Search results for: counter flow heat recovery fan
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8757

Search results for: counter flow heat recovery fan

1167 Effect of Drag Coefficient Models concerning Global Air-Sea Momentum Flux in Broad Wind Range including Extreme Wind Speeds

Authors: Takeshi Takemoto, Naoya Suzuki, Naohisa Takagaki, Satoru Komori, Masako Terui, George Truscott

Abstract:

Drag coefficient is an important parameter in order to correctly estimate the air-sea momentum flux. However, The parameterization of the drag coefficient hasn’t been established due to the variation in the field data. Instead, a number of drag coefficient model formulae have been proposed, even though almost all these models haven’t discussed the extreme wind speed range. With regards to such models, it is unclear how the drag coefficient changes in the extreme wind speed range as the wind speed increased. In this study, we investigated the effect of the drag coefficient models concerning the air-sea momentum flux in the extreme wind range on a global scale, comparing two different drag coefficient models. Interestingly, one model didn’t discuss the extreme wind speed range while the other model considered it. We found that the difference of the models in the annual global air-sea momentum flux was small because the occurrence frequency of strong wind was approximately 1% with a wind speed of 20m/s or more. However, we also discovered that the difference of the models was shown in the middle latitude where the annual mean air-sea momentum flux was large and the occurrence frequency of strong wind was high. In addition, the estimated data showed that the difference of the models in the drag coefficient was large in the extreme wind speed range and that the largest difference became 23% with a wind speed of 35m/s or more. These results clearly show that the difference of the two models concerning the drag coefficient has a significant impact on the estimation of a regional air-sea momentum flux in an extreme wind speed range such as that seen in a tropical cyclone environment. Furthermore, we estimated each air-sea momentum flux using several kinds of drag coefficient models. We will also provide data from an observation tower and result from CFD (Computational Fluid Dynamics) concerning the influence of wind flow at and around the place.

Keywords: air-sea interaction, drag coefficient, air-sea momentum flux, CFD (Computational Fluid Dynamics)

Procedia PDF Downloads 360
1166 Status of Participative Governance Practices in Higher Education: Implications for Stakeholders' Transformative Role-Assumption

Authors: Endalew Fufa Kufi

Abstract:

The research investigated the role of stakeholders such as students, teachers and administrators in the practices of good governance in higher education by looking into the special contributions of top-officials, teachers and students in ensuring workable ties and productive interchanges in Adama Science and Technology University. Attention was given to participation, fairness and exemplariness as key indicators of good governance. The target university was chosen for its familiarity for the researcher to get dependable data, access to respondent and management of the processing of data. Descriptive survey design was used for the purpose of describing concerned roles the stakeholders in the university governance in order to reflect on the nature of participation of the practices. Centres of the research were administration where supportive groups such as central administrators and underlying service-givers had parts and academia where teachers and students were target. Generally, 60 teachers, 40 students and 15 administrative officers were referents. Data were collected in the form of self-report through open-ended questionnaires. The findings indicated that, while vertical interchanges in terms of academic and administrative routines were had normal flow on top-down basis, planned practices of stakeholders in decision-making and reasonably communicating roles and changes in decisions with top-officials were not efficiently practiced. Moreover, the practices of good modelling were not witnessed to have existed to the fullest extent. Rather, existence of a very wide gap between the academic and administrative staffs was witnessed as was reflected the case between teachers and students. The implication was such that for shortage in participative atmosphere and weaning of fairness in governance, routine practices have been there as the vicious circles of governance.

Keywords: governance, participative, stakeholders, transformative, role-assumption

Procedia PDF Downloads 383
1165 Upgrade of Value Chains and the Effect on Resilience of Russia’s Coal Industry and Receiving Regions on the Path of Energy Transition

Authors: Sergey Nikitenko, Vladimir Klishin, Yury Malakhov, Elena Goosen

Abstract:

Transition to renewable energy sources (solar, wind, bioenergy, etc.) and launching of alternative energy generation has weakened the role of coal as a source of energy. The Paris Agreement and assumption of obligations by many nations to orderly reduce CO₂ emissions by means of technological modernization and climate change adaptation has abridged coal demand yet more. This paper aims to assess current resilience of the coal industry to stress and to define prospects for coal production optimization using high technologies pursuant to global challenges and requirements of energy transition. Our research is based on the resilience concept adapted to the coal industry. It is proposed to divide the coal sector into segments depending on the prevailing value chains (VC). Four representative models of VC are identified in the coal sector. The most promising lines of upgrading VC in the coal industry include: •Elongation of VC owing to introduction of clean technologies of coal conversion and utilization; •Creation of parallel VC by means of waste management; •Branching of VC (conversion of a company’s VC into a production network). The upgrade effectiveness is governed in many ways by applicability of advanced coal processing technologies, usability of waste, expandability of production, entrance to non-rival markets and localization of new segments of VC in receiving regions. It is also important that upgrade of VC by means of formation of agile high-tech inter-industry production networks within the framework of operating surface and underground mines can reduce social, economic and ecological risks associated with closure of coal mines. Such promising route of VC upgrade is application of methanotrophic bacteria to produce protein to be used as feed-stuff in fish, poultry and cattle breeding, or in production of ferments, lipoids, sterols, antioxidants, pigments and polysaccharides. Closed mines can use recovered methane as a clean energy source. There exist methods of methane utilization from uncontrollable sources, including preliminary treatment and recovery of methane from air-and-methane mixture, or decomposition of methane to hydrogen and acetylene. Separated hydrogen is used in hydrogen fuel cells to generate power to feed the process of methane utilization and to supply external consumers. Despite the recent paradigm of carbon-free energy generation, it is possible to preserve the coal mining industry using the differentiated approach to upgrade of value chains based on flexible technologies with regard to specificity of mining companies.

Keywords: resilience, resilience concept, resilience indicator, resilience in the Russian coal industry, value chains

Procedia PDF Downloads 93
1164 Geophysical Methods of Mapping Groundwater Aquifer System: Perspectives and Inferences From Lisana Area, Western Margin of the Central Main Ethiopian Rift

Authors: Esubalew Yehualaw Melaku, Tigistu Haile Eritro

Abstract:

In this study, two basic geophysical methods are applied for mapping the groundwater aquifer system in the Lisana area along the Guder River, northeast of Hosanna town, near the western margin of the Central Main Ethiopian Rift. The main target of the study is to map the potential aquifer zone and investigate the groundwater potential for current and future development of the resource in the Gode area. The geophysical methods employed in this study include, Vertical Electrical Sounding (VES) and magnetic survey techniques. Electrical sounding was used to examine and map the depth to the potential aquifer zone of the groundwater and its distribution over the area. On the other hand, a magnetic survey was used to delineate contact between lithologic units and geological structures. The 2D magnetic modeling and the geoelectric sections are used for the identification of weak zones, which control the groundwater flow and storage system. The geophysical survey comprises of twelve VES readings collected by using a Schlumberger array along six profile lines and more than four hundred (400) magnetic readings at about 10m station intervals along four profiles and 20m along three random profiles. The study result revealed that the potential aquifer in the area is obtained at a depth range from 45m to 92m. This is the response of the highly weathered/ fractured ignimbrite and pumice layer with sandy soil, which is the main water-bearing horizon. Overall, in the neighborhood of four VES points, VES- 2, VES- 3, VES-10, and VES-11, shows good water-bearing zones in the study area.

Keywords: vertical electrical sounding, magnetic survey, aquifer, groundwater potential

Procedia PDF Downloads 63
1163 A Deep Learning Approach to Calculate Cardiothoracic Ratio From Chest Radiographs

Authors: Pranav Ajmera, Amit Kharat, Tanveer Gupte, Richa Pant, Viraj Kulkarni, Vinay Duddalwar, Purnachandra Lamghare

Abstract:

The cardiothoracic ratio (CTR) is the ratio of the diameter of the heart to the diameter of the thorax. An abnormal CTR, that is, a value greater than 0.55, is often an indicator of an underlying pathological condition. The accurate prediction of an abnormal CTR from chest X-rays (CXRs) aids in the early diagnosis of clinical conditions. We propose a deep learning-based model for automatic CTR calculation that can assist the radiologist with the diagnosis of cardiomegaly and optimize the radiology flow. The study population included 1012 posteroanterior (PA) CXRs from a single institution. The Attention U-Net deep learning (DL) architecture was used for the automatic calculation of CTR. A CTR of 0.55 was used as a cut-off to categorize the condition as cardiomegaly present or absent. An observer performance test was conducted to assess the radiologist's performance in diagnosing cardiomegaly with and without artificial intelligence (AI) assistance. The Attention U-Net model was highly specific in calculating the CTR. The model exhibited a sensitivity of 0.80 [95% CI: 0.75, 0.85], precision of 0.99 [95% CI: 0.98, 1], and a F1 score of 0.88 [95% CI: 0.85, 0.91]. During the analysis, we observed that 51 out of 1012 samples were misclassified by the model when compared to annotations made by the expert radiologist. We further observed that the sensitivity of the reviewing radiologist in identifying cardiomegaly increased from 40.50% to 88.4% when aided by the AI-generated CTR. Our segmentation-based AI model demonstrated high specificity and sensitivity for CTR calculation. The performance of the radiologist on the observer performance test improved significantly with AI assistance. A DL-based segmentation model for rapid quantification of CTR can therefore have significant potential to be used in clinical workflows.

Keywords: cardiomegaly, deep learning, chest radiograph, artificial intelligence, cardiothoracic ratio

Procedia PDF Downloads 81
1162 Return on Investment of a VFD Drive for Centrifugal Pump

Authors: Benhaddadi M., Déry D.

Abstract:

Electric motors are the single biggest consumer of electricity, and the consumption will have more than to double by 2050. Meanwhile, the existing technologies offer the potential to reduce the motor energy demand by up to 30 %, whereas the know-how to realise energy savings is not extensively applied. That is why the authors first conducted a detailed analysis of the regulation of the electric motor market in North America To illustrate the colossal energy savings potential permitted by the VFD, the authors have equipped experimental setup, based on centrifugal pump, simultaneously equipped with regulating throttle valves and variable frequency drive VFD. The obtained experimental results for 1.5 HP motor pump are extended to another motor powers, as centrifugal pumps that are different in power may have similar operational characteristics if they are located in a similar kind of process, permitting the simulations for 5 HP and 100 HP motors. According to the obtained results, VFDs tend to be most cost-effective when fitted to larger motor pumps, in addition to higher duty cycle of the motor and relative time operating at lower than full load. The energy saving permitted by the VFD use is huge, and the payback period for drive investment is short. Nonetheless, it’s important to highlight that there is no general rule of thumb that can be used to obtain the impact of the relative time operating at lower than full load. Indeed, in terms of energy-saving differences, 50 % flow regulation is tremendously better than 75 % regulation, but a slightly enhanced relative to 25 %. Two main distinct reasons can explain this somewhat not anticipated results: the characteristics of the process and the drop in efficiency when motor is operating at low speed.

Keywords: motor, drive, energy efficiency, centrifugal pump

Procedia PDF Downloads 56
1161 Technical Aspects of Closing the Loop in Depth-of-Anesthesia Control

Authors: Gorazd Karer

Abstract:

When performing a diagnostic procedure or surgery in general anesthesia (GA), a proper introduction and dosing of anesthetic agents are one of the main tasks of the anesthesiologist. However, depth of anesthesia (DoA) also seems to be a suitable process for closed-loop control implementation. To implement such a system, one must be able to acquire the relevant signals online and in real-time, as well as stream the calculated control signal to the infusion pump. However, during a procedure, patient monitors and infusion pumps are purposely unable to connect to an external (possibly medically unapproved) device for safety reasons, thus preventing closed-loop control. The paper proposes a conceptual solution to the aforementioned problem. First, it presents some important aspects of contemporary clinical practice. Next, it introduces the closed-loop-control-system structure and the relevant information flow. Focusing on transferring the data from the patient to the computer, it presents a non-invasive image-based system for signal acquisition from a patient monitor for online depth-of-anesthesia assessment. Furthermore, it introduces a UDP-based communication method that can be used for transmitting the calculated anesthetic inflow to the infusion pump. The proposed system is independent of a medical device manufacturer and is implemented in Matlab-Simulink, which can be conveniently used for DoA control implementation. The proposed scheme has been tested in a simulated GA setting and is ready to be evaluated in an operating theatre. However, the proposed system is only a step towards a proper closed-loop control system for DoA, which could routinely be used in clinical practice.

Keywords: closed-loop control, depth of anesthesia (DoA), modeling, optical signal acquisition, patient state index (PSi), UDP communication protocol

Procedia PDF Downloads 203
1160 Forecasting Nokoué Lake Water Levels Using Long Short-Term Memory Network

Authors: Namwinwelbere Dabire, Eugene C. Ezin, Adandedji M. Firmin

Abstract:

The prediction of hydrological flows (rainfall-depth or rainfall-discharge) is becoming increasingly important in the management of hydrological risks such as floods. In this study, the Long Short-Term Memory (LSTM) network, a state-of-the-art algorithm dedicated to time series, is applied to predict the daily water level of Nokoue Lake in Benin. This paper aims to provide an effective and reliable method enable of reproducing the future daily water level of Nokoue Lake, which is influenced by a combination of two phenomena: rainfall and river flow (runoff from the Ouémé River, the Sô River, the Porto-Novo lagoon, and the Atlantic Ocean). Performance analysis based on the forecasting horizon indicates that LSTM can predict the water level of Nokoué Lake up to a forecast horizon of t+10 days. Performance metrics such as Root Mean Square Error (RMSE), coefficient of correlation (R²), Nash-Sutcliffe Efficiency (NSE), and Mean Absolute Error (MAE) agree on a forecast horizon of up to t+3 days. The values of these metrics remain stable for forecast horizons of t+1 days, t+2 days, and t+3 days. The values of R² and NSE are greater than 0.97 during the training and testing phases in the Nokoué Lake basin. Based on the evaluation indices used to assess the model's performance for the appropriate forecast horizon of water level in the Nokoué Lake basin, the forecast horizon of t+3 days is chosen for predicting future daily water levels.

Keywords: forecasting, long short-term memory cell, recurrent artificial neural network, Nokoué lake

Procedia PDF Downloads 44
1159 Facial Recognition and Landmark Detection in Fitness Assessment and Performance Improvement

Authors: Brittany Richardson, Ying Wang

Abstract:

For physical therapy, exercise prescription, athlete training, and regular fitness training, it is crucial to perform health assessments or fitness assessments periodically. An accurate assessment is propitious for tracking recovery progress, preventing potential injury and making long-range training plans. Assessments include necessary measurements, height, weight, blood pressure, heart rate, body fat, etc. and advanced evaluation, muscle group strength, stability-mobility, and movement evaluation, etc. In the current standard assessment procedures, the accuracy of assessments, especially advanced evaluations, largely depends on the experience of physicians, coaches, and personal trainers. And it is challenging to track clients’ progress in the current assessment. Unlike the tradition assessment, in this paper, we present a deep learning based face recognition algorithm for accurate, comprehensive and trackable assessment. Based on the result from our assessment, physicians, coaches, and personal trainers are able to adjust the training targets and methods. The system categorizes the difficulty levels of the current activity for the client or user, furthermore make more comprehensive assessments based on tracking muscle group over time using a designed landmark detection method. The system also includes the function of grading and correcting the form of the clients during exercise. Experienced coaches and personal trainer can tell the clients' limit based on their facial expression and muscle group movements, even during the first several sessions. Similar to this, using a convolution neural network, the system is trained with people’s facial expression to differentiate challenge levels for clients. It uses landmark detection for subtle changes in muscle groups movements. It measures the proximal mobility of the hips and thoracic spine, the proximal stability of the scapulothoracic region and distal mobility of the glenohumeral joint, as well as distal mobility, and its effect on the kinetic chain. This system integrates data from other fitness assistant devices, including but not limited to Apple Watch, Fitbit, etc. for a improved training and testing performance. The system itself doesn’t require history data for an individual client, but the history data of a client can be used to create a more effective exercise plan. In order to validate the performance of the proposed work, an experimental design is presented. The results show that the proposed work contributes towards improving the quality of exercise plan, execution, progress tracking, and performance.

Keywords: exercise prescription, facial recognition, landmark detection, fitness assessments

Procedia PDF Downloads 119
1158 Effect of Using PCMs and Transparency Rations on Energy Efficiency and Thermal Performance of Buildings in Hot Climatic Regions. A Simulation-Based Evaluation

Authors: Eda K. Murathan, Gulten Manioglu

Abstract:

In the building design process, reducing heating and cooling energy consumption according to the climatic region conditions of the building are important issues to be considered in order to provide thermal comfort conditions in the indoor environment. Applying a phase-change material (PCM) on the surface of a building envelope is the new approach for controlling heat transfer through the building envelope during the year. The transparency ratios of the window are also the determinants of the amount of solar radiation gain in the space, thus thermal comfort and energy expenditure. In this study, a simulation-based evaluation was carried out by using Energyplus to determine the effect of coupling PCM and transparency ratio when integrated into the building envelope. A three-storey building, a 30m x 30m sized floor area and 10m x 10m sized courtyard are taken as an example of the courtyard building model, which is frequently seen in the traditional architecture of hot climatic regions. 8 zones (10m x10m sized) with 2 exterior façades oriented in different directions on each floor were obtained. The percentage of transparent components on the PCM applied surface was increased at every step (%30, %40, %50). For every zone differently oriented, annual heating, cooling energy consumptions, and thermal comfort based on the Fanger method were calculated. All calculations are made for the zones of the intermediate floor of the building. The study was carried out for Diyarbakır provinces representing the hot-dry climate region and Antalya representing the hot-humid climate region. The increase in the transparency ratio has led to a decrease in heating energy consumption but an increase in cooling energy consumption for both provinces. When PCM is applied to all developed options, It was observed that heating and cooling energy consumption decreased in both Antalya (6.06%-19.78% and %1-%3.74) and Diyarbakır (2.79%-3.43% and 2.32%-4.64%) respectively. When the considered building is evaluated under passive conditions for the 21st of July, which represents the hottest day of the year, it is seen that the user feels comfortable between 11 pm-10 am with the effect of night ventilation for both provinces.

Keywords: building envelope, heating and cooling energy consumptions, phase change material, transparency ratio

Procedia PDF Downloads 159
1157 The LMPA/Epoxy Mixture Encapsulation of OLED on Polyimide Substrate

Authors: Chuyi Ye, Minsang Kim, Cheol-Hee Moon

Abstract:

The organic light emitting diode(OLED), is a potential organic optical functional materials which is considered as the next generation display technology with the advantages such as all-solid state, ultra-thin thickness, active luminous and flexibility. Due to the development of polymer-inorganic substrate, it becomes possible to achieve the flexible OLED display. However the organic light-emitting material is very sensitive to the oxygen and water vapor, and the encapsulation requires water vapor transmission rate(WVTR) and oxygen transmission rate(OTR) as lower as 10-6 g/(m2.d) and 10-5 cm3/(m2.d) respectively. In current situation, the rigorous WVTR and OTR have restricted the application of the OLED display. Traditional epoxy/getter or glass frit approaches, which have been widely applied on glass-substrate-based devices, are not suitable for transparent flexible organic devices, and mechanically flexible thin-film approaches are required. To ensure the OLED’s lifetime, the encapsulation material of the OLED package is very important. In this paper, a low melting point alloy(LMPA)-epoxy mixture in the encapsulation process is introduced. There will be a phase separation when the mixture is heated to the melting of LMPA and the formation of the double line structure between two substrates: the alloy barrier has extremely low WVTR and OTR and the epoxy fills the potential tiny cracks. In our experiment, the PI film is chosen as a flexible transparent substrate, and Mo and Cu are deposited on the PI film successively. Then the two metal layers are photolithographied to the sealing pattern line. The Mo is a transition layer between the PI film and Cu, at the same time, the Cu has a good wettability with the LMPA(Sn-58Bi). At last, pattern is printed with LMPA layer and applied voltage, the gathering Joule heat melt the LMPA and form the double line structure and the OLED package is sealed in the same time. In this research, the double-line encapsulating structure of LMPA and epoxy on the PI film is manufactured for the flexible OLED encapsulation, and in this process it is investigated whether the encapsulation satisfies the requirement of WVTR and OTR for the flexible OLED.

Keywords: encapsulation, flexible, low melting point alloy, OLED

Procedia PDF Downloads 584
1156 Comparative Study for Neonatal Outcome and Umbilical Cord Blood Gas Parameters in Balanced and Inhalant Anesthesia for Elective Cesarean Section in Dogs

Authors: Agnieszka Antończyk, MałGorzata Ochota, Wojciech Niżański, ZdzisłAw Kiełbowicz

Abstract:

The goal of the cesarean section (CS) is the delivery of healthy, vigorous pups with the provision of surgical plane anesthesia, appropriate analgesia, and rapid recovery of the dam. In human medicine, spinal or epidural anesthesia is preferred for a cesarean section as associated with a lower risk of neonatal asphyxia and the need for resuscitation. Nevertheless, the specificity of veterinary patients makes the application of regional anesthesia as a sole technique impractical, thus to obtain patient compliance the general anesthesia is required. This study aimed to compare the influence of balanced (inhalant with epidural) and inhalant anesthesia on neonatal umbilical cord blood gas (UCBG) parameters and vitality (modified Apgar scoring). The bitches (31) undergoing elective CS were enrolled in this study. All females received a single dose of 0.2 mg/kg s.c. Meloxicam. Females were randomly assigned into two groups: Gr I (Isoflurane, n=16) and Gr IE (Isoflurane plus Epidural, n=15). Anesthesia was induced with propofol at 4-6 mg/kg to effect, and maintained with isoflurane in oxygen; in IE group epidural anesthesia was also done using lidocaine (3-4 mg/kg) into the lumbosacral space. CSs were performed using a standard mid-line approach. Directly after the puppy extraction, the umbilical cord was double clamped before the placenta detachment. The vessels were gently stretched between forceps to allow blood sampling. At least 100 mcl of mixed umbilical cord blood was collected into a heparinized syringe for further analysis. The modified Apgar scoring system (AS) was used to objectively score neonatal health and vitality immediately after birth (before first aid or neonatal care was instituted), at 5 and 20 min after birth. The neonates were scored as normal (AS 7-10), weak (AS 4-6), or critical (AS 0-3). During surgery, the IE group required a lower isoflurane concentration compared to the females in group I (MAC 1.05±0.2 and 1.4±0.13, respectively, p<0.01). All investigated UCBG parameters were not statistically different between groups. All pups had mild acidosis (pH 7.21±0.08 and 7.21±0.09 in Gr I and IE, respectively) with moderately elevated pCO2 (Gr I 57.18±11.48, Gr IE 58.74±15.07), HCO3- on the lower border (Gr I 22.58±3.24, Gr IE 22.83±3.6), lowered BE (Gr I -6.1±3.57, Gr IE -5.6±4.19) and mildly elevated level of lactates (Gr I 2.58±1.48, Gr IE2.53±1.03). The glucose levels were above the reference limits in both groups of puppies (74.50±25.32 in Gr I, 79.50±29.73 in Gr IE). The initial Apgar score results were similar in I and IE groups. However, the subsequent measurements of AS revealed significant differences between both groups. Puppies from the IE group received better AS scores at 5 and 20 min compared to the I group (6.86±2.23 and 8.06±2.06 vs 5.11±2.40 and 7.83±2.05, respectively). The obtained results demonstrated that administration of epidural anesthesia reduced the requirement for isoflurane in dams undergoing cesarean section and did not affect the neonatal umbilical blood gas results. Moreover, newborns from the epidural anesthesia group were scored significantly higher in AS at 5 and 20 min, indicating their better vitality and quicker improvement post-surgery.

Keywords: apgar scoring, balanced anesthesia, cesarean section, umbilical blood gas

Procedia PDF Downloads 162
1155 Structural Morphing on High Performance Composite Hydrofoil to Postpone Cavitation

Authors: Fatiha Mohammed Arab, Benoit Augier, Francois Deniset, Pascal Casari, Jacques Andre Astolfi

Abstract:

For the top high performance foiling yachts, cavitation is often a limiting factor for take-off and top speed. This work investigates solutions to delay the onset of cavitation thanks to structural morphing. The structural morphing is based on compliant leading and trailing edge, with effect similar to flaps. It is shown here that the commonly accepted effect of flaps regarding the control of lift and drag forces can also be used to postpone the inception of cavitation. A numerical and experimental study is conducted in order to assess the effect of the geometric parameters of hydrofoil on their hydrodynamic performances and in cavitation inception. The effect of a 70% trailing edge and a 30% leading edge of NACA 0012 is investigated using Xfoil software at a constant Reynolds number 106. The simulations carried out for a range flaps deflections and various angles of attack. So, the result showed that the lift coefficient increase with the increase of flap deflection, but also with the increase of angle of attack and enlarged the bucket cavitation. To evaluate the efficiency of the Xfoil software, a 2D analysis flow over a NACA 0012 with leading and trailing edge flap was studied using Fluent software. The results of the two methods are in a good agreement. To validate the numerical approach, a passive adaptive composite model is built and tested in the hydrodynamic tunnel at the Research Institute of French Naval Academy. The model shows the ability to simulate the effect of flap by a LE and TE structural morphing due to hydrodynamic loading.

Keywords: cavitation, flaps, hydrofoil, panel method, xfoil

Procedia PDF Downloads 162
1154 Fabrication of Uniform Nanofibers Using Gas Dynamic Virtual Nozzle Based Microfluidic Liquid Jet System

Authors: R. Vasireddi, J. Kruse, M. Vakili, M. Trebbin

Abstract:

Here we present a gas dynamic virtual nozzle (GDVN) based microfluidic jetting devices for spinning of nano/microfibers. The device is fabricated by soft lithography techniques and is based on the principle of a GDVN for precise three-dimensional gas focusing of the spinning solution. The nozzle device is used to produce micro/nanofibers of a perfluorinated terpolymer (THV), which were collected on an aluminum substrate for scanning electron microscopy (SEM) analysis. The influences of air pressure, polymer concentration, flow rate and nozzle geometry on the fiber properties were investigated. It was revealed that surface properties are controlled by air pressure and polymer concentration while the diameter and shape of the fibers are influenced mostly by the concentration of the polymer solution and pressure. Alterations of the nozzle geometry had a negligible effect on the fiber properties, however, the jetting stability was affected. Round and flat fibers with differing surface properties from craters, grooves to smooth surfaces could be fabricated by controlling the above-mentioned parameters. Furthermore, the formation of surface roughness was attributed to the fast evaporation rate and velocity (mis)match between the polymer solution jet and the surrounding air stream. The diameter of the fibers could be tuned from ~250 nm to ~15 µm. Because of the simplicity of the setup, the precise control of the fiber properties, access to biocompatible nanofiber fabrication and the easy scale-up of parallel channels for high throughput, this method offers significant benefits compared to existing solution-based fiber production methods.

Keywords: gas dynamic virtual nozzle (GDVN) principle, microfluidic device, spinning, uniform nanofibers

Procedia PDF Downloads 139
1153 Effect of Wolffia globosa Incorporation on the Physical, Phytochemical and Antioxidant Properties of Breadsticks

Authors: May Phyo Wai, Tanyawan Suantawee

Abstract:

The positive correlation between unhealthy diets (high in fats, sugars, carbohydrates, and low fibers) and the risk of non-communicable diseases (NCDs) like obesity, hypertension, diabetes, and heart diseases has led to a growing interest in healthier lifestyles and diets. Consequently, people are opting for foods rich in fiber and phytochemicals. Wolffia globosa, also known as duckweed or watermeal, is the smallest plant with high nutritional value, including protein, fiber, phytochemicals, and antioxidant properties. It offers numerous health benefits, such as improving gut health and lowering blood glucose levels, and it is widely available in Thailand. The purpose of this study was to develop nutritionally enhanced breadsticks utilizing vacuum heat-dried Wolffia globosa power (WP). Various concentrations of WP (0% as control, 5%, 10%, and 15 % w/w/) were added, and then the breadsticks’ physical properties (hardness, fracturability, and color), phytochemicals (total phenolic compounds: TPC and total flavonoid contents: TFC), and antioxidant properties (DPPH radical scavenging activity (DPPH) and ferric reducing antioxidant power (FRAP) assay) were investigated. Experiments were done by triplicates and data was analyzed by one-way ANOVA. The results showed that the hardness, measured by a texture analyzer, increased significantly (p<0.05) with higher WP concentrations, reaching 2,897.01 ± 77.31 g at 15% WP from 1,314.41 ± 32.52 g of the control. In contrast, the lightness (L*), redness (a*), and yellowness (b*) of the breadsticks significantly decreased (p < 0.05) in a dose-dependent manner with added WP. Incorporating WP, rich in phytochemicals and antioxidants, into the flour significantly enhanced the TPC and TFC of the breadsticks (p<0.05), with TPC and TFC increasing dose-dependently rising to 1.8-fold and 3.5-fold at 15% WP, respectively. The antioxidant power, assessed by DPPH and FRAP assays, also showed a similar trend, with significantly higher values at 10% and 15% WP (p<0.05). These results indicate that adding WP significantly boosted the TPC, TFC, DPPH, and FRAP values of the developed breadsticks. Therefore, incorporating WP into breadsticks might be a promising strategy for creating food products enriched with phytochemicals and antioxidants, offering consumers healthier options in the market.

Keywords: antioxidant properties, breadsticks, phytochemicals, Wolffia globosa

Procedia PDF Downloads 6
1152 Computational Fluid Dynamics Simulations and Analysis of Air Bubble Rising in a Column of Liquid

Authors: Baha-Aldeen S. Algmati, Ahmed R. Ballil

Abstract:

Multiphase flows occur widely in many engineering and industrial processes as well as in the environment we live in. In particular, bubbly flows are considered to be crucial phenomena in fluid flow applications and can be studied and analyzed experimentally, analytically, and computationally. In the present paper, the dynamic motion of an air bubble rising within a column of liquid is numerically simulated using an open-source CFD modeling tool 'OpenFOAM'. An interface tracking numerical algorithm called MULES algorithm, which is built-in OpenFOAM, is chosen to solve an appropriate mathematical model based on the volume of fluid (VOF) numerical method. The bubbles initially have a spherical shape and starting from rest in the stagnant column of liquid. The algorithm is initially verified against numerical results and is also validated against available experimental data. The comparison revealed that this algorithm provides results that are in a very good agreement with the 2D numerical data of other CFD codes. Also, the results of the bubble shape and terminal velocity obtained from the 3D numerical simulation showed a very good qualitative and quantitative agreement with the experimental data. The simulated rising bubbles yield a very small percentage of error in the bubble terminal velocity compared with the experimental data. The obtained results prove the capability of OpenFOAM as a powerful tool to predict the behavior of rising characteristics of the spherical bubbles in the stagnant column of liquid. This will pave the way for a deeper understanding of the phenomenon of the rise of bubbles in liquids.

Keywords: CFD simulations, multiphase flows, OpenFOAM, rise of bubble, volume of fluid method, VOF

Procedia PDF Downloads 108
1151 Application of Remote Sensing for Monitoring the Impact of Lapindo Mud Sedimentation for Mangrove Ecosystem, Case Study in Sidoarjo, East Java

Authors: Akbar Cahyadhi Pratama Putra, Tantri Utami Widhaningtyas, M. Randy Aswin

Abstract:

Indonesia as an archipelagic nation have very long coastline which have large potential marine resources, one of that is the mangrove ecosystems. Lapindo mudflow disaster in Sidoarjo, East Java requires mudflow flowed into the sea through the river Brantas and Porong. Mud material that transported by river flow is feared dangerous because they contain harmful substances such as heavy metals. This study aims to map the mangrove ecosystem seen from its density and knowing how big the impact of a disaster on the Lapindo mud to mangrove ecosystem and accompanied by efforts to address the mangrove ecosystem that maintained continuity. Mapping coastal mangrove conditions of Sidoarjo was done using remote sensing products that Landsat 7 ETM + images with dry months of recording time in 2002, 2006, 2009, and 2014. The density of mangrove detected using NDVI that uses the band 3 that is the red channel and band 4 that is near IR channel. Image processing was used to produce NDVI using ENVI 5.1 software. NDVI results were used for the detection of mangrove density is 0-1. The development of mangrove ecosystems of both area and density from year to year experienced has a significant increase. Mangrove ecosystems growths are affected by material deposition area of Lapindo mud on Porong and Brantas river estuary, where the silt is growing medium suitable mangrove ecosystem and increasingly growing. Increasing the density caused support by public awareness to prevent heavy metals in the material so that the Lapindo mud mangrove breeding done around the farm.

Keywords: archipelagic nation, mangrove, Lapindo mudflow disaster, NDVI

Procedia PDF Downloads 419
1150 Understanding How to Increase Restorativeness of Interiors: A Qualitative Exploratory Study on Attention Restoration Theory in Relation to Interior Design

Authors: Hande Burcu Deniz

Abstract:

People in the U.S. spend a considerable portion of their time indoors. This makes it crucial to provide environments that support the well-being of people. Restorative environments aim to help people recover their cognitive resources that were spent due to intensive use of directed attention. Spending time in nature and taking a nap are two of the best ways to restore these resources. However, they are not possible to do most of the time. The problem is that many studies have revealed how nature and spending time in natural contexts can help boost restoration, but there are fewer studies conducted to understand how cognitive resources can be restored in interior settings. This study aims to explore the answer to this question: which qualities of interiors increase the restorativeness of an interior setting and how do they mediate restorativeness of an interior. To do this, a phenomenological qualitative study was conducted. The study was interested in the definition of attention restoration and the experiences of the phenomena. As the themes emerged, they were analyzed to match with Attention Restoration Theory components (being away, extent, fascination, compatibility) to examine how interior design elements mediate the restorativeness of an interior. The data was gathered from semi-structured interviews with international residents of Minnesota. The interviewees represent young professionals who work in Minnesota and often experience mental fatigue. Also, they have less emotional connections with places in Minnesota, which enabled data to be based on the physical qualities of a space rather than emotional connections. In the interviews, participants were asked about where they prefer to be when they experience mental fatigue. Next, they were asked to describe the physical qualities of the places they prefer to be with reasons. Four themes were derived from the analysis of interviews. The themes are in order according to their frequency. The first, and most common, the theme was “connection to outside”. The analysis showed that people need to be either physically or visually connected to recover from mental fatigue. Direct connection to nature was reported as preferable, whereas urban settings were the secondary preference along with interiors. The second theme emerged from the analysis was “the presence of the artwork,” which was experienced differently by the interviewees. The third theme was “amenities”. Interviews pointed out that people prefer to have the amenities that support desired activity during recovery from mental fatigue. The last theme was “aesthetics.” Interviewees stated that they prefer places that are pleasing to their eyes. Additionally, they could not get rid of the feeling of being worn out in places that are not well-designed. When we matched the themes with the four art components (being away, extent, fascination, compatibility), some of the interior qualities showed overlapping since they were experienced differently by the interviewees. In conclusion, this study showed that interior settings have restorative potential, and they are multidimensional in their experience.

Keywords: attention restoration, fatigue, interior design, qualitative study, restorative environments

Procedia PDF Downloads 239
1149 A Protocol of Procedures and Interventions to Accelerate Post-Earthquake Reconstruction

Authors: Maria Angela Bedini, Fabio Bronzini

Abstract:

The Italian experiences, positive and negative, of the post-earthquake are conditioned by long times and structural bureaucratic constraints, also motivated by the attempt to contain mafia infiltration and corruption. The transition from the operational phase of the emergency to the planning phase of the reconstruction project is thus hampered by a series of inefficiencies and delays, incompatible with the need for rapid recovery of the territories in crisis. In fact, intervening in areas affected by seismic events means at the same time associating the reconstruction plan with an urban and territorial rehabilitation project based on strategies and tools in which prevention and safety play a leading role in the regeneration of territories in crisis and the return of the population. On the contrary, the earthquakes that took place in Italy have instead further deprived the territories affected of the minimum requirements for habitability, in terms of accessibility and services, accentuating the depopulation process, already underway before the earthquake. The objective of this work is to address with implementing and programmatic tools the procedures and strategies to be put in place, today and in the future, in Italy and abroad, to face the challenge of the reconstruction of activities, sociality, services, risk mitigation: a protocol of operational intentions and firm points, open to a continuous updating and implementation. The methodology followed is that of the comparison in a synthetic form between the different Italian experiences of the post-earthquake, based on facts and not on intentions, to highlight elements of excellence or, on the contrary, damage. The main results obtained can be summarized in technical comparison cards on good and bad practices. With this comparison, we intend to make a concrete contribution to the reconstruction process, certainly not only related to the reconstruction of buildings but privileging the primary social and economic needs. In this context, the recent instrument applied in Italy of the strategic urban and territorial SUM (Minimal Urban Structure) and the strategic monitoring process become dynamic tools for supporting reconstruction. The conclusions establish, by points, a protocol of interventions, the priorities for integrated socio-economic strategies, multisectoral and multicultural, and highlight the innovative aspects of 'inversion' of priorities in the reconstruction process, favoring the take-off of 'accelerator' interventions social and economic and a more updated system of coexistence with risks. In this perspective, reconstruction as a necessary response to the calamitous event can and must become a unique opportunity to raise the level of protection from risks and rehabilitation and development of the most fragile places in Italy and abroad.

Keywords: an operational protocol for reconstruction, operational priorities for coexistence with seismic risk, social and economic interventions accelerators of building reconstruction, the difficult post-earthquake reconstruction in Italy

Procedia PDF Downloads 113
1148 Hg Anomalies and Soil Temperature Distribution to Delineate Upflow and Outflow Zone in Bittuang Geothermal Prospect Area, south Sulawesi, Indonesia

Authors: Adhitya Mangala, Yobel

Abstract:

Bittuang geothermal prospect area located at Tana Toraja district, South Sulawesi. The geothermal system of the area related to Karua Volcano eruption product. This area has surface manifestation such as fumarole, hot springs, sinter silica and mineral alteration. Those prove that there are hydrothermal activities in the subsurface. However, the project and development of the area have not implemented yet. One of the important elements in geothermal exploration is to determine upflow and outflow zone. This information very useful to identify the target for geothermal wells and development which it is a risky task. The methods used in this research were Mercury (Hg) anomalies in soil, soil and manifestation temperature distribution and fault fracture density from 93 km² research area. Hg anomalies performed to determine the distribution of hydrothermal alteration. Soil and manifestation temperature distribution were conducted to estimate heat distribution. Fault fracture density (FFD) useful to determine fracture intensity and trend from surface observation. Those deliver Hg anomaly map, soil and manifestation temperature map that combined overlayed to fault fracture density map and geological map. Then, the conceptual model made from north – south, and east – west cross section to delineate upflow and outflow zone in this area. The result shows that upflow zone located in northern – northeastern of the research area with the increase of elevation and decrease of Hg anomalies and soil temperature. The outflow zone located in southern - southeastern of the research area which characterized by chloride, chloride - bicarbonate geothermal fluid type, higher soil temperature, and Hg anomalies. The range of soil temperature distribution from 16 – 19 °C in upflow and 19 – 26.5 °C in the outflow. The range of Hg from 0 – 200 ppb in upflow and 200 – 520 ppb in the outflow. Structural control of the area show northwest – southeast trend. The boundary between upflow and outflow zone in 1550 – 1650 m elevation. This research delivers the conceptual model with innovative methods that useful to identify a target for geothermal wells, project, and development in Bittuang geothermal prospect area.

Keywords: Bittuang geothermal prospect area, Hg anomalies, soil temperature, upflow and outflow zone

Procedia PDF Downloads 303
1147 A Structured Mechanism for Identifying Political Influencers on Social Media Platforms: Top 10 Saudi Political Twitter Users

Authors: Ahmad Alsolami, Darren Mundy, Manuel Hernandez-Perez

Abstract:

Social media networks, such as Twitter, offer the perfect opportunity to either positively or negatively affect political attitudes on large audiences. The existence of influential users who have developed a reputation for their knowledge and experience of specific topics is a major factor contributing to this impact. Therefore, knowledge of the mechanisms to identify influential users on social media is vital for understanding their effect on their audience. The concept of the influential user is related to the concept of opinion leaders' to indicate that ideas first flow from mass media to opinion leaders and then to the rest of the population. Hence, the objective of this research was to provide reliable and accurate structural mechanisms to identify influential users, which could be applied to different platforms, places, and subjects. Twitter was selected as the platform of interest, and Saudi Arabia as the context for the investigation. These were selected because Saudi Arabia has a large number of Twitter users, some of whom are considerably active in setting agendas and disseminating ideas. The study considered the scientific methods that have been used to identify public opinion leaders before, utilizing metrics software on Twitter. The key findings propose multiple novel metrics to compare Twitter influencers, including the number of followers, social authority and the use of political hashtags, and four secondary filtering measures. Thus, using ratio and percentage calculations to classify the most influential users, Twitter accounts were filtered, analyzed and included. The structured approach is used as a mechanism to explore the top ten influencers on Twitter from the political domain in Saudi Arabia.

Keywords: Twitter, influencers, structured mechanism, Saudi Arabia

Procedia PDF Downloads 103
1146 Financing Innovation: Differences across National Innovation Systems

Authors: Núria Arimany Serrat, Xavier Ferràs Hernández, Petra A. Nylund, Eric Viardot

Abstract:

Innovation is an increasingly important antecedent to firm competitiveness and growth. Successful innovation, however, requires a significant financial commitment and the means of financing accessible to the firm may affect its ability to innovate. The access to equity financing such as venture capital has been connected to innovativeness for young firms. For established enterprises, debt financing of innovation may be a more realistic option. Continuous innovation and growth would otherwise require a constant increase of equity. We, therefore, investigate the relation between debt financing and innovation for large firms and hypothesize that those firms that carry more debt will be more innovative. The need for debt financing of innovation may be reduced for very profitable firms, which can finance innovation with cash flow. We thus hypothesize a moderating effect of profitability on the relationship between debt financing and innovation. We carry out an empirical investigation using a longitudinal data set including 167 large European firms over five years, resulting in 835 firm years. We apply generalized least squares (GLS) regression with fixed firm effects to control for firm heterogeneity. The findings support our hypotheses and we conclude that access to debt finding is an important antecedent of innovation, with profitability as a moderating factor. The results do however differ across national innovation systems and we find a strong relationship for British, Dutch, French, and Italian firms but not for German and Spanish entities. We discuss differences in the national systems of innovation and financing which contextualize the variations in the findings and thus make a nuanced contribution to the research in innovation financing. The cross-country differences calls for differentiated advice to managers, institutions, and researchers depending on the national context.

Keywords: innovation, R&D, national innovation systems, financing

Procedia PDF Downloads 518
1145 Integrated Dynamic Analysis of Semi-Submersible Flap Type Concept

Authors: M. Rafiur Rahman, M. Mezbah Uddin, Mohammad Irfan Uddin, M. Moinul Islam

Abstract:

With a rapid development of offshore renewable energy industry, the research activities in regards of harnessing power from offshore wind and wave energy are increasing day by day. Integration of wind turbines and wave energy converters into one combined semi-submersible platform might be a cost-economy and beneficial option. In this paper, the coupled integrated dynamic analysis in the time domain (TD) of a simplified semi-submersible flap type concept (SFC) is accomplished via state-of-the-art numerical code referred as Simo-Riflex-Aerodyn (SRA). This concept is a combined platform consisting of a semi-submersible floater supporting a 5 MW horizontal axis wind turbine (WT) and three elliptical shaped flap type wave energy converters (WECs) on three pontoons. The main focus is to validate the numerical model of SFC with experimental results and perform the frequency domain (FD) and TD response analysis. The numerical analysis is performed using potential flow theory for hydrodynamics and blade element momentum (BEM) theory for aerodynamics. A variety of environmental conditions encompassing the functional & survival conditions for short-term sea (1-hour simulation) are tested to evaluate the sustainability of the SFC. The numerical analysis is performed in full scale. Finally, the time domain analysis of heave, pitch & surge motions is performed numerically using SRA and compared with the experimental results. Due to the simplification of the model, there are some discrepancies which are discussed in brief.

Keywords: coupled integrated dynamic analysis, SFC, time domain analysis, wave energy converters

Procedia PDF Downloads 208
1144 Novel Uses of Discarded Work Rolls of Cold Rolling Mills in Hot Strip Mill of Tata Steel India

Authors: Uday Shanker Goel, Vinay Vasant Mahashabde, Biswajit Ghosh, Arvind Jha, Amit Kumar, Sanjay Kumar Patel, Uma Shanker Pattanaik, Vinit Kumar Shah, Chaitanya Bhanu

Abstract:

Pinch rolls of the Hot Mills must possess resistance to wear, thermal stability, high thermal conductivity and through hardness. Conventionally, pinch rolls have been procured either as new ones or refurbished ones. Discarded Work Rolls from the Cold Mill were taken and machined inhouse at Tata Steel to be used subsequently as the bottom pinch rolls of the Hot Mill. The hardness of the scrapped work rolls from CRM is close to 55HRC and the typical composition is ( C - 0.8% , Mn - 0.40 % , Si - 0.40% , Cr - 3.5% , Mo - 0.5% & V - 0.1% ).The Innovation was the use of a roll which would otherwise have been otherwise discarded as scrap. Also, the innovation helped in using the scrapped roll which had better wear and heat resistance. In a conventional Pinch roil (Hardness 50 HRC and typical chemistry - C - 10% , Mo+Co+V+Nb ~ 5 % ) , Pick-up is a condition whereby foreign material becomes adhered to the surface of the pinch roll during service. The foreign material is usually adhered metal from the actual product being rolled. The main attributes of the weld overlay rolls are wear resistance and crack resistance. However, the weld overlay roll has a strong tendency for strip pick-up particularly in the area of bead overlap. However, the greatest disadvantage is the depth of weld deposit, which is less than half of the usable shell thickness in most mills. Because of this, the stainless rolls require re-welding on a routine basis. By providing a significantly cheaper in house and more robust alternative of the existing bottom pinch rolls , this innovation results in significant lower worries for the roll shop. Pinch rolls now don't have to be sent outside Jamshedpur for refurbishment or for procuring new ones. Scrapped rolls from adjacent Cold Mill are procured and sent for machining to our Machine Shop inside Tata Steel works in Jamshedpur. This is far more convenient than the older methodology. The idea is also being deployed to the other hot mills of Tata Steel. Multiple campaigns have been tried out at both down coilers of Hot Strip with significantly lower wear.

Keywords: hot rolling flat, cold mill work roll, hot strip pinch roll, strip surface

Procedia PDF Downloads 111
1143 Alumina Supported Copper-manganese Catalysts for Combustion of Exhaust Gases: Catalysts Characterization

Authors: Krasimir I. Ivanov, Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Georgi V. Avdeev, Tatyana T. Tabakova

Abstract:

In recent research copper and manganese systems were found to be the most active in CO and organic compounds oxidation among the base catalysts. The mixed copper manganese oxide has been widely studied in oxidation reactions because of their higher activity at low temperatures in comparison with single oxide catalysts. The results showed that the formation of spinel CuxMn3−xO4 in the oxidized catalyst is responsible for the activity even at room temperature. That is why most of the investigations are focused on the hopcalite catalyst (CuMn2O4) as the best copper-manganese catalyst. Now it’s known that this is true only for CO oxidation, but not for mixture of CO and VOCs. The purpose of this study is to investigate the alumina supported copper-manganese catalysts with different Cu/Mn molar ratio in terms of oxidation of CO, methanol and dimethyl ether. The catalysts were prepared by impregnation of γ-Al2O3 with copper and manganese nitrates and the catalytic activity measurements were carried out in continuous flow equipment with a four-channel isothermal stainless steel reactor. Gas mixtures on the input and output of the reactor were analyzed with a gas chromatograph, equipped with FID and TCD detectors. The texture characteristics were determined by low-temperature (- 196 oС) nitrogen adsorption in a Quantachrome Instruments NOVA 1200e (USA) specific surface area&pore analyzer. Thermal, XRD and TPR analyses were performed. It was established that the active component of the mixed Cu-Mn/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio. Highly active alumina supported Cu-Mn catalysts for CO, methanol and DME oxidation were synthesized. While the hopcalite is the best catalyst for CO oxidation, the best compromise for simultaneous oxidation of all components is the catalyst with Cu/Mn molar ratio 1:5.

Keywords: supported copper-manganese catalysts, CO, VOCs oxidation, combustion of exhaust gases

Procedia PDF Downloads 273
1142 Structure-Activity Relationship of Gold Catalysts on Alumina Supported Cu-Ce Oxides for CO and Volatile Organic Compound Oxidation

Authors: Tatyana T. Tabakova, Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Krasimir I. Ivanov, Yordanka G. Karakirova, Petya Cv. Petrova, Georgi V. Avdeev

Abstract:

The catalytic oxidation of CO and volatile organic compounds (VOCs) is considered as one of the most efficient ways to reduce harmful emissions from various chemical industries. The effectiveness of gold-based catalysts for many reactions of environmental significance was proven during the past three decades. The aim of this work was to combine the favorable features of Au and Cu-Ce mixed oxides in the design of new catalytic materials of improved efficiency and economic viability for removal of air pollutants in waste gases from formaldehyde production. Supported oxides of copper and cerium with Cu: Ce molar ratio 2:1 and 1:5 were prepared by wet impregnation of g-alumina. Gold (2 wt.%) catalysts were synthesized by a deposition-precipitation method. Catalysts characterization was carried out by texture measurements, powder X-ray diffraction, temperature programmed reduction and electron paramagnetic resonance spectroscopy. The catalytic activity in the oxidation of CO, CH3OH and (CH3)2O was measured using continuous flow equipment with fixed bed reactor. Both Cu-Ce/alumina samples demonstrated similar catalytic behavior. The addition of gold caused significant enhancement of CO and methanol oxidation activity (100 % degree of CO and CH3OH conversion at about 60 and 140 oC, respectively). The composition of Cu-Ce mixed oxides affected the performance of gold-based samples considerably. Gold catalyst on Cu-Ce/γ-Al2O3 1:5 exhibited higher activity for CO and CH3OH oxidation in comparison with Au on Cu-Ce/γ-Al2O3 2:1. The better performance of Au/Cu-Ce 1:5 was related to the availability of highly dispersed gold particles and copper oxide clusters in close contact with ceria.

Keywords: CO and VOCs oxidation, copper oxide, Ceria, gold catalysts

Procedia PDF Downloads 302
1141 Effect of Anisotropy on Steady Creep in a Whisker Reinforced Functionally Graded Composite Disc

Authors: V. K. Gupta, Tejeet Singh

Abstract:

In many whisker reinforced composites, anisotropy may result due to material flow during processing operations such as forging, extrusion etc. The consequence of anisotropy, introduced during processing of disc material, has been investigated on the steady state creep deformations of the rotating disc. The disc material is assumed to undergo plastic deformations according to Hill’s anisotropic criterion. Steady state creep has been analyzed in a constant thickness rotating disc made of functionally graded 6061Al-SiCw (where the subscript ‘w’ stands for whisker) using Hill’s The content of reinforcement (SiCw) in the disc is assumed to decrease linearly from the inner to outer radius. The stresses and strain rates in the disc are estimated by solving the force equilibrium equation along with the constitutive equations describing multi-axial creep. The results obtained for anisotropic FGM disc have been compared with those estimated for isotropic FGM disc having the same average whisker content. The anisotropic constants, appearing in Hill’s yield criterion, have been obtained from the available experimental results. The results show that the presence of anisotropy reduces the tangential stress in the middle of the disc but near the inner and outer radii the tangential stress is higher when compared to isotropic disc. On the other hand, the steady state creep rates in the anisotropic disc are reduced significantly over the entire disc radius, with the maximum reduction observed at the inner radius. Further, in the presence of anisotropy the distribution of strain rate becomes relatively uniform over the entire disc, which may be responsible for reducing the extent of distortion in the disc.

Keywords: anisotropy, creep, functionally graded composite, rotating disc

Procedia PDF Downloads 378
1140 Cytogenetic Characterization of the VERO Cell Line Based on Comparisons with the Subline; Implication for Authorization and Quality Control of Animal Cell Lines

Authors: Fumio Kasai, Noriko Hirayama, Jorge Pereira, Azusa Ohtani, Masashi Iemura, Malcolm A. Ferguson Smith, Arihiro Kohara

Abstract:

The VERO cell line was established in 1962 from normal tissue of an African green monkey, Chlorocebus aethiops (2n=60), and has been commonly used worldwide for screening for toxins or as a cell substrate for the production of viral vaccines. The VERO genome was sequenced in 2014; however, its cytogenetic features have not been fully characterized as it contains several chromosome abnormalities and different karyotypes coexist in the cell line. In this study, the VERO cell line (JCRB0111) was compared with one of the sublines. In contrast to 59 chromosomes as the modal chromosome number in the VERO cell line, the subline had two peaks of 56 and 58 chromosomes. M-FISH analysis using human probes revealed that the VERO cell line was characterized by a translocation t(2;25) found in all metaphases, which was absent in the subline. Different abnormalities detected only in the subline show that the cell line is heterogeneous, indicating that the subline has the potential to change its genomic characteristics during cell culture. The various alterations in the two independent lineages suggest that genomic changes in both VERO cells can be accounted for by progressive rearrangements during their evolution in culture. Both t(5;X) and t(8;14) observed in all metaphases of the two cell lines might have a key role in VERO cells and could be used as genetic markers to identify VERO cells. The flow karyotype shows distinct differences from normal. Further analysis of sorted abnormal chromosomes may uncover other characteristics of VERO cells. Because of the absence of STR data, cytogenetic data are important in characterizing animal cell lines and can be an indicator of their quality control.

Keywords: VERO, cell culture passage, chromosome rearrangement, heterogeneous cells

Procedia PDF Downloads 398
1139 Poultry Manure and Its Derived Biochar as a Soil Amendment for Newly Reclaimed Sandy Soils under Arid and Semi-Arid Conditions

Authors: W. S. Mohamed, A. A. Hammam

Abstract:

Sandy soils under arid and semi-arid conditions are characterized by poor physical and biochemical properties such as low water retention, rapid organic matter decomposition, low nutrients use efficiency, and limited crop productivity. Addition of organic amendments is crucial to develop soil properties and consequently enhance nutrients use efficiency and lessen organic carbon decomposition. Two years field experiments were developed to investigate the feasibility of using poultry manure and its derived biochar integrated with different levels of N fertilizer as a soil amendment for newly reclaimed sandy soils in Western Desert of El-Minia Governorate, Egypt. Results of this research revealed that poultry manure and its derived biochar addition induced pronounced effects on soil moisture content at saturation point, field capacity (FC) and consequently available water. Data showed that application of poultry manure (PM) or PM-derived biochar (PMB) in combination with inorganic N levels had caused significant changes on a range of the investigated sandy soil biochemical properties including pH, EC, mineral N, dissolved organic carbon (DOC), dissolved organic N (DON) and quotient DOC/DON. Overall, the impact of PMB on soil physical properties was detected to be superior than the impact of PM, regardless the inorganic N levels. In addition, the obtained results showed that PM and PM application had the capacity to stimulate vigorous growth, nutritional status, production levels of wheat and sorghum, and to increase soil organic matter content and N uptake and recovery compared to control. By contrast, comparing between PM and PMB at different levels of inorganic N, the obtained results showed higher relative increases in both grain and straw yields of wheat in plots treated with PM than in those treated with PMB. The interesting feature of this research is that the biochar derived from PM increased treated sandy soil organic carbon (SOC) 1.75 times more than soil treated with PM itself at the end of cropping seasons albeit double-applied amount of PM. This was attributed to the higher carbon stability of biochar treated sandy soils increasing soil persistence for carbon decomposition in comparison with PM labile carbon. It could be concluded that organic manures applied to sandy soils under arid and semi-arid conditions are subjected to high decomposition and mineralization rates through crop seasons. Biochar derived from organic wastes considers as a source of stable carbon and could be very hopeful choice for substituting easily decomposable organic manures under arid conditions. Therefore, sustainable agriculture and productivity in newly reclaimed sandy soils desire one high rate addition of biochar derived from organic manures instead of frequent addition of such organic amendments.

Keywords: biochar, dissolved organic carbon, N-uptake, poultry, sandy soil

Procedia PDF Downloads 131
1138 A Piebald Cladistic Portray of Mitochondrial DNA Control Region Haplogroups in Khyber Pakhtunkhwa, Pakistan

Authors: Shahzad Bhatti, M. Aslamkhan, Sana Abbas, Marcella Attimonelli, Hikmet Hakan Aydin, Erica Martinha Silva de Souza,

Abstract:

Despite being situated at the crossroad of Asia, Pakistan has gained crucial importance because of its pivotal role in subsequent migratory events. To highlight the genetic footprints and to contribute an enigmatic picture of the relative population expansion pattern among four major Pashtun tribes in Khyber Pakhtunkhwa viz., Bangash, Khattak, Mahsuds and Orakzai, the complete mitochondrial control region of 100 Pashtun were analyzed. All Pashtun tribes studied here revealed high genetic diversity; that was comparable to the other Central Asian, Southeast Asian and European populations. The configuration of genetic variation and heterogeneity further unveiled through Multidimensional Scaling, Principal Component Analysis, and phylogenetic analysis. The results revealed that the Pashtun is a composite mosaic of West Eurasian ancestry of numerous geographic origin. They received substantial gene flow during different invasions and have a high element of the Western provenance. The most common haplogroups reported in this study are: South Asian haplogroup M (28%) and R (8%); whereas, West Asians haplogroups are present, albeit in high frequencies (67%) and widespread over all; HV (15%), U (17%), H (9%), J (8%), K (8%), W (4%), N (3%) and T (3%). Herein we linked the unexplored genetic connection between Ashkenazi Jews and Pashtun. The presence of specific haplotypes J1b (4%) and K1a1b1a (5%) point to a genetic connection of Jewish conglomeration with Khattak tribe. This was a result of an ancient genetic influx in the early Neolithic period that led to the formation of a diverse genetic substratum in present day Pashtun.

Keywords: mtDNA haplogroups, control region, Pakistan, KPK, ethnicity

Procedia PDF Downloads 468