Search results for: Tsunami Initial Sea Surface Displacement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10031

Search results for: Tsunami Initial Sea Surface Displacement

2561 Evaluation of Geotechnical Parameters at Nubian Habitations in Kurkur Area, Aswan, Egypt

Authors: R. E. Fat-Helbary, A. A. Abdel-latief, M. S. Arfa, Alaa Mostafa

Abstract:

The Egyptian Government proposed a general plan, aiming at constructing new settlements for Nubian in south Aswan in different places around Nasser Lake, one of these settlements in Kurkur area. The Nubian habitations in Wadi Kurkur are located around 30 km southwest of Aswan City. This area are affecting by near distance earthquakes from Kalabsha faults system. The shallow seismic refraction technique was conducted at the study area, to evaluate the soil and rock material quality and geotechnical parameters, in addition to the detection of the subsurface ground model under the study area. The P and S-wave velocities were calculated. The surface layer has P-wave, velocity ranges from 900 m/sec to 1625 m/sec and S-wave velocity ranges from 650 m/sec to 1400 m/sec. On the other hand the bedrock has P-wave velocity ranges from 1300 m/sec to 1980 m/sec and S-wave velocity ranges from 1050 m/sec to1725 m/sec. Measuring Vp and Vs velocities together with bulk density are calculated and used to extract the mechanical properties and geotechnical parameters of the foundation material at the study area. Output of this study is very important for solving the problems, which associated with the construction of various civil engineering purposes, for land use planning and for earthquakes resistant structure design.

Keywords: shallow seismic refraction technique, Kurkur area, p and s-wave velocities, geotechnical parameters, bulk density, Kalabsha faults

Procedia PDF Downloads 409
2560 Study of the Diaphragm Flexibility Effect on the Inelastic Seismic Response of Thin Wall Reinforced Concrete Buildings (TWRCB): A Purpose to Reduce the Uncertainty in the Vulnerability Estimation

Authors: A. Zapata, Orlando Arroyo, R. Bonett

Abstract:

Over the last two decades, the growing demand for housing in Latin American countries has led to the development of construction projects based on low and medium-rise buildings with thin reinforced concrete walls. This system, known as Thin Walls Reinforced Concrete Buildings (TWRCB), uses walls with thicknesses from 100 to 150 millimetres, with flexural reinforcement formed by welded wire mesh (WWM) with diameters between 5 and 7 millimetres, arranged in one or two layers. These walls often have irregular structural configurations, including combinations of rectangular shapes. Experimental and numerical research conducted in regions where this structural system is commonplace indicates inherent weaknesses, such as limited ductility due to the WWM reinforcement and thin element dimensions. Because of its complexity, numerical analyses have relied on two-dimensional models that don't explicitly account for the floor system, even though it plays a crucial role in distributing seismic forces among the resilient elements. Nonetheless, the numerical analyses assume a rigid diaphragm hypothesis. For this purpose, two study cases of buildings were selected, low-rise and mid-rise characteristics of TWRCB in Colombia. The buildings were analyzed in Opensees using the MVLEM-3D for walls and shell elements to simulate the slabs to involve the effect of coupling diaphragm in the nonlinear behaviour. Three cases are considered: a) models without a slab, b) models with rigid slabs, and c) models with flexible slabs. An incremental static (pushover) and nonlinear dynamic analyses were carried out using a set of 44 far-field ground motions of the FEMA P-695, scaled to 1.0 and 1.5 factors to consider the probability of collapse for the design base earthquake (DBE) and the maximum considered earthquake (MCE) for the model, according to the location sites and hazard zone of the archetypes in the Colombian NSR-10. Shear base capacity, maximum displacement at the roof, walls shear base individual demands and probabilities of collapse were calculated, to evaluate the effect of absence, rigid and flexible slabs in the nonlinear behaviour of the archetype buildings. The pushover results show that the building exhibits an overstrength between 1.1 to 2 when the slab is considered explicitly and depends on the structural walls plan configuration; additionally, the nonlinear behaviour considering no slab is more conservative than if the slab is represented. Include the flexible slab in the analysis remarks the importance to consider the slab contribution in the shear forces distribution between structural elements according to design resistance and rigidity. The dynamic analysis revealed that including the slab reduces the collapse probability of this system due to have lower displacements and deformations, enhancing the safety of residents and the seismic performance. The strategy of including the slab in modelling is important to capture the real effect on the distribution shear forces in walls due to coupling to estimate the correct nonlinear behaviour in this system and the adequate distribution to proportionate the correct resistance and rigidity of the elements in the design to reduce the possibility of damage to the elements during an earthquake.

Keywords: thin wall reinforced concrete buildings, coupling slab, rigid diaphragm, flexible diaphragm

Procedia PDF Downloads 55
2559 Field Studies of 2017 in the Water Catch Basin in the River Vere to Safeguard the Population of Tbilisi against the Erosive-Mudflow Processes and Its Evaluation

Authors: Natia Gavardashvili

Abstract:

From April through June of 2017, the field-scientific studies to ensure the safety of the population of Tbilisi were accomplished in the water catch basin of the river Vere, in the water catch basin of the river Jakhana dry gully. 5 sensitive sites were identified, and areas, 20x20 m each, were marked around them, with their locations fixed with GPS coordinates. The gained areas were plotted on a digital map, and the state of the surface was explored by considering the evaluation of erosive processes. Aiming at evaluating the soils and grounds of the sensitive areas, the ground samples were taken, and average diameter was identified, with its value changing to D0 = 4,67-15,48 mm, and integral curves of the grain size were drafted. By using the obtained data, the transporting capability of mudflow can be identified at the next stage to use to calculate mudflow peak discharges of different provisions in developing the new designs of mudflow-protection structures with the goal of ensuring the safety of Tbilisi population. The studies were accomplished under the financing of Young Scientists’ Grant of Shota Rustaveli National Science Foundation 'The study of erosive-mudflow processes in the water catch basin in the river Vere to ensure the safety of the population of Tbilisi and their consideration in developing new environmental protection plans' (YS15_2.1.5_8)

Keywords: water catch basin, mudflow-protection structures, erosive-mudflow processes, safety

Procedia PDF Downloads 294
2558 Recovery of the Demolition and Construction Waste, Casablanca (Morocco)

Authors: Morsli Mourad, Tahiri Mohamed, Samdi Azzeddine

Abstract:

Casablanca is the biggest city in Morocco. It concentrates more than 60% of the economic and industrial activity of the kingdom. Its building and public works (BTP) sector is the leading source of inert waste scattered in open areas. This inert waste is a major challenge for the city of Casablanca, as it is not properly managed, thus causing a significant nuisance for the environment and the health of the population. Hence the vision of our project is to recycle and valorize concrete waste. In this work, we present concrete results in the exploitation of this abundant and permanent deposit. Typical wastes are concrete, clay and concrete bricks, ceramic tiles, marble panels, gypsum, scrap metal, wood . The work performed included: geolocation with a combination of artificial intelligence and Google Earth, estimation of the amount of waste per site, sorting, crushing, grinding, and physicochemical characterization of the samples. Then, we proceeded to the exploitation of the types of substrates to be developed: light cement, coating, and glue for ceramics... The said products were tested and characterized by X-ray fluorescence, specific surface, resistance to bending and crushing, etc. We will present in detail the main results of our research work and also describe the specific properties of each material developed.

Keywords: déchets de démolition et des chantiers de construction, logiciels de combinaison SIG, valorisation de déchets inertes, enduits, ciment leger, casablanca

Procedia PDF Downloads 89
2557 Determination of Mechanical Properties of Tomato Fruits: Experimental and Finite Element Analysis

Authors: Mallikarjunachari G., Venkata Ravi M.

Abstract:

The objective of this research work is to evaluate the mechanical properties such as elastic modulus and critical rupture load of tomato fruits. Determination of mechanical properties of tomato fruits is essential in various material handling applications, especially as related to robot harvesting, packaging, and transportation. However, extracting meaningful mechanical properties of tomato fruits are extremely challenging due to its layered structure, i.e., the combination of exocarp, mesocarp, and locular gel tissues. Apart from this layered structure, other physical parameters such as diameter, sphericity, locule number, and, the surface to volume ratio also influence the mechanical properties. In this research work, tomato fruits are cultivated in two different ways, namely organic and inorganic farming. Static compression tests are performed to extract the mechanical properties of tomato fruits. Finite element simulations are done to complement the experimental results. It is observed that the effective modulus decreases as the compression depth increase from 0.5 mm to 10 mm and also a critical load of fracture decreases as the locule number increases from 3 to 5. Significant differences in mechanical properties are observed between organically and inorganically cultivated tomato fruits. The current study significantly helps in the design of material handling systems to avoid damage of tomato fruits.

Keywords: elastic modulus, critical load of fracture, locule number, finite element analysis

Procedia PDF Downloads 103
2556 Mitigation of Lithium-ion Battery Thermal Runaway Propagation Through the Use of Phase Change Materials Containing Expanded Graphite

Authors: Jayson Cheyne, David Butler, Iain Bomphray

Abstract:

In recent years, lithium-ion batteries have been used increasingly for electric vehicles and large energy storage systems due to their high-power density and long lifespan. Despite this, thermal runaway remains a significant safety problem because of its uncontrollable and irreversible nature - which can lead to fires and explosions. In large-scale lithium-ion packs and modules, thermal runaway propagation between cells can escalate fire hazards and cause significant damage. Thus, safety measures are required to mitigate thermal runaway propagation. The current research explores composite phase change materials (PCM) containing expanded graphite (EG) for thermal runaway mitigation. PCMs are an area of significant interest for battery thermal management due to their ability to absorb substantial quantities of heat during phase change. Moreover, the introduction of EG can support heat transfer from the cells to the PCM (owing to its high thermal conductivity) and provide shape stability to the PCM during phase change. During the research, a thermal model was established for an array of 16 cylindrical cells to simulate heat dissipation with and without the composite PCM. Two conditions were modeled, including the behavior during charge/discharge cycles (i.e., throughout regular operation) and thermal runaway. Furthermore, parameters including cell spacing, composite PCM thickness, and EG weight percentage (WT%) were varied to establish the optimal material parameters for enabling thermal runaway mitigation and effective thermal management. Although numerical modeling is still ongoing, initial findings suggest that a 3mm PCM containing 15WT% EG can effectively suppress thermal runaway propagation while maintaining shape stability. The next step in the research is to validate the model through controlled experimental tests. Additionally, with the perceived fire safety concerns relating to PCM materials, fire safety tests, including UL-94 and Limiting Oxygen Index (LOI), shall be conducted to explore the flammability risk.

Keywords: battery safety, electric vehicles, phase change materials, thermal management, thermal runaway

Procedia PDF Downloads 108
2555 Derivation of Bathymetry from High-Resolution Satellite Images: Comparison of Empirical Methods through Geographical Error Analysis

Authors: Anusha P. Wijesundara, Dulap I. Rathnayake, Nihal D. Perera

Abstract:

Bathymetric information is fundamental importance to coastal and marine planning and management, nautical navigation, and scientific studies of marine environments. Satellite-derived bathymetry data provide detailed information in areas where conventional sounding data is lacking and conventional surveys are inaccessible. The two empirical approaches of log-linear bathymetric inversion model and non-linear bathymetric inversion model are applied for deriving bathymetry from high-resolution multispectral satellite imagery. This study compares these two approaches by means of geographical error analysis for the site Kankesanturai using WorldView-2 satellite imagery. Based on the Levenberg-Marquardt method calibrated the parameters of non-linear inversion model and the multiple-linear regression model was applied to calibrate the log-linear inversion model. In order to calibrate both models, Single Beam Echo Sounding (SBES) data in this study area were used as reference points. Residuals were calculated as the difference between the derived depth values and the validation echo sounder bathymetry data and the geographical distribution of model residuals was mapped. The spatial autocorrelation was calculated by comparing the performance of the bathymetric models and the results showing the geographic errors for both models. A spatial error model was constructed from the initial bathymetry estimates and the estimates of autocorrelation. This spatial error model is used to generate more reliable estimates of bathymetry by quantifying autocorrelation of model error and incorporating this into an improved regression model. Log-linear model (R²=0.846) performs better than the non- linear model (R²=0.692). Finally, the spatial error models improved bathymetric estimates derived from linear and non-linear models up to R²=0.854 and R²=0.704 respectively. The Root Mean Square Error (RMSE) was calculated for all reference points in various depth ranges. The magnitude of the prediction error increases with depth for both the log-linear and the non-linear inversion models. Overall RMSE for log-linear and the non-linear inversion models were ±1.532 m and ±2.089 m, respectively.

Keywords: log-linear model, multi spectral, residuals, spatial error model

Procedia PDF Downloads 277
2554 The MicroRNA-2110 Suppressed Cell Proliferation and Migration Capacity in Hepatocellular Carcinoma Cells

Authors: Pelin Balcik Ercin

Abstract:

Introduction: ZEB transcription factor family member ZEB2, has a role in epithelial to mesenchymal transition during development and metastasis. The altered circulating extracellular miRNAs expression is observed in diseases, and extracellular miRNAs have an important role in cancer cell microenvironment. In ChIP-Seq study, the expression of miR-2110 was found to be regulated by ZEB2. In this study, the effects of miR2110 on cell proliferation and migration of hepatocellular carcinoma (HCC) cells were examined. Material and Methods: SNU398 cells transfected with mimic miR2110 (20nM) (HMI0375, Sigma-Aldrich) and negative control miR (HMC0002, Sigma-Aldrich). MicroRNA isolation was accomplished with miRVANA isolation kit according to manufacturer instructions. cDNA synthesis was performed expression, respectively, and calibrated with Ct of controls. The real-time quantitative PCR (RT-qPCR) reaction was performed using the TaqMan Fast Advanced Master Mix (Thermo Sci.). Ct values of miR2110 were normalized to miR-186-5p and miR16-5p for the intracellular gene. Cell proliferation analysis was analyzed with the xCELLigence RTCA System. Wound healing assay was analyzed with the ImageJ program and relative fold change calculated. Results: The mimic-miR-2110 transfected SNU398 cells nearly nine-fold (log2) more miR-2110 expressed compared to negative control transfected cells. The mimic-miR-2110 transfected HCC cell proliferation significantly inhibited compared to the negative control cells. Furthermore, miR-2110-SNU398 cell migration capacity was relatively four-fold decreased compared to negative control-miR-SNU398 cells. Conclusion: Our results suggest the miR-2110 inhibited cell proliferation and also miR-2110 negatively affect cell migration compared to control groups in HCC cells. These data suggest the complexity of microRNA EMT transcription factors regulation. These initial results are pointed out the predictive biomarker capacity of miR-2110 in HCC.

Keywords: epithelial to mesenchymal transition, EMT, hepatocellular carcinoma cells, micro-RNA-2110, ZEB2

Procedia PDF Downloads 106
2553 Hydrologic Impacts of Climate Change and Urbanization on Quetta Watershed, Pakistan

Authors: Malik Muhammad Akhtar, Tanzeel Khan

Abstract:

Various natural and anthropogenic factors are affecting recharge processes in urban areas due to intense urban expansion; land-use/landcover change (LULC) and climate considerably influence the ecosystem functions. In Quetta, a terrible transformation of LULC has occurred due to an increase in human population and rapid urbanization over the past years; according to the Pakistan Bureau of Statistics, the increase of population from 252,577 in 1972 to 2,275,699 in 2017 shows an abrupt rise which in turn has affected the aquifer recharge capability, vegetation, and precipitation at Quetta. This study focuses on the influence of population growth and LULC on groundwater table level by employing multi-temporal, multispectral satellite data during the selected years, i.e. 2014, 2017, and 2020. The results of land classification showed that barren land had shown a considerable decrease, whereas the urban area has increased over time from 152.4sq/km in 2014 to 195.5sq/km in 2017 to 283.3sq/km in 2020, whereas surface-water area coverage has increased since 2014 because of construction of few dams around the valley. Rapid urbanization stresses limited hydrology resources, and this needs to be addressed to conserve/sustain the resources through educating the local community, awareness regarding water use and climate change, and supporting artificial recharge of the aquifers.

Keywords: climate changes, urbanization, GIS, land use, Quetta, watershed

Procedia PDF Downloads 94
2552 Physico-Chemical Characteristics of Terminalia arjuna Encapsulated Dairy Drink

Authors: Sawale Pravin Digambar, G. R. Patil, Shaik Abdul Hussain

Abstract:

Terminalia arjuna (TA), an important medicinal plant in Indian System of Medicine, is specifically recognized for its recuperative effect on heart ailments. Alcoholic extract of TA (both free and encapsulated) was incorporated into milk to obtain functional dairy beverages. The respective beverages were appropriately flavored and optimized using response surface methodology to improve the sensory appeal. The beverages were evaluated for their compositional, anti-oxidative and various other physico-chemical aspects. Addition of herb (0.3%) extract to flavoured dairy drink (Drink 1) resulted in significantly lowered (p>0.05) HMF content and increased antioxidant activity, total phenol content as compared with control (Control 1). Subsequently, a significant (p>0.05) increase in acidity and sedimentation was also observed. Encapsulated herb (1.8%) incorporated drink (Drink 2) had significantly (P>0.05) enhanced HMF value and decreased antioxidant activity, phenol content as compared to herb added vanilla chocolate dairy drink (Drink 1). It can be concluded that addition of encapsulated TA extract and non-encapsulated TA extract to chocolate dairy drink at 0.3% concentration altered the functional properties vanilla chocolate dairy drink which could be related to the interaction of herb components such as polyphenol with milk protein or maltodextrin/ gum Arabic matrix.

Keywords: Terminalia arjuna, encapsulate, antioxidant activity, physicochemical study

Procedia PDF Downloads 350
2551 A Significant Clinical Role for the Capitalbio™ DNA Microarray in the Diagnosis of Multidrug-Resistant Tuberculosis in Patients with Tuberculous Spondylitis Simultaneous with Pulmonary Tuberculosis in High Prevalence Settings in China

Authors: Wenjie Wu, Peng Cheng, Zehua Zhang, Fei Luo, Feng Wu, Min Zhong, Jianzhong Xu

Abstract:

Background: There has been limited research into the therapeutic efficacy of rapid diagnosis of spinal tuberculosis complicated with pulmonary tuberculosis. We attempted to discover whether the utilization of a DNA microarray assay to detect multidrug-resistant spinal tuberculosis complicated with pulmonary tuberculosis can improve clinical outcomes. Methods: A prospective study was conducted from February 2006 to September 2015. One hundred and forty-three consecutive culture–confirmed, clinically and imaging diagnosed MDR-TB patients with spinal tuberculosis complicated by pulmonary tuberculosis were enrolled into the study. The initial time to treatment for MDR-TB, the method of infection control, radiological indicators of spinal tubercular infectious foci, culture conversion, and adverse drug reactions were compared with the standard culture methods. Results: Of the total of 143 MDR-TB patients, 68 (47.6%) were diagnosed by conventional culture methods and 75 (52.4%) following the implementation of detection using the DNA microarray. Patients in the microarray group began rational use of the second-line drugs schedule more speedily than sufferers in the culture group (17.3 vs. 74.1 days). Among patients were admitted to a general tuberculosis ward, those from the microarray group spent less time in the ward than those from the culture group (7.8 vs. 49.2 days). In those patients with six months follow-up (n=134), patients in the microarray group had a higher rate of sputum negativity conversion at six months (89% vs. 73%). In the microarray group, the rate of drug adverse reactions was significantly lower (22.2% vs. 67.7%). At the same time, they had a more obvious reduction of the area with spinal tuberculous lesions in radiological examinations (77% vs. 108%). Conclusions: The application of the CapitalBio™ DNA Microarray assay caused noteworthy clinical advances including an earlier time to begin MDR-TB treatment, increased sputum culture conversion, improved infection control measures and better radiographical results

Keywords: tuberculosis, multidrug-resistant, tuberculous spondylitis, DNA microarray, clinical outcomes

Procedia PDF Downloads 269
2550 Visualizing Matrix Metalloproteinase-2 Activity Using Extracellular Matrix-Immobilized Fluorescence Resonance Energy Transfer Bioprobe in Cancer Cells

Authors: Hawon Lee, Young-Pil Kim

Abstract:

Visualizing matrix metalloproteinases (MMPs) activity is necessary for understanding cancer metastasis because they are implicated in cell migration and invasion by degrading the extracellular matrix (ECM). While much effort has been made to sense the MMP activity, but extracellularly long-term monitoring of MMP activity still remains challenging. Here, we report a collagen-bound fluorescent bioprobe for the detection of MMP-2 activity in the extracellular environment. This bioprobe consists of ECM-immobilized part (including collagen-bound protein) and MMP-sensing part (including peptide substrate linked with fluorescence resonance energy transfer (FRET) coupler between donor green fluorescent protein (GFP) and acceptor TAMRA dye), which was constructed through intein-mediated self-splicing conjugation. Upon being immobilized on the collagen-coated surface, this bioprobe enabled efficient long-lasting observation of MMP-2 activity in the cultured cells without affecting cell growth and viability. As a result, the FRET ratio (acceptor/donor) decreased as the MMP2 activity increased in cultured cancer cells. Furthermore, unlike wild-type MMP-2, mutated MMP-2 expression (Y580A in the hemopexin region) gave rise to lowering the secretion of MMP-2 in HeLa. Conclusively, our method is anticipated to find applications for tracing and visualizing enzyme activity.

Keywords: collagen, ECM, FRET, MMP

Procedia PDF Downloads 187
2549 Phosphate Use Efficiency in Plants: A GWAS Approach to Identify the Pathways Involved

Authors: Azizah M. Nahari, Peter Doerner

Abstract:

Phosphate (Pi) is one of the essential macronutrients in plant growth and development, and it plays a central role in metabolic processes in plants, particularly photosynthesis and respiration. Limitation of crop productivity by Pi is widespread and is likely to increase in the future. Applications of Pi fertilizers have improved soil Pi fertility and crop production; however, they have also caused environmental damage. Therefore, in order to reduce dependence on unsustainable Pi fertilizers, a better understanding of phosphate use efficiency (PUE) is required for engineering nutrient-efficient crop plants. Enhanced Pi efficiency can be achieved by improved productivity per unit Pi taken up. We aim to identify, by using association mapping, general features of the most important loci that contribute to increased PUE to allow us to delineate the physiological pathways involved in defining this trait in the model plant Arabidopsis. As PUE is in part determined by the efficiency of uptake, we designed a hydroponic system to avoid confounding effects due to differences in root system architecture leading to differences in Pi uptake. In this system, 18 parental lines and 217 lines of the MAGIC population (a Multiparent Advanced Generation Inter-Cross) grown in high and low Pi availability conditions. The results showed revealed a large variation of PUE in the parental lines, indicating that the MAGIC population was well suited to identify PUE loci and pathways. 2 of 18 parental lines had the highest PUE in low Pi while some lines responded strongly and increased PUE with increased Pi. Having examined the 217 MAGIC population, considerable variance in PUE was found. A general feature was the trend of most lines to exhibit higher PUE when grown in low Pi conditions. Association mapping is currently in progress, but initial observations indicate that a wide variety of physiological processes are involved in influencing PUE in Arabidopsis. The combination of hydroponic growth methods and genome-wide association mapping is a powerful tool to identify the physiological pathways underpinning complex quantitative traits in plants.

Keywords: hydroponic system growth, phosphate use efficiency (PUE), Genome-wide association mapping, MAGIC population

Procedia PDF Downloads 304
2548 Malpractice, Even in Conditions of Compliance With the Rules of Dental Ethics

Authors: Saimir Heta, Kers Kapaj, Rialda Xhizdari, Ilma Robo

Abstract:

Despite the existence of different dental specialties, the dentist-patient relationship is unique, in the very fact that the treatment is performed by one doctor and the patient identifies the malpractice presented as part of that doctor's practice; this is in complete contrast to cases of medical treatments where the patient can be presented to a team of doctors, to treat a specific pathology. The rules of dental ethics are almost the same as the rules of medical ethics. The appearance of dental malpractice affects exactly this two-party relationship, created on the basis of professionalism, without deviations in this direction, between the dentist and the patient, but with very narrow individual boundaries, compared to cases of medical malpractice. Main text: Malpractice can have different reasons for its appearance, starting from professional negligence, but also from the lack of professional knowledge of the dentist who undertakes the dental treatment. It should always be seen in perspective that we are not talking about the individual - the dentist who goes to work with the intention of harming their patients. Malpractice can also be a consequence of the impossibility, for anatomical or physiological reasons of the tooth under dental treatment, to realize the predetermined dental treatment plan. On the other hand, the dentist himself is an individual who can be affected by health conditions, or have vices that affect the systemic health of the dentist as an individual, which in these conditions can cause malpractice. So, depending on the reason that led to the appearance of malpractice, the method of treatment from a legal point of view also varies, for the dentist who committed the malpractice, evaluating the latter if the malpractice came under the conditions of applying the rules of dental ethics. Conclusions: The deviation from the predetermined dental plan is the minimum sign of malpractice and the latter should not be definitively related only to cases of difficult dental treatments. The identification of the reason for the appearance of malpractice is the initial element, which makes the difference in the way of its treatment, from a legal point of view, and the involvement of the dentist in the assessment of the malpractice committed, must be based on the legislation in force, which must be said to have their specific changes in different states. Malpractice should be referred to, or included in the lectures or in the continuing education of professionals, because it serves as a method of obtaining professional experience in order not to repeat the same thing several times, by different professionals.

Keywords: dental ethics, malpractice, negligence, legal basis, continuing education, dental treatments

Procedia PDF Downloads 47
2547 Dosimetry in Interventional Radiology Examinations for Occupational Exposure Monitoring

Authors: Ava Zarif Sanayei, Sedigheh Sina

Abstract:

Interventional radiology (IR) uses imaging guidance, including X-rays and CT scans, to deliver therapy precisely. Most IR procedures are performed under local anesthesia and start with a small needle being inserted through the skin, which may be called pinhole surgery or image-guided surgery. There is increasing concern about radiation exposure during interventional radiology procedures due to procedure complexity. The basic aim of optimizing radiation protection as outlined in ICRP 139, is to strike a balance between image quality and radiation dose while maximizing benefits, ensuring that diagnostic interpretation is satisfactory. This study aims to estimate the equivalent doses to the main trunk of the body for the Interventional radiologist and Superintendent using LiF: Mg, Ti (TLD-100) chips at the IR department of a hospital in Shiraz, Iran. In the initial stage, the dosimeters were calibrated with the use of various phantoms. Afterward, a group of dosimeters was prepared, following which they were used for three months. To measure the personal equivalent dose to the body, three TLD chips were put in a tissue-equivalent batch and used under a protective lead apron. After the completion of the duration, TLDs were read out by a TLD reader. The results revealed that these individuals received equivalent doses of 387.39 and 145.11 µSv, respectively. The findings of this investigation revealed that the total radiation exposure to the staff was less than the annual limit of occupational exposure. However, it's imperative to implement appropriate radiation protection measures. Although the dose received by the interventional radiologist is a bit noticeable, it may be due to the reason for using conventional equipment with over-couch x-ray tubes for interventional procedures. It is therefore important to use dedicated equipment and protective means such as glasses and screens whenever compatible with the intervention when they are available or have them fitted to equipment if they are not present. Based on the results, the placement of staff in an appropriate location led to increasing the dose to the radiologist. Manufacturing and installation of moveable lead curtains with a thickness of 0.25 millimeters can effectively minimize the radiation dose to the body. Providing adequate training on radiation safety principles, particularly for technologists, can be an optimal approach to further decreasing exposure.

Keywords: interventional radiology, personal monitoring, radiation protection, thermoluminescence dosimetry

Procedia PDF Downloads 44
2546 Providing Support for Minority LGBTQ Students: Developing a Queer Studies Course

Authors: Karen Butler

Abstract:

The LGBTQ youth of color face stigma related to both race and gender identity. Effectively dealing with racial/ethnic discrimination requires strong connections to family and one’s racial/ethnic group. However, LGBTQ youth of color seldom receive support from family, peer groups or church groups. Moreover, ethnic communities often perceive LGBTQ identities as a rejection of ethnic heritage. Thus, stigma places these young people at greater risk for substance use, violence, risky sexual behaviors, suicide, and homelessness. Offering a Queer Studies (QS) class is one way to facilitate a safer and more inclusive environment for LGBTQ students, faculty and staff. The discipline of Queer Studies encompasses theories and thinkers from numerous fields: cultural studies, gay and lesbian studies, race studies, women's studies, media, postmodernism, post-colonialism, psychoanalysis and more. We began our course development by researching existing programs and classes. Several course syllabi were examined and course materials such as readings, videos, and guest speakers were assessed for possible inclusion. We also employed informal survey methods with students and faculty in order to gauge interest in the course. We then developed a sample course syllabus and began the process of new course approval. Feedback thus far indicates that students of various sexual orientations and gender identities are interested in the course and understand the need to offer it; faculty in Psychology, Social Work, and Interdisciplinary Studies are interested in cross-listing the course; library staff is willing to assist with course material acquisition, and the administration is supportive. The purpose of this session is to 1) explore the various health and wellness issues facing LGBTQ students of color and 2) share our experience of developing a QS course in health education in order to address these needs. This process, from initial recognition of the need to a course offering, will be described and discussed in the hopes that participants will increase their awareness of the issues. A QS course would be an appropriate requirement for any number of majors as well as an elective for any major.

Keywords: black colleges, health education, LGBTQ, queer studies

Procedia PDF Downloads 127
2545 Fruit Growing in Romania and Its Role for Rural Communities’ Development

Authors: Maria Toader, Gheorghe Valentin Roman

Abstract:

The importance of fruit trees and bushes growing for Romania is due the concordance that exists between the different ecological conditions in natural basins, and the requirements of different species and varieties. There are, in Romania, natural areas dedicated to the main trees species: plum, apple, pear, cherry, sour cherry, finding optimal conditions for harnessing the potential of fruitfulness, making fruit quality both in terms of ratio commercial, and content in active principles. The share of fruits crops in the world economy of agricultural production is due primarily to the role of fruits in nourishment for human, and in the prevention and combating of diseases, in increasing the national income of cultivator countries and to improve comfort for human life. For Romania, the perspectives of the sector are positive, and are due to European funding opportunities, which provide farmers a specialized program that meets the needs of development and modernization of fruit growing industry, cultivation technology and equipment, organization and grouping of producers, creating storage facilities, conditioning, marketing and the joint use of fresh fruit. This paper shows the evolution of fruit growing, in Romania compared to other states. The document presents the current situation of the main tree species both in terms of surface but also of the productions and the role that this activity may have for the development of rural communities.

Keywords: fruit growing, fruits trees, productivity, rural development

Procedia PDF Downloads 244
2544 Competitive Adsorption of Heavy Metals onto Natural and Activated Clay: Equilibrium, Kinetics and Modeling

Authors: L. Khalfa, M. Bagane, M. L. Cervera, S. Najjar

Abstract:

The aim of this work is to present a low cost adsorbent for removing toxic heavy metals from aqueous solutions. Therefore, we are interested to investigate the efficiency of natural clay minerals collected from south Tunisia and their modified form using sulfuric acid in the removal of toxic metal ions: Zn(II) and Pb(II) from synthetic waste water solutions. The obtained results indicate that metal uptake is pH-dependent and maximum removal was detected to occur at pH 6. Adsorption equilibrium is very rapid and it was achieved after 90 min for both metal ions studied. The kinetics results show that the pseudo-second-order model describes the adsorption and the intraparticle diffusion models are the limiting step. The treatment of natural clay with sulfuric acid creates more active sites and increases the surface area, so it showed an increase of the adsorbed quantities of lead and zinc in single and binary systems. The competitive adsorption study showed that the uptake of lead was inhibited in the presence of 10 mg/L of zinc. An antagonistic binary adsorption mechanism was observed. These results revealed that clay is an effective natural material for removing lead and zinc in single and binary systems from aqueous solution.

Keywords: heavy metal, activated clay, kinetic study, competitive adsorption, modeling

Procedia PDF Downloads 203
2543 Effectiveness with Respect to Time-To-Market and the Impacts of Late-Stage Design Changes in Rapid Development Life Cycles

Authors: Parth Shah

Abstract:

The author examines the recent trend where business organizations are significantly reducing their developmental cycle times to stay competitive in today’s global marketspace. The author proposes a rapid systems engineering framework to address late design changes and allow for flexibility (i.e. to react to unexpected or late changes and its impacts) during the product development cycle using a Systems Engineering approach. A System Engineering approach is crucial in today’s product development to deliver complex products into the marketplace. Design changes can occur due to shortened timelines and also based on initial consumer feedback once a product or service is in the marketplace. The ability to react to change and address customer expectations in a responsive and cost-efficient manner is crucial for any organization to succeed. Past literature, research, and methods such as concurrent development, simultaneous engineering, knowledge management, component sharing, rapid product integration, tailored systems engineering processes, and studies on reducing product development cycles all suggest a research gap exist in specifically addressing late design changes due to the shortening of life cycle environments in increasingly competitive markets. The author’s research suggests that 1) product development cycles time scales are now measured in months instead of years, 2) more and more products have interdepended systems and environments that are fast-paced and resource critical, 3) product obsolesce is higher and more organizations are releasing products and services frequently, and 4) increasingly competitive markets are leading to customization based on consumer feedback. The author will quantify effectiveness with respect to success factors such as time-to-market, return-of-investment, life cycle time and flexibility in late design changes by complexity of product or service, number of late changes and ability to react and reduce late design changes.

Keywords: product development, rapid systems engineering, scalability, systems engineering, systems integration, systems life cycle

Procedia PDF Downloads 193
2542 Effect of Sodium Aluminate on Compressive Strength of Geopolymer at Elevated Temperatures

Authors: Ji Hoi Heo, Jun Seong Park, Hyo Kim

Abstract:

Geopolymer is an inorganic material synthesized by alkali activation of source materials rich in soluble SiO2 and Al2O3. Many researches have studied the effect of aluminum species on the synthesis of geopolymer. However, it is still unclear about the influence of Al additives on the properties of geopolymer. The current study identified the role of the Al additive on the thermal performance of fly ash based geopolymer and observing the microstructure development of the composite. NaOH pellets were dissolved in water for 14 M (14 moles/L) sodium hydroxide solution which was used as an alkali activator. The weight ratio of alkali activator to fly ash was 0.40. Sodium aluminate powder was employed as an Al additive and added in amounts of 0.5 wt.% to 2 wt.% by the weight of fly ash. The mixture of alkali activator and fly ash was cured in a 75°C dry oven for 24 hours. Then, the hardened geopolymer samples were exposed to 300°C, 600°C and 900°C for 2 hours, respectively. The initial compressive strength after oven curing increased with increasing sodium aluminate content. It was also observed in SEM results that more amounts of geopolymer composite were synthesized as sodium aluminate was added. The compressive strength increased with increasing heating temperature from 300°C to 600°C regardless of sodium aluminate addition. It was consistent with the ATR-FTIR results that the peak position related to asymmetric stretching vibrations of Si-O-T (T: Si or Al) shifted to higher wavenumber as the heating temperature increased, indicating the further geopolymer reaction. In addition, geopolymer sample with higher content of sodium aluminate showed better compressive strength. It was also reflected on the IR results by more shift of the peak position assigned to Si-O-T toward the higher wavenumber. However, the compressive strength decreased after being exposed to 900°C in all samples. The degree of reduction in compressive strength was decreased with increasing sodium aluminate content. The deterioration in compressive strength was most severe in the geopolymer sample without sodium aluminate additive, while the samples with sodium aluminate addition showed better thermal durability at 900°C. This is related to the phase transformation with the occurrence of nepheline phase at 900°C, which was most predominant in the sample without sodium aluminate. In this work, it was concluded that sodium aluminate could be a good additive in the geopolymer synthesis by showing the improved compressive strength at elevated temperatures.

Keywords: compressive strength, fly ash based geopolymer, microstructure development, Na-aluminate

Procedia PDF Downloads 112
2541 Dynamic High-Rise Moment Resisting Frame Dissipation Performances Adopting Glazed Curtain Walls with Superelastic Shape Memory Alloy Joints

Authors: Lorenzo Casagrande, Antonio Bonati, Ferdinando Auricchio, Antonio Occhiuzzi

Abstract:

This paper summarizes the results of a survey on smart non-structural element dynamic dissipation when installed in modern high-rise mega-frame prototypes. An innovative glazed curtain wall was designed using Shape Memory Alloy (SMA) joints in order to increase the energy dissipation and enhance the seismic/wind response of the structures. The studied buildings consisted of thirty- and sixty-storey planar frames, extracted from reference three-dimensional steel Moment Resisting Frame (MRF) with outriggers and belt trusses. The internal core was composed of a CBF system, whilst outriggers were placed every fifteen stories to limit second order effects and inter-storey drifts. These structural systems were designed in accordance with European rules and numerical FE models were developed with an open-source code, able to account for geometric and material nonlinearities. With regard to the characterization of non-structural building components, full-scale crescendo tests were performed on aluminium/glass curtain wall units at the laboratory of the Construction Technologies Institute (ITC) of the Italian National Research Council (CNR), deriving force-displacement curves. Three-dimensional brick-based inelastic FE models were calibrated according to experimental results, simulating the fac¸ade response. Since recent seismic events and extreme dynamic wind loads have generated the large occurrence of non-structural components failure, which causes sensitive economic losses and represents a hazard for pedestrians safety, a more dissipative glazed curtain wall was studied. Taking advantage of the mechanical properties of SMA, advanced smart joints were designed with the aim to enhance both the dynamic performance of the single non-structural unit and the global behavior. Thus, three-dimensional brick-based plastic FE models were produced, based on the innovated non-structural system, simulating the evolution of mechanical degradation in aluminium-to-glass and SMA-to-glass connections when high deformations occurred. Consequently, equivalent nonlinear links were calibrated to reproduce the behavior of both tested and smart designed units, and implemented on the thirty- and sixty-storey structural planar frame FE models. Nonlinear time history analyses (NLTHAs) were performed to quantify the potential of the new system, when considered in the lateral resisting frame system (LRFS) of modern high-rise MRFs. Sensitivity to the structure height was explored comparing the responses of the two prototypes. Trends in global and local performance were discussed to show that, if accurately designed, advanced materials in non-structural elements provide new sources of energy dissipation.

Keywords: advanced technologies, glazed curtain walls, non-structural elements, seismic-action reduction, shape memory alloy

Procedia PDF Downloads 315
2540 A Study of the Resistance of Protective Glove Materials to Metalworking Fluids

Authors: Nguyen-Tri Phuong, Triki Ennouri, Gauvin Chantal, Tuduri Ludovic, Vu-Khanh Toan

Abstract:

Hand injuries due to mechanical hazards such as cuts and punctures are major risks and concerns for several occupational groups, particularly for workers in the metal manufacturing sector and mechanical automotive services. Personal protective equipment such as gloves or clothing is necessary for many professionals to protect against a variety of occupational hazards, which arise daily in their work environments. In many working places such as metal manufacturing or automotive services, mechanical hazards often occur together with industrial contaminants, particularly metalworking fluids (MWFs). The presence of these contaminants could modify the properties of gloves made from polymeric materials and thus increase the risk of hand injuries for workers. The focus of this study is to determine the swelling characteristics and the resistance of six polymer membranes when they are contaminated with several industrial metalworking fluids. These polymer membranes, commonly used in protective gloves, are nitrile, neoprene, vinyl, butyl, polyurethane and latex rubbers. Changes swelling index were continuously followed during the contamination procedure to compare the performance of each polymer under different conditions. The modification of the samples surface, tensile properties during the contamination process was also investigated. The effect of temperature on mechanical properties and morphology of material was also examined.

Keywords: metalworking fluid, swelling behavior, protective glove materials, elastomers

Procedia PDF Downloads 378
2539 A Critical Study of the Performance of Self Compacting Concrete (SCC) Using Locally Supplied Materials in Bahrain

Authors: A. Umar, A. Tamimi

Abstract:

Development of new types of concrete with improved performance is a very important issue for the whole building industry. The development is based on the optimization of the concrete mix design, with an emphasis not only on the workability and mechanical properties but also to the durability and the reliability of the concrete structure in general. Self-compacting concrete (SCC) is a high-performance material designed to flow into formwork under its own weight and without the aid of mechanical vibration. At the same time it is cohesive enough to fill spaces of almost any size and shape without segregation or bleeding. Construction time is shorter and production of SCC is environmentally friendly (no noise, no vibration). Furthermore, SCC produces a good surface finish. Despite these advantages, SCC has not gained much local acceptance though it has been promoted in the Middle East for the last ten to twelve years. The reluctance in utilizing the advantages of SCC, in Bahrain, may be due to lack of research or published data pertaining to locally produced SCC. Therefore, there is a need to conduct studies on SCC using locally available material supplies. From the literature, it has been observed that the use of viscosity modifying admixtures (VMA), micro silica and glass fibers have proved to be very effective in stabilizing the rheological properties and the strength of fresh and hardened properties of self-compacting concrete (SCC). Therefore, in the present study, it is proposed to carry out investigations of SCC with combinations of various dosages of VMAs with and without micro silica and glass fibers and to study their influence on the properties of fresh and hardened concrete.

Keywords: self-compacting concrete, viscosity modifying admixture, micro silica, glass fibers

Procedia PDF Downloads 637
2538 Designing Bird-Friendly Kolkata city

Authors: Madhumita Roy

Abstract:

Kolkata, the city of joy, is an organic city with 45 lakhs of people till date. The increasing population stress is creating a constant pressure on the ground surface which in turn reducing the possible area for plantation. Humans, plants, and birds have a mutualistic relationship, and all are dependent on each other for their survival. Vegetation structure is very important for a bird life because it can be used as a residence, foraging, life cycle, and shelter from predators. On the other hand, in urban areas, buildings and structures also plays a major role for birds habitat w.r.t, nesting, resting, etc. City birds are constantly upgrading their adaptative mechanism with changing urban pattern with modern architectural designs. Urbanisation and unplanned development lead to environmental degradation and bird habitat fragmentation, which have impacts on the degradation of the quality and quantity of bird habitat. Declining green cover and habitat loss affects the diversity and population structure of birds. Their reducing number is an increasing threat not only to the bird community but also to the city as birds are considered as one of the most important environmental indicator. This study aims to check the present avian status like species richness, relative abundance, and diversity of bird species in the context of changing urban pattern in Kolkata city. Nesting strategy in the urban habitat of the avian community is another avenue of interest.

Keywords: urbanisation, avian species, kolkata metropolis, planning

Procedia PDF Downloads 86
2537 Fabrication of Porous Materials for the Removal of Lead from Waste Water

Authors: Marcia Silva, Jayme Kolarik, Brennon Garthwait, William Lee, Hai-Feng Zhang

Abstract:

Adsorption of lead by a natural porous material was studied to establish a baseline for the removal of heavy metals from drinking and waste water. Samples were examined under different conditions such as solution pH, solution concentration, solution temperature, and exposure time. New materials with potentially enhanced adsorption properties were developed by functionalizing the surface of the natural porous material to fabricate graphene based coated and sulfide based treated porous material. The functionalized materials were characterized with Fourier Transform Infrared Spectroscopy (FTIR), Raman, Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) techniques. Solution pH effect on removal efficiency has been investigated in acidic (pH = 4), neutral (pH = 6) and basic (pH = 10) pH levels. All adsorbent materials showed highest adsorption capacities at neutral pH levels. Batch experiment was employed to assess the efficacy for the removal of lead with the sorption kinetics and the adsorption isotherms being determined for the natural and treated porous materials. The addition of graphene-based and sulfide-based materials increased the lead removal capacity of the natural clean porous material. Theoretical calculations confirmed pseudo-second order model as kinetic mechanism for lead adsorption for all adsorbents.

Keywords: heavy metals, ion exchange, adsorption, water remediation

Procedia PDF Downloads 234
2536 Theoretical and Experimental Analysis of Hard Material Machining

Authors: Rajaram Kr. Gupta, Bhupendra Kumar, T. V. K. Gupta, D. S. Ramteke

Abstract:

Machining of hard materials is a recent technology for direct production of work-pieces. The primary challenge in machining these materials is selection of cutting tool inserts which facilitates an extended tool life and high-precision machining of the component. These materials are widely for making precision parts for the aerospace industry. Nickel-based alloys are typically used in extreme environment applications where a combination of strength, corrosion resistance and oxidation resistance material characteristics are required. The present paper reports the theoretical and experimental investigations carried out to understand the influence of machining parameters on the response parameters. Considering the basic machining parameters (speed, feed and depth of cut) a study has been conducted to observe their influence on material removal rate, surface roughness, cutting forces and corresponding tool wear. Experiments are designed and conducted with the help of Central Composite Rotatable Design technique. The results reveals that for a given range of process parameters, material removal rate is favorable for higher depths of cut and low feed rate for cutting forces. Low feed rates and high values of rotational speeds are suitable for better finish and higher tool life.

Keywords: speed, feed, depth of cut, roughness, cutting force, flank wear

Procedia PDF Downloads 267
2535 Amino Acid Based Biodegradable Poly (Ester-Amide)s and Their Potential Biomedical Applications as Drug Delivery Containers and Antibacterial

Authors: Nino Kupatadze, Tamar Memanishvili, Natia Ochkhikidze, David Tugushi, Zaal Kokaia, Ramaz Katsarava

Abstract:

Amino acid-based Biodegradable poly(ester-amide)s (PEAs) have gained considerable interest as a promising materials for numerous biomedical applications. These polymers reveal a high biocompatibility and easily form small particles suitable for delivery various biological, as well as elastic bio-erodible films serving as matrices for constructing antibacterial coatings. In the present work we have demonstrated a potential of the PEAs for two applications: 1. cell therapy for stroke as vehicles for delivery and sustained release of growth factors, 2. bactericidal coating as prevention biofilm and applicable in infected wound management. Stroke remains the main cause of adult disability with limited treatment options. Although stem cell therapy is a promising strategy, it still requires improvement of cell survival, differentiation and tissue modulation. .Recently, microspheres (MPs) made of biodegradable polymers have gained significant attention for providing necessary support of transplanted cells. To investigate this strategy in the cell therapy of stroke, MPs loaded with transcription factors Wnt3A/BMP4 were prepared. These proteins have been shown to mediate the maturation of the cortical neurons. We have suggested that implantation of these materials could create a suitable microenvironment for implanted cells. Particles with spherical shape, porous surface, and 5-40 m in size (monitored by scanning electron microscopy) were made on the basis of the original PEA composed of adipic acid, L-phenylalanine and 1,4-butanediol. After 4 months transplantation of MPs in rodent brain, no inflammation was observed. Additionally, factors were successfully released from MPs and affected neuronal cell differentiation in in vitro. The in vivo study using loaded MPs is in progress. Another severe problem in biomedicine is prevention of surgical devices from biofilm formation. Antimicrobial polymeric coatings are most effective “shields” to protect surfaces/devices from biofilm formation. Among matrices for constructing the coatings preference should be given to bio-erodible polymers. Such types of coatings will play a role of “unstable seating” that will not allow bacteria to occupy the surface. In other words, bio-erodible coatings would be discomfort shelter for bacteria that along with releasing “killers of bacteria” should prevent the formation of biofilm. For this purpose, we selected an original biodegradable PEA composed of L-leucine, 1,6-hexanediol and sebacic acid as a bio-erodible matrix, and nanosilver (AgNPs) as a bactericidal agent (“killer of bacteria”). Such nanocomposite material is also promising in treatment of superficial wound and ulcer. The solubility of the PEA in ethanol allows to reduce AgNO3 to NPs directly in the solution, where the solvent served as a reductive agent, and the PEA served as NPs stabilizer. The photochemical reduction was selected as a basic method to form NPs. The obtained AgNPs were characterized by UV-spectroscopy, transmission electron microscope (TEM), and dynamic light scattering (DLS). According to the UV-data and TEM data the photochemical reduction resulted in spherical AgNPs with wide particle size distribution with a high contribution of the particles below 10 nm that are known as responsible for bactericidal activity of AgNPs. DLS study showed that average size of nanoparticles formed after photo-reduction in ethanol solution ranged within ca. 50 nm.

Keywords: biodegradable polymers, microparticles, nanocomposites, stem cell therapy, stroke

Procedia PDF Downloads 382
2534 Ultrasound-Mediated Separation of Ethanol, Methanol, and Butanol from Their Aqueous Solutions

Authors: Ozan Kahraman, Hao Feng

Abstract:

Ultrasonic atomization (UA) is a useful technique for producing a liquid spray for various processes, such as spray drying. Ultrasound generates small droplets (a few microns in diameter) by disintegration of the liquid via cavitation and/or capillary waves, with low range velocity and narrow droplet size distribution. In recent years, UA has been investigated as an alternative for enabling or enhancing ultrasound-mediated unit operations, such as evaporation, separation, and purification. The previous studies on the UA separation of a solvent from a bulk solution were limited to ethanol-water systems. More investigations into ultrasound-mediated separation for other liquid systems are needed to elucidate the separation mechanism. This study was undertaken to investigate the effects of the operational parameters on the ultrasound-mediated separation of three miscible liquid pairs: ethanol-, methanol-, and butanol-water. A 2.4 MHz ultrasonic mister with a diameter of 18 mm and rating power of 24 W was installed on the bottom of a custom-designed cylindrical separation unit. Air was supplied to the unit (3 to 4 L/min.) as a carrier gas to collect the mist. The effects of the initial alcohol concentration, viscosity, and temperature (10, 30 and 50°C) on the atomization rates were evaluated. The alcohol concentration in the collected mist was measured with high performance liquid chromatography and a refractometer. The viscosity of the solutions was determined using a Brookfield digital viscometer. The alcohol concentration of the atomized mist was dependent on the feed concentration, feed rate, viscosity, and temperature. Increasing the temperature of the alcohol-water mixtures from 10 to 50°C increased the vapor pressure of both the alcohols and water, resulting in an increase in the atomization rates but a decrease in the separation efficiency. The alcohol concentration in the mist was higher than that of the alcohol-water equilibrium at all three temperatures. More importantly, for ethanol, the ethanol concentration in the mist went beyond the azeotropic point, which cannot be achieved by conventional distillation. Ultrasound-mediated separation is a promising non-equilibrium method for separating and purifying alcohols, which may result in significant energy reductions and process intensification.

Keywords: azeotropic mixtures, distillation, evaporation, purification, seperation, ultrasonic atomization

Procedia PDF Downloads 155
2533 Site Specific Nutrient Management Need in India Now

Authors: A. H. Nanher, N. P. Singh, Shashidhar Yadav, Sachin Tyagi

Abstract:

Agricultural production system is an outcome of a complex interaction of seed, soil, water and agro-chemicals (including fertilizers). Therefore, judicious management of all the inputs is essential for the sustainability of such a complex system. Precision agriculture gives farmers the ability to use crop inputs more effectively including fertilizers, pesticides, tillage and irrigation water. More effective use of inputs means greater crop yield and/or quality, without polluting the environment the focus on enhancing the productivity during the Green Revolution coupled with total disregard of proper management of inputs and without considering the ecological impacts, has resulted into environmental degradation. To evaluate a new approach for site-specific nutrient management (SSNM). Large variation in initial soil fertility characteristics and indigenous supply of N, P, and K was observed among Field- and season-specific NPK applications were calculated by accounting for the indigenous nutrient supply, yield targets, and nutrient demand as a function of the interactions between N, P, and K. Nitrogen applications were fine-tuned based on season-specific rules and field-specific monitoring of crop N status. The performance of SSNM did not differ significantly between high-yielding and low-yielding climatic seasons, but improved over time with larger benefits observed in the second year Future, strategies for nutrient management in intensive rice systems must become more site-specific and dynamic to manage spatially and temporally variable resources based on a quantitative understanding of the congruence between nutrient supply and crop demand. The SSNM concept has demonstrated promising agronomic and economic potential. It can be used for managing plant nutrients at any scale, i.e., ranging from a general recommendation for homogenous management of a larger domain to true management of between-field variability. Assessment of pest profiles in FFP and SSNM plots suggests that SSNM may also reduce pest incidence, particularly diseases that are often associated with excessive N use or unbalanced plant nutrition.

Keywords: nutrient, pesticide, crop, yield

Procedia PDF Downloads 412
2532 Climate Teleconnections and Their Influence on the Spread of Dengue

Authors: Edilene Machado, Carolina Karoly, Amanda Britz, Luciane Salvi, Claudineia Brazil

Abstract:

Climate teleconnections refer to the climatic relationships between geographically distant regions, where changes in one location can influence weather patterns in another. These connections can occur through atmospheric and oceanic processes, leading to variations in temperature, precipitation, and other climatic elements. Studying teleconnections is crucial for better understanding the mechanisms that govern global climate and the potential consequences of climate change. A notable example of a teleconnection is the El Niño-Southern Oscillation (ENSO), which involves the interaction between the Equatorial Pacific Ocean and the atmosphere. During El Niño episodes, there is anomalous warming of the surface waters in the Equatorial Pacific, resulting in significant changes in global climate patterns. These changes can affect rainfall distribution, wind patterns, and temperatures in different parts of the world. The cold phase of ENSO, known as La Niña, is often associated with reduced precipitation and below-average temperatures in the state of Rio Grande do Sul, Brazil. Therefore, the objective of this research is to identify patterns between El Niño-Southern Oscillation (ENSO) events in their different phases and dengue transmission. Meteorological data and dengue case records for the city of Porto Alegre, in the southern region of Brazil, were used for the development of this research. The study highlighted that the highest incidence of dengue cases occurred during the cold phase of the El Niño-Southern Oscillation (ENSO).

Keywords: climate patterns, climate teleconnections, climate variability, dengue, El Niño-Southern oscillation

Procedia PDF Downloads 74