Search results for: thermal resistance of special garments
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8769

Search results for: thermal resistance of special garments

1179 Performance Analysis of Three Absorption Heat Pump Cycles, Full and Partial Loads Operations

Authors: B. Dehghan, T. Toppi, M. Aprile, M. Motta

Abstract:

The environmental concerns related to global warming and ozone layer depletion along with the growing worldwide demand for heating and cooling have brought an increasing attention toward ecological and efficient Heating, Ventilation, and Air Conditioning (HVAC) systems. Furthermore, since space heating accounts for a considerable part of the European primary/final energy use, it has been identified as one of the sectors with the most challenging targets in energy use reduction. Heat pumps are commonly considered as a technology able to contribute to the achievement of the targets. Current research focuses on the full load operation and seasonal performance assessment of three gas-driven absorption heat pump cycles. To do this, investigations of the gas-driven air-source ammonia-water absorption heat pump systems for small-scale space heating applications are presented. For each of the presented cycles, both full-load under various temperature conditions and seasonal performances are predicted by means of numerical simulations. It has been considered that small capacity appliances are usually equipped with fixed geometry restrictors, meaning that the solution mass flow rate is driven by the pressure difference across the associated restrictor valve. Results show that gas utilization efficiency (GUE) of the cycles varies between 1.2 and 1.7 for both full and partial loads and vapor exchange (VX) cycle is found to achieve the highest efficiency. It is noticed that, for typical space heating applications, heat pumps operate over a wide range of capacities and thermal lifts. Thus, partially, the novelty introduced in the paper is the investigation based on a seasonal performance approach, following the method prescribed in a recent European standard (EN 12309). The overall result is a modest variation in the seasonal performance for analyzed cycles, from 1.427 (single-effect) to 1.493 (vapor-exchange).

Keywords: absorption cycles, gas utilization efficiency, heat pump, seasonal performance, vapor exchange cycle

Procedia PDF Downloads 112
1178 Photobiomodulation Activates WNT/β-catenin Signaling for Wound Healing in an in Vitro Diabetic Wound Model

Authors: Dimakatso B. Gumede, Nicolette N. Houreld

Abstract:

Diabetic foot ulcers (DFUs) are a complication of diabetes mellitus (DM), a metabolic disease caused by insulin resistance or insufficiency, resulting in hyperglycaemia and low-grade chronic inflammation. Current therapies for treating DFUs include wound debridement, glycaemic control, and wound dressing. However, these therapies are moderately effective as there is a recurrence of these ulcers and an increased risk of lower limb amputations. Photobiomodulation (PBM), which is the application of non-invasive low-level light for wound healing at the spectrum of 660-1000 nm, has shown great promise in accelerating the healing of chronic wounds. However, its underlying mechanisms are not clearly defined. Studies have indicated that PBM induces wound healing via the activation of signaling pathways that are involved in tissue repair, such as the transforming growth factor-β (TGF-β). However, other signaling pathways, such as the WNT/β-catenin pathway, which is also critical for wound repair, have not been investigated. This study aimed to elucidate if PBM at 660 nm and a fluence of 5 J/cm² activates the WNT/β-catenin signaling pathway for wound healing in a diabetic cellular model. Human dermal fibroblasts (WS1) were continuously cultured high-glucose (26.5 mM D-glucose) environment to create a diabetic cellular model. A central scratch was created in the diabetic model to ‘wound’ the cells. The diabetic wounded (DW) cells were thereafter irradiated at 660 nm and a fluence of 5 J/cm². Cell migration, gene expression and protein assays were conducted at 24- and 48-h post-PBM. The results showed that PBM at 660 nm and a fluence of 5 J/cm² significantly increased cell migration in diabetic wounded cells at 24-h post-PBM. The expression of CTNNB1, ACTA2, COL1A1 and COL3A1 genes was also increased in DW cells post-PBM. Furthermore, there was increased cytoplasmic accumulation and nuclear localization of β-catenin at 24 h post-PBM. The findings in this study demonstrate that PBM activates the WNT/β-catenin signaling pathway by inducing the accumulation of β-catenin in diabetic wounded cells, leading to increased cell migration and expression of wound repair markers. These results thus indicate that PBM has the potential to improve wound healing in diabetic ulcers via activation of the WNT/β-catenin signaling pathway.

Keywords: wound healing, diabetic ulcers, photobiomodulation, WNT/β-catenin, signalling pathway

Procedia PDF Downloads 42
1177 Novel Hole-Bar Standard Design and Inter-Comparison for Geometric Errors Identification on Machine-Tool

Authors: F. Viprey, H. Nouira, S. Lavernhe, C. Tournier

Abstract:

Manufacturing of freeform parts may be achieved on 5-axis machine tools currently considered as a common means of production. In particular, the geometrical quality of the freeform parts depends on the accuracy of the multi-axis structural loop, which is composed of several component assemblies maintaining the relative positioning between the tool and the workpiece. Therefore, to reach high quality of the geometries of the freeform parts the geometric errors of the 5 axis machine should be evaluated and compensated, which leads one to master the deviations between the tool and the workpiece (volumetric accuracy). In this study, a novel hole-bar design was developed and used for the characterization of the geometric errors of a RRTTT 5-axis machine tool. The hole-bar standard design is made of Invar material, selected since it is less sensitive to thermal drift. The proposed design allows once to extract 3 intrinsic parameters: one linear positioning and two straightnesses. These parameters can be obtained by measuring the cylindricity of 12 holes (bores) and 11 cylinders located on a perpendicular plane. By mathematical analysis, twelve 3D points coordinates can be identified and correspond to the intersection of each hole axis with the least square plane passing through two perpendicular neighbour cylinders axes. The hole-bar was calibrated using a precision CMM at LNE traceable the SI meter definition. The reversal technique was applied in order to separate the error forms of the hole bar from the motion errors of the mechanical guiding systems. An inter-comparison was additionally conducted between four NMIs (National Metrology Institutes) within the EMRP IND62: JRP-TIM project. Afterwards, the hole-bar was integrated in RRTTT 5-axis machine tool to identify its volumetric errors. Measurements were carried out in real time and combine raw data acquired by the Renishaw RMP600 touch probe and the linear and rotary encoders. The geometric errors of the 5 axis machine were also evaluated by an accurate laser tracer interferometer system. The results were compared to those obtained with the hole bar.

Keywords: volumetric errors, CMM, 3D hole-bar, inter-comparison

Procedia PDF Downloads 387
1176 Enhancing Patient Outcomes Through Quality Improvement: Reducing Contamination Rates in Karyotyping Samples via Effective Audits and Staff Engagement

Authors: Rofaida Ashour

Abstract:

This study discusses the implementation of quality improvement initiatives aimed at reducing contamination rates in cultured karyotyping samples. The primary objective was to enhance patient outcomes through systematic audits and targeted staff engagement. Recognizing the critical impact of sample integrity on diagnostic accuracy, a thorough analysis was conducted to identify the root causes of contamination. The project involved two audit cycles, which facilitated a comprehensive assessment of adherence to local protocols. Key issues identified included lapses in the use of personal protective equipment (PPE) and inadequate awareness of proper sample handling procedures among staff. To address these challenges, a multi-faceted approach was adopted. Firstly, a presentation was delivered to the laboratory team emphasizing the significance of strict adherence to PPE guidelines during the collection and handling of samples. This session aimed to raise awareness and foster a culture of safety within the unit. Additionally, informative posters illustrating the correct procedures were strategically placed around the laboratory to serve as ongoing visual reminders for staff. Recognizing the heightened risk associated with patients exhibiting fever or signs of infection, special measures were introduced to manage their sample collection. These proactive strategies were designed to minimize the likelihood of introducing contaminated samples into the culture process. The results of the audits demonstrated a significant reduction in contamination rates, underscoring the effectiveness of the interventions. This experience reinforced the importance of continuous quality improvement in healthcare settings, particularly in ensuring the delivery of high-quality, safe, and efficient services. Conducting regular audits not only provided valuable insights into operational practices but also highlighted the critical role of active team engagement and a data-driven approach in decision-making. Effective communication and collaboration among team members emerged as essential components for the success of quality improvement initiatives.

Keywords: quality improvement, contamination rates, karyotyping samples, healthcare protocols, staff engagement

Procedia PDF Downloads 16
1175 Urban Accessibility of Historical Cities: The Venetian Case Study

Authors: Valeria Tatano, Francesca Guidolin, Francesca Peltrera

Abstract:

The preservation of historical Italian heritage, at the urban and architectural scale, has to consider restrictions and requirements connected with conservation issues and usability needs, which are often at odds with historical heritage preservation. Recent decades have been marked by the search for increased accessibility not only of public and private buildings, but to the whole historical city, also for people with disability. Moreover, in the last years the concepts of Smart City and Healthy City seek to improve accessibility both in terms of mobility (independent or assisted) and fruition of goods and services, also for historical cities. The principles of Inclusive Design have introduced new criteria for the improvement of public urban space, between current regulations and best practices. Moreover, they have contributed to transforming “special needs” into an opportunity of social innovation. These considerations find a field of research and analysis in the historical city of Venice, which is at the same time a site of UNESCO world heritage, a mass tourism destination bringing in visitors from all over the world and a city inhabited by an aging population. Due to its conformation, Venetian urban fabric is only partially accessible: about four thousand bridges divide thousands of islands, making it almost impossible to move independently. These urban characteristics and difficulties were the base, in the last 20 years, for several researches, experimentations and solutions with the aim of eliminating architectural barriers, in particular for the usability of bridges. The Venetian Municipality with the EBA Office and some external consultants realized several devices (e.g. the “stepped ramp” and the new accessible ramps for the Venice Marathon) that should determine an innovation for the city, passing from the use of mechanical replicable devices to specific architectural projects in order to guarantee autonomy in use. This paper intends to present the state-of-the-art in bridges accessibility, through an analysis based on Inclusive Design principles and on the current national and regional regulation. The purpose is to evaluate some possible strategies that could improve performances, between limits and possibilities of interventions. The aim of the research is to lay the foundations for the development of a strategic program for the City of Venice that could successfully bring together both conservation and improvement requirements.

Keywords: accessibility of historical cities, historical heritage preservation, inclusive design, technological and social innovation

Procedia PDF Downloads 283
1174 Fermentation of Pretreated Herbaceous Cellulosic Wastes to Ethanol by Anaerobic Cellulolytic and Saccharolytic Thermophilic Clostridia

Authors: Lali Kutateladze, Tamar Urushadze, Tamar Dudauri, Besarion Metreveli, Nino Zakariashvili, Izolda Khokhashvili, Maya Jobava

Abstract:

Lignocellulosic waste streams from agriculture, paper and wood industry are renewable, plentiful and low-cost raw materials that can be used for large-scale production of liquid and gaseous biofuels. As opposed to prevailing multi-stage biotechnological processes developed for bioconversion of cellulosic substrates to ethanol where high-cost cellulase preparations are used, Consolidated Bioprocessing (CBP) offers to accomplish cellulose and xylan hydrolysis followed by fermentation of both C6 and C5 sugars to ethanol in a single-stage process. Syntrophic microbial consortium comprising of anaerobic, thermophilic, cellulolytic, and saccharolytic bacteria in the genus Clostridia with improved ethanol productivity and high tolerance to fermentation end-products had been proposed for achieving CBP. 65 new strains of anaerobic thermophilic cellulolytic and saccharolytic Clostridia were isolated from different wetlands and hot springs in Georgia. Using new isolates, fermentation of mechanically pretreated wheat straw and corn stalks was done under oxygen-free nitrogen environment in thermophilic conditions (T=550C) and pH 7.1. Process duration was 120 hours. Liquid and gaseous products of fermentation were analyzed on a daily basis using Perkin-Elmer gas chromatographs with flame ionization and thermal detectors. Residual cellulose, xylan, xylose, and glucose were determined using standard methods. Cellulolytic and saccharolytic bacteria strains degraded mechanically pretreated herbaceous cellulosic wastes and fermented glucose and xylose to ethanol, acetic acid and gaseous products like hydrogen and CO2. Specifically, maximum yield of ethanol was reached at 96 h of fermentation and varied between 2.9 – 3.2 g/ 10 g of substrate. The content of acetic acid didn’t exceed 0.35 g/l. Other volatile fatty acids were detected in trace quantities.

Keywords: anaerobic bacteria, cellulosic wastes, Clostridia sp, ethanol

Procedia PDF Downloads 298
1173 Cupric Oxide Thin Films for Optoelectronic Application

Authors: Sanjay Kumar, Dinesh Pathak, Sudhir Saralch

Abstract:

Copper oxide is a semiconductor that has been studied for several reasons such as the natural abundance of starting material copper (Cu); the easiness of production by Cu oxidation; their non-toxic nature and the reasonably good electrical and optical properties. Copper oxide is well-known as cuprite oxide. The cuprite is p-type semiconductors having band gap energy of 1.21 to 1.51 eV. As a p-type semiconductor, conduction arises from the presence of holes in the valence band (VB) due to doping/annealing. CuO is attractive as a selective solar absorber since it has high solar absorbency and a low thermal emittance. CuO is very promising candidate for solar cell applications as it is a suitable material for photovoltaic energy conversion. It has been demonstrated that the dip technique can be used to deposit CuO films in a simple manner using metallic chlorides (CuCl₂.2H₂O) as a starting material. Copper oxide films are prepared using a methanolic solution of cupric chloride (CuCl₂.2H₂O) at three baking temperatures. We made three samples, after heating which converts to black colour. XRD data confirm that the films are of CuO phases at a particular temperature. The optical band gap of the CuO films calculated from optical absorption measurements is 1.90 eV which is quite comparable to the reported value. Dip technique is a very simple and low-cost method, which requires no sophisticated specialized setup. Coating of the substrate with a large surface area can be easily obtained by this technique compared to that in physical evaporation techniques and spray pyrolysis. Another advantage of the dip technique is that it is very easy to coat both sides of the substrate instead of only one and to deposit otherwise inaccessible surfaces. This method is well suited for applying coating on the inner and outer surfaces of tubes of various diameters and shapes. The main advantage of the dip coating method lies in the fact that it is possible to deposit a variety of layers having good homogeneity and mechanical and chemical stability with a very simple setup. In this paper, the CuO thin films preparation by dip coating method and their characterization will be presented.

Keywords: absorber material, cupric oxide, dip coating, thin film

Procedia PDF Downloads 311
1172 Dust Particle Removal from Air in a Self-Priming Submerged Venturi Scrubber

Authors: Manisha Bal, Remya Chinnamma Jose, B.C. Meikap

Abstract:

Dust particles suspended in air are a major source of air pollution. A self-priming submerged venturi scrubber proven very effective in cases of handling nuclear power plant accidents is an efficient device to remove dust particles from the air and thus aids in pollution control. Venturi scrubbers are compact, have a simple mode of operation, no moving parts, easy to install and maintain when compared to other pollution control devices and can handle high temperatures and corrosive and flammable gases and dust particles. In the present paper, fly ash particles recognized as a high air pollutant substance emitted mostly from thermal power plants is considered as the dust particle. Its exposure through skin contact, inhalation and indigestion can lead to health risks and in severe cases can even root to lung cancer. The main focus of this study is on the removal of fly ash particles from polluted air using a self-priming venturi scrubber in submerged conditions using water as the scrubbing liquid. The venturi scrubber comprising of three sections: converging section, throat and diverging section is submerged inside a water tank. The liquid enters the throat due to the pressure difference composed of the hydrostatic pressure of the liquid and static pressure of the gas. The high velocity dust particles atomize the liquid droplets at the throat and this interaction leads to its absorption into water and thus removal of fly ash from the air. Detailed investigation on the scrubbing of fly ash has been done in this literature. Experiments were conducted at different throat gas velocities, water levels and fly ash inlet concentrations to study the fly ash removal efficiency. From the experimental results, the highest fly ash removal efficiency of 99.78% is achieved at the throat gas velocity of 58 m/s, water level of height 0.77m with fly ash inlet concentration of 0.3 x10⁻³ kg/Nm³ in the submerged condition. The effect of throat gas velocity, water level and fly ash inlet concentration on the removal efficiency has also been evaluated. Furthermore, experimental results of removal efficiency are validated with the developed empirical model.

Keywords: dust particles, fly ash, pollution control, self-priming venturi scrubber

Procedia PDF Downloads 166
1171 Cinema and the Documentation of Mass Killings in Third World Countries: A Study of Selected African Films

Authors: Chijindu D. Mgbemere

Abstract:

Mass killing also known as genocide is the systematic killing of people from national, ethnic, or religious group, or an attempt to do so. The act has been there before 1948, when it was officially recognized for what it is. From then, the world has continued to witness genocide in diverse forms- negating different measures by the United Nations and its agencies to curb it. So far, all the studies and documentations on this subject are biased in favor of radio and the print. This paper therefore extended the interrogation of genocide, drumming its devastating effects, using the film medium; and in doing so devised innovative and pragmatic approach to genocide scholarship. It further centered attention on the factors and impacts of genocide, with a view to determine how effective film can be in such a study. The study is anchored on Bateson’s Framing Theory. Four films- Hotel Rwanda, Half of a Yellow Sun, Attack on Darfur, and sarafina, were analyzed, based on background, factors/causes, impacts, and development of genocide, via Content Analysis. The study discovered that: as other continents strive towards peace, acts of genocide are on the increase in African. Bloodletting stereotypes give Africa negative image in the global society. Difficult political frameworks, the trauma of postcolonial state, aggravated by ethnic and religious intolerance, and limited access to resources are responsible for high cases of genocide in Africa. The media, international communities, and peace agencies often abet other than prevent genocide or mass killings in Africa. High human casualty and displacement, children soldering, looting, hunger, rape, sex-slavery and abuse, mental and psychosomatic stress disorders are some of the impacts of genocide. Genocidaires are either condemned or killed. Grievances can be vented using civil resistance, negotiation, adjudication, arbitration, and mediation. The cinema is an effective means of studying and documenting genocide. Africans must factor the image laundering of their continent into consideration. Punishment of genocidaires without an attempt to de-radicalize them is counterproductive.

Keywords: African film, genocide, framing theory, mass murder

Procedia PDF Downloads 119
1170 Effective Learning and Testing Methods in School-Aged Children

Authors: Farzaneh Badinlou, Reza Kormi-Nouri, Monika Knopf, Kamal Kharrazi

Abstract:

When we teach, we have two critical elements at our disposal to help students: learning styles as well as testing styles. There are many different ways in which educators can effectively teach their students; verbal learning and experience-based learning. Lecture as a form of verbal learning style is a traditional arrangement in which teachers are more active and share information verbally with students. In experienced-based learning as the process of through, students learn actively through hands-on learning materials and observing teachers or others. Meanwhile, standard testing or assessment is the way to determine progress toward proficiency. Teachers and instructors mainly use essay (requires written responses), multiple choice questions (includes the correct answer and several incorrect answers as distractors), or open-ended questions (respondents answers it with own words). The current study focused on exploring an effective teaching style and testing methods as the function of age over school ages. In the present study, totally 410 participants were selected randomly from four grades (2ⁿᵈ, 4ᵗʰ, 6ᵗʰ, and 8ᵗʰ). Each subject was tested individually in one session lasting around 50 minutes. In learning tasks, the participants were presented three different instructions for learning materials (learning by doing, learning by observing, and learning by listening). Then, they were tested via different standard assessments as free recall, cued recall, and recognition tasks. The results revealed that generally students remember more of what they do and what they observe than what they hear. The age effect was more pronounced in learning by doing than in learning by observing, and learning by listening, becoming progressively stronger in the free-recall, cued-recall, and recognition tasks. The findings of this study indicated that learning by doing and free recall task is more age sensitive, suggesting that both of them are more strategic and more affected by developmental differences. Pedagogically, these results denoted that learning by modeling and engagement in program activities have the special role for learning. Moreover, the findings indicated that the multiple-choice questions can produce the best performance for school-aged children but is less age-sensitive. By contrast, the essay as essay can produce the lowest performance but is more age-sensitive. It will be very helpful for educators to know that what types of learning styles and test methods are most effective for students in each school grade.

Keywords: experience-based learning, learning style, school-aged children, testing methods, verbal learning

Procedia PDF Downloads 205
1169 Distraction from Pain: An fMRI Study on the Role of Age-Related Changes in Executive Functions

Authors: Katharina M. Rischer, Angelika Dierolf, Ana M. Gonzalez-Roldan, Pedro Montoya, Fernand Anton, Marian van der Meulen

Abstract:

Even though age has been associated with increased and prolonged episodes of pain, little is known about potential age-related changes in the ˈtop-downˈ modulation of pain, such as cognitive distraction from pain. The analgesic effects of distraction result from competition for attentional resources in the prefrontal cortex (PFC), a region that is also involved in executive functions. Given that the PFC shows pronounced age-related atrophy, distraction may be less effective in reducing pain in older compared to younger adults. The aim of this study was to investigate the influence of aging on task-related analgesia and the underpinning neural mechanisms, with a focus on the role of executive functions in distraction from pain. In a first session, 64 participants (32 young adults: 26.69 ± 4.14 years; 32 older adults: 68.28 ± 7.00 years) completed a battery of neuropsychological tests. In a second session, participants underwent a pain distraction paradigm, while fMRI images were acquired. In this paradigm, participants completed a low (0-back) and a high (2-back) load condition of a working memory task while receiving either warm or painful thermal stimuli to their lower arm. To control for age-related differences in sensitivity to pain and perceived task difficulty, stimulus intensity, and task speed were individually calibrated. Results indicate that both age groups showed significantly reduced activity in a network of regions involved in pain processing when completing the high load distraction task; however, young adults showed a larger neural distraction effect in different parts of the insula and the thalamus. Moreover, better executive functions, in particular inhibitory control abilities, were associated with a larger behavioral and neural distraction effect. These findings clearly demonstrate that top-down control of pain is affected in older age, and could explain the higher vulnerability for older adults to develop chronic pain. Moreover, our findings suggest that the assessment of executive functions may be a useful tool for predicting the efficacy of cognitive pain modulation strategies in older adults.

Keywords: executive functions, cognitive pain modulation, fMRI, PFC

Procedia PDF Downloads 146
1168 The Need of Sustainable Mining: Communities, Government and Legal Mining in Central Andes of Peru

Authors: Melissa R. Quispe-Zuniga, Daniel Callo-Concha, Christian Borgemeister, Klaus Greve

Abstract:

The Peruvian Andes have a high potential for mining, but many of the mining areas overlay with campesino community lands, being these key actors for agriculture and livestock production. Lead by economic incentives, some communities are renting their lands to mining companies for exploration or exploitation. However, a growing number of campesino communities, usually social and economically marginalized, have developed resistance, alluding consequences, such as water pollution, land-use change, insufficient economic compensation, etc. what eventually end up in Socio-Environmental Conflicts (SEC). It is hypothesized that disclosing the information on environmental pollution and enhance the involvement of communities in the decision-making process may contribute to prevent SEC. To assess whether such complains are grounded on the environmental impact of mining activities, we measured the heavy metals concentration in 24 indicative samples from rivers that run across mining exploitations and farming community lands. Samples were taken during the 2016 dry season and analyzed by inductively-coupled-plasma-atomic-emission-spectroscopy. The results were contrasted against the standards of monitoring government institutions (i.e., OEFA). Furthermore, we investigated the water/environmental complains related to mining in the neighboring 14 communities. We explored the relationship between communities and mining companies, via open-ended interviews with community authorities and non-participatory observations of community assemblies. We found that the concentrations of cadmium (0.023 mg/L), arsenic (0.562 mg/L) and copper (0.07 mg/L), surpass the national water quality standards for Andean rivers (0.00025 mg/L of cadmium, 0.15 mg/L of arsenic and 0.01 mg/L of copper). 57% of communities have posed environmental complains, but 21% of the total number of communities were receiving an annual economic benefit from mining projects. However, 87.5% of the communities who had posed complains have high concentration of heavy metals in their water streams. The evidence shows that mining activities tend to relate to the affectation and vulnerability of campesino community water streams, what justify the environmental complains and eventually the occurrence of a SEC.

Keywords: mining companies, campesino community, water, socio-environmental conflict

Procedia PDF Downloads 200
1167 Policy Recommendations for Reducing CO2 Emissions in Kenya's Electricity Generation, 2015-2030

Authors: Paul Kipchumba

Abstract:

Kenya is an East African Country lying at the Equator. It had a population of 46 million in 2015 with an annual growth rate of 2.7%, making a population of at least 65 million in 2030. Kenya’s GDP in 2015 was about 63 billion USD with per capita GDP of about 1400 USD. The rural population is 74%, whereas urban population is 26%. Kenya grapples with not only access to energy but also with energy security. There is direct correlation between economic growth, population growth, and energy consumption. Kenya’s energy composition is at least 74.5% from renewable energy with hydro power and geothermal forming the bulk of it; 68% from wood fuel; 22% from petroleum; 9% from electricity; and 1% from coal and other sources. Wood fuel is used by majority of rural and poor urban population. Electricity is mostly used for lighting. As of March 2015 Kenya had installed electricity capacity of 2295 MW, making a per capital electricity consumption of 0.0499 KW. The overall retail cost of electricity in 2015 was 0.009915 USD/ KWh (KES 19.85/ KWh), for installed capacity over 10MW. The actual demand for electricity in 2015 was 3400 MW and the projected demand in 2030 is 18000 MW. Kenya is working on vision 2030 that aims at making it a prosperous middle income economy and targets 23 GW of generated electricity. However, cost and non-cost factors affect generation and consumption of electricity in Kenya. Kenya does not care more about CO2 emissions than on economic growth. Carbon emissions are most likely to be paid by future costs of carbon emissions and penalties imposed on local generating companies by sheer disregard of international law on C02 emissions and climate change. The study methodology was a simulated application of carbon tax on all carbon emitting sources of electricity generation. It should cost only USD 30/tCO2 tax on all emitting sources of electricity generation to have solar as the only source of electricity generation in Kenya. The country has the best evenly distributed global horizontal irradiation. Solar potential after accounting for technology efficiencies such as 14-16% for solar PV and 15-22% for solar thermal is 143.94 GW. Therefore, the paper recommends adoption of solar power for generating all electricity in Kenya in order to attain zero carbon electricity generation in the country.

Keywords: co2 emissions, cost factors, electricity generation, non-cost factors

Procedia PDF Downloads 366
1166 Development of Solid Electrolytes Based on Networked Cellulose

Authors: Boor Singh Lalia, Yarjan Abdul Samad, Raed Hashaikeh

Abstract:

Three different kinds of solid polymer electrolytes were prepared using polyethylene oxide (PEO) as a base polymer, networked cellulose (NC) as a physical support and LiClO4 as a conductive salt for the electrolytes. Networked cellulose, a modified form of cellulose, is a biodegradable and environmentally friendly additive which provides a strong fibrous networked support for structural stability of the electrolytes. Although the PEO/NC/LiClO4 electrolyte retains its structural integrity and mechanical properties at 100oC as compared to pristine PEO-based polymer electrolytes, it suffers from poor ionic conductivity. To improve the room temperature conductivity of the electrolyte, PEO is replaced by the polyethylene glycol (PEG) which is a liquid phase that provides high mobility for Li+ ions transport in the electrolyte. PEG/NC/LiClO4 shows improvement in ionic conductivity compared to PEO/NC/LiClO4 at room temperature, but it is brittle and tends to form cracks during processing. An advanced solid polymer electrolyte with optimum ionic conductivity and mechanical properties is developed by using a ternary system: TEGDME/PEO/NC+LiClO4. At room temperature, this electrolyte exhibits an ionic conductivity to the order of 10-5 S/cm, which is very high compared to that of the PEO/LiClO4 electrolyte. Pristine PEO electrolytes start melting at 65 °C and completely lose its mechanical strength. Dynamic mechanical analysis of TEGDME: PEO: NC (70:20:10 wt%) showed an improvement of storage modulus as compared to the pristine PEO in the 60–120 °C temperature range. Also, with an addition of NC, the electrolyte retains its mechanical integrity at 100 oC which is beneficial for Li-ion battery operation at high temperatures. Differential scanning calorimetry (DSC) and thermal gravimetry analysis (TGA) studies revealed that the ternary polymer electrolyte is thermally stable in the lithium ion battery operational temperature range. As-prepared polymer electrolyte was used to assemble LiFePO4/ TEGDME/PEO/NC+LiClO4/Li half cells and their electrochemical performance was studied via cyclic voltammetry and charge-discharge cycling.

Keywords: solid polymer electrolyte, ionic conductivity, mechanical properties, lithium ion batteries, cyclic voltammetry

Procedia PDF Downloads 430
1165 Organic Paddy Production as a Coping Strategy to the Adverse Impact of Climate Change

Authors: Thapa M., J.P. Dutta, K.R. Pandey, R.R. Kattel

Abstract:

Nepal is extremely vulnerable to the impact of climate change. To mitigate the climate change effects on agricultural production and productivity a range of adaptive strategies needs to be considered. The study was conducted to assess organic paddy production as a coping strategy to the adverse impact of climate change in Phulbari, VDC of Chitwan district. Altogether, 120 respondents (60 adopters of organic farming and 60 from non adopter) were selected using snowball technique of sampling. Pre- tested interview schedule, direct observation, focus group discussion, key informant interview as well as secondary data were used to collect the required information. Factors determining the adoption of organic farming were found to be age, year of schooling, training, frequency of extension contact, perception about climate change, economically active members and poor. A unit increase in these factors except poor would increase the probability of adoption by 4.1%, 7.5%, 7.8%, 43.1%, 41.8% and 7% respectively. However, for poor, it would decrease the probability of adoption of organic farming by 5.1%. Average organic matter content in the adopters' field was higher (2.7%) than the non-adopters' field (2.5%). The regression result showed that type of farmer, price and area under rice cultivation had positive and significant relationship with income; however dependency ratio had negative relationship. As the year of adoption of organic farming increases, the production of rice decline in the first two years then after goes on increasing but the cost of production goes on decreasing with the year of adoption. The respondents adapted to the changing climate through diversification of crops, use of resistance varieties and following good cropping pattern. Gradually growing consumers' awareness about health, preference towards quality food products are the strong points behind organic farming, whereas lacks of bio-fertilizers, lack of effective extension services, no price differentiation between organic and inorganic products were the weak points. There is need for more training and education to change the attitude of farmers and enhance their confidence about the role of organic farming to cope with climate change impact.

Keywords: Organic farming, climate change, sustainable development

Procedia PDF Downloads 455
1164 Isolation, Characterization, and Antibacterial Evaluation of Antimicrobial Peptides and Derivatives from Fly Larvae Sarconesiopsis magellanica (Diptera: Calliphoridae)

Authors: A. Díaz-Roa, P. I. Silva Junior, F. J. Bello

Abstract:

Sarconesiopsis magellanica (Diptera: Calliphoridae) is a medically important necrophagous fly which is used for establishing the post-mortem interval. Dipterous maggots release diverse proteins and peptides contained in larval excretion and secretion (ES) products playing a key role in digestion. The most important mechanism for combating infection using larval therapy depends on larval ES. These larvae are protected against infection by a diverse spectrum of antimicrobial peptides (AMPs), one already known like lucifensin. Special interest in these peptides has also been aroused regarding understanding their role in wound healing since they degrade necrotic tissue and kill different bacteria during larval therapy. The action of larvae on wounds occurs through 3 mechanisms of action: removal of necrotic tissue, stimulation of granulation tissue, and antibacterial action of larval ES. Some components of the ES include calcium, urea, allantoin ammonium bicarbonate and reducing the viability of Gram positive and Gram negative bacteria. The Lucilia sericata fly larvae have been the most used, however, we need to evaluate new species that could potentially be similar or more effective than fly above. This study was thus aimed at identifying and characterizing S. magellanica AMPs contained in ES products for the first time and compared them with the common fly used L. sericata. These products were obtained from third-instar larvae taken from a previously established colony. For the first analysis, ES fractions were separate by Sep-Pak C18 disposable columns (first step). The material obtained was fractionated by RP-HPLC by using Júpiter C18 semi-preparative column. The products were then lyophilized and their antimicrobial activity was characterized by incubation with different bacterial strains. The first chromatographic analysis of ES from L. sericata gives 6 fractions with antimicrobial activity against Gram-positive bacteria Micrococus luteus, and 3 fractions with activity against Gram-negative bacteria Pseudomonae aeruginosa while the one from S. magellanica gaves 1 fraction against M. luteus and 4 against P. aeruginosa. Maybe one of these fractions could correspond to the peptide already known from L. sericata. These results show the first work for supporting further experiments aimed at validating S. magellanica use in larval therapy. We still need to search if we find some new molecules, by making mass spectrometry and ‘de novo sequencing’. Further studies are necessary to identify and characterize them to better understand their functioning.

Keywords: antimicrobial peptides, larval therapy, Lucilia sericata, Sarconesiopsis magellanica

Procedia PDF Downloads 367
1163 Storm-Runoff Simulation Approaches for External Natural Catchments of Urban Sewer Systems

Authors: Joachim F. Sartor

Abstract:

According to German guidelines, external natural catchments are greater sub-catchments without significant portions of impervious areas, which possess a surface drainage system and empty in a sewer network. Basically, such catchments should be disconnected from sewer networks, particularly from combined systems. If this is not possible due to local conditions, their flow hydrographs have to be considered at the design of sewer systems, because the impact may be significant. Since there is a lack of sufficient measurements of storm-runoff events for such catchments and hence verified simulation methods to analyze their design flows, German standards give only general advices and demands special considerations in such cases. Compared to urban sub-catchments, external natural catchments exhibit greatly different flow characteristics. With increasing area size their hydrological behavior approximates that of rural catchments, e.g. sub-surface flow may prevail and lag times are comparable long. There are few observed peak flow values and simple (mostly empirical) approaches that are offered by literature for Central Europe. Most of them are at least helpful to crosscheck results that are achieved by simulation lacking calibration. Using storm-runoff data from five monitored rural watersheds in the west of Germany with catchment areas between 0.33 and 1.07 km2 , the author investigated by multiple event simulation three different approaches to determine the rainfall excess. These are the modified SCS variable run-off coefficient methods by Lutz and Zaiß as well as the soil moisture model by Ostrowski. Selection criteria for storm events from continuous precipitation data were taken from recommendations of M 165 and the runoff concentration method (parallel cascades of linear reservoirs) from a DWA working report to which the author had contributed. In general, the two run-off coefficient methods showed results that are of sufficient accuracy for most practical purposes. The soil moisture model showed no significant better results, at least not to such a degree that it would justify the additional data collection that its parameter determination requires. Particularly typical convective summer events after long dry periods, that are often decisive for sewer networks (not so much for rivers), showed discrepancies between simulated and measured flow hydrographs.

Keywords: external natural catchments, sewer network design, storm-runoff modelling, urban drainage

Procedia PDF Downloads 153
1162 Evaluating the Performance of Organic, Inorganic and Liquid Sheep Manure on Growth, Yield and Nutritive Value of Hybrid Napier CO-3

Authors: F. A. M. Safwan, H. N. N. Dilrukshi, P. U. S. Peiris

Abstract:

Less availability of high quality green forages leads to low productivity of national dairy herd of Sri Lanka. Growing grass and fodder to suit the production system is an efficient and economical solution for this problem. CO-3 is placed in a higher category, especially on tillering capacity, green forage yield, regeneration capacity, leaf to stem ratio, high crude protein content, resistance to pests and diseases and free from adverse factors along with other fodder varieties grown within the country. An experiment was designed to determine the effect of organic sheep manure, inorganic fertilizers and liquid sheep manure on growth, yield and nutritive value of CO-3. The study was consisted with three treatments; sheep manure (T1), recommended inorganic fertilizers (T2) and liquid sheep manure (T3) which was prepared using bucket fermentation method and each treatment was consisted with three replicates and those were assigned randomly. First harvest was obtained after 40 days of plant establishment and number of leaves (NL), leaf area (LA), tillering capacity (TC), fresh weight (FW) and dry weight (DW) were recorded and second harvest was obtained after 30 days of first harvest and same set of data were recorded. SPSS 16 software was used for data analysis. For proximate analysis AOAC, 2000 standard methods were used. Results revealed that the plants treated with T1 recorded highest NL, LA, TC, FW and DW and were statistically significant at first and second harvest of CO-3 (p˂ 0.05) and it was found that T1 was statistically significant from T2 and T3. Although T3 was recorded higher than the T2 in almost all growth parameters; it was not statistically significant (p ˃0.05). In addition, the crude protein content was recorded highest in T1 with the value of 18.33±1.61 and was lowest in T2 with the value of 10.82±1.14 and was statistically significant (p˂ 0.05). Apart from this, other proximate composition crude fiber, crude fat, ash, moisture content and dry matter were not statistically significant between treatments (p ˃0.05). In accordance with the results, it was found that the organic fertilizer is the best fertilizer for CO-3 in terms of growth parameters and crude protein content.

Keywords: fertilizer, growth parameters, Hybrid Napier CO-3, proximate composition

Procedia PDF Downloads 293
1161 2106 kA/cm² Peak Tunneling Current Density in GaN-Based Resonant Tunneling Diode with an Intrinsic Oscillation Frequency of ~260GHz at Room Temperature

Authors: Fang Liu, JunShuai Xue, JiaJia Yao, GuanLin Wu, ZuMaoLi, XueYan Yang, HePeng Zhang, ZhiPeng Sun

Abstract:

Terahertz spectra is in great demand since last two decades for many photonic and electronic applications. III-Nitride resonant tunneling diode is one of the promising candidates for portable and compact THz sources. Room temperature microwave oscillator based on GaN/AlN resonant tunneling diode was reported in this work. The devices, grown by plasma-assisted molecular-beam epitaxy on free-standing c-plane GaN substrates, exhibit highly repeatable and robust negative differential resistance (NDR) characteristics at room temperature. To improve the interface quality at the active region in RTD, indium surfactant assisted growth is adopted to enhance the surface mobility of metal atoms on growing film front. Thanks to the lowered valley current associated with the suppression of threading dislocation scattering on low dislocation GaN substrate, a positive peak current density of record-high 2.1 MA/cm2 in conjunction with a peak-to-valley current ratio (PVCR) of 1.2 are obtained, which is the best results reported in nitride-based RTDs up to now considering the peak current density and PVCR values simultaneously. When biased within the NDR region, microwave oscillations are measured with a fundamental frequency of 0.31 GHz, yielding an output power of 5.37 µW. Impedance mismatch results in the limited output power and oscillation frequency described above. The actual measured intrinsic capacitance is only 30fF. Using a small-signal equivalent circuit model, the maximum intrinsic frequency of oscillation for these diodes is estimated to be ~260GHz. This work demonstrates a microwave oscillator based on resonant tunneling effect, which can meet the demands of terahertz spectral devices, more importantly providing guidance for the fabrication of the complex nitride terahertz and quantum effect devices.

Keywords: GaN resonant tunneling diode, peak current density, microwave oscillation, intrinsic capacitance

Procedia PDF Downloads 140
1160 Indigo Dye Wastewater Treatment by Fenton Oxidation

Authors: Anurak Khrueakham, Tassanee Chanphuthin

Abstract:

Indigo is a well-known natural blue dye that is used hither to even though synthetic ones are commercially available. The removal of indigo from effluents is difficult due to its resistance towards biodegradation which causes an aquatic environment effect. Fenton process is a reaction between hydrogen peroxide H2O2 and Fe2+ to generate •OH (highly reactive oxidant (E◦= 2.8 V)). Additionally, •OH is non-selective oxidant which is capable of destroying wide range of organic pollutants in water and wastewater. The aims of this research were to investigate the effect of H2O2, Fe2+ and pH on indigo wastewater oxidation by Fenton process. A liter reactor was operated in all experiments. The batch reactor was prepared by filling 1 liter of indigo wastewater. The pH was adjusted to the desired value; then, FeSO4 at predetermined amount was added. Finally, H2O2 was immediately added to start the Fenton’s reaction. The Fenton oxidation of indigo wastewater was operated for 60 minutes. Residual H2O2 was analyzed using titanium oxalate method. The Fe2+ concentration was determined by phenanthroline method. COD was determined using closed-reflux titrimetric method to indicate the removal efficiency. The results showed that at pH 2 increasing the initial ferrous concentration from 0.1 mM to 1 mM enhanced the indigo removal from 36% to 59%. Fenton reaction was rapidly due to the high generation rate of •OH. The degradation of indigo increased with increasing pH up to pH 3. This can be explained that the scavenging effect of the •OH by H+ in the condition of low pH is severe to form an oxonium ion, resulting in decrease the production of •OH and lower the decolorization efficiency of indigo. Increasing the initial H2O2 concentration from 5 mM to 20 mM could enhance the decolorization. The COD removal was increased from 35% to 65% with increasing H2O2 concentration from 5 mM to 20 mM. The generations of •OH were promoted by the increase of initial H2O2 concentration. However, the higher concentration of H2O2 resulted in the reduction of COD removal efficiency. The initial ferrous concentrations were studied in the range of 0.05-15.0 mM. The results found that the COD removals increased with increasing ferrous concentrations. The COD removals were increased from 32% to 65% when increase the ferrous concentration from 0.5 mM to 10.0 mM. However, the COD removal did not significantly change at higher 10.0 mM. This is because •OH yielding was lower level of oxidation, therefore, the COD removals were not improved. According to the studies, the Fenton’s reagents were important factors for COD removal by Fenton process. The optimum condition for COD removal of indigo dye wastewater was 10.0 mM of ferrous, 20 mM of H2O2 and at pH 3.

Keywords: indigo dye, fenton oxidation, wastewater treatment, advanced oxidation processes

Procedia PDF Downloads 398
1159 Facile Surfactant-Assisted Green Synthesis of Stable Biogenic Gold Nanoparticles with Potential Antibacterial Activity

Authors: Sneha Singh, Abhimanyu Dev, Vinod Nigam

Abstract:

The major issue which decides the impending use of gold nanoparticles (AuNPs) in nanobiotechnological applications is their particle size and stability. Often the AuNPs obtained biomimetically are considered useless owing to their instability in the aqueous medium and thereby limiting the widespread acceptance of this facile green synthesis procedure. So, the use of nontoxic surfactants is warranted to stabilize the biogenic nanoparticles (NPs). But does the surfactant only play a role in stabilizing by being adsorbed to the NPs surface or can it have any other significant contribution in synthesis process and controlling their size as well as shape? Keeping this idea in mind, AuNPs were synthesized by using surfactant treated (lechate) and untreated (cell lysate supernatant) Bacillus licheniformis cell extract. The cell extracts mediated reduction of chloroauric acid (HAuCl 4) in the presence of non-ionic surfactant, Tween 20 (TW20), and its effect on the AuNPs stability was studied. Interestingly, the surfactant used in the study served as potential alternative to harvest cellular enzymes involved in bioreduction process in a hassle free condition. The surfactants ability to solubilize/leach membrane proteins and simultaneously stabilizing the AuNPs could have advantage from process point of view as it will reduce the time and economics involve in the nanofabrication of biogenic NPs. The synthesis was substantiated with UV-Vis spectroscopy, Dynamic light scattering study, FTIR spectroscopy, and Transmission electron microscopy. The Zeta potential of AuNPs solutions was measured routinely to corroborate the stability observations recorded visually. Highly stable, ultra-small AuNPs of 2.6 nm size were obtained from the study. Further, the biological efficacy of the obtained AuNPs as potential antibacterial agent was evaluated against Bacilllus subtilis, Pseudomonas aeruginosa, and Escherichia coli by observing the zone of inhibition. This potential of AuNPs of size < 3 nm as antibacterial agent could pave way for development of new antimicrobials and overcoming the problems of antibiotics resistance

Keywords: antibacterial, bioreduction, nanoparticles, surfactant

Procedia PDF Downloads 236
1158 Biodegradable Poly-ε-Caprolactone-Based Siloxane Polymer

Authors: Maria E. Fortună, Elena Ungureanu, Răzvan Rotaru, Valeria Harabagiu

Abstract:

Polymers are used in a variety of areas due to their unique mechanical and chemical properties. Natural polymers are biodegradable, whereas synthetic polymers are rarely biodegradable but can be modified. As a result, by combining the benefits of natural and synthetic polymers, composite materials that are biodegradable can be obtained with potential for biomedical and environmental applications. However, because of their strong resistance to degradation, it may be difficult to eliminate waste. As a result, interest in developing biodegradable polymers has risen significantly. This research involves obtaining and characterizing two biodegradable poly-ε-caprolactone-polydimethylsiloxane copolymers. A comparison study was conducted using an aminopropyl-terminated polydimethylsiloxane macroinitiator with two distinct molecular weights. The copolymers were obtained by ring-opening polymerization of poly (ɛ-caprolactone) in the presence of aminopropyl-terminated polydimethylsiloxane as initiator and comonomers and stannous 2-ethylhexanoate as a catalyst. The materials were characterized using a number of techniques, including NMR, FTIR, EDX, SEM, AFM, and DSC. Additionally, the water contact angle and water vapor sorption capacity were assessed. Furthermore, the copolymers were examined for environmental susceptibility by conducting biological tests on tomato plants (Lypercosium esculentum), with an accent on biological stability and metabolism. Subsequent to the copolymer's degradation, the dynamics of nitrogen experience evolutionary alterations, validating the progression of the process accompanied by the liberation of organic nitrogen. The biological tests performed (germination index, average seedling height, green and dry biomass) on Lypercosium esculentum, San Marzano variety tomato plants in direct contact with the copolymer indicated normal growth and development, suggesting a minimal toxic effect and, by extension, compatibility of the copolymer with the environment. The total chlorophyll concentration of plant leaves in contact with copolymers was determined, considering the pigment's critical role in photosynthesis and, implicitly, plant metabolism and physiological state.

Keywords: biodegradable, biological stability, copolymers, polydimethylsiloxane

Procedia PDF Downloads 25
1157 Structural Performance of Mechanically Connected Stone Panels under Cyclic Loading: Application to Aesthetic and Environmental Building Skin Design

Authors: Michel Soto Chalhoub

Abstract:

Building designers in the Mediterranean region and other parts of the world utilize natural stone panels on the exterior façades as skin cover. This type of finishing is not only intended for aesthetic reasons but also environmental. The stone, since the earliest ages of civilization, has been used in construction and to-date some of the most appealing buildings owe their beauty to stone finishing. The stone also provides warmth in winter and freshness in summer as it moderates heat transfer and absorbs radiation. However, as structural codes became increasingly stringent about the dynamic performance of buildings, it became essential to study the performance of stone panels under cyclic loading – a condition that arises under the building is subjected to wind or earthquakes. The present paper studies the performance of stone panels using mechanical connectors when subjected to load reversal. In this paper, we present a theoretical model that addresses modes of failure in the steel connectors, by yield, and modes of failure in the stone, by fracture. Then we provide an experimental set-up and test results for rectangular stone panels of varying thickness. When the building is subjected to an earthquake, its rectangular panels within the structural system are subjected to shear deformations, which in turn impart stress into the stone cover. Rectangular stone panels, which typically range from 40cmx80cm to 60cmx120cm, need to be designed to withstand transverse loading from the direct application of lateral loads, and to withstand simultaneously in-plane loading (membrane stress) caused by inter-story drift and overall building lateral deflection. Results show correlation between the theoretical model which we derive from solid mechanics fundamentals and the experimental results, and lead to practical design recommendations. We find that for panel thickness below a certain threshold, it is more advantageous to utilize structural adhesive materials to connect stone panels to the main structural system of the building. For larger panel thicknesses, it is recommended to utilize mechanical connectors with special detailing to ensure a minimum level of ductility and energy dissipation.

Keywords: solid mechanics, cyclic loading, mechanical connectors, natural stone, seismic, wind, building skin

Procedia PDF Downloads 257
1156 Micro RNAs (194 and 135a) as Biomarkers and Therapeutic Targets in Type 2 Diabetic Rats

Authors: H. Haseena Banu, D. Karthick, R. Stalin, E. Nandha Kumar, T. P. Sachidanandam, P. Shanthi

Abstract:

Background of the study: Type 2 diabetes is emerging as the predominant metabolic disorder in the world among adults characterized mainly by the resistance of the insulin sensitive tissues towards insulin followed by the decrease in the insulin secretion. The treatment for this disease usually involves treatment with oral synthetic drugs which are known to cause several side effects. Therefore, identification of new biomarkers as therapeutic target is the need of the hour. miRNAs are small, non–protein-coding RNAs that negatively regulate gene expression by promoting degradation and/or inhibit the translation of target mRNAs and have emerged as biomarkers in predicting diabetes mellitus. Objective of the study: To elucidate the therapeutic role of gallic acid in modulating the alterations in glucose metabolism induced by miRNAs 194 and 135a in Type 2 diabetic rats. Materials and Methods: T2D was induced in rats by feeding them with a high fat diet for 2 weeks followed by intraperitoneal injection of 35 mg/kg/body weight (b.wt.) of streptozotocin. Microarrays were used to assess the expression of miRNAs in control, diabetic and gallic acid treated rats. Gene expression studies were carried out by RT PCR analysis. Results: Forty one miRNAs were differentially expressed in Type 2 diabetic rats. Among these, the expression of miRNA 194 was significantly decreased whereas miRNA 135a was significantly increased in Type 2 diabetic rats. The glucose metabolism was also altered significantly in skeletal muscle of Type 2 diabetic rats. Conclusion: T2D is associated with alterations in the expression of miRNAs in skeletal muscle. Both these miRNAs 194 and 135a play an important role in glucose metabolism in skeletal muscle of diabetic rats. Gallic acid effectively ameliorated the alterations in glucose metabolism. Hence, both these miRNAs can serve as biomarkers and therapeutic targets in diabetes mellitus. The study also establishes the role of gallic acid as therapeutic agent. Acknowledgment: The financial assistance provided in the form of ICMR women scientist by ICMR DHR INDIA is gratefully acknowledged here.

Keywords: gallic acid, high fat diet, type 2 diabetes mellitus, miRNAs

Procedia PDF Downloads 350
1155 Risk Factors for Severe Typhoid Fever in Children: A French Retrospective Study about 78 Cases from 2000-2017 in Six Parisian Hospitals

Authors: Jonathan Soliman, Thomas Cavasino, Virginie Pommelet, Lahouari Amor, Pierre Mornand, Simon Escoda, Nina Droz, Soraya Matczak, Julie Toubiana, François Angoulvant, Etienne Carbonnelle, Albert Faye, Loic de Pontual, Luu-Ly Pham

Abstract:

Background: Typhoid and paratyphoid fever are systemic infections caused by Salmonella enterica serovar Typhi or paratyphi (A, B, C). Children traveling to tropical areas are at risk to contract these diseases which can be complicated. Methods: Clinical, biological and bacteriological data were collected from 78 pediatric cases reported between 2000 and 2017 in six Parisian hospitals. Children aged 0 to 18 years old, with a diagnosis of typhoid or paratyphoid fever confirmed by bacteriological exams, were included. Epidemiologic, clinical, biological features and presence of multidrug-resistant (MDR) bacteria or intermediate susceptibility to ciprofloxacin (nalidixic acid resistant) were examined by univariate analysis and by logistic regression analysis to identify risk factors of severe typhoid in children. Results: 84,6% of the children were imported cases of typhoid fever (n=66/78) and 15,4% were autochthonous cases (n=12/78). 89,7% were caused by S.typhi (n=70/78) and 12,8% by S.paratyphi (n=10/78) including 2 co-infections. 19,2% were intrafamilial cases (n=15/78). Median age at diagnosis was 6,4 years-old [6 months-17,9 years]. 28,2% of the cases were complicated forms (n=22/78): digestive (n=8; 10,3%), neurological (n=7; 9%), pulmonary complications (n=4; 5,1%) and hemophagocytic syndrome (n=4; 5,1%). Only 5% of the children had prior immunization with typhoid non-conjugated vaccine (n=4/78). 28% of the cases (n=22/78) were caused by resistant bacteria. Thrombocytopenia and diagnosis delay was significantly associated with severe infection (p= 0.029 and p=0,01). Complicated forms were more common with MDR (p=0,1) and not statistically associated with a young age or sex in this study. Conclusions: Typhoid and paratyphoid fever are not rare in children back from tropical areas. This multicentric pediatric study seems to show that thrombocytopenia, diagnosis delay, and multidrug resistant bacteria are associated with severe typhoid fever and complicated forms in children.

Keywords: antimicrobial resistance, children, Salmonella enterica typhi and paratyphi, severe typhoid

Procedia PDF Downloads 183
1154 The Quantitative Optical Modulation of Dopamine Receptor-Mediated Endocytosis Using an Optogenetic System

Authors: Qiaoyue Kuang, Yang Li, Mizuki Endo, Takeaki Ozawa

Abstract:

G protein-coupled receptors (GPCR) are the largest family of receptor proteins that detect molecules outside the cell and activate cellular responses. Of the GPCRs, dopamine receptors, which recognize extracellular dopamine, are essential to mammals due to their roles in numerous physiological events, including autonomic movement, hormonal regulation, emotions, and the reward system in the brain. To precisely understand the physiological roles of dopamine receptors, it is important to spatiotemporally control the signaling mediated by dopamine receptors, which is strongly dependent on their surface expression. Conventionally, chemical-induced interactions were applied to trigger the endocytosis of cell surface receptors. However, these methods were subjected to diffusion and therefore lacked temporal and special precision. To further understand the receptor-mediated signaling and to control the plasma membrane expression of receptors, an optogenetic tool called E-fragment was developed. The C-terminus of a light-sensitive photosensory protein cyptochrome2 (CRY2) was attached to β-Arrestin, and the E-fragment was generated by fusing the C-terminal peptide of vasopressin receptor (V2R) to CRY2’s binding partner protein CIB. The CRY2-CIB heterodimerization triggered by blue light stimulation brings β-Arrestin to the vicinity of membrane receptors and results in receptor endocytosis. In this study, the E-fragment system was applied to dopamine receptors 1 and 2 (DRD1 and DRD2) to control dopamine signaling. First, confocal fluorescence microscope observation qualitatively confirmed the light-induced endocytosis of E-fragment fused receptors. Second, NanoBiT bioluminescence assay verified quantitatively that the surface amount of E-fragment labeled receptors decreased after light treatment. Finally, GloSensor bioluminescence assay results suggested that the E-fragment-dependent receptor light-induced endocytosis decreased cAMP production in DRD1 signaling and attenuated the inhibition effect of DRD2 on cAMP production. The developed optogenetic tool was able to induce receptor endocytosis by external light, providing opportunities to further understand numerous physiological activities by controlling receptor-mediated signaling spatiotemporally.

Keywords: dopamine receptors, endocytosis, G protein-coupled receptors, optogenetics

Procedia PDF Downloads 104
1153 Towards Sustainable Construction: An Exploratory Study of the Factors Affecting the Investment on Construction and Demolition Waste in Saudi Arabia (KSA)

Authors: Mohammed Alnuwairan, Mahmoud Abdelrahman

Abstract:

Based on the sustainability concept, this paper explores the current situation of construction and demolition waste (C&D) in the Kingdom of Saudi Arabia (KSA) from the source of production to final destinations. The issues that hindered the investment of recycling C&D in the context will be studied in order to identify the challenges and opportunities to improve this sector and put forward a strategic framework to reduce, reuse, recycle and minimize the disposal of this type of waste. The research, which is exploratory in nature, identified four types of organizations that were appropriate case studies. These organizations were drawn from the municipalities, city council, recyclers and manufacturers. Secondary data collection, direct observation, and elite interviewing methods were used in the case studies to facilitate comparisons with existing literature to explore opportunities to improve sustainability practices in the buildings sector. Implementation of C&D waste management and recycling in KSA is in the early stages. Resistance of virgin building material manufacturers, free usage of landfill, culture, surpluses of natural raw material, availability of land and the cost of recycling this material compared with virgin material hinders the adoption of recycled buildings martial. Although the metal material is collected and recycled but it has the lowest percentage of C&D waste in Saudi. The findings indicate that government and industry need to collaborate more closely in order to successfully implement best practices. Economic and environmental benefits can be achieved, particularly through improvements to infrastructure and legislation. Feasible solution framework and recommendations for managing C&D waste under current situation are provided. The findings can be used to extend this framework and to enable it to be applicable in other context with emerging economies similar to that found in KSA. No study of this type has been previously carried out in KSA. The findings should prove useful in creating a future research agenda for C&D waste in KSA and, possibly, other emerging countries within a similar context.

Keywords: construction and demolition waste, recycling, reuse, sustainability

Procedia PDF Downloads 352
1152 Study on Effectiveness of Strategies to Re-Establish Landscape Connectivity of Expressways with Reference to Southern Expressway Sri Lanka

Authors: N. G. I. Aroshana, S. Edirisooriya

Abstract:

Construction of highway is the most emerging development tendency in Sri Lanka. With these development activities, there are a lot of environmental and social issues started. Landscape fragmentation is one of the main issues that highly effect to the environment by the construction of expressways. Sri Lankan expressway system getting effort to treat fragmented landscape by using highway crossing structures. This paper designates, a highway post construction landscape study on the effectiveness of the landscape connectivity structures to restore connectivity. Geographic Information Systems (GIS), least cost path tool has been used in the selected two plots; 25km alone the expressway to identify animal crossing paths. Animal accident data use as measure for determining the most contributed plot for landscape connectivity. Number of patches, Mean patch size, Class area use as a parameter to determine the most effective land use class to reestablish the landscape connectivity. The findings of the research express scrub, grass and marsh were the most positively affected land use typologies for increase the landscape connectivity. It represents the growth increased by 8% within the 12 years of time. From the least cost analysis within the plot one, 28.5% of total animal crossing structures are within the high resistance land use classes. Southern expressway used reinforced compressed earth technologies for construction. It has been controlled the growth of the climax community. According to all findings, it could assume that involvement of the landscape crossing structures contributes to re-establish connectivity, but it is not enough to restore the majority of disturbance performed by the expressway. Connectivity measures used within the study can use as a tool for re-evaluate future involvement of highway crossing structures. Proper placement of the highway crossing structures leads to increase the rate of connectivity. The study recommends that monitoring the all stages (preconstruction, construction and post construction) of the project and preliminary design, and the involvement of the research applied connectivity assessment strategies helps to overcome the complication regarding the re-establishment of landscape connectivity using the highway crossing structures that facilitate the growth of flora and fauna.

Keywords: landscape fragmentation, least cost path, land use analysis, landscape connectivity structures

Procedia PDF Downloads 150
1151 Unveiling the Potential of MoSe₂ for Toxic Gas Sensing: Insights from Density Functional Theory and Non-equilibrium Green’s Function Calculations

Authors: Si-Jie Ji, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

With the rapid development of industrialization and urbanization, air pollution poses significant global environmental challenges, contributing to acid rain, global warming, and adverse health effects. Therefore, it is necessary to monitor the concentration of toxic gases in the atmospheric environment in real-time and to deploy cost-effective gas sensors capable of detecting their emissions. In this study, we systematically investigated the sensing capabilities of the two-dimensional MoSe₂ for seven key environmental gases (NO, NO₂, CO, CO₂, SO₂, SO₃, and O₂) using density functional theory (DFT) and non-equilibrium Green’s function (NEGF) calculations. We also investigated the impact of H₂O as an interfering gas. Our results indicate that the MoSe₂ monolayer is thermodynamically stable and exhibits strong gas-sensing capabilities. The calculated adsorption energies indicate that these gases can stably adsorb on MoSe₂, with SO₃ exhibiting the strongest adsorption energy (-0.63 eV). Electronic structure analysis, including projected density of states (PDOS) and Bader charge analysis, demonstrates significant changes in the electronic properties of MoSe₂ upon gas adsorption, affecting its conductivity and sensing performance. We find that oxygen (O₂) adsorption notably influenced the deformation of MoSe₂. To comprehensively understand the potential of MoSe₂ as a gas sensor, we used the NEGF method to assess the electronic transport properties of MoSe₂ under gas adsorption, evaluating current-voltage (I-V), resistance-voltage (R-V) characteristics, and transmission spectra to determine sensitivity, selectivity, and recovery time compared to pristine MoSe₂. Sensitivity, selectivity, and recovery time are analyzed at a bias voltage of 1.7V, showing excellent performance of MoSe₂ in detecting SO₃, among other gases. The pronounced changes in electronic transport behavior induced by SO₃ adsorption confirm MoSe₂’s strong potential as a high-performance gas-sensing material. Overall, this theoretical study provides new insights into the development of high-performance gas sensors, demonstrating the potential of MoSe₂ as a gas-sensing material, particularly for gases like SO₃.

Keywords: density functional theory, gas sensing, MoSe₂, non-equilibrium Green’s function, SO

Procedia PDF Downloads 24
1150 Response Regimes and Vibration Mitigation in Equivalent Mechanical Model of Strongly Nonlinear Liquid Sloshing

Authors: Maor Farid, Oleg Gendelman

Abstract:

Equivalent mechanical model of liquid sloshing in partially-filled cylindrical vessel is treated in the cases of free oscillations and of horizontal base excitation. The model is designed to cover both the linear and essentially nonlinear sloshing regimes. The latter fluid behaviour might involve hydraulic impacts interacting with the inner walls of the tank. These impulsive interactions are often modeled by high-power potential and dissipation functions. For the sake of analytical description, we use the traditional approach by modeling the impacts with velocity-dependent restitution coefficient. This modelling is similar to vibro-impact nonlinear energy sink (VI NES) which was recently explored for its vibration mitigation performances and nonlinear response regimes. Steady-state periodic regimes and chaotic strongly modulated responses (CSMR) are detected. Those dynamical regimes were described by the system's slow motion on the slow invariant manifold (SIM). There is a good agreement between the analytical results and numerical simulations. Subsequently, Finite-Element (FE) method is used to determine and verify the model parameters and to identify dominant dynamical regimes, natural modes and frequencies. The tank failure modes are identified and critical locations are identified. Mathematical relation is found between degrees-of-freedom (DOFs) motion and the mechanical stress applied in the tank critical section. This is the prior attempt to take under consideration large-amplitude nonlinear sloshing and tank structure elasticity effects for design, regulation definition and resistance analysis purposes. Both linear (tuned mass damper, TMD) and nonlinear (nonlinear energy sink, NES) passive energy absorbers contribution to the overall system mitigation is firstly examined, in terms of both stress reduction and time for vibration decay.

Keywords: nonlinear energy sink (NES), reduced-order modelling, liquid sloshing, vibration mitigation, vibro-impact dynamics

Procedia PDF Downloads 147