Search results for: insulated concrete form
203 Modeling and Energy Analysis of Limestone Decomposition with Microwave Heating
Authors: Sofia N. Gonçalves, Duarte M. S. Albuquerque, José C. F. Pereira
Abstract:
The energy transition is spurred by structural changes in energy demand, supply, and prices. Microwave technology was first proposed as a faster alternative for cooking food. It was found that food heated instantly when interacting with high-frequency electromagnetic waves. The dielectric properties account for a material’s ability to absorb electromagnetic energy and dissipate this energy in the form of heat. Many energy-intense industries could benefit from electromagnetic heating since many of the raw materials are dielectric at high temperatures. Limestone sedimentary rock is a dielectric material intensively used in the cement industry to produce unslaked lime. A numerical 3D model was implemented in COMSOL Multiphysics to study the limestone continuous processing under microwave heating. The model solves the two-way coupling between the Energy equation and Maxwell’s equations as well as the coupling between heat transfer and chemical interfaces. Complementary, a controller was implemented to optimize the overall heating efficiency and control the numerical model stability. This was done by continuously matching the cavity impedance and predicting the required energy for the system, avoiding energy inefficiencies. This controller was developed in MATLAB and successfully fulfilled all these goals. The limestone load influence on thermal decomposition and overall process efficiency was the main object of this study. The procedure considered the Verification and Validation of the chemical kinetics model separately from the coupled model. The chemical model was found to correctly describe the chosen kinetic equation, and the coupled model successfully solved the equations describing the numerical model. The interaction between flow of material and electric field Poynting vector revealed to influence limestone decomposition, as a result from the low dielectric properties of limestone. The numerical model considered this effect and took advantage from this interaction. The model was demonstrated to be highly unstable when solving non-linear temperature distributions. Limestone has a dielectric loss response that increases with temperature and has low thermal conductivity. For this reason, limestone is prone to produce thermal runaway under electromagnetic heating, as well as numerical model instabilities. Five different scenarios were tested by considering a material fill ratio of 30%, 50%, 65%, 80%, and 100%. Simulating the tube rotation for mixing enhancement was proven to be beneficial and crucial for all loads considered. When uniform temperature distribution is accomplished, the electromagnetic field and material interaction is facilitated. The results pointed out the inefficient development of the electric field within the bed for 30% fill ratio. The thermal efficiency showed the propensity to stabilize around 90%for loads higher than 50%. The process accomplished a maximum microwave efficiency of 75% for the 80% fill ratio, sustaining that the tube has an optimal fill of material. Electric field peak detachment was observed for the case with 100% fill ratio, justifying the lower efficiencies compared to 80%. Microwave technology has been demonstrated to be an important ally for the decarbonization of the cement industry.Keywords: CFD numerical simulations, efficiency optimization, electromagnetic heating, impedance matching, limestone continuous processing
Procedia PDF Downloads 175202 TNF Modulation of Cancer Stem Cells in Renal Clear Cell Carcinoma
Authors: Rafia S. Al-lamki, Jun Wang, Simon Pacey, Jordan Pober, John R. Bradley
Abstract:
Tumor necrosis factor alpha (TNF), signaling through TNFR2, may act an autocrine growth factor for renal tubular epithelial cells. Clear cell renal carcinomas (ccRCC) contain cancer stem cells (CSCs) that give rise to progeny which form the bulk of the tumor. CSCs are rarely in cell cycle and, as non-proliferating cells, resist most chemotherapeutic agents. Thus, recurrence after chemotherapy may result from the survival of CSCs. Therapeutic targeting of both CSCs and the more differentiated bulk tumor populations may provide a more effective strategy for treatment of RCC. In this study, we hypothesized that TNFR2 signaling will induce CSCs in ccRCC to enter cell cycle so that treatment with ligands that engage TNFR2 will render CSCs susceptible to chemotherapy. To test this hypothesis, we have utilized wild-type TNF (wtTNF) or specific muteins selective for TNFR1 (R1TNF) or TNFR2 (R2TNF) to treat either short-term organ cultures of ccRCC and adjacent normal kidney (NK) tissue or cultures of CD133+ cells isolated from ccRCC and adjacent NK, hereafter referred to as stem cell-like cells (SCLCs). The effect of cyclophosphamide (CP), currently an effective anticancer agent, was tested on CD133+SCLCs from ccRCC and NK before and after R2TNF treatment. Responses to TNF were assessed by flow cytometry (FACS), immunofluorescence, and quantitative real-time PCR, TUNEL, and cell viability assays. Cytotoxic effect of CP was analyzed by Annexin V and propidium iodide staining with FACS. In addition, we assessed the effect of TNF on isolated SCLCs differentiation using a three-dimensional (3D) culture system. Clinical samples of ccRCC contain a greater number SCLCs compared to NK and the number of SCSC increases with higher tumor grade. Isolated SCLCs show expression of stemness markers (oct4, Nanog, Sox2, Lin28) but not differentiation markers (cytokeratin, CD31, CD45, and EpCAM). In ccRCC organ cultures, wtTNF and R2TNF increase CD133 and TNFR2 expression and promote cell cycle entry whereas wtTNF and R1TNF increase TNFR1 expression and promote cell death of SCLCs. Similar findings are observed in SCLCs isolated from NK but the effect was greater in SCLCs isolated from ccRCC. Application of CP distinctly triggered apoptotic and necrotic cell death in SLCSs pre-treatment with R2TNF as compared to CP treatment alone, with SCLCs from ccRCC more sensitive to CP compared to SLCS from NK. Furthermore, TNF promotes differentiation of SCLCs to an epithelial phenotype in 3D cultures, confirmed by cytokeratin expression and loss of stemness markers Nanog and Sox2. The differentiated cells show positive expression of TNF and TNFR2. These findings provide evidence that selective engagement of TNFR2 drive CSCs to cell proliferation/differentiation, and targeting of cycling cells with TNFR2 agonist in combination with anti-cancer agents may be a potential therapy for RCC.Keywords: cancer stem cells, ccRCC, cell cycle, cell death, TNF, TNFR1, TNFR2, CD133
Procedia PDF Downloads 262201 Accessing Motional Quotient for All Round Development
Authors: Zongping Wang, Chengjun Cui, Jiacun Wang
Abstract:
The concept of intelligence has been widely used to access an individual's cognitive abilities to learn, form concepts, understand, apply logic, and reason. According to the multiple intelligence theory, there are eight distinguished types of intelligence. One of them is the bodily-kinaesthetic intelligence that links to the capacity of an individual controlling his body and working with objects. Motor intelligence, on the other hand, reflects the capacity to understand, perceive and solve functional problems by motor behavior. Both bodily-kinaesthetic intelligence and motor intelligence refer directly or indirectly to bodily capacity. Inspired by these two intelligence concepts, this paper introduces motional intelligence (MI). MI is two-fold. (1) Body strength, which is the capacity of various organ functions manifested by muscle activity under the control of the central nervous system during physical exercises. It can be measured by the magnitude of muscle contraction force, the frequency of repeating a movement, the time to finish a movement of body position, the duration to maintain muscles in a working status, etc. Body strength reflects the objective of MI. (2) Level of psychiatric willingness to physical events. It is a subjective thing and determined by an individual’s self-consciousness to physical events and resistance to fatigue. As such, we call it subjective MI. Subjective MI can be improved through education and proper social events. The improvement of subjective MI can lead to that of objective MI. A quantitative score of an individual’s MI is motional quotient (MQ). MQ is affected by several factors, including genetics, physical training, diet and lifestyle, family and social environment, and personal awareness of the importance of physical exercise. Genes determine one’s body strength potential. Physical training, in general, makes people stronger, faster and swifter. Diet and lifestyle have a direct impact on health. Family and social environment largely affect one’s passion for physical activities, so does personal awareness of the importance of physical exercise. The key to the success of the MQ study is developing an acceptable and efficient system that can be used to assess MQ objectively and quantitatively. We should apply different accessing systems to different groups of people according to their ages and genders. Field test, laboratory test and questionnaire are among essential components of MQ assessment. A scientific interpretation of MQ score is part of an MQ assessment system as it will help an individual to improve his MQ. IQ (intelligence quotient) and EQ (emotional quotient) and their test have been studied intensively. We argue that IQ and EQ study alone is not sufficient for an individual’s all round development. The significance of MQ study is that it offsets IQ and EQ study. MQ reflects an individual’s mental level as well as bodily level of intelligence in physical activities. It is well-known that the American Springfield College seal includes the Luther Gulick triangle with the words “spirit,” “mind,” and “body” written within it. MQ, together with IQ and EQ, echoes this education philosophy. Since its inception in 2012, the MQ research has spread rapidly in China. By now, six prestigious universities in China have established research centers on MQ and its assessment.Keywords: motional Intelligence, motional quotient, multiple intelligence, motor intelligence, all round development
Procedia PDF Downloads 162200 Assessing the Experiences of South African and Indian Legal Profession from the Perspective of Women Representation in Higher Judiciary: The Square Peg in a Round Hole Story
Authors: Sricheta Chowdhury
Abstract:
To require a woman to choose between her work and her personal life is the most acute form of discrimination that can be meted out against her. No woman should be given a choice to choose between her motherhood and her career at Bar, yet that is the most detrimental discrimination that has been happening in Indian Bar, which no one has questioned so far. The falling number of women in practice is a reality that isn’t garnering much attention given the sharp rise in women studying law but is not being able to continue in the profession. Moving from a colonial misogynist whim to a post-colonial “new-age construct of Indian woman” façade, the policymakers of the Indian Judiciary have done nothing so far to decolonize itself from its rudimentary understanding of ‘equality of gender’ when it comes to the legal profession. Therefore, when Indian jurisprudence was (and is) swooning to the sweeping effect of transformative constitutionalism in the understanding of equality as enshrined under the Indian Constitution, one cannot help but question why the legal profession remained out of brushing effect of achieving substantive equality. The Airline industry’s discriminatory policies were not spared from criticism, nor were the policies where women’s involvement in any establishment serving liquor (Anuj Garg case), but the judicial practice did not question the stereotypical bias of gender and unequal structural practices until recently. That necessitates the need to examine the existing Bar policies and the steps taken by the regulatory bodies in assessing the situations that are in favor or against the purpose of furthering women’s issues in present-day India. From a comparative feminist point of concern, South Africa’s pro-women Bar policies are attractive to assess their applicability and extent in terms of promoting inclusivity at the Bar. This article intends to tap on these two countries’ potential in carving a niche in giving women an equal platform to play a substantive role in designing governance policies through the Judiciary. The article analyses the current gender composition of the legal profession while endorsing the concept of substantive equality as a requisite in designing an appropriate appointment process of the judges. It studies the theoretical framework on gender equality, examines the international and regional instruments and analyses the scope of welfare policies that Indian legal and regulatory bodies can undertake towards a transformative initiative in re-modeling the Judiciary to a more diverse and inclusive institution. The methodology employs a comparative and analytical understanding of doctrinal resources. It makes quantitative use of secondary data and qualitative use of primary data collected for determining the present status of Indian women legal practitioners and judges. With respect to quantitative data, statistics on the representation of women as judges and chief justices and senior advocates from their official websites from 2018 till present have been utilized. In respect of qualitative data, results of the structured interviews conducted through open and close-ended questions with retired lady judges of the higher judiciary and senior advocates of the Supreme Court of India, contacted through snowball sampling, are utilized.Keywords: gender, higher judiciary, legal profession, representation, substantive equality
Procedia PDF Downloads 83199 Fungal Cellulase/Xylanase Complex and Their Industrial Applications
Authors: L. Kutateldze, T. Urushadze, R. Khvedelidze, N. Zakariashvili, I. Khokhashvili, T. Sadunishvili
Abstract:
Microbial cellulase/xylanase have shown their potential application in various industries including pulp and paper, textile, laundry, biofuel production, food and feed industry, brewing, and agriculture. Extremophilic micromycetes and their enzymes that are resistant to critical values of temperature and pH, and retaining enzyme activity for a long time are of great industrial interest. Among strains of microscopic fungi from the collection of S. Durmishidze Institute of Biochemistry and Biotechnology, strains isolated from different ecological niches of Southern Caucasus-active producers of cellulase/xylanase have been selected by means of screening under deep cultivation conditions. Extremophilic micromycetes and their enzymes that are resistant to critical values of temperature and pH, and retaining enzyme activity for a long time are of great industrial interest. Among strains of microscopic fungi from the collection of S. Durmishidze Institute of Biochemistry and Biotechnology, strains isolated from different ecological niches of Southern Caucasus-active producers of cellulase/xylanase have been selected by means of screening under deep cultivation conditions. Representatives of the genera Aspergillus, Penicillium and Trichoderma are outstanding by relatively high activities of these enzymes. Among the producers were revealed thermophilic strains, representatives of the genus Aspergillus-Aspergillus terreus, Aspergillus versicolor, Aspergillus wentii, also strains of Sporotrichum pulverulentum and Chaetomium thermophile. As a result of optimization of cultivation media and conditions, activities of enzymes produced by the strains have been increased by 4 -189 %. Two strains, active producers of cellulase/xylanase – Penicillium canescence E2 (mesophile) and Aspergillus versicolor Z17 (thermophile) were chosen for further studies. Cellulase/xylanase enzyme preparations from two different genera of microscopic fungi Penicillium canescence E2 and Aspergillus versicolor Z 17 were obtained with activities 220 U/g /1200 U/g and 125 U/g /940 U/g, correspondingly. Main technical characteristics were as follows: the highest enzyme activities were obtained for mesophilic strain Penicillium canescence E2 at 45-500C, while almost the same enzyme activities were fixed for the thermophilic strain Aspergillus versicolor Z 17 at temperature 60-65°C, exceeding the temperature optimum of the mesophile by 150C. Optimum pH of action of the studied cellulase/xylanases from mesophileic and thermophilic strains were similar and equaled to 4.5-5.0 It has been shown that cellulase/xylanase technical preparations from selected strains of Penicillium canescence E2 and Aspergillus versicolor Z17 hydrolyzed cellulose of untreated wheat straw to reducible sugars by 46-52%, and to glucose by 22-27%. However the thermophilic enzyme preparations from the thermophilic A.versicolor strains conducted the process at 600C higher by 100C as compared to mesophlic analogue. Rate of hydrolyses of the pretreated substrate by the same enzyme preparations to reducible sugars and glucose conducted at optimum for their action 60 and 500C was 52-61% and 29-33%, correspondingly. Thus, maximum yield of glucose and reducible sugars form untreated and pretreated wheat straw was achieved at higher temperature (600C) by enzyme preparations from thermophilic strain, which gives advantage for their industrial application.Keywords: cellulase/xylanase, cellulose hydrolysis, microscopic fungi, thermophilic strain
Procedia PDF Downloads 285198 A Rapid Assessment of the Impacts of COVID-19 on Overseas Labor Migration: Findings from Bangladesh
Authors: Vaiddehi Bansal, Ridhi Sahai, Kareem Kysia
Abstract:
Overseas labor migration is currently one of the most important contributors to the economy of Bangladesh and is a highly profitable form of labor for Gulf Cooperative Council (GCC) countries. In 2019, 700,159 migrant workers from Bangladeshtraveled abroad for employment. GCC countries are a major destination for Bangladeshi migrant workers, with Saudi Arabia being the most common destination for Bangladeshi migrant workers since 2016. Despite the high rate of migration between these countries every year, the OLR industry remains complex and often leaves migrants susceptible to human trafficking, forced labor, and modern slavery. While the prevalence of forced labor among Bangladeshi migrants in GCC countries is still unknown, the IOM estimates international migrant workers comprise one fourth of the victims of forced labor. Moreover, the onset of the global COVID-19 pandemic has exposed migrant workers to additional adverse situations, making them even more vulnerable to forced labor and health risks. This paper presents findings from a rapid assessment of the impacts of COVID-19 on OLR in Bangladesh, with an emphasis on the increased risk of forced labor among vulnerable migrant worker populations, particularly women.Rapid reviews are a useful approach to swiftly provide actionable evidence for informed decision-making during emergencies, such as the COVID-19 pandemic. The research team conducted semi-structured key information interviews (KIIs) with a range of stakeholders, including government officials, local NGOs, international organizations, migration researchers, and formal and informal recruiting agencies, to obtain insights on the multi-facted impacts of COVID-19 on the OLR sector. The research team also conducted a comprehensive review of available resources, including media articles, blogs, policy briefs, reports, white papers, and other online content, to triangulate findings from the KIIs. After screening for inclusion criteria, a total of 110 grey literature documents were included in the review. A total of 31 KIIs were conducted, data from which was transcribed and translated from Bangla to English, andanalyzed using a detailed codebook. Findings indicate that there was limited reintegration support for returnee migrants. Facing increasing amounts of debt, financial insecurity, and social discrimination, returnee migrants, were extremely vulnerable to forced labor and exploitation. Growing financial debt and limited job opportunities in their home country will likely push migrants to resort to unsafe migration channels. Evidence suggests that women, who are primarily domestic works in GCC countries, were exposed to increased risk of forced labor and workplace violence. Due to stay-at-home measures, women migrant workers were tasked with additional housekeeping working and subjected to longer work hours, wage withholding, and physical abuse. In Bangladesh, returnee women migrant workers also faced an increased risk of domestic violence.Keywords: forced labor, migration, gender, human trafficking
Procedia PDF Downloads 115197 An Investigation into the Social Determinants of Crowdfunding Effectiveness in developing, non-Western contexts: Some Evidence from Thailand
Authors: Khin Thi Htun, James Jain, Tim Andrews
Abstract:
This study examines the under-researched phenomenon of crowdfunding use and effectiveness in developing non-western markets. More precisely, using an institutional theoretical lens, the research explores the attitudes, motivations, and practice surrounding the initiation, development, and receipt of crowdfunding campaignsin a business context symptomatic of widely dissimilar regulatory, normative cognitive institutional ‘pillars’ to those studied – and utilized in practice - to date. As, in essence, a form of alternative finance, crowdfunding is used primarily to fund a wide range of projects through the securement of small amounts of money from a large pool of investors/participants. Being tied almost inextricably to e-commerce channels, the practice of crowdfunding typically sources its means and communicates the purpose of each venture mainly, though not exclusively, online. The wide range of projects supported to date span social entrepreneurship, community benefits initiatives, creative and artistic endeavors, assistance to disadvantaged social cohorts, and small business start-ups. Adopting a longitudinal, comparative approach, the study reported here embodies an investigation centered on six case start-up campaigns within the Thai societal context, covering a range of fundings calls and cause choices. Data was sourced from a variety of respondents using semi-structured interviews, observation (direct and participant), and company information. Results suggest that the motives and effectiveness of crowdfunding campaigns differ significantly in non-western consumer contexts from the norms that have evolved to date in mature Western contexts(particularly the US and UK). Specifically, whereas data on the different regulatory pressures showed relatively insignificant variation, the results regarding cognitive and, especially, normative dissimilarities between the Thai and US/UK institutional profiles surfaced potentially important differences with far-reaching implications. Particular issuesto emerge from our data concerned consumer motivation in terms of support and engagement with different types of campaigns. This was found to stem from social norms symptomatic of ‘collectivist’ and ‘relations based/particularist’ cultural assistance behavior, in turn, linked to deeply-held societal values regarding interpersonal network (‘in group’) reciprocity. This research serves to refine and extend the limited body of knowledge to date on crowdfunding by exploring the phenomenon in a non-western, non-developed country contextswhere social norms and values differ. This was achieved through uncovering and explicating the effects of cultural dissimilarity on motivation, decision-making, construed ethics, and general engagement with crowdfunding ideas. Implications for theory into e-marketing and cross-cultural marketing, as well as for practitioners seeking to develop effective crowdfunding campaigns in a Southeast Asian cultural environment, are discussed to conclude the paper.Keywords: crowdfunding, national culture, e-marketing, cross-cultural business
Procedia PDF Downloads 158196 Genomic and Proteomic Variability in Glycine Max Genotypes in Response to Salt Stress
Authors: Faheema Khan
Abstract:
To investigate the ability of sensitive and tolerant genotype of Glycine max to adapt to a saline environment in a field, we examined the growth performance, water relation and activities of antioxidant enzymes in relation to photosynthetic rate, chlorophyll a fluorescence, photosynthetic pigment concentration, protein and proline in plants exposed to salt stress. Ten soybean genotypes (Pusa-20, Pusa-40, Pusa-37, Pusa-16, Pusa-24, Pusa-22, BRAGG, PK-416, PK-1042, and DS-9712) were selected and grown hydroponically. After 3 days of proper germination, the seedlings were transferred to Hoagland’s solution (Hoagland and Arnon 1950). The growth chamber was maintained at a photosynthetic photon flux density of 430 μmol m−2 s−1, 14 h of light, 10 h of dark and a relative humidity of 60%. The nutrient solution was bubbled with sterile air and changed on alternate days. Ten-day-old seedlings were given seven levels of salt in the form of NaCl viz., T1 = 0 mM NaCl, T2=25 mM NaCl, T3=50 mM NaCl, T4=75 mM NaCl, T5=100 mM NaCl, T6=125 mM NaCl, T7=150 mM NaCl. The investigation showed that genotype Pusa-24, PK-416 and Pusa-20 appeared to be the most salt-sensitive. genotypes as inferred from their significantly reduced length, fresh weight and dry weight in response to the NaCl exposure. Pusa-37 appeared to be the most tolerant genotype since no significant effect of NaCl treatment on growth was found. We observed a greater decline in the photosynthetic variables like photosynthetic rate, chlorophyll fluorescence and chlorophyll content, in salt-sensitive (Pusa-24) genotype than in salt-tolerant Pusa-37 under high salinity. Numerous primers were verified on ten soybean genotypes obtained from Operon technologies among which 30 RAPD primers shown high polymorphism and genetic variation. The Jaccard’s similarity coefficient values for each pairwise comparison between cultivars were calculated and similarity coefficient matrix was constructed. The closer varieties in the cluster behaved similar in their response to salinity tolerance. Intra-clustering within the two clusters precisely grouped the 10 genotypes in sub-cluster as expected from their physiological findings.Salt tolerant genotype Pusa-37, was further analysed by 2-Dimensional gel electrophoresis to analyse the differential expression of proteins at high salt stress. In the Present study, 173 protein spots were identified. Of these, 40 proteins responsive to salinity were either up- or down-regulated in Pusa-37. Proteomic analysis in salt-tolerant genotype (Pusa-37) led to the detection of proteins involved in a variety of biological processes, such as protein synthesis (12 %), redox regulation (19 %), primary and secondary metabolism (25 %), or disease- and defence-related processes (32 %). In conclusion, the soybean plants in our study responded to salt stress by changing their protein expression pattern. The photosynthetic, biochemical and molecular study showed that there is variability in salt tolerance behaviour in soybean genotypes. Pusa-24 is the salt-sensitive and Pusa-37 is the salt-tolerant genotype. Moreover this study gives new insights into the salt-stress response in soybean and demonstrates the power of genomic and proteomic approach in plant biology studies which finally could help us in identifying the possible regulatory switches (gene/s) controlling the salt tolerant genotype of the crop plants and their possible role in defence mechanism.Keywords: glycine max, salt stress, RAPD, genomic and proteomic variability
Procedia PDF Downloads 423195 Cyber-Victimization among Higher Education Students as Related to Academic and Personal Factors
Authors: T. Heiman, D. Olenik-Shemesh
Abstract:
Over the past decade, with the rapid growth of electronic communication, the internet and, in particular, social networking has become an inseparable part of people's daily lives. Along with its benefits, a new type of online aggression has emerged, defined as cyber bullying, a form of interpersonal aggressive behavior that takes place through electronic means. Cyber-bullying is characterized by repetitive behavior over time of maladaptive authority and power usage using computers and cell phones via sending insulting messages and hurtful pictures. Preliminary findings suggest that the prevalence of involvement in cyber-bullying among higher education students varies between 10 and 35%. As to date, universities are facing an uphill effort in trying to restrain online misbehavior. As no studies examined the relationships between cyber-bullying involvement with personal aspects, and its impacts on academic achievement and work functioning, this present study examined the nature of cyber-bullying involvement among 1,052 undergraduate students (mean age = 27.25, S.D = 4.81; 66.2% female), coping with, as well as the effects of social support, perceived self-efficacy, well-being, and body-perception, in relation to cyber-victimization. We assume that students in higher education are a vulnerable population and at high risk of being cyber-victims. We hypothesize that social support might serve as a protective factor and will moderate the relationships between the socio-emotional variables and the occurrence of cyber- victimization. The findings of this study will present the relationships between cyber-victimization and the social-emotional aspects, which constitute risk and protective factors. After receiving approval from the Ethics Committee of the University, a Google Drive questionnaire was sent to a random sample of students, studying in the various University study centers. Students' participation was voluntary, and they completed the five questionnaires anonymously: Cyber-bullying, perceived self-efficacy, subjective well-being, social support and body perception. Results revealed that 11.6% of the students reported being cyber-victims during last year. Examining the emotional and behavioral reactions to cyber-victimization revealed that female emotional and behavioral reactions were significantly greater than the male reactions (p < .001). Moreover, females reported on a significant higher social support compared to men; male reported significantly on a lower social capability than female; and men's body perception was significantly more positive than women's scores. No gender differences were observed for subjective well-being scale. Significant positive correlations were found between cyber-victimization and fewer friends, lower grades, and work ineffectiveness (r = 0.37- .40, p < 0 .001). The results of the Hierarchical regression indicated significantly that cyber-victimization can be predicted by lower social support, lower body perception, and gender (female), that explained 5.6% of the variance (R2 = 0.056, F(5,1047) = 12.47, p < 0.001). The findings deepen our understanding of the students' involvement in cyber-bullying, and present the relationships of the social-emotional and academic aspects on cyber-victim students. In view of our findings, higher education policy could help facilitate coping with cyber-bullying incidents, and student support units could develop intervention programs aimed at reducing cyber-bullying and its impacts.Keywords: academic and personal factors, cyber-victimization, social support, higher education
Procedia PDF Downloads 289194 Gamification of eHealth Business Cases to Enhance Rich Learning Experience
Authors: Kari Björn
Abstract:
Introduction of games has expanded the application area of computer-aided learning tools to wide variety of age groups of learners. Serious games engage the learners into a real-world -type of simulation and potentially enrich the learning experience. Institutional background of a Bachelor’s level engineering program in Information and Communication Technology is introduced, with detailed focus on one of its majors, Health Technology. As part of a Customer Oriented Software Application thematic semester, one particular course of “eHealth Business and Solutions” is described and reflected in a gamified framework. Learning a consistent view into vast literature of business management, strategies, marketing and finance in a very limited time enforces selection of topics relevant to the industry. Health Technology is a novel and growing industry with a growing sector in consumer wearable devices and homecare applications. The business sector is attracting new entrepreneurs and impatient investor funds. From engineering education point of view the sector is driven by miniaturizing electronics, sensors and wireless applications. However, the market is highly consumer-driven and usability, safety and data integrity requirements are extremely high. When the same technology is used in analysis or treatment of patients, very strict regulatory measures are enforced. The paper introduces a course structure using gamification as a tool to learn the most essential in a new market: customer value proposition design, followed by a market entry game. Students analyze the existing market size and pricing structure of eHealth web-service market and enter the market as a steering group of their company, competing against the legacy players and with each other. The market is growing but has its rules of demand and supply balance. New products can be developed with an R&D-investment, and targeted to market with unique quality- and price-combinations. Product cost structure can be improved by investing to enhanced production capacity. Investments can be funded optionally by foreign capital. Students make management decisions and face the dynamics of the market competition in form of income statement and balance sheet after each decision cycle. The focus of the learning outcome is to understand customer value creation to be the source of cash flow. The benefit of gamification is to enrich the learning experience on structure and meaning of financial statements. The paper describes the gamification approach and discusses outcomes after two course implementations. Along the case description of learning challenges, some unexpected misconceptions are noted. Improvements of the game or the semi-gamified teaching pedagogy are discussed. The case description serves as an additional support to new game coordinator, as well as helps to improve the method. Overall, the gamified approach has helped to engage engineering student to business studies in an energizing way.Keywords: engineering education, integrated curriculum, learning experience, learning outcomes
Procedia PDF Downloads 240193 Growth Patterns of Pyrite Crystals Studied by Electron Back Scatter Diffraction (EBSD)
Authors: Kirsten Techmer, Jan-Erik Rybak, Simon Rudolph
Abstract:
Natural formed pyrites (FeS2) are frequent sulfides in sedimentary and metamorphic rocks. Growth textures of idiomorphic pyrite assemblages reflect the conditions during their formation in the geologic sequence, furtheron the local texture analyses of the growth patterns of pyrite assemblages by EBSD reveal the possibility to resolve the growth conditions during the formation of pyrite at the micron scale. The spatial resolution of local texture measurements in the Scanning Electron Microscope used can be in the nanomete scale. Orientation contrasts resulting from domains of smaller misorientations within larger pyrite crystals can be resolved as well. The electron optical studies have been carried out in a Field-Emission Scanning Electron Microscope (FEI Quanta 200) equipped with a CCD camera to study the orientation contrasts along the surfaces of pyrite. Idiomorphic cubic single crystals of pyrite, polycrystalline assemblages of pyrite, spherically grown spheres of pyrite as well as pyrite-bearing ammonites have been studied by EBSD in the Scanning Electron Microscope. Samples were chosen to show no or minor secondary deformation and an idiomorphic 3D crystal habit, so the local textures of pyrite result mainly from growth and minor from deformation. The samples studied derived from Navajun (Spain), Chalchidiki (Greece), Thüringen (Germany) and Unterkliem (Austria). Chemical analyses by EDAX show pyrite with minor inhomogeneities e.g., single crystals of galena and chalcopyrite along the grain boundaries of larger pyrite crystals. Intergrowth between marcasite and pyrite can be detected in one sample. Pyrite may form intense growth twinning lamellae on {011}. Twinning, e.g., contact twinning is abundant within the crystals studied and the individual twinning lamellaes can be resolved by EBSD. The ammonites studied show a replacement of the shale by newly formed pyrite resulting in an intense intergrowth of calcite and pyrite. EBSD measurements indicate a polycrystalline microfabric of both minerals, still reflecting primary surface structures of the ammonites e.g, the Septen. Discs of pyrite (“pyrite dollar”) as well as pyrite framboids show growth patterns comprising a typical microfabric. EBSD studies reveal an equigranular matrix in the inner part of the discs of pyrite and a fiber growth with larger misorientations in the outer regions between the individual segments. This typical microfabric derived from a formation of pyrite crystals starting at a higher nucleation rate and followed by directional crystal growth. EBSD studies show, that the growth texture of pyrite in the samples studied reveals a correlation between nucleation rate and following growth rate of the pyrites, thus leading to the characteristic crystal habits. Preferential directional growth at lower nucleation rates may lead to the formation of 3D framboids of pyrite. Crystallographic misorientations between the individual fibers are similar. In ammonites studied, primary anisotropies of the substrates like e.g., ammonitic sutures, influence the nucleation, crystal growth and habit of the newly formed pyrites along the surfaces.Keywords: Electron Back Scatter Diffraction (EBSD), growth pattern, Fe-sulfides (pyrite), texture analyses
Procedia PDF Downloads 292192 Emerging Identities: A Transformative ‘Green Zone’
Authors: Alessandra Swiny, Yiorgos Hadjichristou
Abstract:
There exists an on-going geographical scar creating a division through the Island of Cyprus and its capital, Nicosia. The currently amputated city center is accessed legally by the United Nations convoys, infiltrated only by Turkish and Greek Cypriot army scouts and illegal traders and scavengers. On Christmas day 1963 in Nicosia, Captain M. Hobden of the British Army took a green chinagraph pencil and on a large scale Joint Army-RAF map ‘marked’ the division. From then on this ‘buffer zone’ was called the ‘green line.' This once dividing form, separating the main communities of Greek and Turkish Cypriots from one another, has now been fully reclaimed by an autonomous intruder. It's currently most captivating inhabitant is nature. She keeps taking over, for the past fifty years indigenous and introduced fauna and flora thrive; trees emerge from rooftops and plants, bushes and flowers grow randomly through the once bustling market streets, allowing this ‘no man’s land’ to teem with wildlife. And where are its limits? The idea of fluidity is ever present; it encroaches into the urban and built environment that surrounds it, and notions of ownership and permanence are questioned. Its qualities have contributed significantly in the search for new ‘identities,' expressed in the emergence of new living conditions, be they real or surreal. Without being physically reachable, it can be glimpsed at through punctured peepholes, military bunker windows that act as enticing portals into an emotional and conceptual level of inhabitation. The zone is mystical and simultaneously suspended in time, it triggers people’s imagination, not just that of the two prevailing communities but also of immigrants, refugees, and visitors; it mesmerizes all who come within its proximity. The paper opens a discussion on the issues and the binary questions raised. What is natural and artificial; what is private and public; what is ephemeral and permanent? The ‘green line’ exists in a central fringe condition and can serve in mixing generations and groups of people; mingling functions of living with work and social interaction; merging nature and the human being in a new-found synergy of human hope and survival, allowing thus for new notions of place to be introduced. Questions seek to be answered, such as, “Is the impossibility of dwelling made possible, by interweaving these ‘in-between conditions’ into eloquently traced spaces?” The methodologies pursued are developed through academic research, professional practice projects, and students’ research/design work. Realized projects, case studies and other examples cited both nationally and internationally hold global and local applications. Both paths of the research deal with the explorative understanding of the impossibility of dwelling, testing the limits of its autonomy. The expected outcome of the experience evokes in the user a sense of a new urban landscape, created from human topographies that echo the voice of an emerging identity.Keywords: urban wildlife, human topographies, buffer zone, no man’s land
Procedia PDF Downloads 198191 Hydraulic Headloss in Plastic Drainage Pipes at Full and Partially Full Flow
Authors: Velitchko G. Tzatchkov, Petronilo E. Cortes-Mejia, J. Manuel Rodriguez-Varela, Jesus Figueroa-Vazquez
Abstract:
Hydraulic headloss, expressed by the values of friction factor f and Manning’s coefficient n, is an important parameter in designing drainage pipes. Their values normally are taken from manufacturer recommendations, many times without sufficient experimental support. To our knowledge, currently there is no standard procedure for hydraulically testing such pipes. As a result of research carried out at the Mexican Institute of Water Technology, a laboratory testing procedure was proposed and applied on 6 and 12 inches diameter polyvinyl chloride (PVC) and high-density dual wall polyethylene pipe (HDPE) drainage pipes. While the PVC pipe is characterized by naturally smooth interior and exterior walls, the dual wall HDPE pipe has corrugated exterior wall and, although considered smooth, a slightly wavy interior wall. The pipes were tested at full and partially full pipe flow conditions. The tests for full pipe flow were carried out on a 31.47 m long pipe at flow velocities between 0.11 and 4.61 m/s. Water was supplied by gravity from a 10 m-high tank in some of the tests, and from a 3.20 m-high tank in the rest of the tests. Pressure was measured independently with piezometer readings and pressure transducers. The flow rate was measured by an ultrasonic meter. For the partially full pipe flow the pipe was placed inside an existing 49.63 m long zero slope (horizontal) channel. The flow depth was measured by piezometers located along the pipe, for flow rates between 2.84 and 35.65 L/s, measured by a rectangular weir. The observed flow profiles were then compared to computer generated theoretical gradually varied flow profiles for different Manning’s n values. It was found that Manning’s n, that normally is assumed constant for a given pipe material, is in fact dependent on flow velocity and pipe diameter for full pipe flow, and on flow depth for partially full pipe flow. Contrary to the expected higher values of n and f for the HDPE pipe, virtually the same values were obtained for the smooth interior wall PVC pipe and the slightly wavy interior wall HDPE pipe. The explanation of this fact was found in Henry Morris’ theory for smooth turbulent conduit flow over isolated roughness elements. Following Morris, three categories of the flow regimes are possible in a rough conduit: isolated roughness (or semi smooth turbulent) flow, wake interference (or hyper turbulent) flow, and skimming (or quasi-smooth) flow. Isolated roughness flow is characterized by friction drag turbulence over the wall between the roughness elements, independent vortex generation, and dissipation around each roughness element. In this regime, the wake and vortex generation zones at each element develop and dissipate before attaining the next element. The longitudinal spacing of the roughness elements and their height are important influencing agents. Given the slightly wavy form of the HDPE pipe interior wall, the flow for this type of pipe belongs to this category. Based on that theory, an equation for the hydraulic friction factor was obtained. The obtained coefficient values are going to be used in the Mexican design standards.Keywords: drainage plastic pipes, hydraulic headloss, hydraulic friction factor, Manning’s n
Procedia PDF Downloads 281190 Correlation Analysis of Reactivity in the Oxidation of Para and Meta-Substituted Benzyl Alcohols by Benzimidazolium Dichromate in Non-Aqueous Media: A Kinetic and Mechanistic Aspects
Authors: Seema Kothari, Dinesh Panday
Abstract:
An observed correlation of the reaction rates with the changes in the nature of substituent present on one of the reactants often reveals the nature of transition state. Selective oxidation of organic compounds under non-aqueous media is an important transformation in synthetic organic chemistry. Inorganic chromates and dichromates being drastic oxidant and are generally insoluble in most organic solvents, a number of different chromium (VI) derivatives have been synthesized. Benzimidazolium dichromate (BIDC) is one of the recently reported Cr(VI) reagents which is neither hygroscopic nor light sensitive being, therefore, much stable. Not many reports on the kinetics of the oxidations by BIDC are seemed to be available in the literature. In the present investigation, the kinetics and mechanism of benzyl alcohol (BA) and a number of para- and meta-substituted benzyl alcohols by benzimidazolium dichromate (BIDC), in dimethyl sulphoxide, is reported. The reactions were followed spectrophotometrically at 364 nm by monitoring the decrease in [BIDC] for up to 85-90% reaction, the temperature being constant. The observed oxidation product is the corresponding benzaldehyde. The reactions were of first order with respect to each the alcohol and BIDC. The reactions are catalyzed by proton, and the dependence is of the form: kobs = a + b[H+]. The reactions thus follow both, an acid-dependent and acid-independent paths. The oxidation of [1,1 2H2]benzyl alcohol exhibited the presence of a substantial kinetic isotope effect ( kH/kD = 6.20 at 298 K ). This indicated the cleavage of a α-C-H bond in the rate-determining step. An analysis of the temperature dependence of the deuterium isotope effect showed that the loss of hydrogen proceeds through a concerted cyclic process. The rate of oxidation of BA was determined in 19 organic solvents. An analysis of the solvent effect by Swain’s equation indicated that though both the anion and cation-solvating powers of the solvent contribute to the observed solvent effect, the role of cation-solvation is major. The rates of the para and meta compounds, at 298 K, failed to exhibit a significant correlation in terms of Hammett or Brown's substituent constants. The rates were then subjected to analyses in terms of dual substituent parameter (DSP) equations. The rates of oxidation of the para-substituted benzyl alcohols show an excellent correlation with Taft's σI and σRBA values. However, the rates for the meta-substituted benzyl alcohols show an excellent correlation with σI and σR0. The polar reaction constants are negative indicating an electron-deficient transition state. Hence the overall mechanism is proposed to involve the formation of a chromate ester in a fast pre-equilibrium and then a decomposition of the ester in a subsequent slow step via a cyclic concerted symmetrical transition state, involving hydride-ion transfer, leading to the product. The first order dependence on alcohol may be accounted in terms of the small value of the formation constant of the ester intermediate. An another reaction mechanism accounting the acid-catalysis involve the formation of a protonated BIDC prior to formation of an ester intermediate which subsequently decomposes in a slow step leading to the product.Keywords: benzimidazolium dichromate, benzyl alcohols, correlation analysis, kinetics, oxidation
Procedia PDF Downloads 344189 Political Communication in Twitter Interactions between Government, News Media and Citizens in Mexico
Authors: Jorge Cortés, Alejandra Martínez, Carlos Pérez, Anaid Simón
Abstract:
The presence of government, news media, and general citizenry in social media allows considering interactions between them as a form of political communication (i.e. the public exchange of contradictory discourses about politics). Twitter’s asymmetrical following model (users can follow, mention or reply to other users that do not follow them) could foster alternative democratic practices and have an impact on Mexican political culture, which has been marked by a lack of direct communication channels between these actors. The research aim is to assess Twitter’s role in political communication practices through the analysis of interaction dynamics between government, news media, and citizens by extracting and visualizing data from Twitter’s API to observe general behavior patterns. The hypothesis is that regardless the fact that Twitter’s features enable direct and horizontal interactions between actors, users repeat traditional dynamics of interaction, without taking full advantage of the possibilities of this medium. Through an interdisciplinary team including Communication Strategies, Information Design, and Interaction Systems, the activity on Twitter generated by the controversy over the presence of Uber in Mexico City was analysed; an issue of public interest, involving aspects such as public opinion, economic interests and a legal dimension. This research includes techniques from social network analysis (SNA), a methodological approach focused on the comprehension of the relationships between actors through the visual representation and measurement of network characteristics. The analysis of the Uber event comprised data extraction, data categorization, corpus construction, corpus visualization and analysis. On the recovery stage TAGS, a Google Sheet template, was used to extract tweets that included the hashtags #UberSeQueda and #UberSeVa, posts containing the string Uber and tweets directed to @uber_mx. Using scripts written in Python, the data was filtered, discarding tweets with no interaction (replies, retweets or mentions) and locations outside of México. Considerations regarding bots and the omission of anecdotal posts were also taken into account. The utility of graphs to observe interactions of political communication in general was confirmed by the analysis of visualizations generated with programs such as Gephi and NodeXL. However, some aspects require improvements to obtain more useful visual representations for this type of research. For example, link¬crossings complicates following the direction of an interaction forcing users to manipulate the graph to see it clearly. It was concluded that some practices prevalent in political communication in Mexico are replicated in Twitter. Media actors tend to group together instead of interact with others. The political system tends to tweet as an advertising strategy rather than to generate dialogue. However, some actors were identified as bridges establishing communication between the three spheres, generating a more democratic exercise and taking advantage of Twitter’s possibilities. Although interactions in Twitter could become an alternative to political communication, this potential depends on the intentions of the participants and to what extent they are aiming for collaborative and direct communications. Further research is needed to get a deeper understanding on the political behavior of Twitter users and the possibilities of SNA for its analysis.Keywords: interaction, political communication, social network analysis, Twitter
Procedia PDF Downloads 221188 Modification of Hyrax Expansion Screw to Be Used as an Intro-Oral Distractor for Anterior Maxillary Distraction in a Patient with Cleft Lip and Palate: A Case Report
Authors: Ananya Hazare, Ranjit Kamble
Abstract:
Introduction: Patients with Cleft lip and palate (CL/P) can present with a maxillary retrution after cleft repair. Anterior Maxillary distraction osteogenesis (AMD) is a technique that provides simultaneous skeletal advancement and expansion of the soft tissues related to an anterior segment of the maxilla. This case presented is a case of AMD. The advantage of this technique is that the occlusion in the posterior segment can be maintained, and only the segment in cross bite is advanced for correction of the midfacial deficiency. The other alternative treatment is anterior movement by a Lefort 1 osteotomy. When a Lefort 1 osteotomy is compared with the Distraction osteogenesis or AMD, the disadvantages of the Le Fort 1 include a higher risk of morbidity, requirement of fixation, relapse tendency and unexpected changes in the nasal form. These complications were eliminated by AMD technique. This was followed by placement of the implant in the bone formed after AMD. Hence complete surgical, orthodontic and prosthodontics rehabilitation of the patient was done by an interdisciplinary approach. Methods: Patient presented with repaired UCL/P of the right side with midfacial retrusion. Intro-oral examination revealed a good occlusion in the posterior arch and anterior Crossbite from canine to canine. Patient's both maxillary lateral incisors were missing. The lower arch was well aligned with all teeth present. The study models when scored according to GOSLON yardstick received a score of 4. After pre-surgical orthodontic phase was completed an intraoral distractor was fabricated by modification of HYRAX expansion screw. After surgery, low subapical osteotomy cuts were placed and the distractor was fixed. The latency period of 5 days was observed after which the distraction was started. Distraction was done at a rate of 1 mm/day with a rhythm of 0.5mm in morning and 0.5mm in the evening. The total distraction of 12 mm was done. After a consolidation period, the distractor was removed, and retention by a removable partial denture was given. Radiographic examination confirmed mature bone formation in the distracted segment. Implants were placed and allowed to osseointegrate for approximately 4 months and were then loaded with abutments. Results: Total distraction done was 12mm and after relapse it was 8mm. After consolidation phase the radiographic examination revealed a B2 quality of bone according to the Misch's classification and sufficient height from the maxillary sinus. These findings were indicative for placement of implants in the distracted bone formed in premolar region. Implants were placed and after radiographic evidence of osseointegration was seen they were loaded with abutments. Thus resulting in a complete rehabilitation of a cleft patient by an interdisciplinary approach. Conclusion: Anterior maxillary distraction can be used as an alternative method instead of complete distraction osteogenesis or Lefort 1 advancement of maxilla in cases where the advancement needed is minimum. Use of HYRAX expansion screw modified as intra-oral distractor can be used in such cases, which significantly reduces the cost of treatment, as expensive distractors are not used. This technique is very useful and efficient in countries like India where the patient cannot afford expensive treatment options.Keywords: cleft lip and palate, distraction osteogenesis, anterior maxillary distraction, orthodontics and dentofacial orthopaedics, hyrax expansion screw modification
Procedia PDF Downloads 256187 The Importance of School Culture in Supporting Student Mental Health Following the COVID-19 Pandemic: Insights from a Qualitative Study
Authors: Rhiannon Barker, Gregory Hartwell, Matt Egan, Karen Lock
Abstract:
Background: Evidence suggests that mental health (MH) issues in children and young people (CYP) in the UK are on the rise. Of particular concern is data that indicates that the pandemic, together with the impact of school closures, have accentuated already pronounced inequalities; children from families on low incomes or from black and minority ethnic groups are reportedly more likely to have been adversely impacted. This study aimed to help identify specific support which may facilitate the building of a positive school climate and protect student mental health, particularly in the wake of school closures following the pandemic. It has important implications for integrated working between schools and statutory health services. Methods: The research comprised of three parts; scoping, case studies, and a stakeholder workshop to explore and consolidate results. The scoping phase included a literature review alongside interviews with a range of stakeholders from government, academia, and the third sector. Case studies were then conducted in two London state schools. Results: Our research identified how student MH was being impacted by a range of factors located at different system levels, both internal to the school and in the wider community. School climate, relating both to a shared system of beliefs and values, as well as broader factors including style of leadership, teaching, discipline, safety, and relationships -all played a role in the experience of school life and, consequently, the MH of both students and staff. Participants highlighted the importance of a whole school approach and ensuring that support for student MH was not separated from academic achievement, as well as the importance of identifying and applying universal measuring systems to establish levels of MH need. Our findings suggest that a school’s climate is influenced by the style and strength of its leadership, while this school climate - together with mechanisms put in place to respond to MH needs (both statutory and non-statutory) - plays a key role in supporting student MH. Implications: Schools in England have a responsibility to decide on the nature of MH support provided for their students, and there is no requirement for them to report centrally on the form this provision takes. The reality on the ground, as our study suggests, is that MH provision varies significantly between schools, particularly in relation to ‘lower’ levels of need which are not covered by statutory requirements. A valid concern may be that in the huge raft of possible options schools have to support CYP wellbeing, too much is left to chance. Work to support schools in rebuilding their cultures post-lockdowns must include the means to identify and promote appropriate tools and techniques to facilitate regular measurement of student MH. This will help establish both the scale of the problem and monitor the effectiveness of the response. A strong vision from a school’s leadership team that emphasises the importance of student wellbeing, running alongside (but not overshadowed by) academic attainment, should help shape a school climate to promote beneficial MH outcomes. The sector should also be provided with support to improve the consistency and efficacy of MH provision in schools across the country.Keywords: mental health, schools, young people, whole-school culture
Procedia PDF Downloads 63186 Zinc Oxide Varistor Performance: A 3D Network Model
Authors: Benjamin Kaufmann, Michael Hofstätter, Nadine Raidl, Peter Supancic
Abstract:
ZnO varistors are the leading overvoltage protection elements in today’s electronic industry. Their highly non-linear current-voltage characteristics, very fast response times, good reliability and attractive cost of production are unique in this field. There are challenges and questions unsolved. Especially, the urge to create even smaller, versatile and reliable parts, that fit industry’s demands, brings manufacturers to the limits of their abilities. Although, the varistor effect of sintered ZnO is known since the 1960’s, and a lot of work was done on this field to explain the sudden exponential increase of conductivity, the strict dependency on sinter parameters, as well as the influence of the complex microstructure, is not sufficiently understood. For further enhancement and down-scaling of varistors, a better understanding of the microscopic processes is needed. This work attempts a microscopic approach to investigate ZnO varistor performance. In order to cope with the polycrystalline varistor ceramic and in order to account for all possible current paths through the material, a preferably realistic model of the microstructure was set up in the form of three-dimensional networks where every grain has a constant electric potential, and voltage drop occurs only at the grain boundaries. The electro-thermal workload, depending on different grain size distributions, was investigated as well as the influence of the metal-semiconductor contact between the electrodes and the ZnO grains. A number of experimental methods are used, firstly, to feed the simulations with realistic parameters and, secondly, to verify the obtained results. These methods are: a micro 4-point probes method system (M4PPS) to investigate the current-voltage characteristics between single ZnO grains and between ZnO grains and the metal electrode inside the varistor, micro lock-in infrared thermography (MLIRT) to detect current paths, electron back scattering diffraction and piezoresponse force microscopy to determine grain orientations, atom probe to determine atomic substituents, Kelvin probe force microscopy for investigating grain surface potentials. The simulations showed that, within a critical voltage range, the current flow is localized along paths which represent only a tiny part of the available volume. This effect could be observed via MLIRT. Furthermore, the simulations exhibit that the electric power density, which is inversely proportional to the number of active current paths, since this number determines the electrical active volume, is dependent on the grain size distribution. M4PPS measurements showed that the electrode-grain contacts behave like Schottky diodes and are crucial for asymmetric current path development. Furthermore, evaluation of actual data suggests that current flow is influenced by grain orientations. The present results deepen the knowledge of influencing microscopic factors on ZnO varistor performance and can give some recommendations on fabrication for obtaining more reliable ZnO varistors.Keywords: metal-semiconductor contact, Schottky diode, varistor, zinc oxide
Procedia PDF Downloads 281185 The Analysis of Noise Harmfulness in Public Utility Facilities
Authors: Monika Sobolewska, Aleksandra Majchrzak, Bartlomiej Chojnacki, Katarzyna Baruch, Adam Pilch
Abstract:
The main purpose of the study is to perform the measurement and analysis of noise harmfulness in public utility facilities. The World Health Organization reports that the number of people suffering from hearing impairment is constantly increasing. The most alarming is the number of young people occurring in the statistics. The majority of scientific research in the field of hearing protection and noise prevention concern industrial and road traffic noise as the source of health problems. As the result, corresponding standards and regulations defining noise level limits are enforced. However, there is another field uncovered by profound research – leisure time. Public utility facilities such as clubs, shopping malls, sport facilities or concert halls – they all generate high-level noise, being out of proper juridical control. Among European Union Member States, the highest legislative act concerning noise prevention is the Environmental Noise Directive 2002/49/EC. However, it omits the problem discussed above and even for traffic, railway and aircraft noise it does not set limits or target values, leaving these issues to the discretion of the Member State authorities. Without explicit and uniform regulations, noise level control at places designed for relaxation and entertainment is often in the responsibility of people having little knowledge of hearing protection, unaware of the risk the noise pollution poses. Exposure to high sound levels in clubs, cinemas, at concerts and sports events may result in a progressive hearing loss, especially among young people, being the main target group of such facilities and events. The first step to change this situation and to raise the general awareness is to perform reliable measurements the results of which will emphasize the significance of the problem. This project presents the results of more than hundred measurements, performed in most types of public utility facilities in Poland. As the most suitable measuring instrument for such a research, personal noise dosimeters were used to collect the data. Each measurement is presented in the form of numerical results including equivalent and peak sound pressure levels and a detailed description considering the type of the sound source, size and furnishing of the room and the subjective sound level evaluation. In the absence of a straight reference point for the interpretation of the data, the limits specified in EU Directive 2003/10/EC were used for comparison. They set the maximum sound level values for workers in relation to their working time length. The analysis of the examined problem leads to the conclusion that during leisure time, people are exposed to noise levels significantly exceeding safe values. As the hearing problems are gradually progressing, most people underplay the problem, ignoring the first symptoms. Therefore, an effort has to be made to specify the noise regulations for public utility facilities. Without any action, in the foreseeable future the majority of Europeans will be dealing with serious hearing damage, which will have a negative impact on the whole societies.Keywords: hearing protection, noise level limits, noise prevention, noise regulations, public utility facilities
Procedia PDF Downloads 223184 Electrochemical Activity of NiCo-GDC Cermet Anode for Solid Oxide Fuel Cells Operated in Methane
Authors: Kamolvara Sirisuksakulchai, Soamwadee Chaianansutcharit, Kazunori Sato
Abstract:
Solid Oxide Fuel Cells (SOFCs) have been considered as one of the most efficient large unit power generators for household and industrial applications. The efficiency of an electronic cell depends mainly on the electrochemical reactions in the anode. The development of anode materials has been intensely studied to achieve higher kinetic rates of redox reactions and lower internal resistance. Recent studies have introduced an efficient cermet (ceramic-metallic) material for its ability in fuel oxidation and oxide conduction. This could expand the reactive site, also known as the triple-phase boundary (TPB), thus increasing the overall performance. In this study, a bimetallic catalyst Ni₀.₇₅Co₀.₂₅Oₓ was combined with Gd₀.₁Ce₀.₉O₁.₉₅ (GDC) to be used as a cermet anode (NiCo-GDC) for an anode-supported type SOFC. The synthesis of Ni₀.₇₅Co₀.₂₅Oₓ was carried out by ball milling NiO and Co3O4 powders in ethanol and calcined at 1000 °C. The Gd₀.₁Ce₀.₉O₁.₉₅ was prepared by a urea co-precipitation method. Precursors of Gd(NO₃)₃·6H₂O and Ce(NO₃)₃·6H₂O were dissolved in distilled water with the addition of urea and were heated subsequently. The heated mixture product was filtered and rinsed thoroughly, then dried and calcined at 800 °C and 1500 °C, respectively. The two powders were combined followed by pelletization and sintering at 1100 °C to form an anode support layer. The fabrications of an electrolyte layer and cathode layer were conducted. The electrochemical performance in H₂ was measured from 800 °C to 600 °C while for CH₄ was from 750 °C to 600 °C. The maximum power density at 750 °C in H₂ was 13% higher than in CH₄. The difference in performance was due to higher polarization resistances confirmed by the impedance spectra. According to the standard enthalpy, the dissociation energy of C-H bonds in CH₄ is slightly higher than the H-H bond H₂. The dissociation of CH₄ could be the cause of resistance within the anode material. The results from lower temperatures showed a descending trend of power density in relevance to the increased polarization resistance. This was due to lowering conductivity when the temperature decreases. The long-term stability was measured at 750 °C in CH₄ monitoring at 12-hour intervals. The maximum power density tends to increase gradually with time while the resistances were maintained. This suggests the enhanced stability from charge transfer activities in doped ceria due to the transition of Ce⁴⁺ ↔ Ce³⁺ at low oxygen partial pressure and high-temperature atmosphere. However, the power density started to drop after 60 h, and the cell potential also dropped from 0.3249 V to 0.2850 V. These phenomena was confirmed by a shifted impedance spectra indicating a higher ohmic resistance. The observation by FESEM and EDX-mapping suggests the degradation due to mass transport of ions in the electrolyte while the anode microstructure was still maintained. In summary, the electrochemical test and stability test for 60 h was achieved by NiCo-GDC cermet anode. Coke deposition was not detected after operation in CH₄, hence this confirms the superior properties of the bimetallic cermet anode over typical Ni-GDC.Keywords: bimetallic catalyst, ceria-based SOFCs, methane oxidation, solid oxide fuel cell
Procedia PDF Downloads 154183 Chemical Synthesis and Microwave Sintering of SnO2-Based Nanoparticles for Varistor Films
Authors: Glauco M. M. M. Lustosa, João Paulo C. Costa, Leinig Antônio Perazolli, Maria Aparecida Zaghete
Abstract:
SnO2 has electrical conductivity due to the excess of electrons and structural defects, being its electrical behavior highly dependent on sintering temperature and chemical composition. The addition of metals modifiers into the crystalline structure can improve and controlling the behavior of some semiconductor oxides that can therefore develop different applications such as varistors (ceramic with non-ohmic behavior between current and voltage, i.e. conductive during normal operation and resistive during overvoltage). The polymeric precursor method, based on the complexation reaction between metal ion and policarboxylic acid and then polymerized with ethylene glycol, was used to obtain nanopowders ceramic. The metal immobilization reduces its segregation during the decomposition of the polyester resulting in a crystalline oxide with high chemical homogeneity. The preparation of films from ceramics nanoparticles using electrophoretic deposition method (EPD) brings prospects for a new generation of smaller size devices with easy integration technology. EPD allows to control time and current and therefore it can have control of the thickness, surface roughness and the film density, quickly and with low production costs. The sintering process is key to control size and grain boundary density of the film. In this step, there is the diffusion of metals that promote densification and control of intrinsic defects or change these defects which will form and modify the potential barrier in the grain boundary. The use of microwave oven for sintering is an advantageous process due to the fast and homogeneous heating rate, promoting the diffusion and densification without irregular grain growth. This research was done a comparative study of sintering temperature by use of zinc as modifier agent to verify the influence on sintering step aiming to promote densification and grain growth, which influences the potential barrier formation and then changed the electrical behavior. SnO2-nanoparticles were obtained with 1 %mol of ZnO + 0.05 %mol of Nb2O5 (SZN), deposited as film through EPD (voltage 2 kV, time of 10 min) on Si/Pt substrate. Sintering was made in a microwave oven at 800, 900 and 1000 °C. For complete coverage of the substrate by nanoparticles with low surface roughness and uniform thickness was added 0.02 g of solid iodine in alcoholic suspension SnO2 to increase particle surface charge. They were also used magneto in EPD system that improved the deposition rate forming a compact film. Using a scanning electron microscope of high resolution (SEM_FEG) it was observed nanoparticles with average size between 10-20 nm, after sintering the average size was 150 to 200 nm and thickness of 5 µm. Also, it was verified that the temperature at 1000 °C was the most efficient in sintering. The best sintering time was also recorded and determined as 40 minutes. After sintering, the films were recovered with Cr3+ ions layer by EPD, then the films were again thermally treated. The electrical characterizations (nonlinear coefficient of 11.4, voltage rupture of ~60 V and leakage current = 4.8x10−6 A), allow considering the new methodology suitable for prepare SnO2-based varistor applied for development of electrical protection devices for low voltage.Keywords: chemical synthesis, electrophoretic deposition, microwave sintering, tin dioxide
Procedia PDF Downloads 272182 OASIS: An Alternative Access to Potable Water, Renewable Energy and Organic Food
Authors: Julien G. Chenet, Mario A. Hernandez, U. Leonardo Rodriguez
Abstract:
The tropical areas are places where there is scarcity of access to potable water and where renewable energies need further development. They also display high undernourishment levels, even though they are one of the resources-richest areas in the world. In these areas, it is common to count on great extension of soils, high solar radiation and raw water from rain, groundwater, surface water or even saltwater. Even though resources are available, access to them is limited, and the low-density habitat makes central solutions expensive and investments not worthy. In response to this lack of investment, rural inhabitants use fossil fuels and timber as an energy source and import agrochemical for soils fertilization, which increase GHG emissions. The OASIS project brings an answer to this situation. It supplies renewable energy, potable water and organic food. The first step is the determination of the needs of the communities in terms of energy, water quantity and quality, food requirements and soil characteristics. Second step is the determination of the available resources, such as solar energy, raw water and organic residues on site. The pilot OASIS project is located in the Vichada department, Colombia, and ensures the sustainable use of natural resources to meet the community needs. The department has roughly 70% of indigenous people. They live in a very scattered landscape, with no access to clean water and energy. They use polluted surface water for direct consumption and diesel for energy purposes. OASIS pilot will ensure basic needs for a 400-students education center. In this case, OASIS will provide 20 kW of solar energy potential and 40 liters per student per day. Water will be treated form groundwater, with two qualities. A conventional one with chlorine, and as the indigenous people are not used to chlorine for direct consumption, second train is with reverse osmosis to bring conservable safe water without taste. OASIS offers a solution to supply basic needs, shifting from fossil fuels, timber, to a no-GHG-emission solution. This solution is part of the mitigation strategy against Climate Change for the communities in low-density areas of the tropics. OASIS is a learning center to teach how to convert natural resources into utilizable ones. It is also a meeting point for the community with high pedagogic impact that promotes the efficient and sustainable use of resources. OASIS system is adaptable to any tropical area and competes technically and economically with any conventional solution, that needs transport of energy, treated water and food. It is a fully automatic, replicable and sustainable solution to sort out the issue of access to basic needs in rural areas. OASIS is also a solution to undernourishment, ensuring a responsible use of resources, to prevent long-term pollution of soils and groundwater. It promotes the closure of the nutrient cycle, and the optimal use of the land whilst ensuring food security in depressed low-density regions of the tropics. OASIS is under optimization to Vichada conditions, and will be available to any other tropical area in the following months.Keywords: climate change adaptation and mitigation, rural development, sustainable access to clean and renewable resources, social inclusion
Procedia PDF Downloads 251181 Microsimulation of Potential Crashes as a Road Safety Indicator
Authors: Vittorio Astarita, Giuseppe Guido, Vincenzo Pasquale Giofre, Alessandro Vitale
Abstract:
Traffic microsimulation has been used extensively to evaluate consequences of different traffic planning and control policies in terms of travel time delays, queues, pollutant emissions, and every other common measured performance while at the same time traffic safety has not been considered in common traffic microsimulation packages as a measure of performance for different traffic scenarios. Vehicle conflict techniques that were introduced at intersections in the early traffic researches carried out at the General Motor laboratory in the USA and in the Swedish traffic conflict manual have been applied to vehicles trajectories simulated in microscopic traffic simulators. The concept is that microsimulation can be used as a base for calculating the number of conflicts that will define the safety level of a traffic scenario. This allows engineers to identify unsafe road traffic maneuvers and helps in finding the right countermeasures that can improve safety. Unfortunately, most commonly used indicators do not consider conflicts between single vehicles and roadside obstacles and barriers. A great number of vehicle crashes take place with roadside objects or obstacles. Only some recent proposed indicators have been trying to address this issue. This paper introduces a new procedure based on the simulation of potential crash events for the evaluation of safety levels in microsimulation traffic scenarios, which takes into account also potential crashes with roadside objects and barriers. The procedure can be used to define new conflict indicators. The proposed simulation procedure generates with the random perturbation of vehicle trajectories a set of potential crashes which can be evaluated accurately in terms of DeltaV, the energy of the impact, and/or expected number of injuries or casualties. The procedure can also be applied to real trajectories giving birth to new surrogate safety performance indicators, which can be considered as “simulation-based”. The methodology and a specific safety performance indicator are described and applied to a simulated test traffic scenario. Results indicate that the procedure is able to evaluate safety levels both at the intersection level and in the presence of roadside obstacles. The procedure produces results that are expressed in the same unity of measure for both vehicle to vehicle and vehicle to roadside object conflicts. The total energy for a square meter of all generated crash can be used and is shown on the map, for the test network, after the application of a threshold to evidence the most dangerous points. Without any detailed calibration of the microsimulation model and without any calibration of the parameters of the procedure (standard values have been used), it is possible to identify dangerous points. A preliminary sensitivity analysis has shown that results are not dependent on the different energy thresholds and different parameters of the procedure. This paper introduces a specific new procedure and the implementation in the form of a software package that is able to assess road safety, also considering potential conflicts with roadside objects. Some of the principles that are at the base of this specific model are discussed. The procedure can be applied on common microsimulation packages once vehicle trajectories and the positions of roadside barriers and obstacles are known. The procedure has many calibration parameters and research efforts will have to be devoted to make confrontations with real crash data in order to obtain the best parameters that have the potential of giving an accurate evaluation of the risk of any traffic scenario.Keywords: road safety, traffic, traffic safety, traffic simulation
Procedia PDF Downloads 135180 Efficient Utilization of Negative Half Wave of Regulator Rectifier Output to Drive Class D LED Headlamp
Authors: Lalit Ahuja, Nancy Das, Yashas Shetty
Abstract:
LED lighting has been increasingly adopted for vehicles in both domestic and foreign automotive markets. Although this miniaturized technology gives the best light output, low energy consumption, and cost-efficient solutions for driving, the same is the need of the hour. In this paper, we present a methodology for driving the highest class two-wheeler headlamp with regulator and rectifier (RR) output. Unlike usual LED headlamps, which are driven by a battery, regulator, and rectifier (RR) driven, a low-cost and highly efficient LED Driver Module (LDM) is proposed. The positive half of magneto output is regulated and used to charge batteries used for various peripherals. While conventionally, the negative half was used for operating bulb-based exterior lamps. But with advancements in LED-based headlamps, which are driven by a battery, this negative half pulse remained unused in most of the vehicles. Our system uses negative half-wave rectified DC output from RR to provide constant light output at all RPMs of the vehicle. With the negative rectified DC output of RR, we have the advantage of pulsating DC input which periodically goes to zero, thus helping us to generate a constant DC output equivalent to the required LED load, and with a change in RPM, additional active thermal bypass circuit help us to maintain the efficiency and thermal rise. The methodology uses the negative half wave output of the RR along with a linear constant current driver with significantly higher efficiency. Although RR output has varied frequency and duty cycles at different engine RPMs, the driver is designed such that it provides constant current to LEDs with minimal ripple. In LED Headlamps, a DC-DC switching regulator is usually used, which is usually bulky. But with linear regulators, we’re eliminating bulky components and improving the form factor. Hence, this is both cost-efficient and compact. Presently, output ripple-free amplitude drivers with fewer components and less complexity are limited to lower-power LED Lamps. The focus of current high-efficiency research is often on high LED power applications. This paper presents a method of driving LED load at both High Beam and Low Beam using the negative half wave rectified pulsating DC from RR with minimum components, maintaining high efficiency within the thermal limitations. Linear regulators are significantly inefficient, with efficiencies typically about 40% and reaching as low as 14%. This leads to poor thermal performance. Although they don’t require complex and bulky circuitry, powering high-power devices is difficult to realise with the same. But with the input being negative half wave rectified pulsating DC, this efficiency can be improved as this helps us to generate constant DC output equivalent to LED load minimising the voltage drop on the linear regulator. Hence, losses are significantly reduced, and efficiency as high as 75% is achieved. With a change in RPM, DC voltage increases, which can be managed by active thermal bypass circuitry, thus resulting in better thermal performance. Hence, the use of bulky and expensive heat sinks can be avoided. Hence, the methodology to utilize the unused negative pulsating DC output of RR to optimize the utilization of RR output power and provide a cost-efficient solution as compared to costly DC-DC drivers.Keywords: class D LED headlamp, regulator and rectifier, pulsating DC, low cost and highly efficient, LED driver module
Procedia PDF Downloads 67179 Quantum Chemical Prediction of Standard Formation Enthalpies of Uranyl Nitrates and Its Degradation Products
Authors: Mohamad Saab, Florent Real, Francois Virot, Laurent Cantrel, Valerie Vallet
Abstract:
All spent nuclear fuel reprocessing plants use the PUREX process (Plutonium Uranium Refining by Extraction), which is a liquid-liquid extraction method. The organic extracting solvent is a mixture of tri-n-butyl phosphate (TBP) and hydrocarbon solvent such as hydrogenated tetra-propylene (TPH). By chemical complexation, uranium and plutonium (from spent fuel dissolved in nitric acid solution), are separated from fission products and minor actinides. During a normal extraction operation, uranium is extracted in the organic phase as the UO₂(NO₃)₂(TBP)₂ complex. The TBP solvent can form an explosive mixture called red oil when it comes in contact with nitric acid. The formation of this unstable organic phase originates from the reaction between TBP and its degradation products on the one hand, and nitric acid, its derivatives and heavy metal nitrate complexes on the other hand. The decomposition of the red oil can lead to violent explosive thermal runaway. These hazards are at the origin of several accidents such as the two in the United States in 1953 and 1975 (Savannah River) and, more recently, the one in Russia in 1993 (Tomsk). This raises the question of the exothermicity of reactions that involve TBP and all other degradation products, and calls for a better knowledge of the underlying chemical phenomena. A simulation tool (Alambic) is currently being developed at IRSN that integrates thermal and kinetic functions related to the deterioration of uranyl nitrates in organic and aqueous phases, but not of the n-butyl phosphate. To include them in the modeling scheme, there is an urgent need to obtain the thermodynamic and kinetic functions governing the deterioration processes in liquid phase. However, little is known about the thermodynamic properties, like standard enthalpies of formation, of the n-butyl phosphate molecules and of the UO₂(NO₃)₂(TBP)₂ UO₂(NO₃)₂(HDBP)(TBP) and UO₂(NO₃)₂(HDBP)₂ complexes. In this work, we propose to estimate the thermodynamic properties with Quantum Methods (QM). Thus, in the first part of our project, we focused on the mono, di, and tri-butyl complexes. Quantum chemical calculations have been performed to study several reactions leading to the formation of mono-(H₂MBP), di-(HDBP), and TBP in gas and liquid phases. In the gas phase, the optimal structures of all species were optimized using the B3LYP density functional. Triple-ζ def2-TZVP basis sets were used for all atoms. All geometries were optimized in the gas-phase, and the corresponding harmonic frequencies were used without scaling to compute the vibrational partition functions at 298.15 K and 0.1 Mpa. Accurate single point energies were calculated using the efficient localized LCCSD(T) method to the complete basis set limit. Whenever species in the liquid phase are considered, solvent effects are included with the COSMO-RS continuum model. The standard enthalpies of formation of TBP, HDBP, and H2MBP are finally predicted with an uncertainty of about 15 kJ mol⁻¹. In the second part of this project, we have investigated the fundamental properties of three organic species that mostly contribute to the thermal runaway: UO₂(NO₃)₂(TBP)₂, UO₂(NO₃)₂(HDBP)(TBP), and UO₂(NO₃)₂(HDBP)₂ using the same quantum chemical methods that were used for TBP and its derivatives in both the gas and the liquid phase. We will discuss the structures and thermodynamic properties of all these species.Keywords: PUREX process, red oils, quantum chemical methods, hydrolysis
Procedia PDF Downloads 188178 „Real and Symbolic in Poetics of Multiplied Screens and Images“
Authors: Kristina Horvat Blazinovic
Abstract:
In the context of a work of art, one can talk about the idea-concept-term-intention expressed by the artist by using various forms of repetition (external, material, visible repetition). Such repetitions of elements (images in space or moving visual and sound images in time) suggest a "covert", "latent" ("dressed") repetition – i.e., "hidden", "latent" term-intention-idea. Repeating in this way reveals a "deeper truth" that the viewer needs to decode and which is hidden "under" the technical manifestation of the multiplied images. It is not only images, sounds, and screens that are repeated - something else is repeated through them as well, even if, in some cases, the very idea of repetition is repeated. This paper examines serial images and single-channel or multi-channel artwork in the field of video/film art and video installations, which in a way implies the concept of repetition and multiplication. Moving or static images and screens (as multi-screens) are repeated in time and space. The categories of the real and the symbolic partly refer to the Lacan registers of reality, i.e., the Imaginary - Symbolic – Real trinity that represents the orders within which human subjectivity is established. Authors such as Bruce Nauman, VALIE EXPORT, Ragnar Kjartansson, Wolf Vostell, Shirin Neshat, Paul Sharits, Harun Farocki, Dalibor Martinis, Andy Warhol, Douglas Gordon, Bill Viola, Frank Gillette, and Ira Schneider, and Marina Abramovic problematize, in different ways, the concept and procedures of multiplication - repetition, but not in the sense of "copying" and "repetition" of reality or the original, but of repeated repetitions of the simulacrum. Referential works of art are often connected by the theme of the traumatic. Repetitions of images and situations are a response to the traumatic (experience) - repetition itself is a symptom of trauma. On the other hand, repeating and multiplying traumatic images results in a new traumatic effect or cancels it. Reflections on repetition as a temporal and spatial phenomenon are in line with the chapters that link philosophical considerations of space and time and experience temporality with their manifestation in works of art. The observations about time and the relation of perception and memory are according to Henry Bergson and his conception of duration (durée) as "quality of quantity." The video works intended to be displayed as a video loop, express the idea of infinite duration ("pure time," according to Bergson). The Loop wants to be always present - to fixate in time. Wholeness is unrecognizable because the intention is to make the effect infinitely cyclic. Reflections on time and space end with considerations about the occurrence and effects of time and space intervals as places and moments "between" – the points of connection and separation, of continuity and stopping - by reference to the "interval theory" of Soviet filmmaker DzigaVertov. The scale of opportunities that can be explored in interval mode is wide. Intervals represent the perception of time and space in the form of pauses, interruptions, breaks (e.g., emotional, dramatic, or rhythmic) denote emptiness or silence, distance, proximity, interstitial space, or a gap between various states.Keywords: video installation, performance, repetition, multi-screen, real and symbolic, loop, video art, interval, video time
Procedia PDF Downloads 173177 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks
Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez
Abstract:
Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning
Procedia PDF Downloads 339176 Municipalities as Enablers of Citizen-Led Urban Initiatives: Possibilities and Constraints
Authors: Rosa Nadine Danenberg
Abstract:
In recent years, bottom-up urban development has started growing as an alternative to conventional top-down planning. In large proportions, citizens and communities initiate small-scale interventions; suddenly seeming to form a trend. As a result, more and more cities are witnessing not only the growth of but also an interest in these initiatives, as they bear the potential to reshape urban spaces. Such alternative city-making efforts cause new dynamics in urban governance, with inevitable consequences for the controlled city planning and its administration. The emergence of enabling relationships between top-down and bottom-up actors signals an increasingly common urban practice. Various case studies show that an enabling relationship is possible, yet, how it can be optimally realized stays rather underexamined. Therefore, the seemingly growing worldwide phenomenon of ‘municipal bottom-up urban development’ necessitates an adequate governance structure. As such, the aim of this research is to contribute knowledge to how municipalities can enable citizen-led urban initiatives from a governance innovation perspective. Empirical case-study research in Stockholm and Istanbul, derived from interviews with founders of four citizen-led urban initiatives and one municipal representative in each city, provided valuable insights to possibilities and constraints for enabling practices. On the one hand, diverging outcomes emphasize the extreme oppositional features of both cases (Stockholm and Istanbul). Firstly, both cities’ characteristics are drastically different. Secondly, the ideologies and motifs for the initiatives to emerge vary widely. Thirdly, the major constraints for citizen-led urban initiatives to relate to the municipality are considerably different. Two types of municipality’s organizational structures produce different underlying mechanisms which demonstrate the constraints. The first municipal organizational structure is steered by bureaucracy (Stockholm). It produces an administrative division that brings up constraints such as the lack of responsibility, transparency and continuity by municipal representatives. The second structure is dominated by municipal politics and governmental hierarchy (Istanbul). It produces informality, lack of transparency and a fragmented civil society. In order to cope with the constraints produced by both types of organizational structures, the initiatives have adjusted their organization to the municipality’s underlying structures. On the other hand, this paper has in fact also come to a rather unifying conclusion. Interestingly, the suggested possibilities for an enabling relationship underline converging new urban governance arrangements. This could imply that for the two varying types of municipality’s organizational structures there is an accurate governance structure. Namely, the combination of a neighborhood council with a municipal guide, with allowance for the initiatives to adopt a politicizing attitude is found as coinciding. Especially its combination appears key to redeem varying constraints. A municipal guide steers the initiatives through bureaucratic struggles, is supported by coproduction methods, while it balances out municipal politics. Next, a neighborhood council, that is politically neutral and run by local citizens, can function as an umbrella for citizen-led urban initiatives. What is crucial is that it should cater for a more entangled relationship between municipalities and initiatives with enhanced involvement of the initiatives in decision-making processes and limited involvement of prevailing constraints pointed out in this research.Keywords: bottom-up urban development, governance innovation, Istanbul, Stockholm
Procedia PDF Downloads 219175 Wastewater Treatment Using Ternary Hybrid Advanced Oxidation Processes Through Heterogeneous Fenton
Authors: komal verma, V. S. Moholkar
Abstract:
In this current study, the challenge of effectively treating and mineralizing industrial wastewater prior to its discharge into natural water bodies, such as rivers and lakes, is being addressed. Particularly, the focus is on the wastewater produced by chemical process industries, including refineries, petrochemicals, fertilizer, pharmaceuticals, pesticides, and dyestuff industries. These wastewaters often contain stubborn organic pollutants that conventional techniques, such as microbial processes cannot efficiently degrade. To tackle this issue, a ternary hybrid technique comprising of adsorption, heterogeneous Fenton process, and sonication has been employed. The study aims to evaluate the effectiveness of this approach for treating and mineralizing wastewater from a fertilizer industry located in Northeast India. The study comprises several key components, starting with the synthesis of the Fe3O4@AC nanocomposite using the co-precipitation method. The nanocomposite is then subjected to comprehensive characterization through various standard techniques, including FTIR, FE-SEM, EDX, TEM, BET surface area analysis, XRD, and magnetic property determination using VSM. Next, the process parameters of wastewater treatment are statistically optimized, focusing on achieving a high level of COD (Chemical Oxygen Demand) removal as the response variable. The Fe3O4@AC nanocomposite's adsorption characteristics and kinetics are also assessed in detail. The remarkable outcome of this study is the successful application of the ternary hybrid technique, combining adsorption, Fenton process, and sonication. This approach proves highly effective, leading to nearly complete mineralization (or TOC removal) of the fertilizer industry wastewater. The results highlight the potential of the Fe3O4@AC nanocomposite and the ternary hybrid technique as a promising solution for tackling challenging wastewater pollutants from various chemical process industries. This paper reports investigations in the mineralization of industrial wastewater (COD = 3246 mg/L, TOC = 2500 mg/L) using a ternary (ultrasound + Fenton + adsorption) hybrid advanced oxidation process. Fe3O4 decorated activated charcoal (Fe3O4@AC) nanocomposites (surface area = 538.88 m2/g; adsorption capacity = 294.31 mg/g) were synthesized using co-precipitation. The wastewater treatment process was optimized using central composite statistical design. At optimum conditions, viz. pH = 4.2, H2O2 loading = 0.71 M, adsorbent dose = 0.34 g/L, reduction in COD and TOC of wastewater were 94.75% and 89%, respectively. This result results from synergistic interactions among the adsorption of pollutants onto activated charcoal and surface Fenton reactions induced due to the leaching of Fe2+/Fe3+ ions from the Fe3O4 nanoparticles. Micro-convection generated due to sonication assisted faster mass transport (adsorption/desorption) of pollutants between Fe3O4@AC nanocomposite and the solution. The net result of this synergism was high interactions and reactions among and radicals and pollutants that resulted in the effective mineralization of wastewater. The Fe3O4@AC showed excellent recovery (> 90 wt%) and reusability (> 90% COD removal) in 5 successive cycles of treatment. LC-MS analysis revealed effective (> 50%) degradation of more than 25 significant contaminants (in the form of herbicides and pesticides) after the treatment with ternary hybrid AOP. Similarly, the toxicity analysis test using the seed germination technique revealed ~ 60% reduction in the toxicity of the wastewater after treatment.Keywords: chemical oxygen demand (cod), fe3o4@ac nanocomposite, kinetics, lc-ms, rsm, toxicity
Procedia PDF Downloads 72174 Improving Junior Doctor Induction Through the Use of Simple In-House Mobile Application
Authors: Dmitriy Chernov, Maria Karavassilis, Suhyoun Youn, Amna Izhar, Devasenan Devendra
Abstract:
Introduction and Background: A well-structured and comprehensive departmental induction improves patient safety and job satisfaction amongst doctors. The aims of our Project were as follows: 1. Assess the perceived preparedness of junior doctors starting their rotation in Acute Medicine at Watford General Hospital. 2. Develop a supplemental Induction Guide and Pocket reference in the form of an iOS mobile application. 3. To collect feedback after implementing the mobile application following a trial period of 8 weeks with a small cohort of junior doctors. Materials and Methods: A questionnaire was distributed to all new junior trainees starting in the department of Acute Medicine to assess their experience of current induction. A mobile Induction application was developed and trialled over a period of 8 weeks, distributed in addition to the existing didactic induction session. After the trial period, the same questionnaire was distributed to assess improvement in induction experience. Analytics data were collected with users’ consent to gauge user engagement and identify areas of improvement of the application. A feedback survey about the app was also distributed. Results: A total of 32 doctors used the application during the 8-week trial period. The application was accessed 7259 times in total, with the average user spending a cumulative of 37 minutes 22 seconds on the app. The most used section was Clinical Guidelines, accessed 1490 times. The App Feedback survey revealed positive reviews: 100% of participants (n=15/15) responded that the app improved their overall induction experience compared to other placements; 93% (n=14/15) responded that the app improved overall efficiency in completing daily ward jobs compared to previous rotations; and 93% (n=14/15) responded that the app improved patient safety overall. In the Pre-App and Post-App Induction Surveys, participants reported: a 48% improvement in awareness of practical aspects of the job; a 26% improvement of awareness on locating pathways and clinical guidelines; a 40% reduction of feelings of overwhelmingness. Conclusions and recommendations: This study demonstrates the importance of technology in Medical Education and Clinical Induction. The mobile application average engagement time equates to over 20 cumulative hours of on-the-job training delivered to each user, within an 8-week period. The most used and referred to section was clinical guidelines. This shows that there is high demand for an accessible pocket guide for this type of material. This simple mobile application resulted in a significant improvement in feedback about induction in our Department of Acute Medicine, and will likely impact workplace satisfaction. Limitations of the application include: post-app surveys had a small number of participants; the app is currently only available for iPhone users; some useful sections are nested deep within the app, lacks deep search functionality across all sections; lacks real time user feedback; and requires regular review and updates. Future steps for the app include: developing a web app, with an admin dashboard to simplify uploading and editing content; a comprehensive search functionality; and a user feedback and peer ratings system.Keywords: mobile app, doctor induction, medical education, acute medicine
Procedia PDF Downloads 86