Search results for: Urban network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8142

Search results for: Urban network

432 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves

Authors: Shengnan Chen, Shuhua Wang

Abstract:

Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.

Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves

Procedia PDF Downloads 283
431 Validating Chronic Kidney Disease-Specific Risk Factors for Cardiovascular Events Using National Data: A Retrospective Cohort Study of the Nationwide Inpatient Sample

Authors: Fidelis E. Uwumiro, Chimaobi O. Nwevo, Favour O. Osemwota, Victory O. Okpujie, Emeka S. Obi, Omamuyovbi F. Nwoagbe, Ejiroghene Tejere, Joycelyn Adjei-Mensah, Christopher N. Ekeh, Charles T. Ogbodo

Abstract:

Several risk factors associated with cardiovascular events have been identified as specific to Chronic Kidney Disease (CKD). This study endeavors to validate these CKD-specific risk factors using up-to-date national-level data, thereby highlighting the crucial significance of confirming the validity and generalizability of findings obtained from previous studies conducted on smaller patient populations. The study utilized the nationwide inpatient sample database to identify adult hospitalizations for CKD from 2016 to 2020, employing validated ICD-10-CM/PCS codes. A comprehensive literature review was conducted to identify both traditional and CKD-specific risk factors associated with cardiovascular events. Risk factors and cardiovascular events were defined using a combination of ICD-10-CM/PCS codes and statistical commands. Only risk factors with specific ICD-10 codes and hospitalizations with complete data were included in the study. Cardiovascular events of interest included cardiac arrhythmias, sudden cardiac death, acute heart failure, and acute coronary syndromes. Univariate and multivariate regression models were employed to evaluate the association between chronic kidney disease-specific risk factors and cardiovascular events while adjusting for the impact of traditional CV risk factors such as old age, hypertension, diabetes, hypercholesterolemia, inactivity, and smoking. A total of 690,375 hospitalizations for CKD were included in the analysis. The study population was predominantly male (375,564, 54.4%) and primarily received care at urban teaching hospitals (512,258, 74.2%). The mean age of the study population was 61 years (SD 0.1), and 86.7% (598,555) had a CCI of 3 or more. At least one traditional risk factor for CV events was present in 84.1% of all hospitalizations (580,605), while 65.4% (451,505) included at least one CKD-specific risk factor for CV events. The incidence of CV events in the study was as follows: acute coronary syndromes (41,422; 6%), sudden cardiac death (13,807; 2%), heart failure (404,560; 58.6%), and cardiac arrhythmias (124,267; 18%). 91.7% (113,912) of all cardiac arrhythmias were atrial fibrillations. Significant odds of cardiovascular events on multivariate analyses included: malnutrition (aOR: 1.09; 95% CI: 1.06–1.13; p<0.001), post-dialytic hypotension (aOR: 1.34; 95% CI: 1.26–1.42; p<0.001), thrombophilia (aOR: 1.46; 95% CI: 1.29–1.65; p<0.001), sleep disorder (aOR: 1.17; 95% CI: 1.09–1.25; p<0.001), and post-renal transplant immunosuppressive therapy (aOR: 1.39; 95% CI: 1.26–1.53; p<0.001). The study validated malnutrition, post-dialytic hypotension, thrombophilia, sleep disorders, and post-renal transplant immunosuppressive therapy, highlighting their association with increased risk for cardiovascular events in CKD patients. No significant association was observed between uremic syndrome, hyperhomocysteinemia, hyperuricemia, hypertriglyceridemia, leptin levels, carnitine deficiency, anemia, and the odds of experiencing cardiovascular events.

Keywords: cardiovascular events, cardiovascular risk factors in CKD, chronic kidney disease, nationwide inpatient sample

Procedia PDF Downloads 81
430 Motivational Profiles of the Entrepreneurial Career in Spanish Businessmen

Authors: Magdalena Suárez-Ortega, M. Fe. Sánchez-García

Abstract:

This paper focuses on the analysis of the motivations that lead people to undertake and consolidate their business. It is addressed from the framework of planned behavior theory, which recognizes the importance of the social environment and cultural values, both in the decision to undertake business and in business consolidation. Similarly, it is also based on theories of career development, which emphasize the importance of career management competencies and their connections to other vital aspects of people, including their roles within their families and other personal activities. This connects directly with the impact of entrepreneurship on the career and the professional-personal project of each individual. This study is part of the project titled Career Design and Talent Management (Ministry of Economy and Competitiveness of Spain, State Plan 2013-2016 Excellence Ref. EDU2013-45704-P). The aim of the study is to identify and describe entrepreneurial competencies and motivational profiles in a sample of 248 Spanish entrepreneurs, considering the consolidated profile and the profile in transition (n = 248).In order to obtain the information, the Questionnaire of Motivation and conditioners of the entrepreneurial career (MCEC) has been applied. This consists of 67 items and includes four scales (E1-Conflicts in conciliation, E2-Satisfaction in the career path, E3-Motivations to undertake, E4-Guidance Needs). Cluster analysis (mixed method, combining k-means clustering with a hierarchical method) was carried out, characterizing the groups profiles according to the categorical variables (chi square, p = 0.05), and the quantitative variables (ANOVA). The results have allowed us to characterize three motivational profiles relevant to the motivation, the degree of conciliation between personal and professional life, and the degree of conflict in conciliation, levels of career satisfaction and orientation needs (in the entrepreneurial project and life-career). The first profile is formed by extrinsically motivated entrepreneurs, professionally satisfied and without conflict of vital roles. The second profile acts with intrinsic motivation and also associated with family models, and although it shows satisfaction with their professional career, it finds a high conflict in their family and professional life. The third is composed of entrepreneurs with high extrinsic motivation, professional dissatisfaction and at the same time, feel the conflict in their professional life by the effect of personal roles. Ultimately, the analysis has allowed us to line the kinds of entrepreneurs to different levels of motivation, satisfaction, needs and articulation in professional and personal life, showing characterizations associated with the use of time for leisure, and the care of the family. Associations related to gender, age, activity sector, environment (rural, urban, virtual), and the use of time for domestic tasks are not identified. The model obtained and its implications for the design of training actions and orientation to entrepreneurs is also discussed.

Keywords: motivation, entrepreneurial career, guidance needs, life-work balance, job satisfaction, assessment

Procedia PDF Downloads 301
429 Ganga Rejuvenation through Forestation and Conservation Measures in Riverscape

Authors: Ombir Singh

Abstract:

In spite of the religious and cultural pre-dominance of the river Ganga in the Indian ethos, fragmentation and degradation of the river continued down the ages. Recognizing the national concern on environmental degradation of the river and its basin, Ministry of Water Resources, River Development & Ganga Rejuvenation (MoWR,RD&GR), Government of India has initiated a number of pilot schemes for the rejuvenation of river Ganga under the ‘Namami Gange’ Programme. Considering the diversity, complexity, and intricacies of forest ecosystems and pivotal multiple functions performed by them and their inter-connectedness with highly dynamic river ecosystems, forestry interventions all along the river Ganga from its origin at Gaumukh, Uttarakhand to its mouth at Ganga Sagar, West Bengal has been planned by the ministry. For that Forest Research Institute (FRI) in collaboration with National Mission for Clean Ganga (NMCG) has prepared a Detailed Project Report (DPR) on Forestry Interventions for Ganga. The Institute has adopted an extensive consultative process at the national and state levels involving various stakeholders relevant in the context of river Ganga and employed a science-based methodology including use of remote sensing and GIS technologies for geo-spatial analysis, modeling and prioritization of sites for proposed forestation and conservation interventions. Four sets of field data formats were designed to obtain the field based information for forestry interventions, mainly plantations and conservation measures along the river course. In response, five stakeholder State Forest Departments had submitted more than 8,000 data sheets to the Institute. In order to analyze a voluminous field data received from five participating states, the Institute also developed a software to collate, analyze and generation of reports on proposed sites in Ganga basin. FRI has developed potential plantation and treatment models for the proposed forestry and other conservation measures in major three types of landscape components visualized in the Ganga riverscape. These are: (i) Natural, (ii) Agriculture, and (iii) Urban Landscapes. Suggested plantation models broadly varied for the Uttarakhand Himalayas and the Ganga Plains in five participating states. Besides extensive plantations in three type of landscapes within the riverscape, various conservation measures such as soil and water conservation, riparian wildlife management, wetland management, bioremediation and bio-filtration and supporting activities such as policy and law intervention, concurrent research, monitoring and evaluation, and mass awareness campaigns have been envisioned in the DPR. The DPR also incorporates the details of the implementation mechanism, budget provisioned for different components of the project besides allocation of budget state-wise to five implementing agencies, national partner organizations and the Nodal Ministry.

Keywords: conservation, Ganga, river, water, forestry interventions

Procedia PDF Downloads 149
428 Analysis of Fuel Adulteration Consequences in Bangladesh

Authors: Mahadehe Hassan

Abstract:

In most countries manufacturing, trading and distribution of gasoline and diesel fuels belongs to the most important sectors of national economy. For Bangladesh, a robust, well-functioning, secure and smartly managed national fuel distribution chain is an essential precondition for achieving Government top priorities in development and modernization of transportation infrastructure, protection of national environment and population health as well as, very importantly, securing due tax revenue for the State Budget. Bangladesh is a developing country with complex fuel supply network, high fuel taxes incidence and – till now - limited possibilities in application of modern, automated technologies for Government national fuel market control. Such environment allows dishonest physical and legal persons and organized criminals to build and profit from illegal fuel distribution schemes and fuel illicit trade. As a result, the market transparency and the country attractiveness for foreign investments, law-abiding economic operators, national consumers, State Budget and the Government ability to finance development projects, and the country at large suffer significantly. Research shows that over 50% of retail petrol stations in major agglomerations of Bangladesh sell adulterated fuels and/or cheat customers on the real volume of the fuel pumped into their vehicles. Other forms of detected fuel illicit trade practices include misdeclaration of fuel quantitative and qualitative parameters during internal transit and selling of non-declared and smuggled fuels. The aim of the study is to recommend the implementation of a National Fuel Distribution Integrity Program (FDIP) in Bangladesh to address and resolve fuel adulteration and illicit trade problems. The program should be customized according to the specific needs of the country and implemented in partnership with providers of advanced technologies. FDIP should enable and further enhance capacity of respective Bangladesh Government authorities in identification and elimination of all forms of fuel illicit trade swiftly and resolutely. FDIP high-technology, IT and automation systems and secure infrastructures should be aimed at the following areas (1) fuel adulteration, misdeclaration and non-declaration; (2) fuel quality and; (3) fuel volume manipulation at retail level. Furthermore, overall concept of FDIP delivery and its interaction with the reporting and management systems used by the Government shall be aligned with and support objectives of the Vision 2041 and Smart Bangladesh Government programs.

Keywords: fuel adulteration, octane, kerosene, diesel, petrol, pollution, carbon emissions

Procedia PDF Downloads 75
427 Automatic Aggregation and Embedding of Microservices for Optimized Deployments

Authors: Pablo Chico De Guzman, Cesar Sanchez

Abstract:

Microservices are a software development methodology in which applications are built by composing a set of independently deploy-able, small, modular services. Each service runs a unique process and it gets instantiated and deployed in one or more machines (we assume that different microservices are deployed into different machines). Microservices are becoming the de facto standard for developing distributed cloud applications due to their reduced release cycles. In principle, the responsibility of a microservice can be as simple as implementing a single function, which can lead to the following issues: - Resource fragmentation due to the virtual machine boundary. - Poor communication performance between microservices. Two composition techniques can be used to optimize resource fragmentation and communication performance: aggregation and embedding of microservices. Aggregation allows the deployment of a set of microservices on the same machine using a proxy server. Aggregation helps to reduce resource fragmentation, and is particularly useful when the aggregated services have a similar scalability behavior. Embedding deals with communication performance by deploying on the same virtual machine those microservices that require a communication channel (localhost bandwidth is reported to be about 40 times faster than cloud vendor local networks and it offers better reliability). Embedding can also reduce dependencies on load balancer services since the communication takes place on a single virtual machine. For example, assume that microservice A has two instances, a1 and a2, and it communicates with microservice B, which also has two instances, b1 and b2. One embedding can deploy a1 and b1 on machine m1, and a2 and b2 are deployed on a different machine m2. This deployment configuration allows each pair (a1-b1), (a2-b2) to communicate using the localhost interface without the need of a load balancer between microservices A and B. Aggregation and embedding techniques are complex since different microservices might have incompatible runtime dependencies which forbid them from being installed on the same machine. There is also a security concern since the attack surface between microservices can be larger. Luckily, container technology allows to run several processes on the same machine in an isolated manner, solving the incompatibility of running dependencies and the previous security concern, thus greatly simplifying aggregation/embedding implementations by just deploying a microservice container on the same machine as the aggregated/embedded microservice container. Therefore, a wide variety of deployment configurations can be described by combining aggregation and embedding to create an efficient and robust microservice architecture. This paper presents a formal method that receives a declarative definition of a microservice architecture and proposes different optimized deployment configurations by aggregating/embedding microservices. The first prototype is based on i2kit, a deployment tool also submitted to ICWS 2018. The proposed prototype optimizes the following parameters: network/system performance, resource usage, resource costs and failure tolerance.

Keywords: aggregation, deployment, embedding, resource allocation

Procedia PDF Downloads 203
426 A Call for Justice and a New Economic Paradigm: Analyzing Counterhegemonic Discourses for Indigenous Peoples' Rights and Environmental Protection in Philippine Alternative Media

Authors: B. F. Espiritu

Abstract:

This paper examines the resistance of the Lumad people, the indigenous peoples in Mindanao, Southern Philippines, and of environmental and human rights activists to the Philippine government's neoliberal policies and their call for justice and a new economic paradigm that will uphold peoples' rights and environmental protection in two alternative media online sites. The study contributes to the body of knowledge on indigenous resistance to neoliberal globalization and the quest for a new economic paradigm that upholds social justice for the marginalized in society, empathy and compassion for those who depend on the land for their survival, and environmental sustainability. The study analyzes the discourses in selected news articles from Davao Today and Kalikasan (translated to English as 'Nature') People's Network for the Environment’s statements and advocacy articles for the Lumad and the environment from 2018 to February 2020. The study reveals that the alternative media news articles and the advocacy articles contain statements that expose the oppression and violation of human rights of the Lumad people, farmers, government environmental workers, and environmental activists as shown in their killings, illegal arrest and detention, displacement of the indigenous peoples, destruction of their schools by the military and paramilitary groups, and environmental plunder and destruction with the government's permit for the entry and operation of extractive and agribusiness industries in the Lumad ancestral lands. Anchored on Christian Fuch's theory of alternative media as critical media and Bert Cammaerts' theorization of alternative media as counterhegemonic media that are part of civil society and form a third voice between state media and commercial media, the study reveals the counterhegemonic discourses of the news and advocacy articles that oppose the dominant economic system of neoliberalism which oppresses the people who depend on the land for their survival. Furthermore, the news and advocacy articles seek to advance social struggles that transform society towards the realization of cooperative potentials or a new economic paradigm that upholds economic democracy, where the local people, including the indigenous people, are economically empowered their environment and protected towards the realization of self-sustaining communities. The study highlights the call for justice, empathy, and compassion for both the people and the environment and the need for a new economic paradigm wherein indigenous peoples and local communities are empowered towards becoming self-sustaining communities in a sustainable environment.

Keywords: alternative media, environmental sustainability, human rights, indigenous resistance

Procedia PDF Downloads 144
425 Shark Detection and Classification with Deep Learning

Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti

Abstract:

Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.

Keywords: classification, data mining, Instagram, remote monitoring, sharks

Procedia PDF Downloads 121
424 Pre- and Post-Brexit Experiences of the Bulgarian Working Class Migrants: Qualitative and Quantitative Approaches

Authors: Mariyan Tomov

Abstract:

Bulgarian working class immigrants are increasingly concerned with UK’s recent immigration policies in the context of Brexit. The new ID system would exclude many people currently working in Britain and would break the usual immigrant travel patterns. Post-Brexit Britain would aim to repeal seasonal immigrants. Measures for keeping long-term and life-long immigrants have been implemented and migrants that aim to remain in Britain and establish a household there would be more privileged than temporary or seasonal workers. The results of such regulating mechanisms come at the expense of migrants’ longings for a ‘normal’ existence, especially for those coming from Central and Eastern Europe. Based on in-depth interviews with Bulgarian working class immigrants, the study found out that their major concerns following the decision of the UK to leave the EU are related with the freedom to travel, reside and work in the UK. Furthermore, many of the interviewed women are concerned that they could lose some of the EU's fundamental rights, such as maternity and protection of pregnant women from unlawful dismissal. The soar of commodity prices and university fees and the limited access to public services, healthcare and social benefits in the UK, are also subject to discussion in the paper. The most serious problem, according to the interview, is that the attitude towards Bulgarians and other immigrants in the UK is deteriorating. Both traditional and social media in the UK often portray the migrants negatively by claiming that they take British job positions while simultaneously abuse the welfare system. As a result, the Bulgarian migrants often face social exclusion, which might have negative influence on their health and welfare. In this sense, some of the interviewed stress on the fact that the most important changes after Brexit must take place in British society itself. The aim of the proposed study is to provide a better understanding of the Bulgarian migrants’ economic, health and sociocultural experience in the context of Brexit. Methodologically, the proposed paper leans on: 1. Analysing ethnographic materials dedicated to the pre- and post-migratory experiences of Bulgarian working class migrants, using SPSS. 2. Semi-structured interviews are conducted with more than 50 Bulgarian working class migrants [N > 50] in the UK, between 18 and 65 years. The communication with the interviewees was possible via Viber/Skype or face-to-face interaction. 3. The analysis is guided by theoretical frameworks. The paper has been developed within the framework of the research projects of the National Scientific Fund of Bulgaria: DCOST 01/25-20.02.2017 supporting COST Action CA16111 ‘International Ethnic and Immigrant Minorities Survey Data Network’.

Keywords: Bulgarian migrants in UK, economic experiences, sociocultural experiences, Brexit

Procedia PDF Downloads 128
423 Theta-Phase Gamma-Amplitude Coupling as a Neurophysiological Marker in Neuroleptic-Naive Schizophrenia

Authors: Jun Won Kim

Abstract:

Objective: Theta-phase gamma-amplitude coupling (TGC) was used as a novel evidence-based tool to reflect the dysfunctional cortico-thalamic interaction in patients with schizophrenia. However, to our best knowledge, no studies have reported the diagnostic utility of the TGC in the resting-state electroencephalographic (EEG) of neuroleptic-naive patients with schizophrenia compared to healthy controls. Thus, the purpose of this EEG study was to understand the underlying mechanisms in patients with schizophrenia by comparing the TGC at rest between two groups and to evaluate the diagnostic utility of TGC. Method: The subjects included 90 patients with schizophrenia and 90 healthy controls. All patients were diagnosed with schizophrenia according to the criteria of Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-IV) by two independent psychiatrists using semi-structured clinical interviews. Because patients were either drug-naïve (first episode) or had not been taking psychoactive drugs for one month before the study, we could exclude the influence of medications. Five frequency bands were defined for spectral analyses: delta (1–4 Hz), theta (4–8 Hz), slow alpha (8–10 Hz), fast alpha (10–13.5 Hz), beta (13.5–30 Hz), and gamma (30-80 Hz). The spectral power of the EEG data was calculated with fast Fourier Transformation using the 'spectrogram.m' function of the signal processing toolbox in Matlab. An analysis of covariance (ANCOVA) was performed to compare the TGC results between the groups, which were adjusted using a Bonferroni correction (P < 0.05/19 = 0.0026). Receiver operator characteristic (ROC) analysis was conducted to examine the discriminating ability of the TGC data for schizophrenia diagnosis. Results: The patients with schizophrenia showed a significant increase in the resting-state TGC at all electrodes. The delta, theta, slow alpha, fast alpha, and beta powers showed low accuracies of 62.2%, 58.4%, 56.9%, 60.9%, and 59.0%, respectively, in discriminating the patients with schizophrenia from the healthy controls. The ROC analysis performed on the TGC data generated the most accurate result among the EEG measures, displaying an overall classification accuracy of 92.5%. Conclusion: As TGC includes phase, which contains information about neuronal interactions from the EEG recording, TGC is expected to be useful for understanding the mechanisms the dysfunctional cortico-thalamic interaction in patients with schizophrenia. The resting-state TGC value was increased in the patients with schizophrenia compared to that in the healthy controls and had a higher discriminating ability than the other parameters. These findings may be related to the compensatory hyper-arousal patterns of the dysfunctional default-mode network (DMN) in schizophrenia. Further research exploring the association between TGC and medical or psychiatric conditions that may confound EEG signals will help clarify the potential utility of TGC.

Keywords: quantitative electroencephalography (QEEG), theta-phase gamma-amplitude coupling (TGC), schizophrenia, diagnostic utility

Procedia PDF Downloads 143
422 The Impact of Reducing Road Traffic Speed in London on Noise Levels: A Comparative Study of Field Measurement and Theoretical Calculation

Authors: Jessica Cecchinelli, Amer Ali

Abstract:

The continuing growth in road traffic and the resultant impact on the level of pollution and safety especially in urban areas have led local and national authorities to reduce traffic speed and flow in major towns and cities. Various boroughs of London have recently reduced the in-city speed limit from 30mph to 20mph mainly to calm traffic, improve safety and reduce noise and vibration. This paper reports the detailed field measurements using noise sensor and analyser and the corresponding theoretical calculations and analysis of the noise levels on a number of roads in the central London Borough of Camden where speed limit was reduced from 30mph to 20mph in all roads except the major routes of the ‘Transport for London (TfL)’. The measurements, which included the key noise levels and scales at residential streets and main roads, were conducted during weekdays and weekends normal and rush hours. The theoretical calculations were done according to the UK procedure ‘Calculation of Road Traffic Noise 1988’ and with conversion to the European L-day, L-evening, L-night, and L-den and other important levels. The current study also includes comparable data and analysis from previously measured noise in the Borough of Camden and other boroughs of central London. Classified traffic flow and speed on the roads concerned were observed and used in the calculation part of the study. Relevant data and description of the weather condition are reported. The paper also reports a field survey in the form of face-to-face interview questionnaires, which was carried out in parallel with the field measurement of noise, in order to ascertain the opinions and views of local residents and workers in the reduced speed zones of 20mph. The main findings are that the reduction in speed had reduced the noise pollution on the studied zones and that the measured and calculated noise levels for each speed zone are closely matched. Among the other findings was that of the field survey of the opinions and views of the local residents and workers in the reduced speed 20mph zones who supported the scheme and felt that it had improved the quality of life in their areas giving a sense of calmness and safety particularly for families with children, the elderly, and encouraged pedestrians and cyclists. The key conclusions are that lowering the speed limit in built-up areas would not just reduce the number of serious accidents but it would also reduce the noise pollution and promote clean modes of transport particularly walking and cycling. The details of the site observations and the corresponding calculations together with critical comparative analysis and relevant conclusions will be reported in the full version of the paper.

Keywords: noise calculation, noise field measurement, road traffic noise, speed limit in london, survey of people satisfaction

Procedia PDF Downloads 424
421 Development and Testing of an Instrument to Measure Beliefs about Cervical Cancer Screening among Women in Botswana

Authors: Ditsapelo M. McFarland

Abstract:

Background: Despite the availability of the Pap smear services in urban areas in Botswana, most women in such areas do not seem to screen regular for prevention of the cervical cancer disease. Reasons for non-use of the available Pap smear services are not well understood. Beliefs about cancer may influence participation in cancer screening in these women. The purpose of this study was to develop an instrument to measure beliefs about cervical cancer and Pap smear screening among Black women in Botswana, and evaluate the psychometric properties of the instrument. Significance: Instruments that are designed to measure beliefs about cervical cancer and screening among black women in Botswana, as well as in the surrounding region, are presently not available. Valid and reliable instruments are needed for exploration of the women’s beliefs about cervical cancer. Conceptual Framework: The Health Belief Model (HBM) provided a conceptual framework for the study. Methodology: The study was done in four phases: Phase 1: item generation: 15 items were generated from literature review and qualitative data for each of four conceptually defined HBM constructs: Perceived susceptibility, severity, benefits, and barriers (Version 1). Phase 2: content validity: Four experts who were advanced practice nurses of African descent and were familiar with the content and the HBM evaluated the content. Experts rated the items on a 4-point Likert scale ranging from: 1=not relevant, 2=somewhat relevant, 3=relevant and 4=very relevant. Fifty-five items were retained for instrument development: perceived susceptibility - 11, severity - 14, benefits - 15 and barriers - 15, all measuring on a 4-point Likert scale ranging from strongly disagree (1) to strongly agree (4). (Version 2). Phase 3: pilot testing: The instrument was pilot tested on a convenient sample of 30 women in Botswana and revised as needed. Phase 4: reliability: the revised instrument (Version 3) was submitted to a larger sample of women in Botswana (n=300) for reliability testing. The sample included women who were Batswana by birth and decent, were aged 30 years and above and could complete an English questionnaire. Data were collected with the assistance of trained research assistants. Major findings: confirmatory factor analysis of the 55 items found that a number of items did not adequately load in a four-factor solution. Items that exhibited reasonable reliability and had low frequency of missing values (n=36) were retained: perceived barriers (14 items), perceived benefits (8 items), perceived severity (4 items), and perceived susceptibility (10 items). confirmatory factor analysis (principle components) for a four factor solution using varimax rotation demonstrated that these four factors explained 43% of the variation in these 36 items. Conclusion: reliability analysis using Cronbach’s Alpha gave generally satisfactory results with values from 0.53 to 0.89.

Keywords: cervical cancer, factor analysis, psychometric evaluation, varimax rotation

Procedia PDF Downloads 126
420 Colored Image Classification Using Quantum Convolutional Neural Networks Approach

Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins

Abstract:

Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.

Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning

Procedia PDF Downloads 129
419 Exploratory Tests on Structures Resistance during Forest Fires

Authors: Luis M. Ribeiro, Jorge Raposo, Ricardo Oliveira, David Caballero, Domingos X. Viegas

Abstract:

Under the scope of European project WUIWATCH a set of experimental tests on house vulnerability was performed in order to assess the resistance of selected house components during the passage of a forest fire. Among the individual elements most affected by the passage of a wildfire the windows are the ones with greater exposure. In this sense, a set of exploratory experimental tests was designed to assess some particular aspects related to the vulnerability of windows and blinds. At the same time, the importance of leaving them closed (as well as the doors inside a house) during a wild fire was explored in order to give some scientific background to guidelines for homeowners. Three sets of tests were performed: 1. Windows and blinds resistance to heat. Three types of protective blinds were tested (aluminium, PVC and wood) on 2 types of windows (single and double pane). The objective was to assess the structures resistance. 2. The influence of air flow on the transport of burning embers inside a house. A room was built to scale, and placed inside a wind tunnel, with one window and one door on opposite sides. The objective was to assess the importance of leaving an inside door opened on the probability of burning embers entering the room. 3. The influence of the dimension of openings on a window or door related to the probability of ignition inside a house. The objective was to assess the influence of different window openings in relation to the amount of burning particles that can enter a house. The main results were: 1. The purely radiative heat source provides 1.5 KW/m2 of heat impact in the structure, while the real fire generates 10 Kw/m2. When protected by the blind, the single pane window reaches 30ºC on both sides, and the double pane window has a differential of 10º from the side facing the heat (30ºC) and the opposite side (40ºC). Unprotected window constantly increases temperature until the end of the test. Window blinds reach considerably higher temperatures. PVC loses its consistency above 150ºC and melts. 2. Leaving the inside door closed results in a positive pressure differential of +1Pa from the outside to the inside, inhibiting the air flow. Opening the door in half or full reverts the pressure differential to -6 and -8 times respectively, favouring the air flow from the outside to the inside. The number of particles entering the house follows the same tendency. 3. As the bottom opening in a window increases from 0,5 cm to 4 cm the number of particles that enter the house per second also increases greatly. From 5 cm until 80cm there is no substantial increase in the number of entering particles. This set of exploratory tests proved to be an added value in supporting guidelines for home owners, regarding self-protection in WUI areas.

Keywords: forest fire, wildland urban interface, house vulnerability, house protective elements

Procedia PDF Downloads 284
418 Smart Contracts: Bridging the Divide Between Code and Law

Authors: Abeeb Abiodun Bakare

Abstract:

The advent of blockchain technology has birthed a revolutionary innovation: smart contracts. These self-executing contracts, encoded within the immutable ledger of a blockchain, hold the potential to transform the landscape of traditional contractual agreements. This research paper embarks on a comprehensive exploration of the legal implications surrounding smart contracts, delving into their enforceability and their profound impact on traditional contract law. The first section of this paper delves into the foundational principles of smart contracts, elucidating their underlying mechanisms and technological intricacies. By harnessing the power of blockchain technology, smart contracts automate the execution of contractual terms, eliminating the need for intermediaries and enhancing efficiency in commercial transactions. However, this technological marvel raises fundamental questions regarding legal enforceability and compliance with traditional legal frameworks. Moving beyond the realm of technology, the paper proceeds to analyze the legal validity of smart contracts within the context of traditional contract law. Drawing upon established legal principles, such as offer, acceptance, and consideration, we examine the extent to which smart contracts satisfy the requirements for forming a legally binding agreement. Furthermore, we explore the challenges posed by jurisdictional issues as smart contracts transcend physical boundaries and operate within a decentralized network. Central to this analysis is the examination of the role of arbitration and dispute resolution mechanisms in the context of smart contracts. While smart contracts offer unparalleled efficiency and transparency in executing contractual terms, disputes inevitably arise, necessitating mechanisms for resolution. We investigate the feasibility of integrating arbitration clauses within smart contracts, exploring the potential for decentralized arbitration platforms to streamline dispute resolution processes. Moreover, this paper explores the implications of smart contracts for traditional legal intermediaries, such as lawyers and judges. As smart contracts automate the execution of contractual terms, the role of legal professionals in contract drafting and interpretation may undergo significant transformation. We assess the implications of this paradigm shift for legal practice and the broader legal profession. In conclusion, this research paper provides a comprehensive analysis of the legal implications surrounding smart contracts, illuminating the intricate interplay between code and law. While smart contracts offer unprecedented efficiency and transparency in commercial transactions, their legal validity remains subject to scrutiny within traditional legal frameworks. By navigating the complex landscape of smart contract law, we aim to provide insights into the transformative potential of this groundbreaking technology.

Keywords: smart-contracts, law, blockchain, legal, technology

Procedia PDF Downloads 45
417 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Authors: Xiangtuo Chen, Paul-Henry Cournéde

Abstract:

Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.

Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest

Procedia PDF Downloads 231
416 Spatial Analysis and Determinants of Number of Antenatal Health Care Visit Among Pregnant Women in Ethiopia: Application of Spatial Multilevel Count Regression Models

Authors: Muluwerk Ayele Derebe

Abstract:

Background: Antenatal care (ANC) is an essential element in the continuum of reproductive health care for preventing preventable pregnancy-related morbidity and mortality. Objective: The aim of this study is to assess the spatial pattern and predictors of ANC visits in Ethiopia. Method: This study was done using Ethiopian Demographic and Health Survey data of 2016 among 7,174 pregnant women aged 15-49 years which was a nationwide community-based cross-sectional survey. Spatial analysis was done using Getis-Ord Gi* statistics to identify hot and cold spot areas of ANC visits. Multilevel glmmTMB packages adjusted for spatial effects were used in R software. Spatial multilevel count regression was conducted to identify predictors of antenatal care visits for pregnant women, and proportional change in variance was done to uncover the effect of individual and community-level factors of ANC visits. Results: The distribution of ANC visits was spatially clustered Moran’s I = 0.271, p<.0.001, ICC = 0.497, p<0.001). The highest spatial outlier areas of ANC visit was found in Amhara (South Wollo, Weast Gojjam, North Shewa), Oromo (west Arsi and East Harariga), Tigray (Central Tigray) and Benishangul-Gumuz (Asosa and Metekel) regions. The data was found with excess zeros (34.6%) and over-dispersed. The expected ANC visit of pregnant women with pregnancy complications was higher at 0.7868 [ARR= 2.1964, 95% CI: 1.8605, 2.5928, p-value <0.0001] compared to pregnant women who had no pregnancy complications. The expected ANC visit of a pregnant woman who lived in a rural area was 1.2254 times higher [ARR=3.4057, 95% CI: 2.1462, 5.4041, p-value <0.0001] as compared to a pregnant woman who lived in an urban. The study found dissimilar clusters with a low number of zero counts for a mean number of ANC visits surrounded by clusters with a higher number of counts of an average number of ANC visits when other variables held constant. Conclusion: This study found that the number of ANC visits in Ethiopia had a spatial pattern associated with socioeconomic, demographic, and geographic risk factors. Spatial clustering of ANC visits exists in all regions of Ethiopia. The predictor age of the mother, religion, mother’s education, husband’s education, mother's occupation, husband's occupation, signs of pregnancy complication, wealth index and marital status had a strong association with the number of ANC visits by each individual. At the community level, place of residence, region, age of the mother, sex of the household head, signs of pregnancy complications and distance to health facility factors had a strong association with the number of ANC visits.

Keywords: Ethiopia, ANC, spatial, multilevel, zero inflated Poisson

Procedia PDF Downloads 74
415 Predicting Polyethylene Processing Properties Based on Reaction Conditions via a Coupled Kinetic, Stochastic and Rheological Modelling Approach

Authors: Kristina Pflug, Markus Busch

Abstract:

Being able to predict polymer properties and processing behavior based on the applied operating reaction conditions in one of the key challenges in modern polymer reaction engineering. Especially, for cost-intensive processes such as the high-pressure polymerization of low-density polyethylene (LDPE) with high safety-requirements, the need for simulation-based process optimization and product design is high. A multi-scale modelling approach was set-up and validated via a series of high-pressure mini-plant autoclave reactor experiments. The approach starts with the numerical modelling of the complex reaction network of the LDPE polymerization taking into consideration the actual reaction conditions. While this gives average product properties, the complex polymeric microstructure including random short- and long-chain branching is calculated via a hybrid Monte Carlo-approach. Finally, the processing behavior of LDPE -its melt flow behavior- is determined in dependence of the previously determined polymeric microstructure using the branch on branch algorithm for randomly branched polymer systems. All three steps of the multi-scale modelling approach can be independently validated against analytical data. A triple-detector GPC containing an IR, viscosimetry and multi-angle light scattering detector is applied. It serves to determine molecular weight distributions as well as chain-length dependent short- and long-chain branching frequencies. 13C-NMR measurements give average branching frequencies, and rheological measurements in shear and extension serve to characterize the polymeric flow behavior. The accordance of experimental and modelled results was found to be extraordinary, especially taking into consideration that the applied multi-scale modelling approach does not contain parameter fitting of the data. This validates the suggested approach and proves its universality at the same time. In the next step, the modelling approach can be applied to other reactor types, such as tubular reactors or industrial scale. Moreover, sensitivity analysis for systematically varying process conditions is easily feasible. The developed multi-scale modelling approach finally gives the opportunity to predict and design LDPE processing behavior simply based on process conditions such as feed streams and inlet temperatures and pressures.

Keywords: low-density polyethylene, multi-scale modelling, polymer properties, reaction engineering, rheology

Procedia PDF Downloads 124
414 Inertial Spreading of Drop on Porous Surfaces

Authors: Shilpa Sahoo, Michel Louge, Anthony Reeves, Olivier Desjardins, Susan Daniel, Sadik Omowunmi

Abstract:

The microgravity on the International Space Station (ISS) was exploited to study the imbibition of water into a network of hydrophilic cylindrical capillaries on time and length scales long enough to observe details hitherto inaccessible under Earth gravity. When a drop touches a porous medium, it spreads as if laid on a composite surface. The surface first behaves as a hydrophobic material, as liquid must penetrate pores filled with air. When contact is established, some of the liquid is drawn into pores by a capillarity that is resisted by viscous forces growing with length of the imbibed region. This process always begins with an inertial regime that is complicated by possible contact pinning. To study imbibition on Earth, time and distance must be shrunk to mitigate gravity-induced distortion. These small scales make it impossible to observe the inertial and pinning processes in detail. Instead, in the International Space Station (ISS), astronaut Luca Parmitano slowly extruded water spheres until they touched any of nine capillary plates. The 12mm diameter droplets were large enough for high-speed GX1050C video cameras on top and side to visualize details near individual capillaries, and long enough to observe dynamics of the entire imbibition process. To investigate the role of contact pinning, a text matrix was produced which consisted nine kinds of porous capillary plates made of gold-coated brass treated with Self-Assembled Monolayers (SAM) that fixed advancing and receding contact angles to known values. In the ISS, long-term microgravity allowed unambiguous observations of the role of contact line pinning during the inertial phase of imbibition. The high-speed videos of spreading and imbibition on the porous plates were analyzed using computer vision software to calculate the radius of the droplet contact patch with the plate and height of the droplet vs time. These observations are compared with numerical simulations and with data that we obtained at the ESA ZARM free-fall tower in Bremen with a unique mechanism producing relatively large water spheres and similarity in the results were observed. The data obtained from the ISS can be used as a benchmark for further numerical simulations in the field.

Keywords: droplet imbibition, hydrophilic surface, inertial phase, porous medium

Procedia PDF Downloads 140
413 Analyzing the Untenable Corruption Intricate Patterns in Africa and Combating Strategies for the Efficiency of Public Sector Supply Chains

Authors: Charles Mazhazhate

Abstract:

This study interrogates and analyses the intricate kin- and- kith network patterns of corruption and mismanagement of resources prevalent in public sector supply chains bedeviling the developing economies of Sub-Saharan Africa with particular reference to Zimbabwe. This is forcing governments to resort to harsh fiscal policies that see their citizens paying high taxes against a backdrop of incomes below the poverty datum line, and this negatively affects their quality of life. The corporate world is also affected by the various tax-regime instituted. Mismanagement of resources and corrupt practices are rampant in state-owned enterprises to the extent that institutional policies, procedures, and practices are often flouted for the benefit of a clique of individuals. This interwoven in kith and kin blood human relations in organizations where appointments to critical positions are based on ascribed status. People no longer place value in their systems to make them work thereby violating corporate governance principles. Greediness and ‘unholy friendship connections’ are instrumental in fueling the employment of people who know each other from their discrete backgrounds. Such employments or socio-metric unions are meant to protect those at the top by giving them intelligent information through spying on what other subordinates are doing inside and outside the organization. This practice has led to the underperforming of organizations as those employees with connections and their upper echelons favorites connive to abuse resources for their own benefit. Even if culprits are known, no draconian measures are employed as a deterrence measure. Public value along public sector supply chains is lost. The study used a descriptive case study research design on fifty organizations in Zimbabwe mainly state-owned enterprises. Both qualitative and quantitative instrumentations were used. Both Snowball and random sampling techniques were used. The study found out that in all the fifty SOEs, there were employees in key positions related to top management, with tentacles feeding into the law enforcement agents, judiciary, security systems, and the executive. Such employees in public seem not to know each other with but would be involved in dirty scams and then share the proceeds with top people behind the scenes. The study also established that the same employees do not have the necessary competencies, qualifications, abilities, and capabilities to be in those positions. This culture is now strong that it is difficult to bust. The study recommends recruitment of all employees through an independent employment bureau to ensure strategic fit.

Keywords: corruption, state owned enterprises, strategic fit, public sector supply chains, efficiency

Procedia PDF Downloads 160
412 The Igbo People's Dual Religion Identity on Rite of Marriage in Imo State

Authors: Henry Okechukwu Onyeiwu, Arfah Ab. Majid

Abstract:

To fully understand the critical role of marriage in society, it is important to view it as a social institution that provides some basic social needs for society. A ‘social institution’ is the network of shared meanings, norms, definitions, expectations, and understandings held by the members of society. It is what guides and governs how the members of the society are expected to act and interact, what is socially desirable and legitimate, what they should be striving for, and so on. One of the major social institutions is marriage. Marriage is and has often focused on children and what is best for them because the rising generation literally is the future of every society. However, according to the aforementioned definition, which notes that marriage may also be a union between two persons of the same sex with legal support, this study stands with the definitions that are based on marriage being a union between a man and woman that is the most appropriate in Igbo land and not the other way round. The issue to be evaluated concerns marriage as it associates with Igbo Catholic Christians in Nigeria. Pasts of Igbo culture should be better organized into the Christian faith. Igbo Christians actually convey a significant number of their customary thoughts, customs, and social qualities, particularly regarding marriage, in the aftermath of switching to Christianity. The analyst agrees that marriage among Igbo Christians warrants adequate evolution. This study, therefore, concentrates on the Igbo community’s interpretation of the concept of culture and religion and the religious implications of traditional marriage and Christian marriage ceremonies in Igbo. The research design of this study is a qualitative design that provides in-depth information on the dual religious identity of the Igbo people on the rite of marriage in Imo state. The study population was composed of both male and female members from each selected local government area in Imo State. Thematic analysis was used to elaborate on the result from the respondents. This survey found that reputation is a major concern for Ibo people. Parental discomfort can lead to the use of coping strategies such as displacement, in which parents pass on their own vulnerable sentiments to their children. Those who participate in marriage negotiations feel the pain of their parents because they are unable to communicate their own feelings. As a result, participants experience increased stress and a range of negative emotions related to their marriage, including worry, dissatisfaction, and ambivalence. It was concluded that when it comes to Igbo culture, marriage is seen as a need for the continuation of the family’s lineage of descent, according to the outcome. The Task at hand was to discover how the locals preparing to get married define the impending transition. Imo State is home to the practice of Igba-nkwu, where the woman is either inherited or taken in the place of another.

Keywords: Igbo, culture, Christianity, traditional marriage, Christian wedding

Procedia PDF Downloads 162
411 Aerosol Chemical Composition in Urban Sites: A Comparative Study of Lima and Medellin

Authors: Guilherme M. Pereira, Kimmo Teinïla, Danilo Custódio, Risto Hillamo, Célia Alves, Pérola de C. Vasconcellos

Abstract:

South American large cities often present serious air pollution problems and their atmosphere composition is influenced by a variety of emissions sources. The South American Emissions Megacities, and Climate project (SAEMC) has focused on the study of emissions and its influence on climate in the South American largest cities and it also included Lima (Peru) and Medellin (Colombia), sites where few studies of the genre were done. Lima is a coastal city with more than 8 million inhabitants and the second largest city in South America. Medellin is a 2.5 million inhabitants city and second largest city in Colombia; it is situated in a valley. The samples were collected in quartz fiber filters in high volume samplers (Hi-Vol), in 24 hours of sampling. The samples were collected in intensive campaigns in both sites, in July, 2010. Several species were determined in the aerosol samples of Lima and Medellin. Organic and elemental carbon (OC and EC) in thermal-optical analysis; biomass burning tracers (levoglucosan - Lev, mannosan - Man and galactosan - Gal) in high-performance anion exchange ion chromatography with mass spectrometer detection; water soluble ions in ion chromatography. The average particulate matter was similar for both campaigns, the PM10 concentrations were above the recommended by World Health Organization (50 µg m⁻³ – daily limit) in 40% of the samples in Medellin, while in Lima it was above that value in 15% of the samples. The average total ions concentration was higher in Lima (17450 ng m⁻³ in Lima and 3816 ng m⁻³ in Medellin) and the average concentrations of sodium and chloride were higher in this site, these species also had better correlations (Pearson’s coefficient = 0,63); suggesting a higher influence of marine aerosol in the site due its location in the coast. Sulphate concentrations were also much higher at Lima site; which may be explained by a higher influence of marine originated sulphate. However, the OC, EC and monosaccharides average concentrations were higher at Medellin site; this may be due to the lower dispersion of pollutants due to the site’s location and a larger influence of biomass burning sources. The levoglucosan average concentration was 95 ng m⁻³ for Medellin and 16 ng m⁻³ and OC was well correlated with levoglucosan (Pearson’s coefficient = 0,86) in Medellin; suggesting a higher influence of biomass burning over the organic aerosol in this site. The Lev/Man ratio is often related to the type of biomass burned and was close to 18, similar to the observed in previous studies done at biomass burning impacted sites in the Amazon region; backward trajectories also suggested the transport of aerosol from that region. Biomass burning appears to have a larger influence on the air quality in Medellin, in addition the vehicular emissions; while Lima showed a larger influence of marine aerosol during the study period.

Keywords: aerosol transport, atmospheric particulate matter, biomass burning, SAEMC project

Procedia PDF Downloads 263
410 Management of Caverno-Venous Leakage: A Series of 133 Patients with Symptoms, Hemodynamic Workup, and Results of Surgery

Authors: Allaire Eric, Hauet Pascal, Floresco Jean, Beley Sebastien, Sussman Helene, Virag Ronald

Abstract:

Background: Caverno-venous leakage (CVL) is devastating, although barely known disease, the first cause of major physical impairment in men under 25, and responsible for 50% of resistances to phosphodiesterase 5-inhibitors (PDE5-I), affecting 30 to 40% of users in this medication class. In this condition, too early blood drainage from corpora cavernosa prevents penile rigidity and penetration during sexual intercourse. The role of conservative surgery in this disease remains controversial. Aim: Assess complications and results of combined open surgery and embolization for CVL. Method: Between June 2016 and September 2021, 133 consecutive patients underwent surgery in our institution for CVL, causing severe erectile dysfunction (ED) resistance to oral medical treatment. Procedures combined vein embolization and ligation with microsurgical techniques. We performed a pre-and post-operative clinical (Erection Harness Scale: EHS) hemodynamic evaluation by duplex sonography in all patients. Before surgery, the CVL network was visualized by computed tomography cavernography. Penile EMG was performed in case of diabetes or suspected other neurological conditions. All patients were optimized for hormonal status—data we prospectively recorded. Results: Clinical signs suggesting CVL were ED since age lower than 25, loss of erection when changing position, penile rigidity varying according to the position. Main complications were minor pulmonary embolism in 2 patients, one after airline travel, one with Factor V Leiden heterozygote mutation, one infection and three hematomas requiring reoperation, one decreased gland sensitivity lasting for more than one year. Mean pre-operative pharmacologic EHS was 2.37+/-0.64, mean pharmacologic post-operative EHS was 3.21+/-0.60, p<0.0001 (paired t-test). The mean EHS variation was 0.87+/-0.74. After surgery, 81.5% of patients had a pharmacologic EHS equal to or over 3, allowing for intercourse with penetration. Three patients (2.2%) experienced lower post-operative EHS. The main cause of failure was leakage from the deep dorsal aspect of the corpus cavernosa. In a 14 months follow-up, 83.2% of patients had a clinical EHS equal to or over 3, allowing for sexual intercourse with penetration, one-third of them without any medication. 5 patients had a penile implant after unsuccessful conservative surgery. Conclusion: Open surgery combined with embolization for CVL is an efficient approach to CVL causing severe erectile dysfunction.

Keywords: erectile dysfunction, cavernovenous leakage, surgery, embolization, treatment, result, complications, penile duplex sonography

Procedia PDF Downloads 150
409 Exploring the Impact of Input Sequence Lengths on Long Short-Term Memory-Based Streamflow Prediction in Flashy Catchments

Authors: Farzad Hosseini Hossein Abadi, Cristina Prieto Sierra, Cesar Álvarez Díaz

Abstract:

Predicting streamflow accurately in flashy catchments prone to floods is a major research and operational challenge in hydrological modeling. Recent advancements in deep learning, particularly Long Short-Term Memory (LSTM) networks, have shown to be promising in achieving accurate hydrological predictions at daily and hourly time scales. In this work, a multi-timescale LSTM (MTS-LSTM) network was applied to the context of regional hydrological predictions at an hourly time scale in flashy catchments. The case study includes 40 catchments allocated in the Basque Country, north of Spain. We explore the impact of hyperparameters on the performance of streamflow predictions given by regional deep learning models through systematic hyperparameter tuning - where optimal regional values for different catchments are identified. The results show that predictions are highly accurate, with Nash-Sutcliffe (NSE) and Kling-Gupta (KGE) metrics values as high as 0.98 and 0.97, respectively. A principal component analysis reveals that a hyperparameter related to the length of the input sequence contributes most significantly to the prediction performance. The findings suggest that input sequence lengths have a crucial impact on the model prediction performance. Moreover, employing catchment-scale analysis reveals distinct sequence lengths for individual basins, highlighting the necessity of customizing this hyperparameter based on each catchment’s characteristics. This aligns with well known “uniqueness of the place” paradigm. In prior research, tuning the length of the input sequence of LSTMs has received limited focus in the field of streamflow prediction. Initially it was set to 365 days to capture a full annual water cycle. Later, performing limited systematic hyper-tuning using grid search, revealed a modification to 270 days. However, despite the significance of this hyperparameter in hydrological predictions, usually studies have overlooked its tuning and fixed it to 365 days. This study, employing a simultaneous systematic hyperparameter tuning approach, emphasizes the critical role of input sequence length as an influential hyperparameter in configuring LSTMs for regional streamflow prediction. Proper tuning of this hyperparameter is essential for achieving accurate hourly predictions using deep learning models.

Keywords: LSTMs, streamflow, hyperparameters, hydrology

Procedia PDF Downloads 70
408 Machine Learning in Patent Law: How Genetic Breeding Algorithms Challenge Modern Patent Law Regimes

Authors: Stefan Papastefanou

Abstract:

Artificial intelligence (AI) is an interdisciplinary field of computer science with the aim of creating intelligent machine behavior. Early approaches to AI have been configured to operate in very constrained environments where the behavior of the AI system was previously determined by formal rules. Knowledge was presented as a set of rules that allowed the AI system to determine the results for specific problems; as a structure of if-else rules that could be traversed to find a solution to a particular problem or question. However, such rule-based systems typically have not been able to generalize beyond the knowledge provided. All over the world and especially in IT-heavy industries such as the United States, the European Union, Singapore, and China, machine learning has developed to be an immense asset, and its applications are becoming more and more significant. It has to be examined how such products of machine learning models can and should be protected by IP law and for the purpose of this paper patent law specifically, since it is the IP law regime closest to technical inventions and computing methods in technical applications. Genetic breeding models are currently less popular than recursive neural network method and deep learning, but this approach can be more easily described by referring to the evolution of natural organisms, and with increasing computational power; the genetic breeding method as a subset of the evolutionary algorithms models is expected to be regaining popularity. The research method focuses on patentability (according to the world’s most significant patent law regimes such as China, Singapore, the European Union, and the United States) of AI inventions and machine learning. Questions of the technical nature of the problem to be solved, the inventive step as such, and the question of the state of the art and the associated obviousness of the solution arise in the current patenting processes. Most importantly, and the key focus of this paper is the problem of patenting inventions that themselves are developed through machine learning. The inventor of a patent application must be a natural person or a group of persons according to the current legal situation in most patent law regimes. In order to be considered an 'inventor', a person must actually have developed part of the inventive concept. The mere application of machine learning or an AI algorithm to a particular problem should not be construed as the algorithm that contributes to a part of the inventive concept. However, when machine learning or the AI algorithm has contributed to a part of the inventive concept, there is currently a lack of clarity regarding the ownership of artificially created inventions. Since not only all European patent law regimes but also the Chinese and Singaporean patent law approaches include identical terms, this paper ultimately offers a comparative analysis of the most relevant patent law regimes.

Keywords: algorithms, inventor, genetic breeding models, machine learning, patentability

Procedia PDF Downloads 108
407 Efficacy of Corporate Social Responsibility in Corporate Governance Structures of Family Owned Business Groups in India

Authors: Raveena Naz

Abstract:

The concept of ‘Corporate Social Responsibility’ (CSR) has often relied on firms thinking beyond their economic interest despite the larger debate of shareholder versus stakeholder interest. India gave legal recognition to CSR in the Companies Act, 2013 which promises better corporate governance. CSR in India is believed to be different for two reasons: the dominance of family business and the history of practice of social responsibility as a form of philanthropy (mainly among the family business). This paper problematises the actual structure of business houses in India and the role of CSR in India. When the law identifies each company as a separate business entity, the economics of institutions emphasizes the ‘business group’ consisting of a plethora of firms as the institutional organization of business. The capital owned or controlled by the family group is spread across the firms through the interholding (interlocked holding) structures. This creates peculiar implications for CSR legislation in India. The legislation sets criteria for individual firms to undertake liability of mandatory CSR if they are above a certain threshold. Within this framework, the largest family firms which are all part of family owned business groups top the CSR expenditure list. The interholding structures, common managers, auditors and series of related party transactions among these firms help the family to run the business as a ‘family business’ even when the shares are issued to the public. This kind of governance structure allows family owned business group to show mandatory compliance of CSR even when they actually spend much less than what is prescribed by law. This aspect of the family firms is not addressed by the CSR legislation in particular or corporate governance legislation in general in India. The paper illustrates this with an empirical study of one of the largest family owned business group in India which is well acclaimed for its CSR activities. The individual companies under the business group are identified, shareholding patterns explored, related party transactions investigated, common managing authorities are identified; and assets, liabilities and profit/loss accounting practices are analysed. The data has been mainly collected from mandatory disclosures in the annual reports and financial statements of the companies within the business group accessed from the official website of the ultimate controlling authority. The paper demonstrates how the business group through these series of shareholding network reduces its legally mandated CSR liability. The paper thus indicates the inadequacy of CSR legislation in India because the unit of compliance is an individual firm and it assumes that each firm is independent and only connected to each other through market dealings. The law does not recognize the inter-connections of firms in corporate governance structures of family owned business group and hence is inadequate in its design to effect the threshold level of CSR expenditure. This is the central argument of the paper.

Keywords: business group, corporate governance, corporate social responsibility, family firm

Procedia PDF Downloads 280
406 A Conceptual Framework of the Individual and Organizational Antecedents to Knowledge Sharing

Authors: Muhammad Abdul Basit Memon

Abstract:

The importance of organizational knowledge sharing and knowledge management has been documented in numerous research studies in available literature, since knowledge sharing has been recognized as a founding pillar for superior organizational performance and a source of gaining competitive advantage. Built on this, most of the successful organizations perceive knowledge management and knowledge sharing as a concern of high strategic importance and spend huge amounts on the effective management and sharing of organizational knowledge. However, despite some very serious endeavors, many firms fail to capitalize on the benefits of knowledge sharing because of being unaware of the individual characteristics, interpersonal, organizational and contextual factors that influence knowledge sharing; simply the antecedent to knowledge sharing. The extant literature on antecedents to knowledge sharing, offers a range of antecedents mentioned in a number of research articles and research studies. Some of the previous studies about antecedents to knowledge sharing, studied antecedents to knowledge sharing regarding inter-organizational knowledge transfer; others focused on inter and intra organizational knowledge sharing and still others investigated organizational factors. Some of the organizational antecedents to KS can relate to the characteristics and underlying aspects of knowledge being shared e.g., specificity and complexity of the underlying knowledge to be transferred; others relate to specific organizational characteristics e.g., age and size of the organization, decentralization and absorptive capacity of the firm and still others relate to the social relations and networks of organizations such as social ties, trusting relationships, and value systems. In the same way some researchers have highlighted on only one aspect like organizational commitment, transformational leadership, knowledge-centred culture, learning and performance orientation and social network-based relationships in the organizations. A bulk of the existing research articles on antecedents to knowledge sharing has mainly discussed organizational or environmental factors affecting knowledge sharing. However, the focus, later on, shifted towards the analysis of individuals or personal determinants as antecedents for the individual’s engagement in knowledge sharing activities, like personality traits, attitude and self efficacy etc. For example, employees’ goal orientations (i.e. learning orientation or performance orientation is an important individual antecedent of knowledge sharing behaviour. While being consistent with the existing literature therefore, the antecedents to knowledge sharing can be classified as being individual and organizational. This paper is an endeavor to discuss a conceptual framework of the individual and organizational antecedents to knowledge sharing in the light of the available literature and empirical evidence. This model not only can help in getting familiarity and comprehension on the subject matter by presenting a holistic view of the antecedents to knowledge sharing as discussed in the literature, but can also help the business managers and especially human resource managers to find insights about the salient features of organizational knowledge sharing. Moreover, this paper can help provide a ground for research students and academicians to conduct both qualitative as well and quantitative research and design an instrument for conducting survey on the topic of individual and organizational antecedents to knowledge sharing.

Keywords: antecedents to knowledge sharing, knowledge management, individual and organizational, organizational knowledge sharing

Procedia PDF Downloads 324
405 Public Values in Service Innovation Management: Case Study in Elderly Care in Danish Municipality

Authors: Christian T. Lystbaek

Abstract:

Background: The importance of innovation management has traditionally been ascribed to private production companies, however, there is an increasing interest in public services innovation management. One of the major theoretical challenges arising from this situation is to understand public values justifying public services innovation management. However, there is not single and stable definition of public value in the literature. The research question guiding this paper is: What is the supposed added value operating in the public sphere? Methodology: The study takes an action research strategy. This is highly contextualized methodology, which is enacted within a particular set of social relations into which on expects to integrate the results. As such, this research strategy is particularly well suited for its potential to generate results that can be applied by managers. The aim of action research is to produce proposals with a creative dimension capable of compelling actors to act in a new and pertinent way in relation to the situations they encounter. The context of the study is a workshop on public services innovation within elderly care. The workshop brought together different actors, such as managers, personnel and two groups of users-citizens (elderly clients and their relatives). The process was designed as an extension of the co-construction methods inherent in action research. Scenario methods and focus groups were applied to generate dialogue. The main strength of these techniques is to gather and exploit as much data as possible by exposing the discourse of justification used by the actors to explain or justify their points of view when interacting with others on a given subject. The approach does not directly interrogate the actors on their values, but allows their values to emerge through debate and dialogue. Findings: The public values related to public services innovation management in elderly care were identified in two steps. In the first step, identification of values, values were identified in the discussions. Through continuous analysis of the data, a network of interrelated values was developed. In the second step, tracking group consensus, we then ascertained the degree to which the meaning attributed to the value was common to the participants, classifying the degree of consensus as high, intermediate or low. High consensus corresponds to strong convergence in meaning, intermediate to generally shared meanings between participants, and low to divergences regarding the meaning between participants. Only values with high or intermediate degree of consensus were retained in the analysis. Conclusion: The study shows that the fundamental criterion for justifying public services innovation management is the capacity for actors to enact public values in their work. In the workshop, we identified two categories of public values, intrinsic value and behavioural values, and a list of more specific values.

Keywords: public services innovation management, public value, co-creation, action research

Procedia PDF Downloads 279
404 Business Intelligent to a Decision Support Tool for Green Entrepreneurship: Meso and Macro Regions

Authors: Anishur Rahman, Maria Areias, Diogo Simões, Ana Figeuiredo, Filipa Figueiredo, João Nunes

Abstract:

The circular economy (CE) has gained increased awareness among academics, businesses, and decision-makers as it stimulates resource circularity in the production and consumption systems. A large epistemological study has explored the principles of CE, but scant attention eagerly focused on analysing how CE is evaluated, consented to, and enforced using economic metabolism data and business intelligent framework. Economic metabolism involves the ongoing exchange of materials and energy within and across socio-economic systems and requires the assessment of vast amounts of data to provide quantitative analysis related to effective resource management. Limited concern, the present work has focused on the regional flows pilot region from Portugal. By addressing this gap, this study aims to promote eco-innovation and sustainability in the regions of Intermunicipal Communities Região de Coimbra, Viseu Dão Lafões and Beiras e Serra da Estrela, using this data to find precise synergies in terms of material flows and give companies a competitive advantage in form of valuable waste destinations, access to new resources and new markets, cost reduction and risk sharing benefits. In our work, emphasis on applying artificial intelligence (AI) and, more specifically, on implementing state-of-the-art deep learning algorithms is placed, contributing to construction a business intelligent approach. With the emergence of new approaches generally highlighted under the sub-heading of AI and machine learning (ML), the methods for statistical analysis of complex and uncertain production systems are facing significant changes. Therefore, various definitions of AI and its differences from traditional statistics are presented, and furthermore, ML is introduced to identify its place in data science and the differences in topics such as big data analytics and in production problems that using AI and ML are identified. A lifecycle-based approach is then taken to analyse the use of different methods in each phase to identify the most useful technologies and unifying attributes of AI in manufacturing. Most of macroeconomic metabolisms models are mainly direct to contexts of large metropolis, neglecting rural territories, so within this project, a dynamic decision support model coupled with artificial intelligence tools and information platforms will be developed, focused on the reality of these transition zones between the rural and urban. Thus, a real decision support tool is under development, which will surpass the scientific developments carried out to date and will allow to overcome imitations related to the availability and reliability of data.

Keywords: circular economy, artificial intelligence, economic metabolisms, machine learning

Procedia PDF Downloads 73
403 Application of Typha domingensis Pers. in Artificial Floating for Sewage Treatment

Authors: Tatiane Benvenuti, Fernando Hamerski, Alexandre Giacobbo, Andrea M. Bernardes, Marco A. S. Rodrigues

Abstract:

Population growth in urban areas has caused damages to the environment, a consequence of the uncontrolled dumping of domestic and industrial wastewater. The capacity of some plants to purify domestic and agricultural wastewater has been demonstrated by several studies. Since natural wetlands have the ability to transform, retain and remove nutrients, constructed wetlands have been used for wastewater treatment. They are widely recognized as an economical, efficient and environmentally acceptable means of treating many different types of wastewater. T. domingensis Pers. species have shown a good performance and low deployment cost to extract, detoxify and sequester pollutants. Constructed Floating Wetlands (CFWs) consist of emergent vegetation established upon a buoyant structure, floating on surface waters. The upper parts of the vegetation grow and remain primarily above the water level, while the roots extend down in the water column, developing an extensive under water-level root system. Thus, the vegetation grows hydroponically, performing direct nutrient uptake from the water column. Biofilm is attached on the roots and rhizomes, and as physical and biochemical processes take place, the system functions as a natural filter. The aim of this study is to diagnose the application of macrophytes in artificial floating in the treatment of domestic sewage in south Brazil. The T. domingensis Pers. plants were placed in a flotation system (polymer structure), in full scale, in a sewage treatment plant. The sewage feed rate was 67.4 m³.d⁻¹ ± 8.0, and the hydraulic retention time was 11.5 d ± 1.3. This CFW treat the sewage generated by 600 inhabitants, which corresponds to 12% of the population served by this municipal treatment plant. During 12 months, samples were collected every two weeks, in order to evaluate parameters as chemical oxygen demand (COD), biochemical oxygen demand in 5 days (BOD5), total Kjeldahl nitrogen (TKN), total phosphorus, total solids, and metals. The average removal of organic matter was around 55% for both COD and BOD5. For nutrients, TKN was reduced in 45.9% what was similar to the total phosphorus removal, while for total solids the reduction was 33%. For metals, aluminum, copper, and cadmium, besides in low concentrations, presented the highest percentage reduction, 82.7, 74.4 and 68.8% respectively. Chromium, iron, and manganese removal achieved values around 40-55%. The use of T. domingensis Pers. in artificial floating for sewage treatment is an effective and innovative alternative in Brazilian sewage treatment systems. The evaluation of additional parameters in the treatment system may give useful information in order to improve the removal efficiency and increase the quality of the water bodies.

Keywords: constructed wetland, floating system, sewage treatment, Typha domingensis Pers.

Procedia PDF Downloads 210