Search results for: transmission parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10572

Search results for: transmission parameters

2952 The 10,000 Fold Effect of Retrograde Neurotransmission: A New Concept for Cerebral Palsy Revival by the Use of Nitric Oxide Donars

Authors: V. K. Tewari, M. Hussain, H. K. D. Gupta

Abstract:

Background: Nitric Oxide Donars (NODs) (intrathecal sodium nitroprusside (ITSNP) and oral tadalafil 20mg post ITSNP) has been studied in this context in cerebral palsy patients for fast recovery. This work proposes two mechanisms for acute cases and one mechanism for chronic cases, which are interrelated, for physiological recovery. a) Retrograde Neurotransmission (acute cases): 1) Normal excitatory impulse: at the synaptic level, glutamate activates NMDA receptors, with nitric oxide synthetase (NOS) on the postsynaptic membrane, for further propagation by the calcium-calmodulin complex. Nitric oxide (NO, produced by NOS) travels backward across the chemical synapse and binds the axon-terminal NO receptor/sGC of a presynaptic neuron, regulating anterograde neurotransmission (ANT) via retrograde neurotransmission (RNT). Heme is the ligand-binding site of the NO receptor/sGC. Heme exhibits > 10,000-fold higher affinity for NO than for oxygen (the 10,000-fold effect) and is completed in 20 msec. 2) Pathological conditions: normal synaptic activity, including both ANT and RNT, is absent. A NO donor (SNP) releases NO from NOS in the postsynaptic region. NO travels backward across a chemical synapse to bind to the heme of a NO receptor in the axon terminal of a presynaptic neuron, generating an impulse, as under normal conditions. b) Vasopasm: (acute cases) Perforators show vasospastic activity. NO vasodilates the perforators via the NO-cAMP pathway. c) Long-Term Potentiation (LTP): (chronic cases) The NO–cGMP-pathway plays a role in LTP at many synapses throughout the CNS and at the neuromuscular junction. LTP has been reviewed both generally and with respect to brain regions specific for memory/learning. Aims/Study Design: The principles of “generation of impulses from the presynaptic region to the postsynaptic region by very potent RNT (10,000-fold effect)” and “vasodilation of arteriolar perforators” are the basis of the authors’ hypothesis to treat cerebral palsy cases. Case-control prospective study. Materials and Methods: The experimental population included 82 cerebral palsy patients (10 patients were given control treatments without NOD or with 5% dextrose superfusion, and 72 patients comprised the NOD group). The mean time for superfusion was 5 months post-cerebral palsy. Pre- and post-NOD status was monitored by Gross Motor Function Classification System for Cerebral Palsy (GMFCS), MRI, and TCD studies. Results: After 7 days in the NOD group, the mean change in the GMFCS score was an increase of 1.2 points mean; after 3 months, there was an increase of 3.4 points mean, compared to the control-group increase of 0.1 points at 3 months. MRI and TCD documented the improvements. Conclusions: NOD (ITSNP boosts up the recovery and oral tadalafil maintains the recovery to a well-desired level) acts swiftly in the treatment of CP, acting within 7 days on 5 months post-cerebral palsy either of the three mechanisms.

Keywords: cerebral palsy, intrathecal sodium nitroprusside, oral tadalafil, perforators, vasodilations, retrograde transmission, the 10, 000-fold effect, long-term potantiation

Procedia PDF Downloads 370
2951 Effect of Wind Braces to Earthquake Resistance of Steel Structures

Authors: H. Gokdemir

Abstract:

All structures are subject to vertical and lateral loads. Under these loads, structures make deformations and deformation values of structural elements mustn't exceed their capacity for structural stability. Especially, lateral loads cause critical deformations because of their random directions and magnitudes. Wind load is one of the lateral loads which can act in any direction and any magnitude. Although wind has nearly no effect on reinforced concrete structures, it must be considered for steel structures, roof systems and slender structures like minarets. Therefore, every structure must be able to resist wind loads acting parallel and perpendicular to any side. One of the effective methods for resisting lateral loads is assembling cross steel elements between columns which are called as wind bracing. These cross elements increases lateral rigidity of a structure and prevent exceeding of deformation capacity of the structural system. So, this means cross elements are also effective in resisting earthquake loads too. In this paper; Effects of wind bracing to earthquake resistance of structures are studied. Structure models (with and without wind bracing) are generated and these models are solved under both earthquake and wind loads with different seismic zone parameters. It is concluded by the calculations that; in low-seismic risk zones, wind bracing can easily resist earthquake loads and no additional reinforcement for earthquake loads is necessary. Similarly; in high-seismic risk zones, earthquake cross elements resist wind loads too.

Keywords: wind bracings, earthquake, steel structures, vertical and lateral loads

Procedia PDF Downloads 474
2950 Membrane Bioreactor versus Activated Sludge Process for Aerobic Wastewater Treatment and Recycling

Authors: Sarra Kitanou

Abstract:

Membrane bioreactor (MBR) systems are one of the most widely used wastewater treatment processes for various municipal and industrial waste streams. It is based on complex interactions between biological processes, filtration process and rheological properties of the liquid to be treated. Its complexity makes understanding system operation and optimization more difficult, and traditional methods based on experimental analysis are costly and time consuming. The present study was based on an external membrane bioreactor pilot scale with ceramic membranes compared to conventional activated sludge process (ASP) plant. Both systems received their influent from a domestic wastewater. The membrane bioreactor (MBR) produced an effluent with much better quality than ASP in terms of total suspended solids (TSS), organic matter such as biological oxygen demand (BOD) and chemical oxygen demand (COD), total Phosphorus and total Nitrogen. Other effluent quality parameters also indicate substantial differences between ASP and MBR. This study leads to conclude that in the case domestic wastewater, MBR treatment has excellent effluent quality. Hence, the replacement of the ASP by the MBRs may be justified on the basis of their improved removal of solids, nutrients, and micropollutants. Furthermore, in terms of reuse the great quality of the treated water allows it to be reused for irrigation.

Keywords: aerobic wastewater treatment, conventional activated sludge process, membrane bioreactor, reuse for irrigation

Procedia PDF Downloads 81
2949 Phase Behavior Modelling of Libyan Near-Critical Gas-Condensate Field

Authors: M. Khazam, M. Altawil, A. Eljabri

Abstract:

Fluid properties in states near a vapor-liquid critical region are the most difficult to measure and to predict with EoS models. The principal model difficulty is that near-critical property variations do not follow the same mathematics as at conditions far away from the critical region. Libyan NC98 field in Sirte basin is a typical example of near critical fluid characterized by high initial condensate gas ratio (CGR) greater than 160 bbl/MMscf and maximum liquid drop-out of 25%. The objective of this paper is to model NC98 phase behavior with the proper selection of EoS parameters and also to model reservoir depletion versus gas cycling option using measured PVT data and EoS Models. The outcomes of our study revealed that, for accurate gas and condensate recovery forecast during depletion, the most important PVT data to match are the gas phase Z-factor and C7+ fraction as functions of pressure. Reasonable match, within -3% error, was achieved for ultimate condensate recovery at abandonment pressure of 1500 psia. The smooth transition from gas-condensate to volatile oil was fairly simulated by the tuned PR-EoS. The predicted GOC was approximately at 14,380 ftss. The optimum gas cycling scheme, in order to maximize condensate recovery, should not be performed at pressures less than 5700 psia. The contribution of condensate vaporization for such field is marginal, within 8% to 14%, compared to gas-gas miscible displacement. Therefore, it is always recommended, if gas recycle scheme to be considered for this field, to start it at the early stage of field development.

Keywords: EoS models, gas-condensate, gas cycling, near critical fluid

Procedia PDF Downloads 319
2948 Analysis of Stall Angle Delay in Airfoil Coupled with Spinning Cylinder

Authors: N. Kiran, S. A. Vikas, Yatish Chandra, S. Srinivasan

Abstract:

Several Centuries ago, the aerodynamic studies on rotating cylinders and spheres have started. From the observation, the rotation of a cylinder has a remarkable effect on the aerodynamic characteristics is noticed. In case of airfoils as the angle of attack increases, the drag increases with reduction in lift i.e at the critical angle of attack. If at this point a strong impulse is imparted to the boundary layer by means of a spinning cylinder, the re-energisation of boundary layer is achieved and hence delaying the boundary layer separation and stalling characteristics. Analysis of aerodynamic effects spinning cylinder either at leading edge or at trailing edge of the airfoil is carried in the past, the positioning of cylinder close to trailing edge and its effects in delaying the stall are yet to be analyzed in depth. This paper aim is to understand the combined aerodynamic effects of coupling the spinning cylinder with the airfoil closer to the Trailing edge, by considering different spin ratio of the cylinder, its location and geometrical parameters in relation to the chord of the airfoil. From the analysis, it was observed that the spinning cylinder speed of rotation and location had a impact on stalling characteristics for a prescribed free stream condition. The results predicted through CFD analysis and experimental analysis showed a raise in aerodynamic efficiency and as the spin ratio increases, increase in stalling angle of attack is noticed when compared to the airfoil without spinning cylinder.

Keywords: aerodynamics, airfoil, spinning cylinder, stalling

Procedia PDF Downloads 442
2947 Investigation the Photocatalytic Properties of Fe3O4-ZnO Nanocomposites Prepared by Sonochemical Method

Authors: Atena Naeimi, Mehri-Sadat Ekrami-Kakhki

Abstract:

Fe3O4 is one of the important magnetic oxides with spinel structure; it has exhibited unique electric and magnetic properties based on the electron transfer between Fe2+ and Fe3+ in the octahedral sites. Fe3O4 have received considerable attention in various areas such as cancer therapy, drug targeting, enzyme immobilization catalysis, magnetic cell separation, magnetic refrigeration systems and super-paramagnetic materials. Fe3O4–ZnO nanostructures were synthesized via a surfactant-free ultrasonic reaction at room temperatures. The effect of various parameters such as temperature, time, and power on the size and morphology of the product was investigated. Alternating gradient force magnetometer shows that Fe3O4 nanoparticles exhibit super-paramagnetic behaviour at room temperature. For preparation of nanocomposite 1 g of Fe3O4 nanostructures were dispersed in 100 mL of distilled water. 0.25 g of Zn (NO3)2 and 20 mL of NH3 solution 1 M were then slowly added to the solution under ultrasonic irradiation. The product was centrifuged, washed with distilled water and dried in the air. The photocatalytic behaviour of Fe3O4–ZnO nanoparticles was evaluated using the degradation of a methyl orange aqueous solution under ultraviolet light irradiation. As time increased, more and more methyl orange was adsorbed on the nanoparticles catalyst, until the absorption peak vanish. The methyl orange concentration decreased rapidly with increasing UV-irradiation time.

Keywords: nanocomposite, ultrasonic, paramagnetic, photocatalytic

Procedia PDF Downloads 304
2946 Low-Dose Chest Computed Tomography Can Help in Differential Diagnosis of Asthma–COPD Overlap Syndrome in Children

Authors: Frantisek Kopriva, Kamila Michalkova, Radim Dudek, Jana Volejnikova

Abstract:

Rationale: Diagnostic criteria of asthma–COPD overlap syndrome (ACOS) are controversial in pediatrics. Emphysema is characteristic of COPD and usually does not occur in typical asthma; its presence in patients with asthma suggests the concurrence with COPD. Low-dose chest computed tomography (CT) allows a non-invasive assessment of the lung tissue structure. Here we present CT findings of emphysematous changes in a child with ACOS. Patient and Methods: In a 6-year-old boy, atopy was confirmed by a skin prick test using common allergen extracts (grass and tree pollen, house dust mite, molds, cat, dog; manufacturer Stallergenes Greer, London, UK), where reactions over 3 mm were considered positive. Treatment with corticosteroids was started during the course of severe asthma. At 12 years of age, his spirometric parameters deteriorated despite treatment adjustment (VC 1.76 L=85%, FEV1 1.13 L=67%, TI%VCmax 64%, MEF25 19%, TLC 144%) and the bronchodilator test became negative. Results: Low-dose chest CT displayed irregular regions with increased radiolucency of pulmonary parenchyma (typical for hyperinflation in emphysematous changes) in both lungs. This was in accordance with the results of spirometric examination. Conclusions: ACOS is infrequent in children. However, low-dose chest CT scan can be considered to confirm this diagnosis or eliminate other diagnoses when the clinical condition is deteriorating and treatment response is poor.

Keywords: child, asthma, low-dose chest CT, ACOS

Procedia PDF Downloads 149
2945 Optimal Hybrid Linear and Nonlinear Control for a Quadcopter Drone

Authors: Xinhuang Wu, Yousef Sardahi

Abstract:

A hybrid and optimal multi-loop control structure combining linear and nonlinear control algorithms are introduced in this paper to regulate the position of a quadcopter unmanned aerial vehicle (UAV) driven by four brushless DC motors. To this end, a nonlinear mathematical model of the UAV is derived and then linearized around one of its operating points. Using the nonlinear version of the model, a sliding mode control is used to derive the control laws of the motor thrust forces required to drive the UAV to a certain position. The linear model is used to design two controllers, XG-controller and YG-controller, responsible for calculating the required roll and pitch to maneuver the vehicle to the desired X and Y position. Three attitude controllers are designed to calculate the desired angular rates of rotors, assuming that the Euler angles are minimal. After that, a many-objective optimization problem involving 20 design parameters and ten objective functions is formulated and solved by HypE (Hypervolume estimation algorithm), one of the widely used many-objective optimization algorithms approaches. Both stability and performance constraints are imposed on the optimization problem. The optimization results in terms of Pareto sets and fronts are obtained and show that some of the design objectives are competing. That is, when one objective goes down, the other goes up. Also, Numerical simulations conducted on the nonlinear UAV model show that the proposed optimization method is quite effective.

Keywords: optimal control, many-objective optimization, sliding mode control, linear control, cascade controllers, UAV, drones

Procedia PDF Downloads 74
2944 Modeling the Time Dependent Biodistribution of a 177Lu Labeled Somatostatin Analogues for Targeted Radiotherapy of Neuroendocrine Tumors Using Compartmental Analysis

Authors: Mahdieh Jajroudi

Abstract:

Developing a pharmacokinetic model for the neuroendocrine tumors therapy agent 177Lu-DOTATATE in nude mice bearing AR42J rat pancreatic tumor to investigate and evaluate the behavior of the complex was the main purpose of this study. The utilization of compartmental analysis permits the mathematical differencing of tissues and organs to become acquainted with the concentration of activity in each fraction of interest. Biodistribution studies are onerous and troublesome to perform in humans, but such data can be obtained facilely in rodents. A physiologically based pharmacokinetic model for scaling up activity concentration in particular organs versus time was developed. The mathematical model exerts physiological parameters including organ volumes, blood flow rates, and vascular permabilities; the compartments (organs) are connected anatomically. This allows the use of scale-up techniques to forecast new complex distribution in humans' each organ. The concentration of the radiopharmaceutical in various organs was measured at different times. The temporal behavior of biodistribution of 177Lu labeled somatostatin analogues was modeled and drawn as function of time. Conclusion: The variation of pharmaceutical concentration in all organs is characterized with summation of six to nine exponential terms and it approximates our experimental data with precision better than 1%.

Keywords: biodistribution modeling, compartmental analysis, 177Lu labeled somatostatin analogues, neuroendocrine tumors

Procedia PDF Downloads 373
2943 Dissimilar Welding Of New High Oxidation Material – Thor™ 115 With Vm-12 Shc

Authors: Michal Urzynicok, Krzysztof Kwiecinski

Abstract:

The development of materials used in the power generation industry for the production of boilers and their parts is characterized by high steam parameters, which present new challenges. Implementation of new combinations of alloying elements that lead to the best possible mechanical properties, including creep resistance, greatly affects new steels' weldability. All new grades have to undergo many different examinations, in regards to bending and welding, in order to enable the development of fabrication technologies, ensuring failure-free production and assembly of boiler components. 12% Cr martensitic steels like THOR™ 115 or VM-12 SHC are characterized by high oxidation resistance in high-temperature environments. At the moment, VM-12 SHC can be found in many boilers where both headers and superheater coils were produced. As this material is very difficult to obtain, a search for a proper replacement has begun. A new creep strength-enhanced ferritic steel for service in supercritical and ultra-supercritical boiler applications was developed by Tenaris in Italy and it is designated as Thor™115 (Tenaris High Oxidation Resistance). As high demand in power plants occurred to replace some parts of existing installations fabricated from VM12-SHC with other alternatives, a new development of welding procedures has begun to prepare fabricators for the challenges of joining old components with new THOR™ 115 material. This paper covers the first research of welding of dissimilar joints made out of VM12-SHC and THOR™ 115.

Keywords: thor, vm12, dissimilar welding, weldability

Procedia PDF Downloads 157
2942 Optimal Sliding Mode Controller for Knee Flexion during Walking

Authors: Gabriel Sitler, Yousef Sardahi, Asad Salem

Abstract:

This paper presents an optimal and robust sliding mode controller (SMC) to regulate the position of the knee joint angle for patients suffering from knee injuries. The controller imitates the role of active orthoses that produce the joint torques required to overcome gravity and loading forces and regain natural human movements. To this end, a mathematical model of the shank, the lower part of the leg, is derived first and then used for the control system design and computer simulations. The design of the controller is carried out in optimal and multi-objective settings. Four objectives are considered: minimization of the control effort and tracking error; and maximization of the control signal smoothness and closed-loop system’s speed of response. Optimal solutions in terms of the Pareto set and its image, the Pareto front, are obtained. The results show that there are trade-offs among the design objectives and many optimal solutions from which the decision-maker can choose to implement. Also, computer simulations conducted at different points from the Pareto set and assuming knee squat movement demonstrate competing relationships among the design goals. In addition, the proposed control algorithm shows robustness in tracking a standard gait signal when accounting for uncertainty in the shank’s parameters.

Keywords: optimal control, multi-objective optimization, sliding mode control, wearable knee exoskeletons

Procedia PDF Downloads 87
2941 Tillage and Manure Effects on Water Retention and Van Genuchten Parameters in Western Iran

Authors: Azadeh Safadoust, Ali Akbar Mahboubi, Mohammad Reza Mosaddeghi, Bahram Gharabaghi

Abstract:

A study was conducted to evaluate hydraulic properties of a sandy loam soil and corn (Zea mays L.) crop production under a short-term tillage and manure combinations field experiment carried out in west of Iran. Treatments included composted cattle manure application rates [0, 30, and 60 Mg (dry weight) ha⁻¹] and tillage systems [no-tillage (NT), chisel plowing (CP), and moldboard plowing (MP)] arranged in a split-plot design. Soil water characteristic curve (SWCC) and saturated hydraulic conductivity (Ks) were significantly affected by manure and tillage treatments. At any matric suction, the soil water content was in the order of MP>CP>NT. At all matric suctions, the amount of water retained by the soil increased as manure application rate increased (i.e. 60>30>0 Mg ha⁻¹). Similar to the tillage effects, at high suctions the differences of water retained due to manure addition were less than that at low suctions. The change of SWCC from tillage methods and manure applications may attribute to the change of pore size and aggregate size distributions. Soil Ks was in the order of CP>MP>NT for the first two layers and in the order of MP>CP and NT for the deeper soil layer. The Ks also increased with increasing rates of manure application (i.e. 60>30>0 Mg ha⁻¹). This was due to the increase in the total pore size and continuity.

Keywords: corn, manure, saturated hydraulic conductivity, soil water characteristic curve, tillage

Procedia PDF Downloads 84
2940 A Prospective Study of a Modified Pin-In-Plaster Technique for Treatment of Distal Radius Fractures

Authors: S. alireza Mirghasemi, Shervin Rashidinia, Mohammadsaleh Sadeghi, Mohsen Talebizadeh, Narges Rahimi Gabaran, S. Shahin Eftekhari, Sara Shahmoradi

Abstract:

Purpose: There are various pin-in-plaster methods for treating distal radius fractures. This study is meant to introduce a modified technique of pin-in-plaster. Materials and methods: Fifty-four patients with distal radius fractures were followed up for one year. Patients were excluded if they had type B fractures according to AO classification, multiple injuries or pathological fractures, and were treated more than 7 days after injury. Range of motion and functional results were evaluated. Radiographic parameters including radial inclination, tilt, and height, were measured preoperatively and postoperatively. Results: The average radial tilt was 10.6° and radial height was 10.2 mm at the sixth month postoperatively. Three cases of pin tract infection were recorded, who were treated totally with oral antibiotics. There was no case of pin loosening. Of total 73 patients underwent surgery, three cases of radial nerve irritation were recorded at the time of cast removal. All of them resolved at the 6th month follow up. No median nerve compression and carpal tunnel syndrome have found. We also had no case of tendon injury. Conclusion: Our modified technique is effective to restore anatomic congruity and maintain reduction.

Keywords: distal radius fracture, percutaneous pinning, pin-in-plaster, modified method of pin-in-plaster, operative treatment

Procedia PDF Downloads 513
2939 Real-Time Water Quality Monitoring and Control System for Fish Farms Based on IoT

Authors: Nadia Yaghoobi, Seyed Majid Esmaeilzadeh

Abstract:

Due to advancements in wireless communication, new sensor capabilities have been created. In addition to the automation industry, the Internet of Things (IoT) has been used in environmental issues and has provided the possibility of communication between different devices for data collection and exchange. Water quality depends on many factors which are essential for maintaining the minimum sustainability of water. Regarding the great dependence of fishes on the quality of the aquatic environment, water quality can directly affect their activity. Therefore, monitoring water quality is an important issue to consider, especially in the fish farming industry. The conventional method of water quality testing is to collect water samples manually and send them to a laboratory for testing and analysis. This time-consuming method is a waste of manpower and is not cost-effective. The water quality measurement system implemented in this project monitors water quality in real-time through various sensors (parameters: water temperature, water level, dissolved oxygen, humidity and ambient temperature, water turbidity, PH). The Wi-Fi module, ESP8266, transmits data collected by sensors wirelessly to ThingSpeak and the smartphone app. Also, with the help of these instantaneous data, water temperature and water level can be controlled by using a heater and a water pump, respectively. This system can have a detailed study of the pollution and condition of water resources and can provide an environment for safe fish farming.

Keywords: dissolved oxygen, IoT, monitoring, ThingSpeak, water level, water quality, WiFi module

Procedia PDF Downloads 199
2938 Wastewater Treatment and Bio-Electricity Generation via Microbial Fuel Cell Technology Operating with Starch Proton Exchange Membrane

Authors: Livinus A. Obasi, Augustine N. Ajah

Abstract:

Biotechnology in recent times has tried to develop a mechanism whereby sustainable electricity can be generated by the activity of microorganisms on waste and renewable biomass (often regarded as “negative value”) in a device called microbial fuel cell, MFC. In this paper, we established how the biocatalytic activities of bacteria on organic matter (substrates) produced some electrons with the associated removal of some water pollution parameters; Biochemical oxygen demand (BOD), chemical oxygen demand (COD) to the tune of 77.2% and 88.3% respectively from a petrochemical sanitary wastewater. The electricity generation was possible by conditioning the bacteria to operate anaerobically in one chamber referred to as the anode while the electrons are transferred to the fully aerated counter chamber containing the cathode. Power densities ranging from 12.83 mW/m2 to 966.66 mW/m2 were achieved using a dual-chamber starch membrane MFC experimental set-up. The maximum power density obtained in this research shows an improvement in the use of low cost MFC set up to achieve power production. Also, the level of organic matter removal from the sanitary waste water by the operation of this device clearly demonstrates its potential benefit in achieving an improved benign environment. The beauty of the MFCs is their potential utility in areas lacking electrical infrastructures like in most developing countries.

Keywords: bioelectricity, COD, microbial fuel cell, sanitary wastewater, wheat starch

Procedia PDF Downloads 261
2937 Electrical Cardiac Remodeling in Elite Athletes: A Comparative Study between Triathletes and Cyclists

Authors: Lingxia Li, Frédéric Schnell, Thibault Lachard, Anne-Charlotte Dupont, Shuzhe Ding, Solène Le Douairon Lahaye

Abstract:

Background: Repetitive participation in triathlon training results in significant myocardial changes. However, whether the cardiac remodeling in triathletes is related to the specificities of the sport (consisting of three sports) raises questions. Methods: Elite triathletes and cyclists registered on the French ministerial lists of high-level athletes were involved. The basic information and routine electrocardiogram records were obtained. Electrocardiograms were evaluated according to clinical criteria. Results: Of the 105 athletes included in the study, 42 were from the short-distance triathlon (40%), and 63 were from the road cycling (60%). The average age was 22.1±4.2 years. The P wave amplitude was significantly lower in triathletes than in cyclists (p=0.005), and no significant statistical difference was found in heart rate, RR interval, PR or PQ interval, QRS complex, QRS axe, QT interval, and QTc (p>0.05). All the measured parameters were within normal ranges. The most common electrical manifestations were early repolarization (60.95%) and incomplete right bundle branch block (43.81%); there was no statistical difference between the groups (p>0.05). Conclusions: Prolonged intensive endurance exercise training induces physiological cardiac remodeling in both triathletes and cyclists. The most common electrocardiogram manifestations were early repolarization and incomplete right bundle branch block.

Keywords: cardiac screening, electrocardiogram, triathlon, cycling, elite athletes

Procedia PDF Downloads 20
2936 Crop Classification using Unmanned Aerial Vehicle Images

Authors: Iqra Yaseen

Abstract:

One of the well-known areas of computer science and engineering, image processing in the context of computer vision has been essential to automation. In remote sensing, medical science, and many other fields, it has made it easier to uncover previously undiscovered facts. Grading of diverse items is now possible because of neural network algorithms, categorization, and digital image processing. Its use in the classification of agricultural products, particularly in the grading of seeds or grains and their cultivars, is widely recognized. A grading and sorting system enables the preservation of time, consistency, and uniformity. Global population growth has led to an increase in demand for food staples, biofuel, and other agricultural products. To meet this demand, available resources must be used and managed more effectively. Image processing is rapidly growing in the field of agriculture. Many applications have been developed using this approach for crop identification and classification, land and disease detection and for measuring other parameters of crop. Vegetation localization is the base of performing these task. Vegetation helps to identify the area where the crop is present. The productivity of the agriculture industry can be increased via image processing that is based upon Unmanned Aerial Vehicle photography and satellite. In this paper we use the machine learning techniques like Convolutional Neural Network, deep learning, image processing, classification, You Only Live Once to UAV imaging dataset to divide the crop into distinct groups and choose the best way to use it.

Keywords: image processing, UAV, YOLO, CNN, deep learning, classification

Procedia PDF Downloads 115
2935 Estimation of Consolidating Settlement Based on a Time-Dependent Skin Friction Model Considering Column Surface Roughness

Authors: Jiang Zhenbo, Ishikura Ryohei, Yasufuku Noriyuki

Abstract:

Improvement of soft clay deposits by the combination of surface stabilization and floating type cement-treated columns is one of the most popular techniques worldwide. On the basis of one dimensional consolidation model, a time-dependent skin friction model for the column-soil interaction is proposed. The nonlinear relationship between column shaft shear stresses and effective vertical pressure of the surrounding soil can be described in this model. The influence of column-soil surface roughness can be represented using a roughness coefficient R, which plays an important role in the design of column length. Based on the homogenization method, a part of floating type improved ground will be treated as an unimproved portion, which with a length of αH1 is defined as a time-dependent equivalent skin friction length. The compression settlement of this unimproved portion can be predicted only using the soft clay parameters. Apart from calculating the settlement of this composited ground, the load transfer mechanism is discussed utilizing model tests. The proposed model is validated by comparing with calculations and laboratory results of model and ring shear tests, which indicate the suitability and accuracy of the solutions in this paper.

Keywords: floating type improved foundation, time-dependent skin friction, roughness, consolidation

Procedia PDF Downloads 472
2934 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction

Authors: Yan Zhang

Abstract:

Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.

Keywords: Internet of Things, machine learning, predictive maintenance, streaming data

Procedia PDF Downloads 390
2933 Design of a Cooperative Neural Network, Particle Swarm Optimization (PSO) and Fuzzy Based Tracking Control for a Tilt Rotor Unmanned Aerial Vehicle

Authors: Mostafa Mjahed

Abstract:

Tilt Rotor UAVs (Unmanned Aerial Vehicles) are naturally unstable and difficult to maneuver. The purpose of this paper is to design controllers for the stabilization and trajectory tracking of this type of UAV. To this end, artificial intelligence methods have been exploited. First, the dynamics of this UAV was modeled using the Lagrange-Euler method. The conventional method based on Proportional, Integral and Derivative (PID) control was applied by decoupling the different flight modes. To improve stability and trajectory tracking of the Tilt Rotor, the fuzzy approach and the technique of multilayer neural networks (NN) has been used. Thus, Fuzzy Proportional Integral and Derivative (FPID) and Neural Network-based Proportional Integral and Derivative controllers (NNPID) have been developed. The meta-heuristic approach based on Particle Swarm Optimization (PSO) method allowed adjusting the setting parameters of NNPID controller, giving us an improved NNPID-PSO controller. Simulation results under the Matlab environment show the efficiency of the approaches adopted. Besides, the Tilt Rotor UAV has become stable and follows different types of trajectories with acceptable precision. The Fuzzy, NN and NN-PSO-based approaches demonstrated their robustness because the presence of the disturbances did not alter the stability or the trajectory tracking of the Tilt Rotor UAV.

Keywords: neural network, fuzzy logic, PSO, PID, trajectory tracking, tilt-rotor UAV

Procedia PDF Downloads 125
2932 Modeling Aeration of Sharp Crested Weirs by Using Support Vector Machines

Authors: Arun Goel

Abstract:

The present paper attempts to investigate the prediction of air entrainment rate and aeration efficiency of a free over-fall jets issuing from a triangular sharp crested weir by using regression based modelling. The empirical equations, support vector machine (polynomial and radial basis function) models and the linear regression techniques were applied on the triangular sharp crested weirs relating the air entrainment rate and the aeration efficiency to the input parameters namely drop height, discharge, and vertex angle. It was observed that there exists a good agreement between the measured values and the values obtained using empirical equations, support vector machine (Polynomial and rbf) models, and the linear regression techniques. The test results demonstrated that the SVM based (Poly & rbf) model also provided acceptable prediction of the measured values with reasonable accuracy along with empirical equations and linear regression techniques in modelling the air entrainment rate and the aeration efficiency of a free over-fall jets issuing from triangular sharp crested weir. Further sensitivity analysis has also been performed to study the impact of input parameter on the output in terms of air entrainment rate and aeration efficiency.

Keywords: air entrainment rate, dissolved oxygen, weir, SVM, regression

Procedia PDF Downloads 439
2931 BIM-Based Tool for Sustainability Assessment and Certification Documents Provision

Authors: Taki Eddine Seghier, Mohd Hamdan Ahmad, Yaik-Wah Lim, Samuel Opeyemi Williams

Abstract:

The assessment of building sustainability to achieve a specific green benchmark and the preparation of the required documents in order to receive a green building certification, both are considered as major challenging tasks for green building design team. However, this labor and time-consuming process can take advantage of the available Building Information Modeling (BIM) features such as material take-off and scheduling. Furthermore, the workflow can be automated in order to track potentially achievable credit points and provide rating feedback for several design options by using integrated Visual Programing (VP) to handle the stored parameters within the BIM model. Hence, this study proposes a BIM-based tool that uses Green Building Index (GBI) rating system requirements as a unique input case to evaluate the building sustainability in the design stage of the building project life cycle. The tool covers two key models for data extraction, firstly, a model for data extraction, calculation and the classification of achievable credit points in a green template, secondly, a model for the generation of the required documents for green building certification. The tool was validated on a BIM model of residential building and it serves as proof of concept that building sustainability assessment of GBI certification can be automatically evaluated and documented through BIM.

Keywords: green building rating system, GBRS, building information modeling, BIM, visual programming, VP, sustainability assessment

Procedia PDF Downloads 330
2930 A Numerical Investigation of Total Temperature Probes Measurement Performance

Authors: Erdem Meriç

Abstract:

Measuring total temperature of air flow accurately is a very important requirement in the development phases of many industrial products, including gas turbines and rockets. Thermocouples are very practical devices to measure temperature in such cases, but in high speed and high temperature flows, the temperature of thermocouple junction may deviate considerably from real flow total temperature due to the effects of heat transfer mechanisms of convection, conduction, and radiation. To avoid errors in total temperature measurement, special probe designs which are experimentally characterized are used. In this study, a validation case which is an experimental characterization of a specific class of total temperature probes is selected from the literature to develop a numerical conjugate heat transfer analysis methodology to study the total temperature probe flow field and solid temperature distribution. Validated conjugate heat transfer methodology is used to investigate flow structures inside and around the probe and effects of probe design parameters like the ratio between inlet and outlet hole areas and prob tip geometry on measurement accuracy. Lastly, a thermal model is constructed to account for errors in total temperature measurement for a specific class of probes in different operating conditions. Outcomes of this work can guide experimentalists to design a very accurate total temperature probe and quantify the possible error for their specific case.

Keywords: conjugate heat transfer, recovery factor, thermocouples, total temperature probes

Procedia PDF Downloads 146
2929 Development and Performance Evaluation of a Gladiolus Planter in Field for Planting Corms

Authors: T. P. Singh, Vijay Gautam

Abstract:

Gladiolus is an important cash crop and is grown mainly for its elegant spikes. Traditionally the gladiolus corms are planted manually which is very tedious, time consuming and labor intensive operation. So far, there is no planter available for planting of gladiolus corms. With a view to mechanize the planting operation of this horticultural crop, a prototype of 4-row gladiolus planter was developed and its performance was evaluated in-situ condition. Cup-chain type metering device was used to singulate the gladiolus corms while planting. Three levels of corm spacing viz 15, 20 and 25 cm and four levels of forward speed viz 1.0, 1.5, 2.0 and 2.5 km/h was taken as evaluation parameter for the planter. The performance indicators namely corm spacing in each row, coefficient of uniformity, missing index, multiple index, quality of feed index, number of corms per meter length, mechanical damage to the corms etc. were determined during the field test. The data was statistically analyzed using Completely Randomized Design (CRD) for testing the significance of the parameters. The result indicated that planter was able to drop the corms at required nominal spacing with minor variations. The highest deviation from the mean corm spacing was observed as 3.53 cm with maximum coefficient of variation as 13.88%. The highest missing and quality of feed indexes were observed as 6.33% and 97.45% respectively with no multiples. The performance of the planter was observed better at lower forward speed and wider corm spacing. The field capacity of the planter was found as 0.103 ha/h with an observed field efficiency of 76.57%.

Keywords: coefficient of uniformity, corm spacing, gladiolus planter, mechanization

Procedia PDF Downloads 241
2928 Emerging Policy Landscape of Rare Disease Registries in India: An Analysis in Evolutionary Policy Perspective

Authors: Yadav Shyamjeet Maniram

Abstract:

Despite reports of more than seventy million population of India affected by rare diseases, it rarely figured on the agenda of the Indian scientist and policymakers. Hitherto ignored, a fresh initiative is being attempted to establish the first national registry for rare diseases. Though there are registries for rare diseases, established by the clinicians and patient advocacy groups, they are isolated, scattered and lacks information sharing mechanism. It is the first time that there is an effort from the government of India to make an initiative on the rare disease registries, which would be more formal and systemic in nature. Since there is lack of epidemiological evidence for the rare disease in India, it is interesting to note how rare disease policy is being attempted in the vacuum of evidence required for the policy process. The objective of this study is to analyse rare disease registry creation and implementation from the parameters of evolutionary policy perspective in the absence of evidence for the policy process. This study will be exploratory and qualitative in nature, primarily based on the interviews of stakeholders involved in the rare disease registry creation and implementation. Some secondary data will include various documents related to rare disease registry. The expected outcome of this study would be on the role of stakeholders in the generation of evidence for the rare disease registry creation and implementation. This study will also try to capture negotiations and deliberations on the ethical issues in terms of data collection, preservation, and protection.

Keywords: evolutionary policy perspective, evidence for policy, rare disease policy, rare disease in India

Procedia PDF Downloads 210
2927 Development and Verification of the Idom Shielding Optimization Tool

Authors: Omar Bouhassoun, Cristian Garrido, César Hueso

Abstract:

The radiation shielding design is an optimization problem with multiple -constrained- objective functions (radiation dose, weight, price, etc.) that depend on several parameters (material, thickness, position, etc.). The classical approach for shielding design consists of a brute force trial-and-error process subject to previous designer experience. Therefore, the result is an empirical solution but not optimal, which can degrade the overall performance of the shielding. In order to automate the shielding design procedure, the IDOM Shielding Optimization Tool (ISOT) has been developed. This software combines optimization algorithms with the capabilities to read/write input files, run calculations, as well as parse output files for different radiation transport codes. In the first stage, the software was established to adjust the input files for two well-known Monte Carlo codes (MCNP and Serpent) and optimize the result (weight, volume, price, dose rate) using multi-objective genetic algorithms. Nevertheless, its modular implementation easily allows the inclusion of more radiation transport codes and optimization algorithms. The work related to the development of ISOT and its verification on a simple 3D multi-layer shielding problem using both MCNP and Serpent will be presented. ISOT looks very promising for achieving an optimal solution to complex shielding problems.

Keywords: optimization, shielding, nuclear, genetic algorithm

Procedia PDF Downloads 113
2926 Optimal Dynamic Regime for CO Oxidation Reaction Discovered by Policy-Gradient Reinforcement Learning Algorithm

Authors: Lifar M. S., Tereshchenko A. A., Bulgakov A. N., Guda S. A., Guda A. A., Soldatov A. V.

Abstract:

Metal nanoparticles are widely used as heterogeneous catalysts to activate adsorbed molecules and reduce the energy barrier of the reaction. Reaction product yield depends on the interplay between elementary processes - adsorption, activation, reaction, and desorption. These processes, in turn, depend on the inlet feed concentrations, temperature, and pressure. At stationary conditions, the active surface sites may be poisoned by reaction byproducts or blocked by thermodynamically adsorbed gaseous reagents. Thus, the yield of reaction products can significantly drop. On the contrary, the dynamic control accounts for the changes in the surface properties and adjusts reaction parameters accordingly. Therefore dynamic control may be more efficient than stationary control. In this work, a reinforcement learning algorithm has been applied to control the simulation of CO oxidation on a catalyst. The policy gradient algorithm is learned to maximize the CO₂ production rate based on the CO and O₂ flows at a given time step. Nonstationary solutions were found for the regime with surface deactivation. The maximal product yield was achieved for periodic variations of the gas flows, ensuring a balance between available adsorption sites and the concentration of activated intermediates. This methodology opens a perspective for the optimization of catalytic reactions under nonstationary conditions.

Keywords: artificial intelligence, catalyst, co oxidation, reinforcement learning, dynamic control

Procedia PDF Downloads 134
2925 An Ensemble Learning Method for Applying Particle Swarm Optimization Algorithms to Systems Engineering Problems

Authors: Ken Hampshire, Thomas Mazzuchi, Shahram Sarkani

Abstract:

As a subset of metaheuristics, nature-inspired optimization algorithms such as particle swarm optimization (PSO) have shown promise both in solving intractable problems and in their extensibility to novel problem formulations due to their general approach requiring few assumptions. Unfortunately, single instantiations of algorithms require detailed tuning of parameters and cannot be proven to be best suited to a particular illustrative problem on account of the “no free lunch” (NFL) theorem. Using these algorithms in real-world problems requires exquisite knowledge of the many techniques and is not conducive to reconciling the various approaches to given classes of problems. This research aims to present a unified view of PSO-based approaches from the perspective of relevant systems engineering problems, with the express purpose of then eliciting the best solution for any problem formulation in an ensemble learning bucket of models approach. The central hypothesis of the research is that extending the PSO algorithms found in the literature to real-world optimization problems requires a general ensemble-based method for all problem formulations but a specific implementation and solution for any instance. The main results are a problem-based literature survey and a general method to find more globally optimal solutions for any systems engineering optimization problem.

Keywords: particle swarm optimization, nature-inspired optimization, metaheuristics, systems engineering, ensemble learning

Procedia PDF Downloads 105
2924 Air Quality Forecast Based on Principal Component Analysis-Genetic Algorithm and Back Propagation Model

Authors: Bin Mu, Site Li, Shijin Yuan

Abstract:

Under the circumstance of environment deterioration, people are increasingly concerned about the quality of the environment, especially air quality. As a result, it is of great value to give accurate and timely forecast of AQI (air quality index). In order to simplify influencing factors of air quality in a city, and forecast the city’s AQI tomorrow, this study used MATLAB software and adopted the method of constructing a mathematic model of PCA-GABP to provide a solution. To be specific, this study firstly made principal component analysis (PCA) of influencing factors of AQI tomorrow including aspects of weather, industry waste gas and IAQI data today. Then, we used the back propagation neural network model (BP), which is optimized by genetic algorithm (GA), to give forecast of AQI tomorrow. In order to verify validity and accuracy of PCA-GABP model’s forecast capability. The study uses two statistical indices to evaluate AQI forecast results (normalized mean square error and fractional bias). Eventually, this study reduces mean square error by optimizing individual gene structure in genetic algorithm and adjusting the parameters of back propagation model. To conclude, the performance of the model to forecast AQI is comparatively convincing and the model is expected to take positive effect in AQI forecast in the future.

Keywords: AQI forecast, principal component analysis, genetic algorithm, back propagation neural network model

Procedia PDF Downloads 235
2923 Quantitative Structure-Property Relationship Study of Base Dissociation Constants of Some Benzimidazoles

Authors: Sanja O. Podunavac-Kuzmanović, Lidija R. Jevrić, Strahinja Z. Kovačević

Abstract:

Benzimidazoles are a group of compounds with significant antibacterial, antifungal and anticancer activity. The studied compounds consist of the main benzimidazole structure with different combinations of substituens. This study is based on the two-dimensional and three-dimensional molecular modeling and calculation of molecular descriptors (physicochemical and lipophilicity descriptors) of structurally diverse benzimidazoles. Molecular modeling was carried out by using ChemBio3D Ultra version 14.0 software. The obtained 3D models were subjected to energy minimization using molecular mechanics force field method (MM2). The cutoff for structure optimization was set at a gradient of 0.1 kcal/Åmol. The obtained set of molecular descriptors was used in principal component analysis (PCA) of possible similarities and dissimilarities among the studied derivatives. After the molecular modeling, the quantitative structure-property relationship (QSPR) analysis was applied in order to get the mathematical models which can be used in prediction of pKb values of structurally similar benzimidazoles. The obtained models are based on statistically valid multiple linear regression (MLR) equations. The calculated cross-validation parameters indicate the high prediction ability of the established QSPR models. This study is financially supported by COST action CM1306 and the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina.

Keywords: benzimidazoles, chemometrics, molecular modeling, molecular descriptors, QSPR

Procedia PDF Downloads 294