold layer.The simulation results are obtained using full vectorial finite element methodwith perfect matched layer (PML) boundary conditions. The proposed design depends on bimetallic configuration to enhance the biosensor sensitivity. Additionally, the suggested biosensor can be used for multi-channel/multi-analyte sensing. In this study, the sensor geometrical parameters are studied to maximize the sensitivity for the two polarized modes. The numerical results show that high refractive index sensitivity of 4750 nm/RIU (refractive index unit) and 4300 nm/RIU can be achieved for the quasi (transverse magnetic) TM and quasi (transverse electric) TE modes of the proposed biosensor, respectively. The reportedbiosensor has advantages of integration of microfluidics setup, waveguide and metallic layers into a single structure. As a result, compact biosensor with better integration compared to conventional optical fiber SPR biosensors can be obtained.Keywords: photonic crystal fibers, gold, silver, surface plasmon, biosensor
Procedia PDF Downloads 38012532 Automatic Moderation of Toxic Comments in the Face of Local Language Complexity in Senegal
Authors: Edouard Ngor Sarr, Abel Diatta, Serigne Mor Toure, Ousmane Sall, Lamine Faty
Abstract:
Thanks to Web 2, we are witnessing a form of democratization of the spoken word, an exponential increase in the number of users on the web, but also, and above all, the accumulation of a daily flow of content that is becoming, at times, uncontrollable. Added to this is the rise of a violent social fabric characterised by hateful and racial comments, insults, and other content that contravenes social rules and the platforms' terms of use. Consequently, managing and regulating this mass of new content is proving increasingly difficult, requiring substantial human, technical, and technological resources. Without regulation and with the complicity of anonymity, this toxic content can pollute discussions and make these online spaces highly conducive to abuse, which very often has serious consequences for certain internet users, ranging from anxiety to suicide, depression, or withdrawal. The toxicity of a comment is defined as anything that is rude, disrespectful, or likely to cause someone to leave a discussion or to take violent action against a person or a community. Two levels of measures are needed to deal with this deleterious situation. The first measures are being taken by governments through draft laws with a dual objective: (i) to punish the perpetrators of these abuses and (ii) to make online platforms accountable for the mistakes made by their users. The second measure comes from the platforms themselves. By assessing the content left by users, they can set up filters to block and/or delete content or decide to suspend the user in question for good. However, the speed of discussions and the volume of data involved mean that platforms are unable to properly monitor the moderation of content produced by Internet users. That's why they use human moderators, either through recruitment or outsourcing. Moderating comments on the web means assessing and monitoring users‘ comments on online platforms in order to strike the right balance between protection against abuse and users’ freedom of expression. It makes it possible to determine which publications and users are allowed to remain online and which are deleted or suspended, how authorised publications are displayed, and what actions accompany content deletions. In this study, we look at the problem of automatic moderation of toxic comments in the face of local African languages and, more specifically, on social network comments in Senegal. We review the state of the art, highlighting the different approaches, algorithms, and tools for moderating comments. We also study the issues and challenges of moderation in the face of web ecosystems with lesser-known languages, such as local languages.Keywords: moderation, local languages, Senegal, toxic comments
Procedia PDF Downloads 212531 Performance Analysis of Modified Solar Water Heating System for Climatic Condition of Allahabad, India
Authors: Kirti Tewari, Rahul Dev
Abstract:
Solar water heating is a thermodynamic process of heating water using sunlight with the help of solar water heater. Thus, solar water heater is a device used to harness solar energy. In this paper, a modified solar water heating system (MSWHS) has been proposed over flat plate collector (FPC) and Evacuated tube collector (ETC). The modifications include selection of materials other than glass, and glass wool which are conventionally used for fabricating FPC and ETC. Some modifications in design have also been proposed. Its collector is made of double layer of semi-cylindrical acrylic tubes and fibre reinforced plastic (FRP) insulation base. Water tank is made of double layer of acrylic sheet except base and north wall. FRP is used in base and north wall of the water tank. A concept of equivalent thickness has been utilised for calculating the dimensions of collector plate, acrylic tube and tank. A thermal model for the proposed design of MSWHS is developed and simulation is carried out on MATLAB for the capacity of 200L MSWHS having collector area of 1.6 m2, length of acrylic tubes of 2m at an inclination angle 25° which is taken nearly equal to the latitude of the given location. Latitude of Allahabad is 24.45° N. The results show that the maximum temperature of water in tank and tube has been found to be 71.2°C and 73.3°C at 17:00hr and 16:00hr respectively in March for the climatic data of Allahabad. Theoretical performance analysis has been carried out by varying number of tubes of collector, the tank capacity and climatic data for given months of winter and summer.Keywords: acrylic, fibre reinforced plastic, solar water heating, thermal model, conventional water heaters
Procedia PDF Downloads 33712530 Analysis on Thermococcus achaeans with Frequent Pattern Mining
Authors: Jeongyeob Hong, Myeonghoon Park, Taeson Yoon
Abstract:
After the advent of Achaeans which utilize different metabolism pathway and contain conspicuously different cellular structure, they have been recognized as possible materials for developing quality of human beings. Among diverse Achaeans, in this paper, we compared 16s RNA Sequences of four different species of Thermococcus: Achaeans genus specialized in sulfur-dealing metabolism. Four Species, Barophilus, Kodakarensis, Hydrothermalis, and Onnurineus, live near the hydrothermal vent that emits extreme amount of sulfur and heat. By comparing ribosomal sequences of aforementioned four species, we found similarities in their sequences and expressed protein, enabling us to expect that certain ribosomal sequence or proteins are vital for their survival. Apriori algorithms and Decision Tree were used. for comparison.Keywords: Achaeans, Thermococcus, apriori algorithm, decision tree
Procedia PDF Downloads 29012529 Designing an Operational Control System for the Continuous Cycle of Industrial Technological Processes Using Fuzzy Logic
Authors: Teimuraz Manjapharashvili, Ketevani Manjaparashvili
Abstract:
Fuzzy logic is a modeling method for complex or ill-defined systems and is a relatively new mathematical approach. Its basis is to consider overlapping cases of parameter values and define operations to manipulate these cases. Fuzzy logic can successfully create operative automatic management or appropriate advisory systems. Fuzzy logic techniques in various operational control technologies have grown rapidly in the last few years. Fuzzy logic is used in many areas of human technological activity. In recent years, fuzzy logic has proven its great potential, especially in the automation of industrial process control, where it allows to form of a control design based on the experience of experts and the results of experiments. The engineering of chemical technological processes uses fuzzy logic in optimal management, and it is also used in process control, including the operational control of continuous cycle chemical industrial, technological processes, where special features appear due to the continuous cycle and correct management acquires special importance. This paper discusses how intelligent systems can be developed, in particular, how fuzzy logic can be used to build knowledge-based expert systems in chemical process engineering. The implemented projects reveal that the use of fuzzy logic in technological process control has already given us better solutions than standard control techniques. Fuzzy logic makes it possible to develop an advisory system for decision-making based on the historical experience of the managing operator and experienced experts. The present paper deals with operational control and management systems of continuous cycle chemical technological processes, including advisory systems. Because of the continuous cycle, many features are introduced in them compared to the operational control of other chemical technological processes. Among them, there is a greater risk of transitioning to emergency mode; the return from emergency mode to normal mode must be done very quickly due to the impossibility of stopping the technological process due to the release of defective products during this period (i.e., receiving a loss), accordingly, due to the need for high qualification of the operator managing the process, etc. For these reasons, operational control systems of continuous cycle chemical technological processes have been specifically discussed, as they are different systems. Special features of such systems in control and management were brought out, which determine the characteristics of the construction of control and management systems. To verify the findings, the development of an advisory decision-making information system for operational control of a lime kiln using fuzzy logic, based on the creation of a relevant expert-targeted knowledge base, was discussed. The control system has been implemented in a real lime production plant with a lime burn kiln, which has shown that suitable and intelligent automation improves operational management, reduces the risks of releasing defective products, and, therefore, reduces costs. The special advisory system was successfully used in the said plant both for the improvement of operational management and, if necessary, for the training of new operators due to the lack of an appropriate training institution.Keywords: chemical process control systems, continuous cycle industrial technological processes, fuzzy logic, lime kiln
Procedia PDF Downloads 3012528 Determination of Activation Energy for Thermal Decomposition of Selected Soft Tissues Components
Authors: M. Ekiert, T. Uhl, A. Mlyniec
Abstract:
Tendons are the biological soft tissue structures composed of collagen, proteoglycan, glycoproteins, water and cells of extracellular matrix (ECM). Tendons, which primary function is to transfer force generated by the muscles to the bones causing joints movement, are exposed to many micro and macro damages. In fact, tendons and ligaments trauma are one of the most numerous injuries of human musculoskeletal system, causing for many people (particularly for athletes and physically active people), recurring disorders, chronic pain or even inability of movement. The number of tendons reconstruction and transplantation procedures is increasing every year. Therefore, studies on soft tissues storage conditions (influencing i.e. tissue aging) seem to be an extremely important issue. In this study, an atomic-scale investigation on the kinetics of decomposition of two selected tendon components – collagen type I (which forms a 60-85% of a tendon dry mass) and elastin protein (which combine with ECM creates elastic fibers of connective tissues) is presented. A molecular model of collagen and elastin was developed based on crystal structure of triple-helical collagen-like 1QSU peptide and P15502 human elastin protein, respectively. Each model employed 4 linear strands collagen/elastin strands per unit cell, distributed in 2x2 matrix arrangement, placed in simulation box filled with water molecules. A decomposition phenomena was simulated with molecular dynamics (MD) method using ReaxFF force field and periodic boundary conditions. A set of NVT-MD runs was performed for 1000K temperature range in order to obtained temperature-depended rate of production of decomposition by-products. Based on calculated reaction rates activation energies and pre-exponential factors, required to formulate Arrhenius equations describing kinetics of decomposition of tested soft tissue components, were calculated. Moreover, by adjusting a model developed for collagen, system scalability and correct implementation of the periodic boundary conditions were evaluated. An obtained results provide a deeper insight into decomposition of selected tendon components. A developed methodology may also be easily transferred to other connective tissue elements and therefore might be used for further studies on soft tissues aging.Keywords: decomposition, molecular dynamics, soft tissue, tendons
Procedia PDF Downloads 21012527 Modeling of Tsunami Propagation and Impact on West Vancouver Island, Canada
Authors: S. Chowdhury, A. Corlett
Abstract:
Large tsunamis strike the British Columbia coast every few hundred years. The Cascadia Subduction Zone, which extends along the Pacific coast from Vancouver Island to Northern California is one of the most seismically active regions in Canada. Significant earthquakes have occurred in this region, including the 1700 Cascade Earthquake with an estimated magnitude of 9.2. Based on geological records, experts have predicted a 'great earthquake' of a similar magnitude within this region may happen any time. This earthquake is expected to generate a large tsunami that could impact the coastal communities on Vancouver Island. Since many of these communities are in remote locations, they are more likely to be vulnerable, as the post-earthquake relief efforts would be impacted by the damage to critical road infrastructures. To assess the coastal vulnerability within these communities, a hydrodynamic model has been developed using MIKE-21 software. We have considered a 500 year probabilistic earthquake design criteria including the subsidence in this model. The bathymetry information was collected from Canadian Hydrographic Services (CHS), and National Oceanic Atmospheric and Administration (NOAA). The arial survey was conducted using a Cessna-172 aircraft for the communities, and then the information was converted to generate a topographic digital elevation map. Both survey information was incorporated into the model, and the domain size of the model was about 1000km x 1300km. This model was calibrated with the tsunami occurred off the west coast of Moresby Island on October 28, 2012. The water levels from the model were compared with two tide gauge stations close to the Vancouver Island and the output from the model indicates the satisfactory result. For this study, the design water level was considered as High Water Level plus the Sea Level Rise for 2100 year. The hourly wind speeds from eight directions were collected from different wind stations and used a 200-year return period wind speed in the model for storm events. The regional model was set for 12 hrs simulation period, which takes more than 16 hrs to complete one simulation using double Xeon-E7 CPU computer plus a K-80 GPU. The boundary information for the local model was generated from the regional model. The local model was developed using a high resolution mesh to estimate the coastal flooding for the communities. It was observed from this study that many communities will be effected by the Cascadia tsunami and the inundation maps were developed for the communities. The infrastructures inside the coastal inundation area were identified. Coastal vulnerability planning and resilient design solutions will be implemented to significantly reduce the risk.Keywords: tsunami, coastal flooding, coastal vulnerable, earthquake, Vancouver, wave propagation
Procedia PDF Downloads 13112526 Analysis of the Demographic Variable Associated with Common Pregnancy Related Illnesses among Pregnant Mothers in Anambra
Authors: Nkiru Nnaemezie, J. O. Okafor
Abstract:
The high mortality as a result of pregnancy related illnesses is a global public health problem and a source of concern to most countries including Nigeria. This study was therefore designed to determine the Demographic Variables associated with common pregnancy related illnesses among pregnant mothers in Awka South Local Government Area of Anambra State. The design of the study was an expost-facto research design. All the folders of the pregnant mothers that were studied from 2010-2014 formed the population of the study which included 10,250 folders. Based on the content of the folders, a researcher developed pro-forma (RDP) was used for data collection. Five research questions and five hypotheses were postulated for the study. Research questions postulated were answered using simple percentage. Hypotheses stated were analyzed at 0.05 level of significance using chi-square (X²) statistics. The result among others showed that pregnant mothers within 15-29 years had the most pregnancy related illnesses than mothers on other age brackets. Pregnant mothers with 0-1 parity level experienced the most pregnancy related illnesses than mothers on other parity levels. Public servants experienced the most pregnancy related illnesses than mothers in other occupations. Married pregnant mothers experienced the most pregnancy related illnesses than single mothers. Pregnant mothers with secondary education had the most pregnancy related illnesses than mothers in other education levels. There were significant differences in the common pregnancy related illnesses among the pregnant mothers of the study in relation to the demographic variables of the study which included age, parity, occupation, marital status and educational level. Based on the findings, conclusions were drawn, and the following recommendations among others were made: there is need for health education in terms of educating those pregnant mothers during antenatal clinics; single mothers should be advised to register for antenatal early enough.Keywords: analysis, demographic variables, pregnancy related illnesses, pregnant mothers
Procedia PDF Downloads 25812525 Synthesis and Luminescent Properties of Barium-Europium (III) Silicate Systems
Authors: A. Isahakyan, A. Terzyan, V. Stepanyan, N. Zulumyan, H. Beglaryan
Abstract:
The involvement of silica hydrogel derived from serpentine minerals (Mg(Fe))6[Si4O10](OH)8 as a source of silicon dioxide in SiO2–NaOH–BaCl2–H2O system results in precipitating via one-hour stirring of boiling suspension such intermediates that on heating up to 800 °C crystallize into the product composed of barium ortho- Ba2SiO4 and metasilicates BaSiO3. Based on the positive results, this approach has been decided to be adapted to inserting europium (III) ions into the structure of the synthesized compounds. Intermediates previously precipitated in silica hydrogel–NaOH–BaCl2–Eu(NO3)3 system via one-hour stirring at room temperature underwent one-hour heat-treatment at different temperatures (6001200 °C). Prior to calcination, the suspension produced in the mixer was heated on a boiling-water bath until a powder-like sample was obtained. When the silica hydrogel was metered, SiO2 content in the silica hydrogel that is 5.8 % was taken into consideration in order to guaranty the molar ratios of both SiO2 to BaO and SiO2 to Na2O equal to 1:2. BaCl2 and Eu(NO3)3 reagents were weighted so that the formation of appropriate compositions was guaranteed. Samples including various concentrations of Eu3+ ions (1.25, 2.5, 3.75, 5, 6.35, 8.65, 10, 17.5, 18.75 and 20 mol%) were synthesized by the described method. Luminescence excitation, emission spectra of the products were recorded on the Agilent Cary Eclipes fluorescence spectrophotometer using Agilent Xenon flash lamp (80 Hz) as the excitation source (scanning rate=30 nm/min, excitation and emission slits width=5 nm, excitation filter set to auto, emission filter set to auto and PMT detector Voltage=800 V). Prior to optical properties measurements, each of the powder samples was put in the solid sample-holder. X-ray powder diffraction (XRPD) measurements were made on the SmartLab SE diffractometer. Emission spectra recorded for all the samples at an excitation wavelength of 394 nm exhibit peaks centered at around 536, 555, 587, 614, 653, 690 and 702.5 nm. The most intensive emission peak is observed at 614nm due to 5D0→7F2 of europium (III) ions transition. Luminescence intensity achieves its maximum for Eu3+ 17.5 mol% and heat-treatment at 1200 °C. The XRPD patterns revealed that the diffraction peaks recorded for this sample are identical to NaBa6Nd(SiO4)4 reflections. As Nd-containing reagents were not involved into the synthesis, the maximum luminescent intensity is most likely to be conditioned by NaBa6Eu(SiO4)4 formation whose reflections are not available in the ICDD-JCPDS database of crystallographic 2024. Up to Eu3+ 2.5 mol% the samples demonstrate the phases corresponding to Ba2SiO4 and BaSiO3 standards. Subsequent increasing of europium (III) concentration in the system leads to NaBa6Eu(SiO4)4 formation along with Ba2SiO4 and BaSiO3. NaBa6Eu(SiO4)4 share gradually increases and starting from 17.5 mol% and more NaBa6Eu(SiO4)4 phase is only registered. Thus, the variation of europium (III) concentration in silica hydrogel–NaOH–BaCl2–Eu(NO3)3 system allows producing by the precipitation method the products composed of europium (III)-doped Ba2SiO4 and BaSiO3 and/or NaBa6Eu(SiO4)4 distinguished by different luminescent properties. The work was supported by the Science Committee of RA, in the frames of the research projects № 21T-1D131 and № 21SCG-1D013.Keywords: europium (III)-doped barium ortho- Ba2SiO4 and metasilicates BaSiO₃, NaBa₆Eu(SiO₄)₄, luminescence, precipitation method
Procedia PDF Downloads 4012524 Design and Development of On-Line, On-Site, In-Situ Induction Motor Performance Analyser
Authors: G. S. Ayyappan, Srinivas Kota, Jaffer R. C. Sheriff, C. Prakash Chandra Joshua
Abstract:
In the present scenario of energy crises, energy conservation in the electrical machines is very important in the industries. In order to conserve energy, one needs to monitor the performance of an induction motor on-site and in-situ. The instruments available for this purpose are very meager and very expensive. This paper deals with the design and development of induction motor performance analyser on-line, on-site, and in-situ. The system measures only few electrical input parameters like input voltage, line current, power factor, frequency, powers, and motor shaft speed. These measured data are coupled to name plate details and compute the operating efficiency of induction motor. This system employs the method of computing motor losses with the help of equivalent circuit parameters. The equivalent circuit parameters of the concerned motor are estimated using the developed algorithm at any load conditions and stored in the system memory. The developed instrument is a reliable, accurate, compact, rugged, and cost-effective one. This portable instrument could be used as a handy tool to study the performance of both slip ring and cage induction motors. During the analysis, the data can be stored in SD Memory card and one can perform various analyses like load vs. efficiency, torque vs. speed characteristics, etc. With the help of the developed instrument, one can operate the motor around its Best Operating Point (BOP). Continuous monitoring of the motor efficiency could lead to Life Cycle Assessment (LCA) of motors. LCA helps in taking decisions on motor replacement or retaining or refurbishment.Keywords: energy conservation, equivalent circuit parameters, induction motor efficiency, life cycle assessment, motor performance analysis
Procedia PDF Downloads 38412523 URM Infill in-Plane and out-of-Plane Interaction in Damage Evaluation of RC Frames
Authors: F. Longo, G. Granello, G. Tecchio, F. Da Porto
Abstract:
Unreinforced masonry (URM) infill walls are widely used throughout the world, also in seismic prone regions, as partitions in reinforced concrete building frames. Even if they do not represent structural elements, they can dramatically affect both strength and stiffness of RC structures by acting as a diagonal strut, modifying shear and displacements distribution along the building height, with uncertain consequences on structural safety. In the last decades, many refined models have been developed to describe infill walls effect on frame structural behaviour, but generally restricted to in-plane actions. Only very recently some new approaches were implemented to consider in-plane/out-of-plane interaction of URM infill walls in progressive collapse simulations. In the present work, a particularly promising macro-model was adopted for the progressive collapse analysis of infilled RC frames. The model allows to consider the bi-directional interaction in terms of displacement and strength capacity for URM infills, and to remove the infill contribution when the URM wall is supposed to fail during the analysis process. The model was calibrated on experimental data regarding two different URM panels thickness, modelling with particular care the post-critic softening branch. A frame specimen set representing the most common Italian structures was built considering two main normative approaches: a traditional design philosophy, corresponding to structures erected between 50’s-80’s basically designed to support vertical loads, and a seismic design philosophy, corresponding to current criteria that take into account horizontal actions. Non-Linear Static analyses were carried out on the specimen set and some preliminary evaluations were drawn in terms of different performance exhibited by the RC frame when the contemporary effect of the out-of-plane damage is considered for the URM infill.Keywords: infill Panels macromodels, in plane-out of plane interaction, RC frames, URM infills
Procedia PDF Downloads 51612522 A Low Cost Education Proposal Using Strain Gauges and Arduino to Develop a Balance
Authors: Thais Cavalheri Santos, Pedro Jose Gabriel Ferreira, Alexandre Daliberto Frugoli, Lucio Leonardo, Pedro Americo Frugoli
Abstract:
This paper presents a low cost education proposal to be used in engineering courses. The engineering education in universities of a developing country that is in need of an increasing number of engineers carried out with quality and affordably, pose a difficult problem to solve. In Brazil, the political and economic scenario requires academic managers able to reduce costs without compromising the quality of education. Within this context, the elaboration of a physics principles teaching method with the construction of an electronic balance is proposed. First, a method to develop and construct a load cell through which the students can understand the physical principle of strain gauges and bridge circuit will be proposed. The load cell structure was made with aluminum 6351T6, in dimensions of 80 mm x 13 mm x 13 mm and for its instrumentation, a complete Wheatstone Bridge was assembled with strain gauges of 350 ohms. Additionally, the process involves the use of a software tool to document the prototypes (design circuits), the conditioning of the signal, a microcontroller, C language programming as well as the development of the prototype. The project also intends to use an open-source I/O board (Arduino Microcontroller). To design the circuit, the Fritizing software will be used and, to program the controller, an open-source software named IDE®. A load cell was chosen because strain gauges have accuracy and their use has several applications in the industry. A prototype was developed for this study, and it confirmed the affordability of this educational idea. Furthermore, the goal of this proposal is to motivate the students to understand the several possible applications in high technology of the use of load cells and microcontroller.Keywords: Arduino, load cell, low-cost education, strain gauge
Procedia PDF Downloads 30312521 Gaming Mouse Redesign Based on Evaluation of Pragmatic and Hedonic Aspects of User Experience
Authors: Thedy Yogasara, Fredy Agus
Abstract:
In designing a product, it is currently crucial to focus not only on the product’s usability based on performance measures, but also on user experience (UX) that includes pragmatic and hedonic aspects of product use. These aspects play a significant role in fulfillment of user needs, both functionally and psychologically. Pragmatic quality refers to as product’s perceived ability to support the fulfillment of behavioral goals. It is closely linked to functionality and usability of the product. In contrast, hedonic quality is product’s perceived ability to support the fulfillment of psychological needs. Hedonic quality relates to the pleasure of ownership and use of the product, including stimulation for personal development and communication of user’s identity to others through the product. This study evaluates the pragmatic and hedonic aspects of gaming mice G600 and Razer Krait using AttrakDiff tool to create an improved design that is able to generate positive UX. AttrakDiff is a method that measures pragmatic and hedonic scores of a product with a scale between -3 to +3 through four attributes (i.e. Pragmatic Quality, Hedonic Quality-Identification, Hedonic Quality-Stimulation, and Attractiveness), represented by 28 pairs of opposite words. Based on data gathered from 15 participants, it is identified that gaming mouse G600 needs to be redesigned because of its low grades (pragmatic score: -0.838, hedonic score: 1, attractiveness score: 0.771). The redesign process focuses on the attributes with poor scores and takes into account improvement suggestions collected from interview with the participants. The redesigned mouse G600 is evaluated using the previous method. The result shows higher scores in pragmatic quality (1.929), hedonic quality (1.703), and attractiveness (1.667), indicating that the redesigned mouse is more capable of creating pleasurable experience of product use.Keywords: AttrakDiff, hedonic aspect, pragmatic aspect, product design, user experience
Procedia PDF Downloads 15712520 The Evaluation for Interfacial Adhesion between SOFC and Metal Adhesive in the High Temperature Environment
Authors: Sang Koo Jeon, Seung Hoon Nahm, Oh Heon Kwon
Abstract:
The unit cell of solid oxide fuel cell (SOFC) must be stacked as several layers type to obtain the high power. The most of researcher have concerned about the performance of stacked SOFC rather than the structural stability of stacked SOFC and especially interested how to design for reducing the electrical loss and improving the high efficiency. Consequently, the stacked SOFC able to produce the electrical high power and related parts like as manifold, gas seal, bipolar plate were developed to optimize the stack design. However, the unit cell of SOFC was just layered on the interconnector without the adhesion and the hydrogen and oxygen were injected to the interfacial layer in the high temperature. On the operating condition, the interfacial layer can be the one of the weak point in the stacked SOFC. Therefore the evaluation of the structural safety for the failure is essentially needed. In this study, interfacial adhesion between SOFC and metal adhesive was estimated in the high temperature environment. The metal adhesive was used to strongly connect the unit cell of SOFC with interconnector and provide the electrical conductivity between them. The four point bending test was performed to measure the interfacial adhesion. The unit cell of SOFC and SiO2 wafer were diced and then attached by metal adhesive. The SiO2 wafer had the center notch to initiate a crack from the tip of the notch. The modified stereomicroscope combined with the CCD camera and system for measuring the length was used to observe the fracture behavior. Additionally, the interfacial adhesion was evaluated in the high temperature condition because the metal adhesive was affected by high temperature. Also the specimen was exposed in the furnace during several hours and then the interfacial adhesion was evaluated. Finally, the interfacial adhesion energy was quantitatively determined and compared in the each condition.Keywords: solid oxide fuel cell (SOFC), metal adhesive, adhesion, high temperature
Procedia PDF Downloads 52112519 Distributed Leadership and Emergency Response: A Study on Seafarers
Authors: Delna Shroff
Abstract:
Merchant shipping is an occupation with a high rate of fatal injuries caused by organizational accidents and maritime disasters. In most accident investigations, the leader’s actions are under scrutiny and point out the necessity to investigate the leader’s decisions in critical conditions. While several leadership studies have been carried out in the past, there is a tendency for most research to focus on holders of formal positions. The unit of analysis in most studies has been the ‘individual.’ A need is, therefore, felt to adopt a practice-based perspective of leadership, understand how leadership emerges to affect maritime safety. This paper explores the phenomenon of distributed leadership among seafarers more holistically. It further examines the role of one form of distributed leadership, that is, planfully aligned leadership in the emergency response of the team. A mixed design will be applied. In the first phase, the data gathered by way of semi-structured interviews will be used to explore the seafarer’s implicit understanding of leadership. The data will be used to develop a conceptual framework of distributed leadership, specific to the maritime context. This framework will be used to develop a simulation. Experimental design will be used to examine the relationship between planfully aligned leadership and emergency response of the team members during navigation. Findings show that planfully aligned leadership significantly and positively predicts the emergency response of team members. Planfully aligned leadership leads to a better emergency response of the team members as compared to authoritarian leadership. In the third qualitative phase, additional data will be gathered through semi-structured interviews to further validate the findings to gain a more complete understanding of distributed leadership and its relation to emergency response. Above are the predictive results; the study expects to be a cornerstone of safety leadership research and has important implications for leadership development and training within the maritime industry.Keywords: authoritarian leadership, distributed leadership, emergency response , planfully aligned leadership
Procedia PDF Downloads 17512518 Comparative Analysis of Simulation-Based and Mixed-Integer Linear Programming Approaches for Optimizing Building Modernization Pathways Towards Decarbonization
Authors: Nico Fuchs, Fabian Wüllhorst, Laura Maier, Dirk Müller
Abstract:
The decarbonization of building stocks necessitates the modernization of existing buildings. Key measures for this include reducing energy demands through insulation of the building envelope, replacing heat generators, and installing solar systems. Given limited financial resources, it is impractical to modernize all buildings in a portfolio simultaneously; instead, prioritization of buildings and modernization measures for a given planning horizon is essential. Optimization models for modernization pathways can assist portfolio managers in this prioritization. However, modeling and solving these large-scale optimization problems, often represented as mixed-integer problems (MIP), necessitates simplifying the operation of building energy systems particularly with respect to system dynamics and transient behavior. This raises the question of which level of simplification remains sufficient to accurately account for realistic costs and emissions of building energy systems, ensuring a fair comparison of different modernization measures. This study addresses this issue by comparing a two-stage simulation-based optimization approach with a single-stage mathematical optimization in a mixed-integer linear programming (MILP) formulation. The simulation-based approach serves as a benchmark for realistic energy system operation but requires a restriction of the solution space to discrete choices of modernization measures, such as the sizing of heating systems. After calculating the operation of different energy systems in terms of the resulting final energy demands in simulation models on a first stage, the results serve as input for a second stage MILP optimization, where the design of each building in the portfolio is optimized. In contrast to the simulation-based approach, the MILP-based approach can capture a broader variety of modernization measures due to the efficiency of MILP solvers but necessitates simplifying the building energy system operation. Both approaches are employed to determine the cost-optimal design and dimensioning of several buildings in a portfolio to meet climate targets within limited yearly budgets, resulting in a modernization pathway for the entire portfolio. The comparison reveals that the MILP formulation successfully captures design decisions of building energy systems, such as the selection of heating systems and the modernization of building envelopes. However, the results regarding the optimal dimensioning of heating technologies differ from the results of the two-stage simulation-based approach, as the MILP model tends to overestimate operational efficiency, highlighting the limitations of the MILP approach.Keywords: building energy system optimization, model accuracy in optimization, modernization pathways, building stock decarbonization
Procedia PDF Downloads 3512517 Design Development and Qualification of a Magnetically Levitated Blower for C0₂ Scrubbing in Manned Space Missions
Authors: Larry Hawkins, Scott K. Sakakura, Michael J. Salopek
Abstract:
The Marshall Space Flight Center is designing and building a next-generation CO₂ removal system, the Four Bed Carbon Dioxide Scrubber (4BCO₂), which will use the International Space Station (ISS) as a testbed. The current ISS CO2 removal system has faced many challenges in both performance and reliability. Given that CO2 removal is an integral Environmental Control and Life Support System (ECLSS) subsystem, the 4BCO2 Scrubber has been designed to eliminate the shortfalls identified in the current ISS system. One of the key required upgrades was to improve the performance and reliability of the blower that provides the airflow through the CO₂ sorbent beds. A magnetically levitated blower, capable of higher airflow and pressure than the previous system, was developed to meet this need. The design and qualification testing of this next-generation blower are described here. The new blower features a high-efficiency permanent magnet motor, a five-axis, active magnetic bearing system, and a compact controller containing both a variable speed drive and a magnetic bearing controller. The blower uses a centrifugal impeller to pull air from the inlet port and drive it through an annular space around the motor and magnetic bearing components to the exhaust port. Technical challenges of the blower and controller development include survival of the blower system under launch random vibration loads, operation in microgravity, packaging under strict size and weight requirements, and successful operation during 4BCO₂ operational changeovers. An ANSYS structural dynamic model of the controller was used to predict response to the NASA defined random vibration spectrum and drive minor design changes. The simulation results are compared to measurements from qualification testing the controller on a vibration table. Predicted blower performance is compared to flow loop testing measurements. Dynamic response of the system to valve changeovers is presented and discussed using high bandwidth measurements from dynamic pressure probes, magnetic bearing position sensors, and actuator coil currents. The results presented in the paper show that the blower controller will survive launch vibration levels, the blower flow meets the requirements, and the magnetic bearings have adequate load capacity and control bandwidth to maintain the desired rotor position during the valve changeover transients.Keywords: blower, carbon dioxide removal, environmental control and life support system, magnetic bearing, permanent magnet motor, validation testing, vibration
Procedia PDF Downloads 13612516 Effect of Wheat Germ Agglutinin- and Lactoferrin-Grafted Catanionic Solid Lipid Nanoparticles on Targeting Delivery of Etoposide to Glioblastoma Multiforme
Authors: Yung-Chih Kuo, I-Hsin Wang
Abstract:
Catanionic solid lipid nanoparticles (CASLNs) with surface wheat germ agglutinin (WGA) and lactoferrin (Lf) were formulated for entrapping and releasing etoposide (ETP), crossing the blood–brain barrier (BBB), and inhibiting the growth of glioblastoma multiforme (GBM). Microemulsified ETP-CASLNs were modified with WGA and Lf for permeating a cultured monolayer of human brain-microvascular endothelial cells (HBMECs) regulated by human astrocytes and for treating malignant U87MG cells. Experimental evidence revealed that an increase in the concentration of catanionic surfactant from 5 μM to 7.5 μM reduced the particle size. When the concentration of catanionic surfactant increased from 7.5 μM to 12.5 μM, the particle size increased, yielding a minimal diameter of WGA-Lf-ETP-CASLNs at 7.5 μM of catanionic surfactant. An increase in the weight percentage of BW from 25% to 75% enlarged WGA-Lf-ETP-CASLNs. In addition, an increase in the concentration of catanionic surfactant from 5 to 15 μM increased the absolute value of zeta potential of WGA-Lf-ETP-CASLNs. It was intriguing that the increment of the charge as a function of the concentration of catanionic surfactant was approximately linear. WGA-Lf-ETP-CASLNs revealed an integral structure with smooth particle contour, displayed a lighter exterior layer of catanionic surfactant, WGA, and Lf and showed a rigid interior region of solid lipids. A variation in the concentration of catanionic surfactant between 5 μM and 15 μM yielded a maximal encapsulation efficiency of ETP ata 7.5 μM of catanionic surfactant. An increase in the concentration of Lf/WGA decreased the grafting efficiency of Lf/WGA. Also, an increase in the weight percentage of ETP decreased its encapsulation efficiency. Moreover, the release rate of ETP from WGA-Lf-ETP-CASLNs reduced with increasing concentration of catanionic surfactant, and WGA-Lf-ETP-CASLNs at 12.5 μM of catanionic surfactant exhibited a feature of sustained release. The order in the viability of HBMECs was ETP-CASLNs ≅ Lf-ETP-CASLNs ≅ WGA-Lf-ETP-CASLNs > ETP. The variation in the transendothelial electrical resistance (TEER) and permeability of propidium iodide (PI) was negligible when the concentration of Lf increased. Furthermore, an increase in the concentration of WGA from 0.2 to 0.6 mg/mL insignificantly altered the TEER and permeability of PI. When the concentration of Lf increased from 2.5 to 7.5 μg/mL and the concentration of WGA increased from 2.5 to 5 μg/mL, the enhancement in the permeability of ETP was minor. However, 10 μg/mL of Lf promoted the permeability of ETP using Lf-ETP-CASLNs, and 5 and 10 μg/mL of WGA could considerably improve the permeability of ETP using WGA-Lf-ETP-CASLNs. The order in the efficacy of inhibiting U87MG cells was WGA-Lf-ETP-CASLNs > Lf-ETP-CASLNs > ETP-CASLNs > ETP. As a result, WGA-Lf-ETP-CASLNs reduced the TEER, enhanced the permeability of PI, induced a minor cytotoxicity to HBMECs, increased the permeability of ETP across the BBB, and improved the antiproliferative efficacy of U87MG cells. The grafting of WGA and Lf is crucial to control the medicinal property of ETP-CASLNs and WGA-Lf-ETP-CASLNs can be promising colloidal carriers in GBM management.Keywords: catanionic solid lipid nanoparticle, etoposide, glioblastoma multiforme, lactoferrin, wheat germ agglutinin
Procedia PDF Downloads 23712515 Design of Low-Emission Catalytically Stabilized Combustion Chamber Concept
Authors: Annapurna Basavaraju, Andreas Marn, Franz Heitmeir
Abstract:
The Advisory Council for Aeronautics Research in Europe (ACARE) is cognizant for the overall reduction of NOx emissions by 80% in its vision 2020. Moreover small turbo engines have higher fuel specific emissions compared to large engines due to their limited combustion chamber size. In order to fulfill these requirements, novel combustion concepts are essential. This motivates to carry out the research on the current state of art, catalytic stabilized combustion chamber using hydrogen in small jet engines which are designed and investigated both numerically and experimentally during this project. Catalytic combustion concepts can also be adopted for low caloric fuels and are therefore not constrained to only hydrogen. However, hydrogen has high heating value and has the major advantage of producing only the nitrogen oxides as pollutants during the combustion, thus eliminating the interest on other emissions such as Carbon monoxides etc. In the present work, the combustion chamber is designed based on the ‘Rich catalytic Lean burn’ concept. The experiments are conducted for the characteristic operating range of an existing engine. This engine has been tested successfully at Institute of Thermal Turbomachinery and Machine Dynamics (ITTM), Technical University Graz. One of the facts that the efficient combustion is a result of proper mixing of fuel-air mixture, considerable significance is given to the selection of appropriate mixer. This led to the design of three diverse configurations of mixers and is investigated experimentally and numerically. Subsequently the best mixer would be equipped in the main combustion chamber and used throughout the experimentation. Furthermore, temperatures and pressures would be recorded at various locations inside the combustion chamber and the exhaust emissions will also be analyzed. The instrumented combustion chamber would be inspected at the engine relevant inlet conditions for nine different sets of catalysts at the Hot Flow Test Facility (HFTF) of the institute.Keywords: catalytic combustion, gas turbine, hydrogen, mixer, NOx emissions
Procedia PDF Downloads 30512514 TutorBot+: Automatic Programming Assistant with Positive Feedback based on LLMs
Authors: Claudia Martínez-Araneda, Mariella Gutiérrez, Pedro Gómez, Diego Maldonado, Alejandra Segura, Christian Vidal-Castro
Abstract:
The purpose of this document is to showcase the preliminary work in developing an EduChatbot-type tool and measuring the effects of its use aimed at providing effective feedback to students in programming courses. This bot, hereinafter referred to as tutorBot+, was constructed based on chatGPT and is tasked with assisting and delivering timely positive feedback to students in the field of computer science at the Universidad Católica de Concepción. The proposed working method consists of four stages: (1) Immersion in the domain of Large Language Models (LLMs), (2) Development of the tutorBot+ prototype and integration, (3) Experiment design, and (4) Intervention. The first stage involves a literature review on the use of artificial intelligence in education and the evaluation of intelligent tutors, as well as research on types of feedback for learning and the domain of chatGPT. The second stage encompasses the development of tutorBot+, and the final stage involves a quasi-experimental study with students from the Programming and Database labs, where the learning outcome involves the development of computational thinking skills, enabling the use and measurement of the tool's effects. The preliminary results of this work are promising, as a functional chatBot prototype has been developed in both conversational and non-conversational versions integrated into an open-source online judge and programming contest platform system. There is also an exploration of the possibility of generating a custom model based on a pre-trained one tailored to the domain of programming. This includes the integration of the created tool and the design of the experiment to measure its utility.Keywords: assessment, chatGPT, learning strategies, LLMs, timely feedback
Procedia PDF Downloads 6812513 Low-Voltage and Low-Power Bulk-Driven Continuous-Time Current-Mode Differentiator Filters
Authors: Ravi Kiran Jaladi, Ezz I. El-Masry
Abstract:
Emerging technologies such as ultra-wide band wireless access technology that operate at ultra-low power present several challenges due to their inherent design that limits the use of voltage-mode filters. Therefore, Continuous-time current-mode (CTCM) filters have become very popular in recent times due to the fact they have a wider dynamic range, improved linearity, and extended bandwidth compared to their voltage-mode counterparts. The goal of this research is to develop analog filters which are suitable for the current scaling CMOS technologies. Bulk-driven MOSFET is one of the most popular low power design technique for the existing challenges, while other techniques have obvious shortcomings. In this work, a CTCM Gate-driven (GD) differentiator has been presented with a frequency range from dc to 100MHz which operates at very low supply voltage of 0.7 volts. A novel CTCM Bulk-driven (BD) differentiator has been designed for the first time which reduces the power consumption multiple times that of GD differentiator. These GD and BD differentiator has been simulated using CADENCE TSMC 65nm technology for all the bilinear and biquadratic band-pass frequency responses. These basic building blocks can be used to implement the higher order filters. A 6th order cascade CTCM Chebyshev band-pass filter has been designed using the GD and BD techniques. As a conclusion, a low power GD and BD 6th order chebyshev stagger-tuned band-pass filter was simulated and all the parameters obtained from all the resulting realizations are analyzed and compared. Monte Carlo analysis is performed for both the 6th order filters and the results of sensitivity analysis are presented.Keywords: bulk-driven (BD), continuous-time current-mode filters (CTCM), gate-driven (GD)
Procedia PDF Downloads 26012512 Patchwork City: An Affective Map for a Patchwork Zone
Authors: Maria Lucília Borges
Abstract:
This article presents the creation and design process of the "patchwork map" made for the project “Santo Amaro em Rede” (Santo Amaro on Web). The project was carried out in 2009 by SESC – SP – Brazil (Social Service for the Commerce of São Paulo) in partnership with Instituto Pólis. It is a mapping of socio-cultural dynamics of São Paulo’s South Zone and neighboring municipalities.Keywords: affective map, cartography, São Paulo city, space, patchwork
Procedia PDF Downloads 38012511 Microwave Tomography: The Analytical Treatment for Detecting Malignant Tumor Inside Human Body
Authors: Muhammad Hassan Khalil, Xu Jiadong
Abstract:
Early detection through screening is the best tool short of a perfect treatment against the malignant tumor inside the breast of a woman. By detecting cancer in its early stages, it can be recognized and treated before it has the opportunity to spread and change into potentially dangerous. Microwave tomography is a new imaging method based on contrast in dielectric properties of materials. The mathematical theory of microwave tomography involves solving an inverse problem for Maxwell’s equations. In this paper, we present designed antenna for breast cancer detection, which will use in microwave tomography configuration.Keywords: microwave imaging, inverse scattering, breast cancer, malignant tumor detection
Procedia PDF Downloads 37112510 Cosmic Radiation Hazards and Protective Strategies in Space Exploration
Authors: Mehrnaz Mostafavi, Alireza Azani, Mahtab Shabani, Fatemeh Ghafari
Abstract:
While filled with promise and wonder, space exploration also presents significant challenges, one of the foremost being the threat of cosmic radiation to astronaut health. Recent advancements in assessing these risks and developing protective strategies have shed new light on this issue. Cosmic radiation encompasses a variety of high-energy particles originating from sources like solar particle events, galactic cosmic rays, and cosmic rays from beyond the solar system. These particles, composed of protons, electrons, and heavy ions, pose a substantial threat to human health in space due to the lack of Earth's protective atmosphere and magnetic field. Researchers have made significant progress in assessing the risks associated with cosmic radiation exposure. By employing advanced dosimetry techniques and conducting biological studies, they have gained insights into how cosmic radiation affects astronauts' health, including increasing the risk of cancer and radiation sickness. This research has led to personalized risk assessment methods tailored to individual astronaut profiles. Distinctive protection strategies have been proposed to combat the dangers of cosmic radiation. These include developing spacecraft shielding materials and designs to enhance radiation protection. Additionally, researchers are exploring pharmacological interventions such as radioprotective drugs and antioxidant therapies to mitigate the biological effects of radiation exposure and preserve astronaut well-being. The findings from recent research have significant implications for the future of space exploration. By advancing our understanding of cosmic radiation risks and developing effective protection strategies, we pave the way for safer and more sustainable human missions beyond Earth's orbit. This is especially crucial for long-duration missions to destinations like Mars, where astronauts will face prolonged exposure to cosmic radiation. In conclusion, recent research has marked a milestone in addressing the challenges posed by cosmic radiation in space exploration. By delving into the complexities of cosmic radiation exposure and developing innovative protection strategies, scientists are ensuring the health and resilience of astronauts as they venture into the vast expanse of the cosmos. Continued research and collaboration in this area are essential for overcoming the cosmic radiation challenge and enabling humanity to embark on new frontiers of exploration and discovery in space.Keywords: Space exploration, cosmic radiation, astronaut health, risk assessment, protective strategies
Procedia PDF Downloads 8012509 [Keynote Talk]: New Generations and Employment: An Exploratory Study about Tensions between the Psycho-Social Characteristics of the Generation Z and Expectations and Actions of Organizational Structures Related with Employment (CABA, 2016)
Authors: Esteban Maioli
Abstract:
Generational studies have an important research tradition in social and human sciences. On the one hand, the speed of social change in the context of globalization imposes the need to research the transformations are identified both the subjectivity of the agents involved and its inclusion in the institutional matrix, specifically employment. Generation Z, (generally considered as the population group whose birth occurs after 1995) have unique psycho-social characteristics. Gen Z is characterized by a different set of values, beliefs, attitudes and ambitions that impact in their concrete action in organizational structures. On the other hand, managers often have to deal with generational differences in the workplace. Organizations have members who belong to different generations; they had never before faced the challenge of having such a diverse group of members. The members of each historical generation are characterized by a different set of values, beliefs, attitudes and ambitions that are manifest in their concrete action in organizational structures. Gen Z it’s the only one who can fully be considered "global," while its members were born in the consolidated context of globalization. Some salient features of the Generation Z can be summarized as follows. They’re the first fully born into a digital world. Social networks and technology are integrated into their lives. They are concerned about the challenges of the modern world (poverty, inequality, climate change, among others). They are self-expressive, more liberal and open to change. They often bore easily, with short attention spans. They do not like routine tasks. They want to achieve a good life-work balance, and they are interested in a flexible work environment, as opposed to traditional work schedule. They are critical thinkers, who come with innovative and creative ideas to help. Research design considered methodological triangulation. Data was collected with two techniques: a self-administered survey with multiple choice questions and attitudinal scales applied over a non-probabilistic sample by reasoned decision. According to the multi-method strategy, also it was conducted in-depth interviews. Organizations constantly face new challenges. One of the biggest ones is to learn to manage a multi-generational scope of work. While Gen Z has not yet been fully incorporated (expected to do so in five years or so), many organizations have already begun to implement a series of changes in its recruitment and development. The main obstacle to retaining young talent is the gap between the expectations of iGen applicants and what companies offer. Members of the iGen expect not only a good salary and job stability but also a clear career plan. Generation Z needs to have immediate feedback on their tasks. However, many organizations have yet to improve both motivation and monitoring practices. It is essential for companies to take a review of organizational practices anchored in the culture of the organization.Keywords: employment, expectations, generation Z, organizational culture, organizations, psycho-social characteristics
Procedia PDF Downloads 20112508 The Use of Respiratory Index of Severity in Children (RISC) for Predicting Clinical Outcomes for 3 Months-59 Months Old Patients Hospitalized with Community-Acquired Pneumonia in Visayas Community Medical Center, Cebu City from January 2013 - June 2
Authors: Karl Owen L. Suan, Juliet Marie S. Lambayan, Floramay P. Salo-Curato
Abstract:
Objective: To predict the outcome among patients admitted with community-acquired pneumonia (ages 3 months to 59 months old) admitted in Visayas Community Medical Center using the Respiratory Index of Severity in Children (RISC). Design: A cross-sectional study design was used. Setting: The study was done in Visayas Community Medical Center, which is a private tertiary level in Cebu City from January-June 2013. Patients/Participants: A total of 72 patients were initially enrolled in the study. However, 1 patient transferred to another institution, thus 71 patients were included in this study. Within 24 hours from admission, patients were assigned a RISC score. Statistical Analysis: Cohen’s kappa coefficient was used for inter-rater agreement for categorical data. This study used frequency and percentage distribution for qualitative data. Mean, standard deviation and range were used for quantitative data. To determine the relationship of each RISC score parameter and the total RISC score with the outcome, a Mann Whitney U Test and 2x2 Fischer Exact test for testing associations were used. A p value less of than 0.05 alpha was considered significant. Results: There was a statistical significance between RISC score and clinical outcome. RISC score of greater than 4 was correlated with intubation and/or mortality. Conclusion: The RISC scoring system is a simple combination of clinical parameters and a reliable tool that will help stratify patients aged 3 months to 59 months in predicting clinical outcome.Keywords: RISC, clinical outcome, community-acquired pneumonia, patients
Procedia PDF Downloads 30212507 Novel Framework for MIMO-Enhanced Robust Selection of Critical Control Factors in Auto Plastic Injection Moulding Quality Optimization
Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari
Abstract:
Apparent quality defects such as warpage, shrinkage, weld line, etc. are such an irresistible phenomenon in mass production of auto plastic appearance parts. These frequently occurred manufacturing defects should be satisfied concurrently so as to achieve a final product with acceptable quality standards. Determining the significant control factors that simultaneously affect multiple quality characteristics can significantly improve the optimization results by eliminating the deviating effect of the so-called ineffective outliers. Hence, a robust quantitative approach needs to be developed upon which major control factors and their level can be effectively determined to help improve the reliability of the optimal processing parameter design. Hence, the primary objective of current study was to develop a systematic methodology for selection of significant control factors (SCF) relevant to multiple quality optimization of auto plastic appearance part. Auto bumper was used as a specimen with the most identical quality and production characteristics to APAP group. A preliminary failure modes and effect analysis (FMEA) was conducted to nominate a database of pseudo significant significant control factors prior to the optimization phase. Later, CAE simulation Moldflow analysis was implemented to manipulate four rampant plastic injection quality defects concerned with APAP group including warpage deflection, volumetric shrinkage, sink mark and weld line. Furthermore, a step-backward elimination searching method (SESME) has been developed for systematic pre-optimization selection of SCF based on hierarchical orthogonal array design and priority-based one-way analysis of variance (ANOVA). The development of robust parameter design in the second phase was based on DOE module powered by Minitab v.16 statistical software. Based on the F-test (F 0.05, 2, 14) one-way ANOVA results, it was concluded that for warpage deflection, material mixture percentage was the most significant control factor yielding a 58.34% of contribution while for the other three quality defects, melt temperature was the most significant control factor with a 25.32%, 84.25%, and 34.57% contribution for sin mark, shrinkage and weld line strength control. Also, the results on the he least significant control factors meaningfully revealed injection fill time as the least significant factor for both warpage and sink mark with respective 1.69% and 6.12% contribution. On the other hand, for shrinkage and weld line defects, the least significant control factors were holding pressure and mold temperature with a 0.23% and 4.05% overall contribution accordingly.Keywords: plastic injection moulding, quality optimization, FMEA, ANOVA, SESME, APAP
Procedia PDF Downloads 34912506 Energy Consumption Estimation for Hybrid Marine Power Systems: Comparing Modeling Methodologies
Authors: Kamyar Maleki Bagherabadi, Torstein Aarseth Bø, Truls Flatberg, Olve Mo
Abstract:
Hydrogen fuel cells and batteries are one of the promising solutions aligned with carbon emission reduction goals for the marine sector. However, the higher installation and operation costs of hydrogen-based systems compared to conventional diesel gensets raise questions about the appropriate hydrogen tank size, energy, and fuel consumption estimations. Ship designers need methodologies and tools to calculate energy and fuel consumption for different component sizes to facilitate decision-making regarding feasibility and performance for retrofits and design cases. The aim of this work is to compare three alternative modeling approaches for the estimation of energy and fuel consumption with various hydrogen tank sizes, battery capacities, and load-sharing strategies. A fishery vessel is selected as an example, using logged load demand data over a year of operations. The modeled power system consists of a PEM fuel cell, a diesel genset, and a battery. The methodologies used are: first, an energy-based model; second, considering load variations during the time domain with a rule-based Power Management System (PMS); and third, a load variations model and dynamic PMS strategy based on optimization with perfect foresight. The errors and potentials of the methods are discussed, and design sensitivity studies for this case are conducted. The results show that the energy-based method can estimate fuel and energy consumption with acceptable accuracy. However, models that consider time variation of the load provide more realistic estimations of energy and fuel consumption regarding hydrogen tank and battery size, still within low computational time.Keywords: fuel cell, battery, hydrogen, hybrid power system, power management system
Procedia PDF Downloads 3912505 Ophelia and the Last Supper: The Brazen Reality in the midst of Aesthetic Beauty When Seen through Thackeray's Vanity Fair
Authors: Irene Ahmed
Abstract:
This is a research manuscript that lay vehemence upon the brazen reality behind the façade of aestheticism of the society. The journal is a conglomeration of a critical analysis of artistic portrait of The Ophelia and The Last Supper and the literary portrait of W.M.Thackeray’s Vanity Fair singularizing the theme of the paper. The portrait Last Supper highlights the morality of Jesus to be in a possession of a super-human quality of forgiving everybody and to know the foregone destiny. But how is it possible that he is not taking any step to avoid the dismal future despite it is known much earlier? Similarly, how is it possible that Ophelia is drowning and she is not aware of the fact? The answers are found in literary portrait of Vanity Fair, where vanity is given the utmost importance keeping aside all other subjects and my subject of research orbs around it.Keywords: acrimonious, brazen reality, vanity fair, Ophelia and the Last Supper
Procedia PDF Downloads 473