Search results for: gas utilization efficiency
699 Evaluating Daylight Performance in an Office Environment in Malaysia, Using Venetian Blind Systems
Authors: Fatemeh Deldarabdolmaleki, Mohamad Fakri Zaky Bin Ja'afar
Abstract:
This paper presents fenestration analysis to study the balance between utilizing daylight and eliminating the disturbing parameters in a private office room with interior venetian blinds taking into account different slat angles. Mean luminance of the scene and window, luminance ratio of the workplane and window, work plane illumination and daylight glare probability(DGP) were calculated as a function of venetian blind design properties. Recently developed software, analyzing High Dynamic Range Images (HDRI captured by CCD camera), such as radiance based evalglare and hdrscope help to investigate luminance-based metrics. A total of Eight-day measurement experiment was conducted to investigate the impact of different venetian blind angles in an office environment under daylight condition in Serdang, Malaysia. Detailed result for the selected case study showed that artificial lighting is necessary during the morning session for Malaysian buildings with southwest windows regardless of the venetian blind’s slat angle. However, in some conditions of afternoon session the workplane illuminance level exceeds the maximum illuminance of 2000 lx such as 10° and 40° slat angles. Generally, a rising trend is discovered toward mean window luminance level during the day. All the conditions have less than 10% of the pixels exceeding 2000 cd/m² before 1:00 P.M. However, 40% of the selected hours have more than 10% of the scene pixels higher than 2000 cd/m² after 1:00 P.M. Surprisingly in no blind condition, there is no extreme case of window/task ratio, However, the extreme cases happen for 20°, 30°, 40° and 50° slat angles. As expected mean window luminance level is higher than 2000 cd/m² after 2:00 P.M for most cases except 60° slat angle condition. Studying the daylight glare probability, there is not any DGP value higher than 0.35 in this experiment, due to the window’s direction, location of the building and studied workplane. Specifically, this paper reviews different blind angle’s response to the suggested metrics by the previous standards, and finally conclusions and knowledge gaps are summarized and suggested next steps for research are provided. Addressing these gaps is critical for the continued progress of the energy efficiency movement.Keywords: daylighting, office environment, energy simulation, venetian blind
Procedia PDF Downloads 230698 Emerging VC Industry and the Important Role of Marketing Expectations in Project Selection: Evidence on Russian Data
Authors: I. Rodionov, A. Semenov, E. Gosteva, O. Sokolova
Abstract:
Currently, the venture capital becomes more and more advanced and effective source of the innovation project financing, connected with a high-risk level. In the developed countries, it plays a key role in transforming innovation projects into successful businesses and creating prosperity of the modern economy. Actually, in Russia there are many necessary preconditions for creation of the effective venture investment system: the network of the public institutes for innovation financing operates; there is a significant number of the small and medium-sized enterprises, capable to sell production with good market potential. However, the current system does not confirm the necessary level of efficiency in practice that can be substantially explained by the absence of the accurate plan of action to form the national venture model and by the lack of experience of successful venture deals with profitable exits in Russian economy. This paper studies the influence of various factors on the venture industry development by the example of the IT-sector in Russia. The choice of the sector is based on the fact, that this segment is the main driver of the venture capital market growth in Russia, and the necessary set of data exists. The size of investment of the second round is used as the dependent variable. To analyse the influence of the previous round such determinant as the volume of the previous (first) round investments is used. There is also used a dummy variable in regression to examine that the participation of an investor with high reputation and experience in the previous round can influence the size of the next investment round. The regression analysis of short-term interrelations between studied variables reveals prevailing influence of the volume of the first round investments on the venture investments volume of the second round. Because of the research, the participation of investors with first-class reputation has a small impact on an indicator of the value of investment of the second round. The expected positive dependence of the second round investments on the forecasted market growth rate now of the deal is also rejected. So, the most important determinant of the value of the second-round investment is the value of first–round investment, so it means that the most competitive on the Russian market are the start-up teams which can attract more money on the start, and the target market growth is not the factor of crucial importance.Keywords: venture industry, venture investment, determinants of the venture sector development, IT-sector
Procedia PDF Downloads 357697 Energy Efficiency Line Guides for School Buildings in Florence in a Postgraduate Master Course
Authors: Lucia Ceccherini Nelli, Alessandra Donato
Abstract:
The ABITA Master course of the University of Florence offered by the Department of Architecture covers nearly all the energy-relevant issues that can arise in public and private companies and sectors. The main purpose of the Master course, active since 2003, is to analyse the energy consumption of building technologies, components, and structures at the conceptual design stage, so it could be very helpful, for designers, when making decisions related to the selection of the most suitable design alternatives and for the materials choice that will be used in an energy-efficient building. The training course provides a solid basis for increasing the knowledge and skills of energy managers and is developed with an emphasis on practical experiences related to the knowledge through case studies, measurements, and verification of energy-efficient solutions in buildings, in the industry and in the cities. The main objectives are: i)To raise the professional standards of those engaged in energy auditing, ii) To improve the practice of energy auditors by encouraging energy auditing professionals in a continuing education program of professional development, iii) Implement in the use of instrumentations for the typical measurements, iv) To propose an integrated methodology that links energy analysis tools with green building certification systems. This methodology will be applied at the early design stage of a project’s life. The final output of the practical training is to achieve an elevated professionalism in the study of environmental design and Energy management in buildings. The results are the redaction of line guides instruction for the energy refurbishment of Public schools in Florence. The school heritage of the Municipality of Florence requires interventions for the control of energy performance, as old construction buildings are often made without taking into account the necessary envelope performance. For this reason, every year, the Master's course aims to study groups of public schools to enable the Municipality to carry out energy redevelopment interventions on the existing building heritage. The future challenges of the education and training program are related to follow-up activities, the development of interactive tools and the curriculum's customization to meet the constantly growing needs of energy experts from industry.Keywords: expert in energy, energy auditing, public buildings, thermal analysis
Procedia PDF Downloads 191696 Times2D: A Time-Frequency Method for Time Series Forecasting
Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan
Abstract:
Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation
Procedia PDF Downloads 45695 The Response of Adaptive Mechanism of Fluorescent Proteins from Coral Species and Target Cell Properties on Signalling Capacity as Biosensor
Authors: Elif Tugce Aksun Tumerkan
Abstract:
Fluorescent proteins (FPs) have become very popular since green fluorescent protein discovered from crystal jellyfish. It is known that Anthozoa species have a wide range of chromophore organisms, and the initial crystal structure for non-fluorescent chromophores obtained from the reef-building coral has been determined. There are also differently coloured pigments in non-bioluminescent Anthozoa zooxanthellate and azooxanthellate which are frequently members of the GFP-like protein family. The development of fluorescent proteins (FPs) and their applications is an outstanding example of basic science leading to practical biotechnological and medical applications. Fluorescent proteins have several applications in science and are used as important indicators in molecular biology and cell-based research. With rising interest in cell biology, FPs have used as biosensor indicators and probes in pharmacology and cell biology. Using fluorescent proteins in genetically encoded metabolite sensors has many advantages than chemical probes for metabolites such as easily introduced into any cell or organism in any sub-cellular localization and giving chance to fixing to fluoresce of different colours or characteristics. There are different factors effects to signalling mechanism when they used as a biosensor. While there are wide ranges of research have been done on the significance and applications of fluorescent proteins, the cell signalling response of FPs and target cell are less well understood. In this study, it was aimed to clarify the response of adaptive mechanisms of coral species such as pH, temperature and symbiotic relationship and target cells properties on the signalling capacity. Corals are a rich natural source of fluorescent proteins that change with environmental conditions such as light, heat stress and injury. Adaptation mechanism of coral species to these types of environmental variations is important factor due to FPs properties have affected by this mechanism. Since fluorescent proteins obtained from nature, their own ecological property like the symbiotic relationship is observed very commonly in coral species and living conditions have the impact on FPs efficiency. Target cell properties also have an effect on signalling and visualization. The dynamicity of detector that used for reading fluorescence and the level of background fluorescence are key parameters for the quality of the fluorescent signal. Among the factors, it can be concluded that coral species adaptive characteristics have the strongest effect on FPs signalling capacity.Keywords: biosensor, cell biology, environmental conditions, fluorescent protein, sea anemone
Procedia PDF Downloads 171694 CO₂ Capture by Membrane Applied to Steel Production Process
Authors: Alexandra-Veronica Luca, Letitia Petrescu
Abstract:
Steel production is a major contributor to global warming potential. An average value of 1.83 tons of CO₂ is emitted for every ton of steel produced, resulting in over 3.3 Mt of CO₂ emissions each year. The present paper is focused on the investigation and comparison of two O₂ separation methods and two CO₂ capture technologies applicable to iron and steel industry. The O₂ used in steel production comes from an Air Separation Unit (ASU) using distillation or from air separation using membranes. The CO₂ capture technologies are represented by a two-stage membrane separation process and the gas-liquid absorption using methyl di-ethanol amine (MDEA). Process modelling and simulation tools, as well as environmental tools, are used in the present study. The production capacity of the steel mill is 4,000,000 tones/year. In order to compare the two CO₂ capture technologies in terms of efficiency, performance, and sustainability, the following cases have been investigated: Case 1: steel production using O₂ from ASU and no CO₂ capture; Case 2: steel production using O₂ from ASU and gas-liquid absorption for CO₂ capture; Case 3: steel production using O₂ from ASU and membranes for CO₂ capture; Case 4: steel production using O₂ from membrane separation method and gas-liquid absorption for CO₂ capture and Case-5: steel production using membranes for air separation and CO₂ capture. The O₂ separation rate obtained in the distillation technology was about 96%, and about 33% in the membrane technology. Similarly, the O₂ purity resulting in the conventional process (i.e. distillation) is higher compared to the O₂ purity obtained in the membrane unit (e.g., 99.50% vs. 73.66%). The air flow-rate required for membrane separation is about three times higher compared to the air flow-rate for cryogenic distillation (e.g., 549,096.93 kg/h vs. 189,743.82 kg/h). A CO₂ capture rate of 93.97% was obtained in the membrane case, while the CO₂ capture rate for the gas-liquid absorption was 89.97%. A quantity of 6,626.49 kg/h CO₂ with a purity of 95.45% is separated from the total 23,352.83 kg/h flue-gas in the membrane process, while with absorption of 6,173.94 kg/h CO₂ with a purity of 98.79% is obtained from 21,902.04 kg/h flue-gas and 156,041.80 kg/h MDEA is recycled. The simulation results, performed using ChemCAD process simulator software, lead to the conclusion that membrane-based technology can be a suitable alternative for CO₂ removal for steel production. An environmental evaluation using Life Cycle Assessment (LCA) methodology was also performed. Considering the electricity consumption, the performance, and environmental indicators, Case 3 can be considered the most effective. The environmental evaluation, performed using GaBi software, shows that membrane technology can lead to lower environmental emissions if membrane production is based on benzene derived from toluene hydrodealkilation and chlorine and sodium hydroxide are produced using mixed technologies.Keywords: CO₂ capture, gas-liquid absorption, Life Cycle Assessment, membrane separation, steel production
Procedia PDF Downloads 296693 Optimizing the Field Emission Performance of SiNWs-Based Heterostructures: Controllable Synthesis, Core-Shell Structure, 3D ZnO/Si Nanotrees and Graphene/SiNWs
Authors: Shasha Lv, Zhengcao Li
Abstract:
Due to the CMOS compatibility, silicon-based field emission (FE) devices as potential electron sources have attracted much attention. The geometrical arrangement and dimensional features of aligned silicon nanowires (SiNWs) have a determining influence on the FE properties. We discuss a multistep template replication process of Ag-assisted chemical etching combined with polystyrene (PS) spheres to fabricate highly periodic and well-aligned silicon nanowires, then their diameter, aspect ratio and density were further controlled via dry oxidation and post chemical treatment. The FE properties related to proximity and aspect ratio were systematically studied. A remarkable improvement of FE propertiy was observed with the average nanowires tip interspace increasing from 80 to 820 nm. On the basis of adjusting SiNWs dimensions and morphology, addition of a secondary material whose properties complement the SiNWs could yield a combined characteristic. Three different nanoheterostructures were fabricated to control the FE performance, they are: NiSi/Si core-shell structures, ZnO/Si nanotrees, and Graphene/SiNWs. We successfully fabricated the high-quality NiSi/Si heterostructured nanowires with excellent conformality. First, nickle nanoparticles were deposited onto SiNWs, then rapid thermal annealing process were utilized to form NiSi shell. In addition, we demonstrate a new and simple method for creating 3D nanotree-like ZnO/Si nanocomposites with a spatially branched hierarchical structure. Compared with the as-prepared SiNRs and ZnO NWs, the high-density ZnO NWs on SiNRs have exhibited predominant FE characteristics, and the FE enhancement factors were attributed to band bending effect and geometrical morphology. The FE efficiency from flat sheet structure of graphene is low. We discussed an effective approach towards full control over the diameter of uniform SiNWs to adjust the protrusions of large-scale graphene sheet deposited on SiNWs. The FE performance regarding the uniformity and dimensional control of graphene protrusions supported on SiNWs was systematically clarified. Therefore, the hybrid SiNWs/graphene structures with protrusions provide a promising class of field emission cathodes.Keywords: field emission, silicon nanowires, heterostructures, controllable synthesis
Procedia PDF Downloads 276692 Low Carbon Tourism Management: Strategies for Climate-Friendly Tourism of Koh Mak, Thailand
Authors: Panwad Wongthong, Thanan Apivantanaporn, Sutthiwan Amattayakul
Abstract:
Nature-based tourism is one of the fastest growing industries that can bring in economic benefits, improve quality of life and promote conservation of biodiversity and habitats. As tourism develops, substantial socio-economic and environmental costs become more explicit. Particularly in island destinations, the dynamic system and geographical limitations makes the intensity of tourism development and severity of the negative environmental impacts greater. The current contribution of the tourism sector to global climate change is established at approximately 5% of global anthropogenic CO2 emissions. In all scenarios, tourism is anticipated to grow substantially and to account for an increasingly large share of global greenhouse gas emissions. This has prompted an urgent call for more sustainable alternatives. This study selected a small island of Koh Mak in Thailand as a case study because of its reputation of being laid back, family oriented and rich in biodiversity. Importantly, it is a test platform for low carbon tourism development project supported by the Designated Areas for Sustainable Tourism Administration (DASTA) in collaboration with the Institute for Small and Medium Enterprises Development (ISMED). The study explores strategies for low carbon tourism management and assesses challenges and opportunities for Koh Mak to become a low carbon tourism destination. The goal is to identify suitable management approaches applicable for Koh Mak which may then be adapted to other small islands in Thailand and the region. Interventions/initiatives to increase energy efficiency in hotels and resorts; cut carbon emissions; reduce impacts on the environment; and promote conservation will be analyzed. Ways toward long-term sustainability of climate-friendly tourism will be recommended. Recognizing the importance of multi-stakeholder involvement in the tourism sector, findings from this study can reward Koh Mak tourism industry with a triple-win: cost savings and compliance with higher standards/markets; less waste, air emissions and effluents; and better capabilities of change, motivation of business owners, staff, tourists as well as residents. The consideration of climate change issues in the planning and implementation of tourism development is of great significance to protect the tourism sector from negative impacts.Keywords: climate change, CO2 emissions, low carbon tourism, sustainable tourism management
Procedia PDF Downloads 283691 Formulation, Preparation, and Evaluation of Coated Desloratadine Oral Disintegrating Tablets
Authors: Mohamed A. Etman, Mona G. Abd-Elnasser, Mohamed A. Shams-Eldin, Aly H. Nada
Abstract:
Orally disintegrating tablets (ODTs) are gaining importance as new drug delivery systems and emerged as one of the popular and widely accepted dosage forms, especially for the pediatric and geriatric patients. Their advantages such as administration without water, anywhere, anytime lead to their suitability to geriatric and pediatric patients. They are also suitable for the mentally ill, the bed-ridden and patients who do not have easy access to water. The benefits, in terms of patient compliance, rapid onset of action, increased bioavailability, and good stability make these tablets popular as a dosage form of choice in the current market. These dosage forms dissolve or disintegrate in the oral cavity within a matter of seconds without the need of water or chewing. Desloratadine is a tricyclic antihistaminic, which has a selective and peripheral H1-antagonist action. It is an antagonist at histamine H1 receptors, and an antagonist at all subtypes of the muscarinic acetylcholine receptor. Desloratadine is the major metabolite of loratadine. Twelve different placebos ODT were prepared (F1-F12) using different functional excipients. They were evaluated for their compressibility, hardness and disintegration time. All formulations were non sticky except four formulations; namely (F8, F9, F10, F11). All formulations were compressible with the exception of (F2). Variable disintegration times were found ranging between 20 and 120 seconds. It was found that (F12) showed the least disintegration time (20 secs) without showing any sticking which could be due to the use of high percentage of superdisintegrants. Desloratadine showed bitter taste when formulated as ODT without any treatment. Therefore, different techniques were tried in order to mask its bitter taste. Using Eudragit EPO resulted in complete masking of the bitter taste of the drug and increased the acceptability to volunteers. The compressible non sticky formulations (F1, F3, F4, F5, F6, F7 and F12) were subjected to further evaluation tests after addition of coated desloratadine, including weight uniformity, wetting time, and friability testing.. Fairly good weight uniformity values were observed in all the tested formulations. F12 exhibiting the shortest wetting time (14.7 seconds) and consequently the lowest (20 seconds) disintegration time. Dissolution profile showed that 100% desloratadine release was attained after only 2.5 minutes from the prepared ODT (F12) with dissolution efficiency of 95%.Keywords: Desloratadine, orally disintegrating tablets (ODTs), formulations, taste masking
Procedia PDF Downloads 457690 Optimization Approach to Integrated Production-Inventory-Routing Problem for Oxygen Supply Chains
Authors: Yena Lee, Vassilis M. Charitopoulos, Karthik Thyagarajan, Ian Morris, Jose M. Pinto, Lazaros G. Papageorgiou
Abstract:
With globalisation, the need to have better coordination of production and distribution decisions has become increasingly important for industrial gas companies in order to remain competitive in the marketplace. In this work, we investigate a problem that integrates production, inventory, and routing decisions in a liquid oxygen supply chain. The oxygen supply chain consists of production facilities, external third-party suppliers, and multiple customers, including hospitals and industrial customers. The product produced by the plants or sourced from the competitors, i.e., third-party suppliers, is distributed by a fleet of heterogenous vehicles to satisfy customer demands. The objective is to minimise the total operating cost involving production, third-party, and transportation costs. The key decisions for production include production and inventory levels and product amount from third-party suppliers. In contrast, the distribution decisions involve customer allocation, delivery timing, delivery amount, and vehicle routing. The optimisation of the coordinated production, inventory, and routing decisions is a challenging problem, especially when dealing with large-size problems. Thus, we present a two-stage procedure to solve the integrated problem efficiently. First, the problem is formulated as a mixed-integer linear programming (MILP) model by simplifying the routing component. The solution from the first-stage MILP model yields the optimal customer allocation, production and inventory levels, and delivery timing and amount. Then, we fix the previous decisions and solve a detailed routing. In the second stage, we propose a column generation scheme to address the computational complexity of the resulting detailed routing problem. A case study considering a real-life oxygen supply chain in the UK is presented to illustrate the capability of the proposed models and solution method. Furthermore, a comparison of the solutions from the proposed approach with the corresponding solutions provided by existing metaheuristic techniques (e.g., guided local search and tabu search algorithms) is presented to evaluate the efficiency.Keywords: production planning, inventory routing, column generation, mixed-integer linear programming
Procedia PDF Downloads 116689 Analysis of Advancements in Process Modeling and Reengineering at Fars Regional Electric Company, Iran
Authors: Mohammad Arabi
Abstract:
Business Process Reengineering (BPR) is a systematic approach to fundamentally redesign organizational processes to achieve significant improvements in organizational performance. At Fars Regional Electric Company, implementing BPR is deemed essential to increase productivity, reduce costs, and improve service quality. This article examines how BPR can help enhance the performance of Fars Regional Electric Company. The objective of this research is to evaluate and analyze the advancements in process modeling and reengineering at Fars Regional Electric Company and to provide solutions for improving the productivity and efficiency of organizational processes. This study aims to demonstrate how BPR can be used to improve organizational processes and enhance the overall performance of the company. This research employs both qualitative and quantitative research methods and includes interviews with senior managers and experts at Fars Regional Electric Company. The analytical tools include process modeling software such as Bizagi and ARIS, and statistical analysis software such as SPSS and Minitab. Data analysis was conducted using advanced statistical methods. The results indicate that the use of BPR techniques can lead to a significant reduction in process execution time and overall improvement in quality. Implementing BPR at Fars Regional Electric Company has led to increased productivity, reduced costs, and improved overall performance of the company. This study shows that with proper implementation of BPR and the use of modeling tools, the company can achieve significant improvements in its processes. Recommendations: (1) Continuous Training for Staff: Invest in continuous training of staff to enhance their skills and knowledge in BPR. (2) Use of Advanced Technologies: Utilize modeling and analysis software to improve processes. (3) Implementation of Effective Management Systems: Employ knowledge and information management systems to enhance organizational performance. (4) Continuous Monitoring and Review of Processes: Regularly review and revise processes to ensure ongoing improvements. This article highlights the importance of improving organizational processes at Fars Regional Electric Company and recommends that managers and decision-makers at the company seriously consider reengineering processes and utilizing modeling technologies to achieve developmental goals and continuous improvement.Keywords: business process reengineering, electric company, Fars province, process modeling advancements
Procedia PDF Downloads 52688 Calcein Release from Liposomes Mediated by Phospholipase A₂ Activity: Effect of Cholesterol and Amphipathic Di and Tri Blocks Copolymers
Authors: Marco Soto-Arriaza, Eduardo Cena-Ahumada, Jaime Melendez-Rojel
Abstract:
Background: Liposomes have been widely used as a model of lipid bilayer to study the physicochemical properties of biological membrane, encapsulation, transport and release of different molecules. Furthermore, extensive research has focused on improving the efficiency in the transport of drugs, developing tools that improve the release of the encapsulated drug from liposomes. In this context, the enzymatic activity of PLA₂, despite having been shown to be an effective tool to promote the release of drugs from liposomes, is still an open field of research. Aim: The aim of the present study is to explore the effect of cholesterol (Cho) and amphipathic di- and tri-block copolymers, on calcein release mediated by enzymatic activity of PLA2 in Dipalmitoylphosphatidylcholine (DPPC) liposomes under physiological conditions. Methods: Different dispersions of DPPC, cholesterol, di-block POE₄₅-PCL₅₂ or tri-block PCL₁₂-POE₄₅-PCL₁₂ were prepared by the extrusion method after five freezing/thawing cycles; in Phosphate buffer 10mM pH 7.4 in presence of calcein. DPPC liposomes/Calcein were centrifuged at 15000rpm 10 min to separate free calcein. Enzymatic activity assays of PLA₂ were performed at 37°C using the TBS buffer pH 7.4. The size distribution, polydispersity, Z-potential and Calcein encapsulation of DPPC liposomes was monitored. Results: PLA₂ activity showed a slower kinetic of calcein release up to 20 mol% of cholesterol, evidencing a minimum at 10 mol% and then a maximum at 18 mol%. Regardless of the percentage of cholesterol, up to 18 mol% a one-hundred percentage release of calcein was observed. At higher cholesterol concentrations, PLA₂ showed to be inefficient or not to be involved in calcein release. In assays where copolymers were added in a concentration lower than their cmc, a similar behavior to those showed in the presence of Cho was observed, that is a slower kinetic in calcein release. In both experimental approaches, a one-hundred percentage of calcein release was observed. PLA₂ was shown to be sensitive to the 4-(4-Octadecylphenyl)-4-oxobutenoic acid inhibitor and calcium, reducing the release of calcein to 0%. Cell viability of HeLa cells decreased 7% in the presence of DPPC liposomes after 3 hours of incubation and 17% and 23% at 5 and 15 hours, respectively. Conclusion: Calcein release from DPPC liposomes, mediated by PLA₂ activity, depends on the percentage of cholesterol and the presence of copolymers. Both, cholesterol up to 20 mol% and copolymers below it cmc could be applied to the regulation of the kinetics of antitumoral drugs release without inducing cell toxicity per se.Keywords: amphipathic copolymers, calcein release, cholesterol, DPPC liposome, phospholipase A₂
Procedia PDF Downloads 167687 KPI and Tool for the Evaluation of Competency in Warehouse Management for Furniture Business
Authors: Kritchakhris Na-Wattanaprasert
Abstract:
The objective of this research is to design and develop a prototype of a key performance indicator system this is suitable for warehouse management in a case study and use requirement. In this study, we design a prototype of key performance indicator system (KPI) for warehouse case study of furniture business by methodology in step of identify scope of the research and study related papers, gather necessary data and users requirement, develop key performance indicator base on balance scorecard, design pro and database for key performance indicator, coding the program and set relationship of database and finally testing and debugging each module. This study use Balance Scorecard (BSC) for selecting and grouping key performance indicator. The system developed by using Microsoft SQL Server 2010 is used to create the system database. In regard to visual-programming language, Microsoft Visual C# 2010 is chosen as the graphic user interface development tool. This system consists of six main menus: menu login, menu main data, menu financial perspective, menu customer perspective, menu internal, and menu learning and growth perspective. Each menu consists of key performance indicator form. Each form contains a data import section, a data input section, a data searches – edit section, and a report section. The system generates outputs in 5 main reports, the KPI detail reports, KPI summary report, KPI graph report, benchmarking summary report and benchmarking graph report. The user will select the condition of the report and period time. As the system has been developed and tested, discovers that it is one of the ways to judging the extent to warehouse objectives had been achieved. Moreover, it encourages the warehouse functional proceed with more efficiency. In order to be useful propose for other industries, can adjust this system appropriately. To increase the usefulness of the key performance indicator system, the recommendations for further development are as follows: -The warehouse should review the target value and set the better suitable target periodically under the situation fluctuated in the future. -The warehouse should review the key performance indicators and set the better suitable key performance indicators periodically under the situation fluctuated in the future for increasing competitiveness and take advantage of new opportunities.Keywords: key performance indicator, warehouse management, warehouse operation, logistics management
Procedia PDF Downloads 434686 Cover Layer Evaluation in Soil Organic Matter of Mixing and Compressed Unsaturated
Authors: Nayara Torres B. Acioli, José Fernando T. Jucá
Abstract:
The uncontrolled emission of gases in urban residues' embankment located near urban areas is a social and environmental problem, common in Brazilian cities. Several environmental impacts in the local and global scope may be generated by atmospheric air contamination by the biogas resulted from the decomposition of solid urban materials. In Brazil, the cities of small size figure mostly with 90% of all cities, with the population smaller than 50,000 inhabitants, according to the 2011 IBGE' census, most of the landfill covering layer is composed of clayey, pure soil. The embankments undertaken with pure soil may reach up to 60% of retention of methane, for the other 40% it may be dispersed into the atmosphere. In face of this figures the oxidative covering layer is granted some space of study, envisaging to reduce this perceptual available in the atmosphere, releasing, in spite of methane, carbonic gas which is almost 20 times as less polluting than Methane. This paper exposes the results of studies on the characteristics of the soil used for the oxidative coverage layer of the experimental embankment of Solid Urban Residues (SUR), built in Muribeca-PE, Brazil, supported of the Group of Solid Residues (GSR), located at Federal University of Pernambuco, through laboratory vacuum experiments (determining the characteristics curve), granularity, and permeability, that in soil with saturation over 85% offers dramatic drops in the test of permeability to the air, by little increments of water, based in the existing Brazilian norm for this procedure. The suction was studied, as in the other tests, from the division of prospection of an oxidative coverage layer of 60cm, in the upper half (0.1 m to 0.3 m) and lower half (0.4 m to 0.6 m). Therefore, the consequences to be presented from the lixiviation of the fine materials after 5 years of finalization of the embankment, what made its permeability increase. Concerning its humidity, it is most retained in the upper part, that comprises the compound, with a difference in the order of 8 percent the superior half to inferior half, retaining the least suction from the surface. These results reveal the efficiency of the oxidative coverage layer in retaining the rain water, it has a lower cost when compared to the other types of layer, offering larger availability of this layer as an alternative for a solution for the appropriate disposal of residues.Keywords: oxidative coverage layer, permeability, suction, saturation
Procedia PDF Downloads 290685 Nonlinear Dynamic Analysis of Base-Isolated Structures Using a Partitioned Solution Approach and an Exponential Model
Authors: Nicolò Vaiana, Filip C. Filippou, Giorgio Serino
Abstract:
The solution of the nonlinear dynamic equilibrium equations of base-isolated structures adopting a conventional monolithic solution approach, i.e. an implicit single-step time integration method employed with an iteration procedure, and the use of existing nonlinear analytical models, such as differential equation models, to simulate the dynamic behavior of seismic isolators can require a significant computational effort. In order to reduce numerical computations, a partitioned solution method and a one dimensional nonlinear analytical model are presented in this paper. A partitioned solution approach can be easily applied to base-isolated structures in which the base isolation system is much more flexible than the superstructure. Thus, in this work, the explicit conditionally stable central difference method is used to evaluate the base isolation system nonlinear response and the implicit unconditionally stable Newmark’s constant average acceleration method is adopted to predict the superstructure linear response with the benefit in avoiding iterations in each time step of a nonlinear dynamic analysis. The proposed mathematical model is able to simulate the dynamic behavior of seismic isolators without requiring the solution of a nonlinear differential equation, as in the case of widely used differential equation model. The proposed mixed explicit-implicit time integration method and nonlinear exponential model are adopted to analyze a three dimensional seismically isolated structure with a lead rubber bearing system subjected to earthquake excitation. The numerical results show the good accuracy and the significant computational efficiency of the proposed solution approach and analytical model compared to the conventional solution method and mathematical model adopted in this work. Furthermore, the low stiffness value of the base isolation system with lead rubber bearings allows to have a critical time step considerably larger than the imposed ground acceleration time step, thus avoiding stability problems in the proposed mixed method.Keywords: base-isolated structures, earthquake engineering, mixed time integration, nonlinear exponential model
Procedia PDF Downloads 282684 Towards a Doughnut Economy: The Role of Institutional Failure
Authors: Ghada El-Husseiny, Dina Yousri, Christian Richter
Abstract:
Social services are often characterized by market failures, which justifies government intervention in the provision of these services. It is widely acknowledged that government intervention breeds corruption since resources are being transferred from one party to another. However, what is still being extensively studied is the magnitude of the negative impact of corruption on publicly provided services and development outcomes. Corruption has the power to hinder development and cripple our march towards the Sustainable Development Goals. Corruption diminishes the efficiency and effectiveness of public health and education spending and directly impacts the outcomes of these sectors. This paper empirically examines the impact of Institutional Failure on public sector services provision, with the sole purpose of studying the impact of corruption on SDG3 and 4; Good health and wellbeing and Quality education, respectively. The paper explores the effect of corruption on these goals from various perspectives and extends the analysis by examining if the impact of corruption on these goals differed when it accounted for the current corruption state. Using Pooled OLS(Ordinary Least Square) and Fixed effects panel estimation on 22 corrupt and 22 clean countries between 2000 and 2017. Results show that corruption in both corrupt and clean countries has a more severe impact on Health than the Education sector. In almost all specifications, corruption has an insignificant effect on School Enrollment rates but a significant effect on Infant Mortality rates. Results further indicate that, on average, a 1 point increase in the CPI(Consumer Price Index) can increase health expenditures by 0.116% in corrupt and clean countries. However, the fixed effects model indicates that the way Health and Education expenditures are determined in clean and corrupt countries are completely country-specific, in which corruption plays a minimal role. Moreover, the findings show that School Enrollment rates and Infant Mortality rates depend, to a large extent, on public spending. The most astounding results-driven is that corrupt countries, on average, have more effective and efficient healthcare expenditures. While some insights are provided as to why these results prevail, they should be further researched. All in all, corruption impedes development outcomes, and any Anti-corrupt policies taken will bring forth immense improvements and speed up the march towards sustainability.Keywords: corruption, education, health, public spending, sustainable development
Procedia PDF Downloads 172683 Eco-Friendly Silicone/Graphene-Based Nanocomposites as Superhydrophobic Antifouling Coatings
Authors: Mohamed S. Selim, Nesreen A. Fatthallah, Shimaa A. Higazy, Hekmat R. Madian, Sherif A. El-Safty, Mohamed A. Shenashen
Abstract:
After the 2003 prohibition on employing TBT-based antifouling coatings, polysiloxane antifouling nano-coatings have gained in popularity as environmentally friendly and cost-effective replacements. A series of non-toxic polydimethylsiloxane nanocomposites filled with nanosheets of graphene oxide (GO) decorated with magnetite nanospheres (GO-Fe₃O₄ nanospheres) were developed and cured via a catalytic hydrosilation method. Various GO-Fe₃O₄ hybrid concentrations were mixed with the silicone resin via solution casting technique to evaluate the structure–property connection. To generate GO nanosheets, a modified Hummers method was applied. A simple co-precipitation method was used to make spherical magnetite particles under inert nitrogen. Hybrid GO-Fe₃O₄ composite fillers were developed by a simple ultrasonication method. Superhydrophobic PDMS/GO-Fe₃O₄ nanocomposite surface with a micro/nano-roughness, reduced surface-free energy (SFE), high fouling release (FR) efficiency was achieved. The physical, mechanical, and anticorrosive features of the virgin and GO-Fe₃O₄ filled nanocomposites were investigated. The synergistic effects of GO-Fe₃O4 hybrid's well-dispersion on the water-repellency and surface topological roughness of the PDMS/GO-Fe₃O₄ nanopaints were extensively studied. The addition of the GO-Fe₃O₄ hybrid fillers till 1 wt.% could increase the coating's water contact angle (158°±2°), minimize its SFE to 12.06 mN/m, develop outstanding micro/nano-roughness, and improve its bulk mechanical and anticorrosion properties. Several microorganisms were employed for examining the fouling-resistance of the coated specimens for 1 month. Silicone coatings filled with 1 wt.% GO-Fe₃O₄ nanofiller showed the least biodegradability% among all the tested microorganisms. Whereas GO-Fe₃O4 with 5 wt.% nanofiller possessed the highest biodegradability% potency by all the microorganisms. We successfully developed non-toxic and low cost nanostructured FR composite coating with high antifouling-resistance, reproducible superhydrophobic character, and enhanced service-time for maritime navigation.Keywords: silicone antifouling, environmentally friendly, nanocomposites, nanofillers, fouling repellency, hydrophobicity
Procedia PDF Downloads 118682 Experimental Analysis of the Influence of Water Mass Flow Rate on the Performance of a CO2 Direct-Expansion Solar Assisted Heat Pump
Authors: Sabrina N. Rabelo, Tiago de F. Paulino, Willian M. Duarte, Samer Sawalha, Luiz Machado
Abstract:
Energy use is one of the main indicators for the economic and social development of a country, reflecting directly in the quality of life of the population. The expansion of energy use together with the depletion of fossil resources and the poor efficiency of energy systems have led many countries in recent years to invest in renewable energy sources. In this context, solar-assisted heat pump has become very important in energy industry, since it can transfer heat energy from the sun to water or another absorbing source. The direct-expansion solar assisted heat pump (DX-SAHP) water heater system operates by receiving solar energy incident in a solar collector, which serves as an evaporator in a refrigeration cycle, and the energy reject by the condenser is used for water heating. In this paper, a DX-SAHP using carbon dioxide as refrigerant (R744) was assembled, and the influence of the variation of the water mass flow rate in the system was analyzed. The parameters such as high pressure, water outlet temperature, gas cooler outlet temperature, evaporator temperature, and the coefficient of performance were studied. The mainly components used to assemble the heat pump were a reciprocating compressor, a gas cooler which is a countercurrent concentric tube heat exchanger, a needle-valve, and an evaporator that is a copper bare flat plate solar collector designed to capture direct and diffuse radiation. Routines were developed in the LabVIEW and CoolProp through MATLAB software’s, respectively, to collect data and calculate the thermodynamics properties. The range of coefficient of performance measured was from 3.2 to 5.34. It was noticed that, with the higher water mass flow rate, the water outlet temperature decreased, and consequently, the coefficient of performance of the system increases since the heat transfer in the gas cooler is higher. In addition, the high pressure of the system and the CO2 gas cooler outlet temperature decreased. The heat pump using carbon dioxide as a refrigerant, especially operating with solar radiation has been proven to be a renewable source in an efficient system for heating residential water compared to electrical heaters reaching temperatures between 40 °C and 80 °C.Keywords: water mass flow rate, R-744, heat pump, solar evaporator, water heater
Procedia PDF Downloads 177681 Modelling Soil Inherent Wind Erodibility Using Artifical Intellligent and Hybrid Techniques
Authors: Abbas Ahmadi, Bijan Raie, Mohammad Reza Neyshabouri, Mohammad Ali Ghorbani, Farrokh Asadzadeh
Abstract:
In recent years, vast areas of Urmia Lake in Dasht-e-Tabriz has dried up leading to saline sediments exposure on the surface lake coastal areas being highly susceptible to wind erosion. This study was conducted to investigate wind erosion and its relevance to soil physicochemical properties and also modeling of wind erodibility (WE) using artificial intelligence techniques. For this purpose, 96 soil samples were collected from 0-5 cm depth in 414000 hectares using stratified random sampling method. To measure the WE, all samples (<8 mm) were exposed to 5 different wind velocities (9.5, 11, 12.5, 14.1 and 15 m s-1 at the height of 20 cm) in wind tunnel and its relationship with soil physicochemical properties was evaluated. According to the results, WE varied within the range of 76.69-9.98 (g m-2 min-1)/(m s-1) with a mean of 10.21 and coefficient of variation of 94.5% showing a relatively high variation in the studied area. WE was significantly (P<0.01) affected by soil physical properties, including mean weight diameter, erodible fraction (secondary particles smaller than 0.85 mm) and percentage of the secondary particle size classes 2-4.75, 1.7-2 and 0.1-0.25 mm. Results showed that the mean weight diameter, erodible fraction and percentage of size class 0.1-0.25 mm demonstrated stronger relationship with WE (coefficients of determination were 0.69, 0.67 and 0.68, respectively). This study also compared efficiency of multiple linear regression (MLR), gene expression programming (GEP), artificial neural network (MLP), artificial neural network based on genetic algorithm (MLP-GA) and artificial neural network based on whale optimization algorithm (MLP-WOA) in predicting of soil wind erodibility in Dasht-e-Tabriz. Among 32 measured soil variable, percentages of fine sand, size classes of 1.7-2.0 and 0.1-0.25 mm (secondary particles) and organic carbon were selected as the model inputs by step-wise regression. Findings showed MLP-WOA as the most powerful artificial intelligence techniques (R2=0.87, NSE=0.87, ME=0.11 and RMSE=2.9) to predict soil wind erodibility in the study area; followed by MLP-GA, MLP, GEP and MLR and the difference between these methods were significant according to the MGN test. Based on the above finding MLP-WOA may be used as a promising method to predict soil wind erodibility in the study area.Keywords: wind erosion, erodible fraction, gene expression programming, artificial neural network
Procedia PDF Downloads 73680 Integrating Cyber-Physical System toward Advance Intelligent Industry: Features, Requirements and Challenges
Authors: V. Reyes, P. Ferreira
Abstract:
In response to high levels of competitiveness, industrial systems have evolved to improve productivity. As a consequence, a rapid increase in volume production and simultaneously, a customization process require lower costs, more variety, and accurate quality of products. Reducing time-cycle production, enabling customizability, and ensure continuous quality improvement are key features in advance intelligent industry. In this scenario, customers and producers will be able to participate in the ongoing production life cycle through real-time interaction. To achieve this vision, transparency, predictability, and adaptability are key features that provide the industrial systems the capability to adapt to customer demands modifying the manufacturing process through an autonomous response and acting preventively to avoid errors. The industrial system incorporates a diversified number of components that in advanced industry are expected to be decentralized, end to end communicating, and with the capability to make own decisions through feedback. The evolving process towards advanced intelligent industry defines a set of stages to empower components of intelligence and enhancing efficiency to achieve the decision-making stage. The integrated system follows an industrial cyber-physical system (CPS) architecture whose real-time integration, based on a set of enabler technologies, links the physical and virtual world generating the digital twin (DT). This instance allows incorporating sensor data from real to virtual world and the required transparency for real-time monitoring and control, contributing to address important features of the advanced intelligent industry and simultaneously improve sustainability. Assuming the industrial CPS as the core technology toward the latest advanced intelligent industry stage, this paper reviews and highlights the correlation and contributions of the enabler technologies for the operationalization of each stage in the path toward advanced intelligent industry. From this research, a real-time integration architecture for a cyber-physical system with applications to collaborative robotics is proposed. The required functionalities and issues to endow the industrial system of adaptability are identified.Keywords: cyber-physical systems, digital twin, sensor data, system integration, virtual model
Procedia PDF Downloads 120679 New Advanced Medical Software Technology Challenges and Evolution of the Regulatory Framework in Expert Software, Artificial Intelligence, and Machine Learning
Authors: Umamaheswari Shanmugam, Silvia Ronchi, Radu Vornicu
Abstract:
Software, artificial intelligence, and machine learning can improve healthcare through innovative and advanced technologies that are able to use the large amount and variety of data generated during healthcare services every day. As we read the news, over 500 machine learning or other artificial intelligence medical devices have now received FDA clearance or approval, the first ones even preceding the year 2000. One of the big advantages of these new technologies is the ability to get experience and knowledge from real-world use and to continuously improve their performance. Healthcare systems and institutions can have a great benefit because the use of advanced technologies improves the same time efficiency and efficacy of healthcare. Software-defined as a medical device, is stand-alone software that is intended to be used for patients for one or more of these specific medical intended uses: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, any other health conditions, replacing or modifying any part of a physiological or pathological process–manage the received information from in vitro specimens derived from the human samples (body) and without principal main action of its principal intended use by pharmacological, immunological or metabolic definition. Software qualified as medical devices must comply with the general safety and performance requirements applicable to medical devices. These requirements are necessary to ensure high performance and quality and also to protect patients’ safety. The evolution and the continuous improvement of software used in healthcare must take into consideration the increase in regulatory requirements, which are becoming more complex in each market. The gap between these advanced technologies and the new regulations is the biggest challenge for medical device manufacturers. Regulatory requirements can be considered a market barrier, as they can delay or obstacle the device approval, but they are necessary to ensure performance, quality, and safety, and at the same time, they can be a business opportunity if the manufacturer is able to define in advance the appropriate regulatory strategy. The abstract will provide an overview of the current regulatory framework, the evolution of the international requirements, and the standards applicable to medical device software in the potential market all over the world.Keywords: artificial intelligence, machine learning, SaMD, regulatory, clinical evaluation, classification, international requirements, MDR, 510k, PMA, IMDRF, cyber security, health care systems.
Procedia PDF Downloads 94678 RA-Apriori: An Efficient and Faster MapReduce-Based Algorithm for Frequent Itemset Mining on Apache Flink
Authors: Sanjay Rathee, Arti Kashyap
Abstract:
Extraction of useful information from large datasets is one of the most important research problems. Association rule mining is one of the best methods for this purpose. Finding possible associations between items in large transaction based datasets (finding frequent patterns) is most important part of the association rule mining. There exist many algorithms to find frequent patterns but Apriori algorithm always remains a preferred choice due to its ease of implementation and natural tendency to be parallelized. Many single-machine based Apriori variants exist but massive amount of data available these days is above capacity of a single machine. Therefore, to meet the demands of this ever-growing huge data, there is a need of multiple machines based Apriori algorithm. For these types of distributed applications, MapReduce is a popular fault-tolerant framework. Hadoop is one of the best open-source software frameworks with MapReduce approach for distributed storage and distributed processing of huge datasets using clusters built from commodity hardware. However, heavy disk I/O operation at each iteration of a highly iterative algorithm like Apriori makes Hadoop inefficient. A number of MapReduce-based platforms are being developed for parallel computing in recent years. Among them, two platforms, namely, Spark and Flink have attracted a lot of attention because of their inbuilt support to distributed computations. Earlier we proposed a reduced- Apriori algorithm on Spark platform which outperforms parallel Apriori, one because of use of Spark and secondly because of the improvement we proposed in standard Apriori. Therefore, this work is a natural sequel of our work and targets on implementing, testing and benchmarking Apriori and Reduced-Apriori and our new algorithm ReducedAll-Apriori on Apache Flink and compares it with Spark implementation. Flink, a streaming dataflow engine, overcomes disk I/O bottlenecks in MapReduce, providing an ideal platform for distributed Apriori. Flink's pipelining based structure allows starting a next iteration as soon as partial results of earlier iteration are available. Therefore, there is no need to wait for all reducers result to start a next iteration. We conduct in-depth experiments to gain insight into the effectiveness, efficiency and scalability of the Apriori and RA-Apriori algorithm on Flink.Keywords: apriori, apache flink, Mapreduce, spark, Hadoop, R-Apriori, frequent itemset mining
Procedia PDF Downloads 300677 The Removal of Common Used Pesticides from Wastewater Using Golden Activated Charcoal
Authors: Saad Mohamed Elsaid Onaizah
Abstract:
One of the reasons for the intensive use of pesticides is to protect agricultural crops and orchards from pests or agricultural worms. The period of time that pesticides stay inside the soil is estimated at about (2) to (12) weeks. Perhaps the most important reason that led to groundwater pollution is the easy leakage of these harmful pesticides from the soil into the aquifers. This research aims to find the best ways to use trated activated charcoal with gold nitrate solution; For the purpose of removing the deadly pesticides from the aqueous solution by adsorption phenomenon. The most used pesticides in Egypt were selected, such as Malathion, Methomyl Abamectin and, Thiamethoxam. Activated charcoal doped with gold ions was prepared by applying chemical and thermal treatments to activated charcoal using gold nitrate solution. Adsorption of studied pesticide onto activated carbon /Au was mainly by chemical adsorption forming complex with the gold metal immobilised on activated carbon surfaces. Also, gold atom was considered as a catalyst to cracking the pesticide molecule. Gold activated charcoal is a low cost material due to the use of very low concentrations of gold nitrate solution. its notice the great ability of activated charcoal in removing selected pesticides due to the presence of the positive charge of the gold ion, in addition to other active groups such as functional oxygen and lignin cellulose. The presence of pores of different sizes on the surface of activated charcoal is the driving force for the good adsorption efficiency for the removal of the pesticides under study The surface area of the prepared char as well as the active groups were determined using infrared spectroscopy and scanning electron microscopy. Some factors affecting the ability of activated charcoal were applied in order to reach the highest adsorption capacity of activated charcoal, such as the weight of the charcoal, the concentration of the pesticide solution, the time of the experiment, and the pH. Experiments showed that the maximum limit revealed by the batch adsorption study for the adsorption of selected insecticides was in contact time (80) minutes at pH (7.70). These promising results were confirmed, and by establishing the practical application of the developed system, the effect of various operating factors with equilibrium, kinetic and thermodynamic studies is evident, using the Langmuir application on the effectiveness of the absorbent material with absorption capacities higher than most other adsorbents.Keywords: waste water, pesticides pollution, adsorption, activated carbon
Procedia PDF Downloads 83676 An Interactive User-Oriented Approach to Optimizing Public Space Lighting
Authors: Tamar Trop, Boris Portnov
Abstract:
Public Space Lighting (PSL) of outdoor urban areas promotes comfort, defines spaces and neighborhood identities, enhances perceived safety and security, and contributes to residential satisfaction and wellbeing. However, if excessive or misdirected, PSL leads to unnecessary energy waste and increased greenhouse gas emissions, poses a non-negligible threat to the nocturnal environment, and may become a potential health hazard. At present, PSL is designed according to international, regional, and national standards, which consolidate best practice. Yet, knowledge regarding the optimal light characteristics needed for creating a perception of personal comfort and safety in densely populated residential areas, and the factors associated with this perception, is still scarce. The presented study suggests a paradigm shift in designing PSL towards a user-centered approach, which incorporates pedestrians' perspectives into the process. The study is an ongoing joint research project between China and Israel Ministries of Science and Technology. Its main objectives are to reveal inhabitants' perceptions of and preferences for PSL in different densely populated neighborhoods in China and Israel, and to develop a model that links instrumentally measured parameters of PSL (e.g., intensity, spectra and glare) with its perceived comfort and quality, while controlling for three groups of attributes: locational, temporal, and individual. To investigate measured and perceived PSL, the study employed various research methods and data collection tools, developed a location-based mobile application, and used multiple data sources, such as satellite multi-spectral night-time light imagery, census statistics, and detailed planning schemes. One of the study’s preliminary findings is that higher sense of safety in the investigated neighborhoods is not associated with higher levels of light intensity. This implies potential for energy saving in brightly illuminated residential areas. Study findings might contribute to the design of a smart and adaptive PSL strategy that enhances pedestrians’ perceived safety and comfort while reducing light pollution and energy consumption.Keywords: energy efficiency, light pollution, public space lighting, PSL, safety perceptions
Procedia PDF Downloads 136675 Determining the Effective Substance of Cottonseed Extract on the Treatment of Leishmaniasis
Authors: Mehrosadat Mirmohammadi, Sara Taghdisi, Ali Padash, Mohammad Hossein Pazandeh
Abstract:
Gossypol, a yellowish anti-nutritional compound found in cotton plants, exists in various plant parts, including seeds, husks, leaves, and stems. Chemically, gossypol is a potent polyphenolic aldehyde with antioxidant and therapeutic properties. However, its free form can be toxic, posing risks to both humans and animals. Initially, we extracted gossypol from cotton seeds using n-hexane as a solvent (yield: 84.0 ± 4.0%). We also obtained cotton seed and cotton boll extracts via Soxhlet extraction (25:75 hydroalcoholic ratio). These extracts, combined with cornstarch, formed four herbal medicinal formulations. Ethical approval allowed us to investigate their effects on Leishmania-caused skin wounds, comparing them to glucantime (local ampoule). Herbal formulas outperformed the control group (ethanol only) in wound treatment (p-value 0.05). The average wound diameter after two months did not significantly differ between plant extract ointments and topical glucantime. Notably, cotton boll extract with 1% extra gossypol crystal showed the best therapeutic effect. We extracted gossypol from cotton seeds using n-hexane via Soxhlet extraction. Saponification, acidification, and recrystallization steps followed. FTIR, UV-Vis, and HPLC analyses confirmed the product’s identity. Herbal medicines from cotton seeds effectively treated chronic wounds compared to the ethanol-only control group. Wound diameter differed significantly between extract ointments and glucantime injections. It seems that due to the presence of large amounts of fat in the oil, the extraction of gossypol from it faces many obstacles. The extraction of this compound with our technique showed that extraction from oil has a higher efficiency, perhaps because of the preparation of oil by cold pressing method, the possibility of losing this compound is much less than when extraction is done with Soxhlet. On the other hand, the gossypol in the oil is mostly bound to the protein, which somehow protects the gossypol until the last stage of the extraction process. Since this compound is very sensitive to light and heat, it was extracted as a derivative with acetic acid. Also, in the treatment section, it was found that the ointment prepared with the extract is more effective and Gossypol is one of the effective ingredients in the treatment. Therefore, gossypol can be extracted from the oil and added to the extract from which gossypol has been extracted to make an effective medicine with a certain dose.Keywords: cottonseed, glucantime, gossypol, leishmaniasis
Procedia PDF Downloads 63674 Green Synthesis of Metal Oxide and Silver Nanoparticles Using Citrus Peel Extracts: Antibacterial, Antidiabetic, and Photovoltaic Applications
Authors: Roghaye Behroozi
Abstract:
Traditional chemical synthesis methods for nanoparticles (NPs) often involve environmental hazards, complex procedures, and low yields. Green synthesis has emerged as a safer, cost-effective, and eco-friendly alternative. Citrus peel, an agricultural byproduct, provides a sustainable source of bioactive compounds capable of reducing and stabilizing metal ions, enabling the production of biocompatible NPs with valuable biomedical, photovoltaic, and environmental applications. This study aims to develop a green synthesis approach for producing metal oxide and silver nanoparticles (AgNPs) using citrus peel extracts, evaluating their antibacterial, antidiabetic, and photovoltaic properties. Nanoparticles were synthesized via aqueous citrus peel extracts, which served as natural reducing and capping agents. The synthesized NPs were characterized using techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis spectroscopy to confirm their crystalline structure, morphology, and stability. Antibacterial efficacy was tested against common pathogenic bacteria, while antidiabetic activity was assessed through in vitro α-amylase inhibition. Photovoltaic properties were evaluated by incorporating the NPs into dye-sensitized solar cells (DSSCs). The synthesized NPs demonstrated distinct crystalline phases and spherical morphology, with notable stability and size uniformity. AgNPs showed significant antibacterial activity against tested pathogens, with enhanced inhibition at higher concentrations. In α-amylase inhibition assays, both metal oxide and AgNPs displayed dose-dependent antidiabetic potential. The DSSCs exhibited promising photovoltaic efficiency, confirming the feasibility of these NPs in light energy applications. Citrus peel-mediated synthesis of metal oxide and AgNPs provides a green, scalable method for producing nanoparticles with multifaceted applications. The findings highlight the potential of these NPs as eco-friendly agents in antibacterial and antidiabetic therapies and as components in renewable energy devices. This approach not only utilizes agricultural waste but also aligns with sustainable development goals by reducing synthetic chemical usage and environmental impact.Keywords: antibacterial activity, citrus peel extract, green synthesis, metal oxide nanoparticles, silver nanoparticles
Procedia PDF Downloads 5673 A Digital Twin Approach to Support Real-time Situational Awareness and Intelligent Cyber-physical Control in Energy Smart Buildings
Authors: Haowen Xu, Xiaobing Liu, Jin Dong, Jianming Lian
Abstract:
Emerging smart buildings often employ cyberinfrastructure, cyber-physical systems, and Internet of Things (IoT) technologies to increase the automation and responsiveness of building operations for better energy efficiency and lower carbon emission. These operations include the control of Heating, Ventilation, and Air Conditioning (HVAC) and lighting systems, which are often considered a major source of energy consumption in both commercial and residential buildings. Developing energy-saving control models for optimizing HVAC operations usually requires the collection of high-quality instrumental data from iterations of in-situ building experiments, which can be time-consuming and labor-intensive. This abstract describes a digital twin approach to automate building energy experiments for optimizing HVAC operations through the design and development of an adaptive web-based platform. The platform is created to enable (a) automated data acquisition from a variety of IoT-connected HVAC instruments, (b) real-time situational awareness through domain-based visualizations, (c) adaption of HVAC optimization algorithms based on experimental data, (d) sharing of experimental data and model predictive controls through web services, and (e) cyber-physical control of individual instruments in the HVAC system using outputs from different optimization algorithms. Through the digital twin approach, we aim to replicate a real-world building and its HVAC systems in an online computing environment to automate the development of building-specific model predictive controls and collaborative experiments in buildings located in different climate zones in the United States. We present two case studies to demonstrate our platform’s capability for real-time situational awareness and cyber-physical control of the HVAC in the flexible research platforms within the Oak Ridge National Laboratory (ORNL) main campus. Our platform is developed using adaptive and flexible architecture design, rendering the platform generalizable and extendable to support HVAC optimization experiments in different types of buildings across the nation.Keywords: energy-saving buildings, digital twins, HVAC, cyber-physical system, BIM
Procedia PDF Downloads 113672 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation
Authors: Jonathan Gong
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning
Procedia PDF Downloads 132671 The Efficacy of Salicylic Acid and Puccinia Triticina Isolates Priming Wheat Plant to Diuraphis Noxia Damage
Authors: Huzaifa Bilal
Abstract:
Russian wheat aphid (Diuraphis noxia, Kurdjumov) is considered an economically important wheat (Triticum aestivum L.) pest worldwide and in South Africa. The RWA damages wheat plants and reduces annual yields by more than 10%. Even though pest management by pesticides and resistance breeding is an attractive option, chemicals can cause harm to the environment. Furthermore, the evolution of resistance-breaking aphid biotypes has out-paced the release of resistant cultivars. An alternative strategy to reduce the impact of aphid damage on plants, such as priming, which sensitizes plants to respond effectively to subsequent attacks, is necessary. In this study, wheat plants at the seedling and flag leaf stages were primed by salicylic acid and isolate representative of two races of the leaf rust pathogen Puccinia triticina Eriks. (Pt), before RWA (South African RWA biotypes 1 and 4) infestation. Randomized complete block design experiments were conducted in the greenhouse to study plant-pest interaction in primed and non-primed plants. Analysis of induced aphid damage indicated salicylic acid differentially primed wheat cultivars for increased resistance to the RWASA biotypes. At the seedling stage, all cultivars were primed for enhanced resistance to RWASA1, while at the flag leaf stage, only PAN 3111, SST 356 and Makalote were primed for increased resistance. The Puccinia triticina efficaciously primed wheat cultivars for excellent resistance to RWASA1 at the seedling and flag leaf stages. However, Pt failed to enhance the four Lesotho cultivars' resistance to RWASA4 at the seedling stage and PAN 3118 at the flag leaf stage. The induced responses at the seedling and flag leaf stages were positively correlated in all the treatments. Primed plants induced high activity of antioxidant enzymes like peroxidase, ascorbate peroxidase and superoxide dismutase. High antioxidant activity indicates activation of resistant responses in primed plants (primed by salicylic acid and Puccina triticina). Isolates of avirulent Pt races can be a worthy priming agent for improved resistance to RWA infestation. Further confirmation of the priming effects needs to be evaluated at the field trials to investigate its application efficiency.Keywords: Russian wheat aphis, salicylic acid, puccina triticina, priming
Procedia PDF Downloads 211670 Nano-Pesticides: Recent Emerging Tool for Sustainable Agricultural Practices
Authors: Ekta, G. K. Darbha
Abstract:
Nanotechnology offers the potential of simultaneously increasing efficiency as compared to their bulk material as well as reducing harmful environmental impacts of pesticides in field of agriculture. The term nanopesticide covers different pesticides that are cumulative of several surfactants, polymers, metal ions, etc. of nanometer size ranges from 1-1000 nm and exhibit abnormal behavior (high efficacy and high specific surface area) of nanomaterials. Commercial formulations of pesticides used by farmers nowadays cannot be used effectively due to a number of problems associated with them. For example, more than 90% of applied formulations are either lost in the environment or unable to reach the target area required for effective pest control. Around 20−30% of pesticides are lost through emissions. A number of factors (application methods, physicochemical properties of the formulations, and environmental conditions) can influence the extent of loss during application. It is known that among various formulations, polymer-based formulations show the greatest potential due to their greater efficacy, slow release and protection against premature degradation of active ingredient as compared to other commercial formulations. However, the nanoformulations can have a significant effect on the fate of active ingredient as well as may release some new ingredients by reacting with existing soil contaminants. Environmental fate of these newly generated species is still not explored very well which is essential to field scale experiments and hence a lot to be explored in the field of environmental fate, nanotoxicology, transport properties and stability of such formulations. In our preliminary work, we have synthesized polymer based nanoformulation of commercially used weedicide atrazine. Atrazine belongs to triazine class of herbicide, which is used in the effective control of seed germinated dicot weeds and grasses. It functions by binding to the plastoquinone-binding protein in PS-II. Plant death results from starvation and oxidative damage caused by breakdown in electron transport system. The stability of the suspension of nanoformulation containing herbicide has been evaluated by considering different parameters like polydispersity index, particle diameter, zeta-potential under different environmental relevance condition such as pH range 4-10, temperature range from 25°C to 65°C and stability of encapsulation also have been studied for different amount of added polymer. Morphological characterization has been done by using SEM.Keywords: atrazine, nanoformulation, nanopesticide, nanotoxicology
Procedia PDF Downloads 259